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Iterations of the Alternate Paperfolding Curve

Kevin Ryde
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Abstract

Various properties of �nite iterations of the alternate paperfolding
curve, including coordinates, boundary, area, Golay-Rudin-Shapiro se-
quence, twin alternate, area tree, and some fractionals.
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Notation

Bits of an integer written in binary are numbered starting from 0 for the least
signi�cant bit (the lowest bit). Odd and even bit positions follow from this
numbering.

Some formulas have terms going in a repeating pattern of say 4 values ac-
cording as an index k ≡ 0 to 3 mod 4. They are written for example

[5, 8, −5, 9] values according as k mod 4
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meaning 5 when k ≡ 0 mod 4, or 8 when k ≡ 1 mod 4, etc. Likewise periodic
patterns of other lengths.

Periodic patterns like this can be expressed by powers of −1 or complex i
(or other roots of unity), but except in simple cases that tends to be less clear
than the values.

1 Alternate Paperfolding

The alternate paperfolding curve of Davis and Knuth[8, section 4] is de�ned as
repeated unfolding of a copy of itself beginning from a unit line segment. The
unfoldings are alternately to the left and right sides.

curve k

=⇒

unfold
k even

unfold
k odd

Figure 1:

unfolding

When the unfolding is 90◦ the curve touches itself at level k=3 onwards. In
the following diagram the corners are chamfered o� to better see the path taken.

k=0 k=1 k=2

start

k=3

start
k=4

start

k=5
start

end

k=6
start end

alternate paperfolding initial levels

An equivalent de�nition is to form the next level by mirror image and expand
even segments on the right and odd segments on the left. The whole curve is
rotated suitably to keep the �rst segment East.

R

L

R

L
k=2 mirror image

k=3 curve

This can be seen explicitly for the expansion of k=2, and for subsequent levels
it holds by the unfolding. The mirror image each time e�ectively alternates the
unfolding.

It's convenient to draw even segments directed forward and odd segments
reverse. This corresponds to the unfolding, and drawn this way the expansion
is always on the right after mirror image.

R

R

R

R
Figure 2:

segments mirror image

then expand on the right
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Applying two expansions is two mirror images which cancel out, giving the
following plain segment replacement.

=⇒
Figure 3:

two expansions

The successive unfolding means the shape is triangular and traverses all
segments in the eighth of the plane 0≤ y ≤ x except for odd segments on the x
axis.

k even
start

new end

unfold

k odd
start new end

unfold

2 Turn

Davis and Knuth [8] give the alternate paperfolding curve turn sequence in the
form +1 left and −1 right, for n≥ 1,

turn(2n) = −turn(n) even negated (1)

turn(2n+1) = (−1)n odd alternately L, R (2)

= +−−+++−−+−−−++−+ . . . A209615

This can be calculated from n in binary, again for n≥ 1,

turn(n) =

+1 (left) if
BitAboveLowestOne(n)
+ CountLowZeros(n)

is even

−1 (right) if odd
(3)

= (−1)BitAboveLowestOne(n)+CountLowZeros(n)

BitAboveLowestOne(n) = 0,0,1,0,0,1,1,0,0,0,1, . . . n≥1 A038189

CountLowZeros(n) = 0,1,0,2,0,1,0,3,0,1,0,2,0, . . . n≥1 A007814

The e�ect of CountLowZeros is an 0↔ 1 �ip of BitAboveLowestOne when
that bit is at an odd position (least signi�cant bit as position 0).

For computer calculation in a single machine word, BitAboveLowestOne can
be located by some bit-twiddling. The �ip at odd positions can be done by XOR
of binary 1010...10 before applying the location mask (similar to for example
Arndt [2]).

turn(n) =

+1 if BITAND
(

MaskAboveLowestOne(n),
BITXOR(n, 1010...10)

)
= 0

−1 if 6= 0
(4)

MaskAboveLowestOne(n) = BITXOR(n, n−1) + 1 n≥1 (5)

= 2, 4, 2, 8, 2, 4, 2, 16, 2, 4, 2, 8, 2, 4, 2, 32, ... A171977
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MaskAboveLowestOne is a 1-bit located immediately above the lowest 1-bit
of n. In (5), the n−1 changes low zeros ...1000 to ...0111 and XORing gives
0001111 which is a mask up to and including the lowest 1-bit. Then +1 gives
0010000 which is the bit above.

This bit-twiddling uses carry propagation in the CPU adder to locate the
lowest 1-bit. It's common for the adder on a single machine word to be faster
than a CountLowZeros and test-jth-bit.

The next turn, ie. the turn at point n+1, after segment n, is given similarly
but above the lowest 0-bit.

turn(n+1) =

+1 (left) if
BitAboveLowestZero(n)
+ CountLowOnes(n)

is even

−1 if odd
(6)

= (−1)BitAboveLowestZero(n)+CountLowOnes(n)

turn(n) and turn(n+1) are related simply by n+1 changing low �0111� to
�1000�,

· · · t 1 0 · · · 0n+1

· · · t 0 1 · · · 1n Figure 4:
bits, turn per t
and its position

turn(n) is multiplicative, as noted by Davis and Knuth. This follows from
the recurrence (1) or the bits (4). In the bits, multiplication adds the counts of
low zeros, then odd parts 1 or 3 ≡ ±1 mod 4 multiply.

turn(m.n) = turn(m). turn(n) multiplicative

Michael Somos in OEIS A209615 gives a generating function for turn,

gturn(x) =

∞∑
k=0

(−1)k x2k

1 + x2k+1

This follows from recurrence (1). Term k is those n with CountLowZeros(n)
= k. The �rst term k=0 is signs at odd terms per (2) which is generating
function x/(1 + x2). Further turn(2n) is by substituting x2 to have 2n, and
negate by (−1)k.

Predicates for left and right turns are

TurnLpred(n) = n≥1 and turn(n) = 1

= 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, . . . A106665

TurnRpred(n) = n≥1 and turn(n) = −1
= 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, . . . A292077

Generating functions can be formed by k many low 0s (like gturn). A left
turn is then bits 01 when k even, or bits 11 when k odd. These are x2

k

or x3.2
k

respectively. Likewise but opposite for a right turn.

gTurnLpred(x) =

∞∑
k=0

x[1,3] . 2
k

1− x4.2k
(7)
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gTurnRpred(x) =

∞∑
k=0

x[3,1] . 2
k

1− x4.2k

Di�erence of the predicates is turn,

turn(n) = TurnLpred(n)− TurnRpred(n)

In the generating functions, the 1,3 cases become (−1)k in gturn for which
way around, and 1−x2.2k cancels between numerator and denominator.

gturn(n) =

∞∑
k=0

x[1,3]k . 2
k − x[3,1]k . 2k

1− x4.2k
=

∞∑
k=0

(−1)k x2k(1− x2.2k)
1− x4.2k

Turn runs follow from recurrence (1). The odd turns alternate L,R and each
even turn between is the same as one or the other, forming runs of lengths 1, 2
or 3. (See section 12.2 on how this pattern falls at curve locations in the plane.)

−t1
L

run
m=0

R

run
1

−t2
L

run
2

−t3
R

run
3

−t4
L

run
4

−t4
R turn(2n+1) odds

turn(2n) evens

Figure 5: turn runs

Counting the �rst run as m=0, the run lengths are then, using turn,

TurnRun(m) =


1 if m=0 (lefts)

2− 1
2

(
turn(m) + turn(m+1)

)
if m even ≥2 (lefts)

2 + 1
2

(
turn(m) + turn(m+1)

)
if m odd (rights)

(8)

= 1, 2, 3, 2, 1, 3, 2, 1, 2, 2, 3, 1, 2, 3, 2, 2, 1, 2, 3, 2, 1, 3, . . .

For a curve of �nite k≥ 2, the run lengths end with a �nal 1 which is an
unfold of the initial run length 1.

The pairs of turns n, n+1 in (8) can be written together as a sum sturn.
This occurs in the midpoint curve ahead in section 10 too.

sturn(n) = turn(n) + turn(n+1) (9)

= (−1)bn/2c − turn(dn/2e) (10)

= 0,−2, 0, 2, 2, 0,−2, 0, 0,−2,−2, 0, 2, 0, . . . n≥1
gsturn(x) = −1 +

(
1 + 1

x

)
gturn(x)

Form (10) is by a pair of integers n and n+1 having one odd and one even.
turn of the odd one alternates ±1 and the even one is −turn per (1). Floor and
ceil of n/2 combine them.

TurnRun using sturn is then

TurnRun(m) =

{
1 if m=0

2− 1
2 (−1)

m sturn(m) if m ≥ 1

gTurnRun(x) = − 1
2 +

2

1−x
+ 1

2

(
−1+1

x

)
gturn(−x) (11)
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gturn(−x) in (11) is (−1)m turn(m). In gturn sum (11), only the k=0 term is
changed by −x. That term could be taken separately, or an adjustment applied,
if desired

gturn(−x) = gturn(x)− 2x

1 + x2
(12)

(−1)n turn(n) = turn(n) + [0,−2, 0, 2]

A predicate for n which is the start of a turn run is

TurnRunSpred(n) =

{
1 if n=1 or turn(n−1) 6= turn(n)

0 otherwise

=

{
1 if n=1 or turn(bn/2c) = −(−1)dn/2e

0 otherwise
(13)

= 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, . . . n≥1

Form (13) is by considering cases n odd or even. Each pair n = 2j, 2j+1
has the run start at either 2j or 2j+1. The odd is (−1)j and hence compare
(−1)dn/2e.

A state machine for TurnRunSpred can be made using state machines for
the bit patterns of TurnLpred and TurnRpred . A run start is left preceded by
right or vice versa.

TurnRunSpred(n) =


n= 1

or TurnLpred(n) and TurnRpred(n−1)
or TurnRpred(n) and TurnLpred(n−1)

Usual state machine manipulations to increment bit strings makes a state
machine for those n where TurnLpred(n−1) = 1. Similarly TurnRpred(n−1).
Low bits of n determine the turns, and low to high suits TurnRunSpred too.
The double-circled accepting states are where TurnRunSpred(n) = 1.

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

start

TurnRunSpred ,

bits of n
low to high

0

1

0

1

0

1

0

1

0

1

0
1

0
1

0

1

0

1

0,1

0,1

A generating function for TurnRunSpred can be formed by the odd and even
cases in �gure 5. Each odd n is the start of a run, unless its preceding even n
is the same turn in which case that even is the run start.

n ≡ 1 mod 4 is a left turn. So if 0 mod 4 is a TurnLpred then that's a run
start. 0 mod 4 is two low 0 bits so terms k≥ 2 in gTurnLpred at (7).
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If instead 0 mod 4 is a right turn then 1 mod 4 is the run start. So terms
k≥ 2 in gTurnRpred shifted up by a factor x.

n ≡ 2, 3 mod 4 cases alternate so their run starts are n ≡ 2, 7 mod 8.

gTurnRunSpred(x) = x+
x2 + x7

1− x8
+

∞∑
k=2

x[1,3].2
k

+ x[3,1].2
k+1

1− x4.2k

The sequence of those n which are the start of a run (TurnRunSpred(n) =
1) follows from the odd/even cases too. Counting the �rst run as m=0, each
odd turn is at n = 2m+1. If preceded by the same turn then its run starts 1
earlier. This can be written as an expression (15).

TurnRunStart(m) = 1 +

m−1∑
j=0

TurnRun(j) (14)

=

{
2m if m≥1 and turn(m) = −(−1)m

2m+ 1 otherwise

=

{
1 if m=0

2m+ 1
2 + 1

2 (−1)
m turn(m) if m ≥ 1

(15)

= 1, 2, 4, 7, 9, 10, 13, 15, 16, 18, 20, 23, 24, . . .

In sum (14), TurnRun formula (8) gives turn in pairs with alternating signs.
They cancel out leaving 1

2 turn(1) = 1
2 at the start and (−1)m 1

2 turn(m) at the
end, hence (15).

A generating function follows from (15) and gturn. Like at (12), it's possible
to adjust so (−x) becomes just x, but doing so is a bigger expression.

gTurnRunStart(x) = 1
2 −

3
2

1

1−x
+

2

(1−x)2
+ 1

2

∞∑
k=0

(−1)k (−x)2
k

1 + x2
k+1

Shallit[21] considers certain sums of powers of powers of 2 (which are among
types Kempner [14] showed are transcendental),

C(u, k) =

k∑
j=0

(−1)j

u2
j (16)

and gives the continued fraction representation by the following successive �un-
folding�. The continued fraction integer part is a0 = 0 always since the sums are
C(u, k)< 1.

C(u, 0) = [0, u ] C(u, 1) = [0, u+1, u−1] (17)

C(u, k) = [a0, a1, . . . , an ]

C(u, k+1) = [a0, a1, ..., an−1, an−(−1)k, an+(−1)k, an−1, ..., a1 ] (18)

The k+1 continued fraction (18) is the k continued fraction taken forward
and reverse and o�sets ∓(−1)k on the elements each side of the middle. Case
u=2 is

C(2, 0) = [0, 2] = 1
2
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C(2, 1) = [0, 3, 1] = 1
2 −

1
4

C(2, 2) = [0, 3, 2, 0, 3] = 1
2 −

1
4 + 1

16 (19)

C(2, 3) = [0, 3, 2, 0, 2, 4, 0, 2, 3] = 1
2 −

1
4 + 1

16 −
1

256

C(2,∞) = [0, 3, 2, 0, 2, 4, 0, 2, 4, 2, 2, 0, 4, . . . ]

C(2, k) corresponds to turn runs in alternate paperfolding curve k. Each
term is 2r for run length r = TurnRun, except �rst and last terms are 2r+1.

This follows since the expansion at (18) is the same as curve unfolding.
Existing terms are appended in reverse, per the curve unfold. The last term
2r+1 is each side of the middle and adding ±(−1)k gives 2 for the new turn
at n=2k either on the lefts run or rights run alternating according as k odd or
even, per the curve unfold.

For u=2, the general C formula starting (17) has some 0 terms (one in each
block of 4 terms). For the turn run lengths they can be collapsed by summing
each side of the empty run. In a continued fraction, the same applies, ie. a
continued fraction with a 0 term is equal to sum of the terms each side. If C is
started from collapsed C(2, 2) = [0, 3, 5] instead of (19) then there are no 0s.

C(2,∞) =
1

3 +
1

4 +
1

6 +
1

4 +
1

· · ·

=
1

2
− 1

4
+

1

16
− 1

256
+ · · ·+ (−1)k

22k
· · ·

= 0.30860900 . . .

= 0.010011110 . . . binary

= 3, 4, 6, 4, 2, 6, . . . cont frac

A275975

A030300

Continued fraction terms a1, a2, . . . are descents down the Stern-Brocot tree
of rationals by a1 many levels left, a2 many right, etc, alternating left and right.
Continued fraction terms which are in fact run lengths are therefore successive
descents left or right according to the original sequence, in this case the alternate
paperfolding curve turn sequence with each value taken twice, and extra initial
left.

Stern-Brocot tree

descend 2 levels

in direction of each turn

1/1

1/2
initial
extra

1/3

1/4turn(1)
= +1

2/7

3/10

turn(2)
= −1

4/13

5/16

turn(3)
= −1

9/29

13/42

turn(4) = +1

→ 0.30860900 . . .
= C(2,∞)

The tree here is drawn across the page. A left descent is downwards and a
right descent is upwards. The initial 1 in the continued fraction goes to 1/2 and
that is the starting point for the turns.

At each fraction, descent is to the left (the smaller child) if turn = +1.
Descent is to the right (the larger child) if turn = −1. For example 1/2 has
children 1/3 and 2/3. Since turn(1) = +1 go to 1/3. Take two such descents
for each curve turn value.
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Any binary sequence can be used as directions down the Stern-Brocot tree
like this. At a given node the values in all deeper nodes are within a wedge-
shaped area. The children divide that into non-overlapping smaller wedges, so
any descent sequence converges towards some constant.

Theorem 1. The n which is the m'th left or right turn is given by mutual
recurrences, with �rst turn as m=0,

for m = 2k + e with 0 ≤ e < 2k (20)

TurnLeft(m) =


1 if m=0

2k+2 − [0, 2]k if e = 2k−1
2k+2 − TurnRight

(
2k − [2, 1]k − e

)
otherwise

(21)

= 1, 4, 5, 6, 9, 13, 14, 16, 17, 20, 21, 22, . . .

TurnRight(m) =


2, 3, 7 if m = 0 to 2

2k+2 − [1, 0]k if e = 2k−1 and m≥3
2k+2 − TurnLeft

(
2k − [1, 2]k − e

)
otherwise

(22)

= 2, 3, 7, 8, 10, 11, 12, 15, 18, 19, 23, 26, . . .

Proof. Among the turns n = 1 to 2k inclusive, for k ≥ 1 there are 2k−1 lefts and
2k−1 rights. This follows from the unfolding since the unfolding swaps lefts and
rights and the turn between, which is the �nal new turn 2k, is alternately left
and right.

The turns n = 1 to 2k+2 are in sub-curves level k+1,

O L/R

R/L

unfold
part 0

part 1

m = 2k, e=0

m = 2k+1 − 1

TurnLeft parts
k+2, sub-parts k+1

The m which is the L after the unfold point, so n > 2k+1, is the number of L
preceding, which is m=2k. For m≥1, taking k, e per (20) gives e ranging from
0 after the unfold L/R up to but not including the opposite R/L at the unfold
after part 1.

The unfolding swaps turns L↔R, so the L sought is an R of part 1 and
measuring back from the end. The last m = 2k+1 − 1 is e = 2k−1. If k+1 is
even then this is the R/L end at n = 2k+2. If k+1 is odd then this m is the L
preceding that end, which is n = 2k+2 − 2.

For other e, measure back in part 1 to seek an R of index 2k−1− e, or when
k+1 even the L at the end of part 1 reduces that to 2k−2.

Similarly TurnRight . When k+1 odd the end of part 1 is an R, or when k+1
even the last R is n = 2k+2−1 being an unfold of the initial L at n=1. Likewise
opposite reduction 2k−1− e or 2k−2− e.

Both TurnLeft and TurnRight are close to 2m, roughly since there are 2k

of each turn among n = 1 to 2k+1 inclusive. Or algebraically in (21),(22) an
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m = 2k subtracted past the unfold adds 2k+1 to the resulting n (without the
reversal). O�sets from 2m can be expressed

TurnLeftOff (m) = 2m− TurnLeft(m) (23)

= −1,−2,−1, 0,−1,−3,−2,−2,−1,−2,−1, 0, 0, 1,−1, . . .
TurnRightOff (m) = TurnRight(m)− 2m

= 2, 1, 3, 2, 2, 1, 0, 1, 2, 1, 3, 4, 3, 2, 3, . . .

Substituting into (21),(22) gives mutual recurrences,

where m = 2k + e, with 0 ≤ e < 2k

TurnLeftOff (m) =


−1,−2 if m = 0, 1

[−2, 0]k if e = 2k−1
TurnRightOff

(
2k−1− e− [1,0]k

)
− [4,2]k otherwise

TurnRightOff (m) =


2, 1, 3 if m = 0, 1, 2

[1, 2]k if e = 2k−1
TurnLeftOff

(
2k−1− e− [0,1]k

)
+ [2,4]k otherwise

The o�sets at (23) are taken in opposite directions away from 2m in order to
have the mutual recurrences descending to each other as positives (then ±2,4).

Both o�sets can be arbitrarily large positive or negative. (The �rst right
negative is TurnRightOff (26)=−1.) Algebraically this is by choosing m so
that its high bits recurse with successive k giving the larger or smaller of each
−[4, 2] and +[2, 4] term.

m = 2k+e takes a high bit, then the reversal is a bit �ip, so the descent
into the opposite Left/Right �nds the next 0-bit below. The recurrences can be
expressed staying in left or right by taking a high run of 1s from m.

1 1 . . . 1 0 . . .

ek l

high low

high run of 1s of m

for m = 2k − 2l + e with 0 ≤ e < 2l−1, and d = [0, 1]k − [1, 0]l

TurnLeftOff (m) =



−1 if m=0

0 if e+d < 0

−2 if e=0, k odd, l=0

−3 + d if e=2l−1−1, k odd

TurnLeftOff (e+d) + 2d otherwise

(24)

TurnRightOff (m) =



2 if m=0

0 if e−d < 0

1− d if l=0

3 if l=1, k even

2− d if l≥2, k even, e=0

4 + 2d if l≥2, k even, e=2l−1−1
TurnRightOff (e−d) − 2d otherwise

(25)
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O�set d = +1, 0,−1 arises from the o�sets in the mutual recurrences going
to the other and back again. It can also be written as a function of the curve
direction dir (ahead in section 3).

d = 0, 0,−1, 0, 0, 1, 0, 0, 0, 0, 0,−1,−1, 0,−1, . . . m≥1

=

{
1
2

(
dir(2k − 2l)− 1

)
if l = 0

1
2 dir(2k − 2l) if l ≥ 1

= 1
2 dir

(
4.(2k − 2l)

)
In left (24), the e+d < 0 case is when e=0, k even, l even so d=−1. The

corresponding e−d < 0 in the right (25) is k odd, l odd so d=+1. The cases
e=2l−1−1 are m with a single 0-bit like 11101111.

Increments between n with turns successively L or R are

dTurnLeft(m) = TurnLeft(m+1)− TurnLeft(m)

= 3, 1, 1, 3, 4, 1, 2, 1, 3, 1, 1, 2, 1, 4, 1, 3, 3, . . .

dTurnRight(m) = TurnRight(m+1)− TurnRight(m)

= 1, 4, 1, 2, 1, 1, 3, 3, 1, 4, 3, 1, 1, 3, 1, 2, 1, . . .

The expansions in �gure 5 show steps are always 1, 2, 3, 4. The m'th such
increment can be expressed by mutual recurrences.

for m = 2k + e with 0 ≤ e < 2k

dTurnLeft(m) =


3 if m=0

[2, 1]k if e = 2k−2
[1, 3]k if e = 2k−1
dTurnLeft

(
2k−2− e− [1, 0]k

)
otherwise

dTurnRight(m) =


1, 4 if m = 0, 1

[3, 1]k if e = 2k−2
[4, 2]k if e = 2k−1 and m≥2
dTurnRight

(
2k−2− e− [0, 1]k

)
otherwise

In the unfolding, the direction reverses so the two turns which are the delta
step swap positions. This makes it necessary to descend to 1 smaller 2k−2− e
back from the end, to stay across the same step.

In these recurrences, nothing is accumulated, just descend downm by unfolds
until reaching one of the �nal 1, 2, 3, 4 cases.

2.1 Dean's α

A form of the turn sequence occurs in Dean [9] (found from a reference in the
OEIS) who constructs a 4-symbol in�nite sequence with consecutive terms of
alternating parity and which is �square-free� in the sense that no repeat E,E
occurs for any block E of any length.

αn = 1, 2, 3, 4, 1, 4, 3, 2, 1, 2, 3, 2, 1, 4, 3, 4, . . . n≥ 1 A003324
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Dean's construction is by repeated doubling of the sequence with quarters
in the new part permuted,

α1. . .4.2k = ABCD starting α1. . .4 = 1234

α1. . .8.2k = ABCD ADCB block lengths 2k

This is equivalent to a morphism expanding each sequence element to two
new elements (Dean's collapse α? = α).

α = 1→ 1, 2 2→ 3, 4 3→ 1, 4 4→ 3, 2 starting from 1

Such an equivalence holds for block doubling in general by thinking of how
blocks of level k (length 2k each) came from doubled blocks of k−1, down until
singles A0 =1, B0 =2 etc.

Ak−1 Bk−1 Ck−1 Dk−1 Ak−1 Dk−1 Ck−1 Bk−1

Ak Bk Ck Dk

Each morphism expansion is a bit from high to low of an index m = n−1
≥ 0 in a state machine. A 0-bit goes to the �rst new term in the morphism, and
a 1-bit goes to the second.

1

2

3

4

start

0
1

0

1

0

1 0
1

αn by bits

of m = n−1
high to low

1

2

4

1

2

4

1

3

2

4

start0

1

0

1

0

1

0

1

0

1

0

1

0,1

0,1

0,1

0,1

αn by bits of

m = n−1
low to high

Figure 6

Dean notes 1 and 3 are m ≡ 0, 2 mod 4 just by the doubling construction.
For bits high to low, and with high 0-bits reckoned above, 1 or 3 are reached by
two bits 00 or 10 respectively from any state, so their cases are distinguished
by the bit above the low 0. A 1-bit then goes from 1 or 3 to 2 or 4 respectively
and further 1-bits alternate between 2 and 4. So and 2 or 4 are for m odd and
are determined by bit above lowest 0 and bit position odd or even of that bit.

Some usual manipulations reversing to bits of m low to high gives the state
machine at the right in �gure 6. It makes clearer that 2,4 alternate with each
low 1-bit and �ip again if the bit above lowest 0 is another 1. In any case, this
combination indexed by m≥ 0 is the alternate paperfolding next turn (6), or
indexed by n≥ 1 is turn(n).

αn =

{
1, 3 if n ≡ 1, 3 mod 4

3 + turn(n) if n even

= 5
2 + (−1)n

(
1
2 + turn(n)

)
(26)

αn values 2, 4 di�er by 2 so turn = ±1 also di�ering by 2 is convenient.
The uni�ed (26) has a �ip (−1)n since odd cases 1, 3 take their �bit-above� the
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opposite way around to what the 2, 4 form would be on n odd.

αn =

{
2− turn(n) if n odd

3 + turn(n) if n even

See ahead at page 23 for α related to starts of runs in the Golay-Rudin-
Shapiro sequence.

Dean's word is among words Kao et al [13] construct from generalized pap-
erfolding sequences by adding an alternating �parity� at odd terms. They show
that for k odd, taking each k'th term is a square-free word. This extends the
same result by Carpi on the regular paperfolding sequence with alternating par-
ity. Odd k includes k=1 which is the whole of each sequence, and odd k means
the subsequences are all alternating parity.

Theorem 2. The only palindromes of consecutive values in α have odd lengths
≤ 13 and each such length occurs in�nitely.

Proof. This follows mechanically from state machine manipulations building up
those n with matching values at suitable o�sets. An explicit argument can be
made too.

There are no palindromes of even length since alternating parity would make
the �rst and last terms di�erent.

A palindrome of odd length cannot have an even n in the middle (except
trivially length 1), since alternating αodd = 1or 3 would be di�erent each side.

A palindrome of odd length with an odd n in the middle is an even length
palindrome of even turns,

odd
A

turn(2n)
+3

odd
B

turn(2n+2)
+3

odd
A

turn(2n+4)
+3

odd
B

turn(2n+6)
+3

odd
A

middle
Figure 7

turn(2n) = −turn(n) as from (1) means these turns are palindromes in the
full turn sequence. Allouche[1] shows the only even length palindromes in turn
are lengths 2,4,6 (and trivially 0), so the only palindromes in α are odd lengths
up to 2.6 + 1 = 13.

Some explicit calculation �nds initial examples up to 13. turn and α are
determined by low bits of n and higher bits are arbitrary, giving in�nite repli-
cations.

In �gure 7, a length 3 palindrome always has the same odd �B� each side,
so all 3s are the middles of 5s. But some 5s are maximal in that they have
turn(2n) 6= turn(2n+6) so are not just the middles of 7s.

7s have the same odd �A� each side so are only the middles of 9s. Some 9s
are maximal (not middles of 11s). Finally 11s have odd �B� each side so are
only the middles of 13s.
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3 Direction

The direction of segment n, numbered as n=0 for the �rst segment, is net sum
of turns preceding it

dir(n) =

n∑
j=1

turn(j) empty sum when n=0, so dir(0)=0 (27)

= 0, 1, 0,−1, 0, 1, 2, 1, 0, 1, 0,−1,−2,−1, 0,−1, 0, 1, . . .

gdir(x) =
1

1− x
gturn(x) =

1

1− x

∞∑
k=0

(−1)k x2k

1 + x2k+1 (28)

Theorem 3 (Mendès France and Tenenbaum[18]). Write n=binary ak ...a1a0,
where a0 is the least signi�cant bit and at least one high 0-bit so ak =0. dir(n)
is sum ±1 at each bit transition with sign according as even or odd bit position,

dir(n) =

k−1∑
j=0


+1 if aj 6= aj+1 and j even

−1 if aj 6= aj+1 and j odd

0 otherwise

(29)

Requiring a high ak =0 reckons high 0-bits above n so that its most signi�-
cant 1-bit is an 01 transition.

Proof. A level k+1 curve comprises two level k sub-curves, with the unfold side
according to k even or odd

0

1

start

end

k even

0

1

start

end
k odd

Figure 8

Bit 0 or 1 of n is sub-curve 0 or 1 shown. The direction of the unfolded
sub-curve is an extra +1 or −1 according as k even or odd.

The unfolding means sub-curve 1 has segments in reverse order. The sub-
curves there are bit 1 for the �rst or bit 0 for the second. So a state machine
on the bits of n,

forward reverse

dir unch
0

dir ±1
1

0
dir ±1

dir unch
1start Figure 9:

bits of n
high to low

Forward state is always reached by a 0-bit and reverse state by a 1-bit. The
direction extra ±1 is accumulated where a di�erent bit switches state.

The initial forward state accumulates ±1 for the high 1-bit. In sum (29),
this is achieved by reckoning a high 0-bit (or several such).

Mendès France and Tenenbaum[18] write bit di�erences in (29) as
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dir(n) =

k−1∑
j=0

(−1)j
∣∣aj − aj+1

∣∣
and show for generalized paperfolding curves with speci�ed folding sides εj=±1
that segment direction is

∑k−1
j=0 εj |aj − aj+1|. In the generalized curves, εj

controls which side each unfold in �gure 8 goes (here alternating, or in the
dragon curve always left).

The generating function at (28) is cumulative turn by factor 1/(1−x) in the
usual way. Its direct interpretation is terms ±1 for each bit position k in (29).
Bit pair 01 or 10 and sign for position k is (−1)k (x2k + x2.2

k

). Then a factor
1+ · · ·+x2k−1 replicates for arbitrary bits below and a denominator 1 − x2k+2

replicates for arbitrary bits above, so

(−1)k (x2k + x2.2
k

) (1 + x+ · · ·+ x2
k−1)

1− x2k+2 =
(−1)k x2k (1 + x2

k

) (1− x2k)
(1− x) (1− x2k+2)

=
(−1)k x2k

(1− x) (1 + x2k+1)
as in (28)

Davis and Knuth have direction implicit in their location formula (here ahead
at (60)). They write n in a �folded� representation where powers of 2 have
alternating signs,

n = 2k0 + (−1).2k1 + (−1)2.2k2 + · · ·+ (−1)t.2kt (30)

k0 > k1 > · · · > kt folded representation of n

This representation follows unfoldings and it locates bit runs. Term +1 is
above the high end of each run, and −1 is at the low end of each run.

0 1 1 1 1 0 · · · binary

+1 0 0 0 −1 0 · · · folded

k0 k1 . . .

Davis and Knuth show every n 6=0 has two folded representations, the lowest
term being either +1 or −1 and which then determines the terms above. The
one with an even number of terms, so t odd and lowest term sign −1, gives
direction

dir(n) = [0, 1]n −
t∑

j=0

(−1)kj for t odd (31)

Each kj power is one bit position above the transition in (29), so the sum
is (−1)kj−1 = −(−1)kj . If n is odd (kt=0) then there is no transition in (29)
corresponding to the �nal kt. Adding back 1 when odd adjusts for that.

The folded representation with instead an odd number of k powers, so t even
and loest sign +1, e�ectively arrives at a point from the far end of the curve so
gives direction of the segment preceding the point

dir(n−1) = [0, 1]n −
t∑

j=0

(−1)kj for t even, n≥1
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Binary re�ected Gray code locates bit transitions in n too. Its shift and
XOR at (33) gives a 1-bit at each bit transition, including highest 1-bit as a
transition from 0s above. dir is then ±1 at each such 1-bit, with sign according
as bit position odd or even,

dir(n) = PmOneBits
(
Gray(n)

)
(32)

PmOneBits(n) =

k−1∑
j=0

1 if aj = 1 and j even
−1 if aj = 1 and j odd

bits of n

= 0, 1,−1, 0, 1, 2, 0, 1,−1, 0,−2,−1, 0, 1,−1, 0, . . . A065359

Gray(n) = BITXOR(n, bn/2c) binary re�ected Gray code (33)

= 0, 1, 3, 2, 6, 7, 5, 4, 12, 13, 15, 14, 10, 11, 9, 8, . . . A003188

The Gray code is a permutation of the integers in blocks 0≤n< 2k, so the
dir sequence is such a permutation of PmOneBits, and is a permutation which
arranges successive steps of dir to be +1 or −1 (the turn sequence).

PmOneBits is directions in the Koch curve [16]. Koch curve segment n is
direction PmOneBits(n).60◦ since base 4 sub-part 1 is +60◦ and sub-part 2 is
−60◦, the same as the two bits.

start end

part 0 part 3

+60◦

part 1
−60◦
part 2

Koch curve directions
PmOneBits

Koch curve turns are +1 or −2 according as CountLowZeros(n) even or
odd (the �period-doubling� sequence). Closing the curve up with 90◦ directions
makes a triangular shape with left turns and 180◦ reversals. Segments are
double-traversed except on the X axis.

start end

Koch curve 90◦ turns,

segments double-traversed

The Gray permutation applied to these overlapping segment steps gives the
non-overlapping alternate paperfolding curve.

Direction in the alternate paperfolding curve can also be expressed by signed
product of adjacent bits.

Theorem 4. For n = binary ak...a1a0, with a0 the least signi�cant bit,

dir(n) = a0 − 2 .Alt11Pairs(n) (34)

Alt11Pairs(n) =

k−1∑
j=0

(−1)j aj aj+1

= 0, 0, 0, 1, 0, 0,−1, 0, 0, 0, 0, 1, . . .
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Proof. Within a run of 1-bits, successive terms of Alt11Pairs cancel. For an
odd length run, they cancel entirely to 0, the same as transitions (29). For an
even length run, there is a single net ±1 in Alt11Pairs whereas transitions are
∓1 at the start of the run and the same at the end of the run, hence factor −2
in (34).

If n is odd then the lowest run of 1-bits ends at the least signi�cant bit and
there is no ending transition for it. Adding a0 adjusts for that (in a similar way
to the folded (31)).

Since Alt11Pairs terms cancel in odd length runs of 1-bits, an equivalent
de�nition is sum of (−1)p for bit positions p which are the low end of an even
length run of 1-bits in n.

Increments of Alt11Pairs follow from turn which is the increments of dir , or
from how low 1-bits increment and change the Alt11Pairs sum.

dAlt11Pairs(n) = Alt11Pairs(n)−Alt11Pairs(n−1) for n ≥ 1

= a0 − TurnLpred(n)

=

{
−TurnLpred(n) if n even

TurnRpred(n) if n odd
(35)

= 0, 0, 1,−1, 0,−1, 1, 0, 0, 0, 1, 0, . . .

L and R cases in (35) have an attractive symmetry, but actually TurnRpred
on odd n is just a1, the second least signi�cant bit of n.

dir is a maximum when the bit transitions sum (29) has a transition for
every +1 term, and no −1 terms. This means a transition at each even position
and no transition at each odd position, and so alternating 11 and 00 with the
high 1 at an even position. The resulting n is unique.

DirMaxk =
2k−1
max
n=0

dir(n) = dk/2e = 0, 1, 1, 2, 2, 3, 3, . . .

DirMaxN k = 1
5

(
[2, 4].2k − [2, 3, 3, 2]

)
unique n

= 0, 1, 1, 6, 6, 25, 25, 102, 102, 409, 409, . . . dup A037481

= binary 0, 1, 1, 110, 110, 11001, 11001, . . .

= 1100 1100 . . . for odd number of bits k or k−1

Similarly dir is a minimum when every −1 term and no +1 terms, which is 11
and 00 starting at an even position and again a unique n.

DirMink =
2k−1
min
n=0

dir(n) = −bk/2c = 0, 0,−1,−1,−2,−2,−3, . . .

DirMinN k = 1
5

(
[4, 2].2k − [4, 4, 1, 1]

)
unique n

=
⌊
1
2DirMaxN k+1

⌋
= 0, 0, 3, 3, 12, 12, 51, 51, 204, 204, 819, . . . dup A043291

= binary 0, 0, 11, 11, 1100, 1100, 110011, 110011, . . . dup A153435

= 1100 1100 . . . for even number of bits k or k−1

Draft 13 page 17 of 117

http://oeis.org/A037481
http://oeis.org/A043291
http://oeis.org/A153435


start

. . .

dir(3) = −1

dir(12) = −2

dir(51) = −3

dir(1) = 1 dir(6) = 2 dir(25) = 3

dir(102) = 4

The number of left and right turns from 1 to n inclusive are

TurnsL(n) =

n∑
j=1

TurnLpred(j)

= 1
2

(
n+ dir(n)

)
(36)

= 1, 1, 1, 2, 3, 4, 4, 4, 5, 5, 5, 5, 6, 7, 7, 8, 9, 9, . . .

TurnsR(n) =

n∑
j=1

TurnRpred(j)

= 1
2

(
n− dir(n)

)
(37)

= 0, 1, 2, 2, 2, 2, 3, 4, 4, 5, 6, 7, 7, 7, 8, 8, 8, 9, . . .

Forms (36),(37) follow since all turns are left or right so total lefts plus rights
is simply n. Then di�erence lefts minus rights is net direction dir (its sum (27)).
Sum and di�erence of (38),(39) are then (36),(37).

TurnsL(n) + TurnsR(n) = n (38)

TurnsL(n)− TurnsR(n) = dir(n) (39)

dir(n) mod 4 is a net segment direction East, North, West or South.

dir(n) mod 4 ≡ 0, 1, 0, 3, 0, 1, 2, 1, 0, 1, 0, 3, 2, 3, 0, 3, . . .

0

1

2

3

direction mod 4

Arndt [2] gives some bit twiddling for dir mod 4,

dir(n) ≡ CountOneBits
(
BITXOR

(
1010...1010,Gray(n)

))
mod 4

This is similar to the PmOneBits(Gray(n)) form (32). BITXOR leaves even
positions unchanged so +1 each. The bits at odd positions are �ipped by the
BITXOR constant and it is a multiple of 8 bits (4 bits �ipped in each) so that
resulting count of odd positions is negated mod 4.

Back in �gure 9, transitions between forward and reverse add ±1 to the
direction, so forward is dir even which is horizontal and reverse is dir odd
which is vertical. Those states can be split into dir ≡ 0, 2 mod 4 and 1, 3 mod 4
according to how the same sign ±1 accumulates and di�erent signs cancel. The
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following state machine is per the morphism expansion given by Arndt [2].

dir mod 4 = 0→ 0, 1 1→ 0, 3 2→ 2, 3 3→ 2, 1 starting 0 (40)

0

1

2

3

0

1

0
1

0
1

0

1
start

Figure 10:

dir(n) mod 4

bits of n

high to low

Some state machine manipulations or considering the dir sum gives the
following for bits of n low to high,

0 1 2 3 45678
start

dir ≡ 0 dir ≡ 2dir ≡ 1dir ≡ 3

01

0

1

0

1 0

1

0

10

1

0

10

1

0

1

At the start state, the low bit is n even or odd so goes to states for horizontal
dir ≡ 0, 2 or vertical dir ≡ 1, 3 respectively. The states then e�ectively look for
even length runs of 1-bits. These are transitions at high and low positions with
the same parity so giving the same ±1 at each and so direction +2 mod 4. An
odd length run of 1-bits is transitions at di�erent parity bit positions so +1 and
−1 cancel out.

The states each side of the start have the same structure and transitions (and
are the same as high to low �gure 10). Predicates for those n with dir(n) = d
can be formed by bits of n low to high commencing at a suitable place.

non

d=0

0

non

d=1

1

non

d=2

2

non

d=3

3

start

0

1 0

1 0

10

1

0

1

0

1 0

1

0

1

predicates

dir(n) ≡ d mod 4

bits of n

low to high

The start state is chosen according to the desired d direction to test. The
double-circled accepting states are then those n with dir(n) ≡ d.

Reaching �non� is non-accepting. Horizontal d = 0, 2 are only even n so for
them a low 1-bit goes immediately to non. Vertical d = 1, 3 are only odd n so
for them a low 0-bit goes immediately to non.

Starting state d=0 is accepting since n of no bits is 0 which is dir(0) = 0.
Further 0-bits go to state 0 which is also accepting, being n=0 represented by
multiple 0-bits. The other starting states are non-accepting.

dir(n) ≡ 0 at n = 0, 2, 4, 8, 10, 14, 16, 18, 20, . . . 2×A203463

≡ 1 at n = 1, 5, 7, 9, 17, 21, 23, 27, 29, . . .

≡ 2 at n = 6, 12, 22, 24, 26, 30, 38, 44, 48, . . . 2×A022155
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≡ 3 at n = 3, 11, 13, 15, 19, 25, 35, 43, 45, . . .

Direction gives coordinate steps dx and dy ,

dx (n) = Re idir(n) (41)

= 1, 0, 1, 0, 1, 0,−1, 0, 1, 0, 1, 0, −1, 0, 1, . . .

dy(n) = Im idir(n) (42)

= 0, 1, 0,−1, 0, 1, 0, 1, 0, 1, 0,−1, 0,−1, 0, . . .

The curve turns 90◦ at every point so dx and dy are alternately zero and
non-zero. Combined, they are the Golay-Rudin-Shapiro sequence.

3.1 GRS

Shapiro [22] de�nes a pair of polynomials, which as in Rudin's presentation [20]
but without Rudin's extra factor x, are given by mutual recurrences

Pk(x) = Pk−1(x) + x2
k−1

Qk−1(x) starting P0(x) = Q0(x) = 1 (43)

Qk(x) = Pk−1(x)− x2
k−1

Qk−1(x)

Pk and Qk have 2k terms each. The coe�cients of Pk are a pre�x of its next
Pk+1. Continued in�nitely, these coe�cients are

P∞(x) =

∞∑
n=0

GRS (n) . xn

where GRS is the Golay-Rudin-Shapiro sequence. Per Shapiro, the coe�cients
of P replicate with negation in the �nal quarter,

3.2k−1 . . .2.2k−1 . . .terms 0 . . . 2.2k−1−1

copy

negate

(44)

Brillhart and Carlitz [5] show

GRS (n) = (−1)Count11Pairs(n)

= 1, 1, 1,−1, 1, 1,−1, 1, 1, 1, 1,−1,−1,−1, 1,−1, . . . A020985

Count11Pairs(n) = count 11 bit pairs in n, overlapping pairs allowed

=

k−1∑
j=0

aj aj+1 where n = ak...a0 binary

= 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 1, 1, 2, 3, . . . A014081

and give an equivalent recurrence, which is often used as a de�nition in fact,

GRS (2n) = GRS (n) GRS (2n+1) = (−1)n.GRS (n) (45)

The alternating sign form, which is the odd terms, is
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GRSalt(n) = (−1)n.GRS (n)

= 1,−1, 1, 1, 1,−1,−1,−1, 1,−1, . . .

(45) is a new low bit on n. GRS (2n+1) is a new low 1-bit and (−1)n �ips
the sign of GRS (n) when n was odd, since that bit makes a new low 11 bit pair.
Shapiro's copying at (44) does this at the high end. The copy is a new high
1-bit and its second quarter is an existing high 1 so together a new high 11 pair
and so negate.

Theorem 5 (Mendès France and Tenenbaum[18]). The alternate paperfolding
curve dx and dy steps are the Golay-Rudin-Shapiro sequence,

GRS (n) =

{
dx (n) if n even

dy(n) if n odd
(46)

= dx (n) + dy(n) = dsum(n) (47)

and consequently its alternating signs form is

GRSalt(n) =

{
dx (n) if n even

−dy(n) if n odd

= dx (n)− dy(n) = ddiff (n) (48)

Proof. dx and dy (41),(42) use dir mod 4. In (34) dir by Alt11Pairs, 2 ≡ −2
mod 4 so the signs there can be ignored,

dir(n) ≡ a0 + 2.Count11Pairs(n) mod 4

So even n, which is a0 =0, has dir ≡ 0 or 2 according to the parity of
Count11Pairs which is the same as GRS (n). And odd n, which is a0 =1, has
dir ≡ 1 or 3 according to the parity of Count11Pairs again the same as GRS (n).

The curve takes horizontal and vertical steps alternately so one of dx and dy
is 0 and the other non-0, hence the sum (47). Di�erence (48) is since GRSalt
negates odd terms, which are the dy terms.

Mendès France and Tenenbaum show this from the generalized paperfolding
curves of Davis and Knuth in which the unfold side for each level is arbitrary
(here alternating, or in the dragon curve always left). They form the turn
sequence of such a curve, count left and right turns up to n, take the di�erence
which is net direction, and form polynomials in the dx , dy steps which they show
satisfy a general recurrence which is (43) in the alternating case.

The geometric interpretation of dsum is steps between anti-diagonals. The
geometric interpretation of ddiff is steps between leading diagonals.

0x+y = 1 2 3 sum

dsum(n)

=
GRS(n)

0x−y = 1 2 3 di�

ddiff (n)

=
GRSalt(n)

The non-0 terms of dx are the GRS sequence by recurrence (45), and likewise
the non-0 terms of dy are the GRSalt sequence.
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dx (2n) = GRS (2n) = GRS (n) (49)

dy(2n+1) = GRS (2n+1) = GRSalt(n) (50)

See section 9 on GRS terms summed to give x, y coordinates.
dir mod 4 is related to GRS by the dx , dy cases,

GRS (n) =

{
+1 if dir(n) ≡ 0 or 1 mod 4

−1 if dir(n) ≡ 2 or 3 mod 4
(51)

dir(n) mod 4 = [1, 2]n −GRS (n)

A variation on dir mod 4 is sometimes used for expressing GRS by a mor-
phism (for example Allouche [1] with letters A to D),

GRS4 (n) = swap23
(
dir(n) mod 4

)
= 0, 1, 0, 2, 0, 1, 3, 1, 0, 1, 0, 2, 3, 2, 0, 2, . . . A100260

swap23 (d) = 0, 1, 3, 2 for d = 0, 1, 2, 3 respectively

GRS4 = 0→ 0, 1 1→ 0, 2 2→ 3, 1 3→ 3, 2 starting 0 (52)

GRS (n) =

{
+1 if GRS4 (n) = 0 or 1

−1 if GRS4 (n) = 2 or 3
(53)

Morphism (52) is the same as (40) after swapping 2↔ 3 throughout. This
swap is no change to the cases at (51) so the corresponding (53).

Symbols or values can be chosen arbitrarily for which two are to be GRS =
+1 and which two −1. GRS4 is the same state machine structure as the dir
mod 4 state machine in �gure 10, but labels are consecutive 0 to 3 across.

0 1 2 3

start

0
1

0 1

01
0

1

GRS(n) = +1 GRS(n) = −1

GRS4 (n), bits of n

high to low

dir mod 4 values have the attraction of a bitwise interpretation. The low bit
is the previously seen bit from index n, ready to compare to the next bit for a
possible new 11 pair. GRS is the second bit and such a 11 pair �ips it.

Putting GRS in the low (and previous bit in the second) could suit working
with GRS as 0, 1. This would be a swap 1↔ 2 of dir mod 4.

Those n with GRS (n) = ±1, and alternating GRSalt(n) = ±1, are

GRS (n) = +1 at n = 0, 1, 2, 4, 5, 7, 8, 9, . . . A203463

GRS (n) = −1 at n = 3, 6, 11, 12, 13, 15, 19, 22, . . . A022155

GRSalt(n) = +1 at n = 0, 2, 3, 4, 8, 10, 11, 13, . . .

GRSalt(n) = −1 at n = 1, 5, 6, 7, 9, 12, 17, 21, . . .

GRSalt is opposite sign to GRS at odd n, so its lists of n are the same as
the GRS lists but the odd terms swap between +1 and −1.

Those n which are the start of a run of consecutive same GRS values can
be characterized,
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GRSrunSpred(n) =

{
1 if n=0 or GRS (n) 6= GRS (n−1)
0 otherwise

= 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, . . .

Theorem 6. Run starts in the Golay-Rudin-Shapiro sequence are determined
by alternate paperfolding curve turns as follows

GRSrunSpred(n) =


1 if n=0

1 if n 6=0 even and TurnLpred(n)

0 if n odd and TurnRpred(n)

(54)

Proof. dir(n−1) changes from 0 or 1 (for GRS =+1) and 2 or 3 (for GRS =−1)
or vice versa when a left or right turn at n as follows,

Figure 11:

dir(n−1) mod 4,

and turn at n

going to dir(n)

GRS = +1

GRS = −1

0

1

2

3

odd n−1, even n

left

left

GRS = +1

GRS = −1

0

1

2

3

even n−1, odd n

right

right

An odd n−1 is dir(n−1) vertical 1 or 3 mod 4 and in both cases a left turn
at n increments to the opposite GRS . Similarly even n−1 and a right turn.

Odd n at (54) is simply

GRSrunSpred(n) = 0 when n ≡ 1 mod 4 (55)

GRSrunSpred(n) = 1 when n ≡ 3 mod 4 (56)

(55) is binary n−1 = ...00 incrementing to n = ...01 which is no change to
its 11 pairs so no change to GRS and so n not the start of a run. (56) is binary
n−1 = ...10 incrementing to n = ...11 and the new low 1 makes a new 11 so
GRS changes sign and so n is the start of a run.

This alternating odd turns and then paperfolding turns at even n is a gen-
eralized paperfolding curve. Allouche[1] uses it as a zn, for n≥ 1, summed mod
2 to form the GRS sequence as 0, 1 (rather than ±1). The GRS value �ips at
each run start so sum of starts mod 2 is GRS ,

n∑
j=1

GRSrunSpred(j) ≡ 0, 1 mod 2 according as GRS (n) = +1,−1

This pattern of odd terms alternating and even terms as turn is also per
Dean's α from section 2.1

GRSrunSpred(n) =


1 if n=0

1 if αn = 3or 4

0 if αn = 1or 2

n≥ 1

αn = 2 GRSrunSpred(n) + [2, 1]
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For GRSalt , the corresponding run start predicate is as follows. GRSalt is
negated at odd n so a vertical mirror image of �gure 11 and so the left and right
turns swap.

GRSrunSpredAlt(n) =

{
1 if n=0 or GRSalt(n) 6= GRSalt(n−1)
0 otherwise

=


1 if n=0

1 if n 6=0 even and TurnRpred(n)

0 if n odd and TurnLpred(n)

= 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, . . .

GRSrunSpredAlt(n) = 1 when n ≡ 1 mod 4

GRSrunSpredAlt(n) = 0 when n ≡ 3 mod 4

Runs of the same value in GRS are at most 4 long since every n ≡ 3 mod 4
is a run start per (56). All lengths 1 to 4 can be found in initial values of GRS ,
then Shapiro's copying means they all occur in�nitely. Similarly GRSalt .

GRSrun = 3, 1, 2, 1, 4, 3, 1, 1, 3, 1, 2, 1, . . . A203531

GRSrunAlt = 1, 1, 3, 3, 1, 1, 2, 1, 4, 1, 3, 4, . . .

With dx from GRS at (46), those n with GRS (n) = ±1 become dir(2n) ≡
0, 2 mod 4. Similarly GRSalt(n) and dy(2n+1). So runs of 1 to 4 in GRS and
GRSalt mean steps between those n with dir(n) ≡ d mod 4 are 2, 4, 6, 8, 10 and
all such steps occur in�nitely. For example if n is a segment East then there is
another East at one of n+ 2, 4, 6, 8, 10.

Any consecutive ten n to n+9 inclusive contains at least one segment of each
dir mod 4. A full set of 10 is needed when dir(n+9) mod 4 does not occur in n
through n+8. Direction parity alternates so only n+1, n+3, n+5, n+7 might be
the same as n+9. Some state machine manipulations to ask when each possible
d ≡ dir mod 4 occurs at n+9, but not at n to n+8, shows those n at the start
of such a set of 10 are

NextTurnLpred 1101bits or NextTurnRpred 1010

= 13, 26, 42, 61, 77, 93, 106, 122, 141, 154, . . .

where

NextTurnLpred(n) = TurnLpred(n+1)

NextTurnRpred(n) = TurnRpred(n+1)

Some adding can push the low bits up to 0000 and make a carry for the �next�
so conditions become n ≡ 13 mod 16 and TurnLpred(n+3), or n ≡ 10 mod 16
and TurnRpred(n+6).

In the curve, such a set of 10 is 4 steps dx in the same direction until a step
back the other way −dx . Similarly dy .
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n=13

dir ≡ 2 mod 4
only at n+9

n=26

dir ≡ 3 mod 4
only at n+9

Allouche[1] shows the only possible palindrome lengths in the turn sequences
of generalized paperfolding curves are 1 . . . 7, 9, 11, 13, and in 2-value directions
like GRS only 1 . . . 8, 10, 12, 14.

For a given curve, some state machine manipulations can �nd the intersection
of those n with same value at n+ length−1, and so on, so forming a palindrome.
The �rst palindrome of length 13 in turn is at n=31 to n=43 inclusive. Segments
n=30 to n=43 inclusive are also the �rst palindrome of 14 GRS values.

turn n=31

turn n=43

palindrome 13 turns

RRL RRL L LRR LRR

4 Coordinates

It's convenient to calculate curve locations in complex numbers, and number
points starting n=0 at the origin and �rst segment directed East. The end of
the curve unfolds by factor b = i+1 when k even or b when k odd (eg. �gure 1)

b = 1+i b = 1−i

Endk = bdk/2e . bbk/2c curve end (57)

= i−bk/2c . bk (58)

= [1, b].2bk/2c

= 1, 1+i, 2, 2+2i, 4, 4+4i, . . . ReA016116, ImA077957

Davis and Knuth [8] give a coordinate formula using their folded represen-
tation (30). An n in the second half of the curve is a point in that sub-curve
directed back from Endk. The unfold is on the left or right according as k−1
odd or even.

0 Endk−1

Endk

k−1 even
second

sub-curve,
rotate −i

2k−n

n

start Endk−1

Endk

k−1 odd
second

sub-curve,
rotate i

2k−n

n

point(n) = Endk + i.(−1)k.point(2k−n) 2k−1 ≤ n ≤ 2k (59)
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They expand (59) repeatedly which is n in folded representation per (30)
and give, for an arbitrary unfold angle θ,

point(n) = ζ
−d0(1+ζ)k0 + ζ

−d1(1+ζ)k1 − · · · + (−1)tζ−dt(1+ζ)kt (60)

where ζ = ei(π−θ) unfold by angle θ

dj = (−1)k0 + · · ·+ (−1)kj−1 + bkj/2c

dj contains sum of (−1)k which is per the direction dir form here at (31).
For ζ = i , the formula simpli�es a little using End form (58) and reducing

exponents i(−1)
k

= i.(−1)k.

point(n) = Endk0 + i.(−1)k0 .Endk1 + i2.(−1)k0+k1 .Endk2

+ · · · + it.(−1)k0+···+kt−1 .Endkt

= 0, 1, 1+i, 2+i, 2, 3, 3+i, 2+i, 2+2i, . . . undup ReA020986, ImA020990

In (59), the middle n = 2k−1 is the end of the �rst sub-curve and also the
end of the second sub-curve. The location is the same. In folded representation
(30) this is either a �nal 2k−1 or 2k − 2k−1, or negatives of those when odd
number of terms above. These are the two possible folded representations of n.
The resulting point is the same since

Endk−1 = Endk + (−i).(−1)k−1.Endk−1

For odd n, or odd part of n, the geometric interpretation of these �nal terms
is to arrive at the target z either from the segment before or the segment after,
according as n �nal term +1 or −1 respectively.

0 4 5

6
7

8

n=7, point(n)=2+i

7 = 8 − 1
7 = 8− 2 + 1

Another approach to curve unfolding is to take n in binary and for the second
sub-curve calculate coordinates along a reversed curve.

k−1 even
0 Endk−1

Endk
n forward

0

iEndk−1 Endk

n along reverse,

revPoint

k−1 odd

0

Endk−1

Endk

n forward
0

−iEndk−1

Endk

n along reverse

Write n in k many bits with highest bit a = 0or 1. Then the above expan-
sions become

for n = a.2k−1 + n1 with n1 < 2k−1
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point(n) =

{
point(n1) if a = 0

Endk−1 + i.(−1)k−1.revPointk−1(n1) if a = 1

revPointk(n) = Endk − point(2k−n)

=

{
i.(−1)k−1.point(n1) if a = 0

i.(−1)k−1.Endk−1 + revPoint(n1) if a = 1

revPointk is the reverse of a particular expansion level k. In general, succes-
sive levels taken in reverse are not pre�xes of the next, hence particular k.

Both forward and reverse descend to point or revPoint according as a=0 or
a=1 respectively, so bit above determines which state (like dir �gure 9).

point revPoint

0 1

0

1 bits of n
high to low

start

Both forward and reverse add Endk−1 when a=1, but with various factors of
±i. It's convenient to multiply −i.(−1)k through revPoint so its End is without
further factor.

revPointRotk(n) = −i.(−1)k−1.revPointk(n)

point(n) =

{
point(n1) if a = 0

Endk−1 + revPointRot(n1) if a = 1
(61)

revPointRot(n) =

{
point(n1) if a = 0

Endk−1 − revPointRot(n1) if a = 1
(62)

Geometrically this means taking the reverse curve at +90◦ when k−1 even or
−90◦ when k−1 odd. The �rst halves of both forward and reverse are forward
curves to Endk−1, hence plain point(n1) in both (61),(62). The second half
of reverse n has that sub-part directed 180◦ from the direction it descends to,
hence −revPointRot at (62).

k−1 even
0 Endk−1

Endk
n forward

0 Endk−1

−i.Endk

n along
reverse

revPointRot

k−1 odd

0

Endk−1

Endk

n forward
0

Endk−1

i.Endk

n along
reverse

revPointRot

The −revPointRot in (62) is at an a=1 bit with a further 1-bit above it.
So sign change below each 11 bit pair, including reckoning a triplet as two
overlapping pairs, and longer runs likewise.
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0 1 1 1 1 0 0 1 1 0 · · ·

Endk−1 Endk−2 Endk−3 Endk−4 Endl−1 Endl−2

− − − −

point(n) = Endk−1 + Endk−2 − Endk−2 + · · · for each 1-bit of n, (63)

− End l−1 − End l−2 + · · · sign change below 11

+ Endm−1 + Endm−2 − · · ·
− · · ·

The expansion of each individual segment also gives a coordinate formula
for a new low bit. The expansion shown in �gure 2 is a function

expand(z) = b .z (64)

which doubles out points

expand (point(n)) = point(2n) (65)

Repeated expand of a unit length is the curve endpoint, with expandk mean-
ing apply that function k times.

expandk(z) = expand(. . . expand(z)) =

{
z.Endk if k even

z.Endk if k odd

Endk = expandk(1) (66)

The conjugate z in (64) means factor b is alternately b, b, per End form (57).
A point n with low bit a and bits n1 above is then

point(2n1 + a) = expand
(
point(n1)

)
+ i dir(2n1).a (67)

If a=1 then the curve direction at 2n1 = n− a is the direction to go to the
new point in between.

0 1

2
3

4 5

6
7

8

dir(0) = 0

dir(2) = 0

dir(4) = 0

dir(6)=2

Each dir(2n1) is horizontal 0 or 2 since the curve turns ±90 at each point so
an even numbered segment is horizontal, ±1.

point(2n+1)− point(2n) = i dir(2n) even segment direction

= dx (2n) = GRS (n) as from (41)

Applying (67) repeatedly is repeated expand on these steps, which is factor
End per (66).

n = binary ak−1ak−2 . . . a1a0
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point(n) = Endk−1 ak−1 high bit

+ Endk−2 ak−2 GRS (ak−1)

+ Endk−3 ak−3 GRS (ak−1ak−2)

+ · · ·
+ End1 a1 GRS (ak−1ak−2 · · · a2)
+ End0 a0 GRS (ak−1ak−2 · · · a2a1) low bit

These GRS factors are the same as the forward/reverse signs (63). GRS (n1)
changes only when new bit pair 11.

All of the above coordinate formulas are expressed with factors determined
by bits of n from high to low. For say computer calculation, the formulas can be
applied low to high by assuming lowest End0 term has factor 1 and proceeding
upwards from there. The factors on all the powers are then correct relative to
each other and if the high Endk−1 turns out to have factor −1 then negate to
adjust all.

The various End and signs by GRS or dir are additions and subtractions of
powers-of-2 for the x and y coordinates of point .

For computer calculation in binary, bits of x and y can be generated from
base-4 digits of n using successive sub-curve directions. Sub-curves are within
power-of-2 squares and a bit each of x and y goes to a sub-square according to
a digit of n. Compared to the point forms with negations, the e�ect is to avoid
subtractions by putting a 1 bit only when nothing later will go below it.

Theorem 7. point(n) can be calculated by the following procedure converting
base-4 digits of n to bits of x and y,

let base-4 digits of n = akak−1 . . . a0 with a0 least sign�cant

d← 0

for each digit position high j = k, down to low j = 0

d← transition(d, aj)

if aj + d ≡ 2 mod 4 then xj ← 1 else xj ← 0 (68)

if aj − d ≡ 2 mod 4 then yj ← 1 else yj ← 0 (69)

x← bits xkxk−1...x0 and y ← bits ykyk−1...y0

if d = 2 or 3 then x ← x+1 and y ← y+1

where transition(d, a) is in the following state machine

d= 0

d= 1

d= 2

d= 3

0, 2

1

3

1, 3
2

00, 2

1

3

1, 3
2

0

Figure 12

d = dir(n) by

base-4 digits of n

high to low

Proof. Curve level 2k is a triangular half of the square x=0 to x=2k and y=0
to y=2k. Its level 2k−2 sub-curves are the following d=0 case,
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start end

0 1

2

3

x=0 x=1

y=0

y=1

d=0

start

end

0 1

2

3

x=0 x=1

d=1 startend

01

2

3

x=0 x=1

d=2

end

start

01

2

3

x=0 x=1

d=3

In level 2k with d=0, if the high base-4 digit of n is 1, 2, 3 then those sub-
curves are in the second half of x, so a 1 bit for x. And if the high base-4 digit
of n is 2 then that sub-curve is in the second half of y so a 1 bit for y, and
otherwise a 0 bit.

Similarly the other curve directions. Thick sub-curve lines are shown in the
direction of expansion so sub-curve extent is on the left.

For curve 2k in each direction and in the square which is its extents, the
direction, digit, and x, y output bit cases are

digit aj = 0 1 2 3 0 1 2 3

direction d=0 0 1 1 1 0 0 1 0

d=1 0 1 0 0 0 0 0 1

d=2 1 0 0 0 1 1 0 1

d=3 1 0 1 1 1 1 1 0

xj output bit yj output bit

This table is based on direction d of curve 2k, before transition to the digit
sub-curve. Procedure (68),(69) is after the transition. Working through the
combinations of sub-curve d and x or y bit shows the expressions are equivalent
to the table.

The expressions work because the output bit depends only on digit aj and
the new d, not on the original d. For example state d=1 in �gure 12 is reached
by a digit aj =1 coming from either d=0 or a self-loop at d=1. In both cases
the output bit is xj=1.

As a remark, a table lookup before d transition might give x and y bits
one CPU instruction earlier, but otherwise expression or table should be just a
matter of convenience.

In directions d = 0, 1, curve start is at the bottom left of the square. In
directions d = 2, 3, curve start is the top right of the square. This is a unit
square after all digits of n. If the �nal direction is d=2 or 3 then must add 1 to
go to the top right.

4.1 Coordinate Norm Increments

Coordinate norm |z|2 = x2+y2 has increment

dnorm(n) =
∣∣point(n+1)

∣∣2 − ∣∣point(n)
∣∣2

= 1, 1, 3,−1, 5, 1,−5, 3, 5, 5, 7,−5,−7,−3, . . .

The curve goes horizontally or vertically so one of x or y changes by ±1. An
x change is the following increment, and similarly vice-versa dy ,
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(x+ dx )2 + y2 − (x2 + y2) = 2x.dx + 1

1 1

3

1

3

5

1

3

5

1

3

5

1

3

5

1

3

5

1

3

5

1 3

3

5

5

5

7

7

7

7

9

9

9

9

11

11

11

11

13

13

13

13

15

15

15

15

start

dnorm for segments,

without signs

x changes when n even and y changes when n odd so, and at (71) using dir
to combine,

dnorm(n) =

{
2x.dx + 1 if n even

2y.dy + 1 if n odd
(70)

= 2 Re (−i)dir(n).point(n) + 1 (71)

dnorm is always odd. Taking half rounded down is

1
2

(
dnorm(n)− 1

)
=

{
x.dx if n even

y.dy if n odd
(72)

= Re (−i)dir(n).point(n)

= 0, 0, 1,−1, 2, 0,−3, 1, 2, 2, 3,−3,−4,−2, . . . abs A068915

An absolute value removes the dx or dy factor from (72) since x, y ≥ 0∣∣∣ 12(dnorm(n)− 1
)∣∣∣ = XorY (n) =

{
x if n even

y if n odd

= 0, 0, 1, 1, 2, 0, 3, 1, 2, 2, 3, 3, 4, 2, . . . n≥1 A068915

The opposite YorX is a shift by 1 index position since x and y values repeat.

YorX (n) =

{
y if n even

x if n odd
= XorY (n+1)

= 0, 1, 1, 2, 0, 3, 1, 2, 2, 3, 3, 4, 2, . . . A068915

YorX is OEIS sequence A068915 by Aaron K. Johnson. That sequence is
de�ned by a recurrence

a(0) = 0 a(1) = 1 A068915

a(2n) =
∣∣a(n)− a(n−1) ∣∣ (73)

a(2n+1) = a(n) + a(n+1) (74)

These recurrences are seen in YorX as follows. 2n is even so want y. An
expand from (65) is

YorX (2n) = Im point(2n) = x(n)− y(n)

When n even≥2, have y(n) = YorX (n) and the preceding segment is vertical
so its x is the same as at n so x(n) = YorX (n−1). When n odd, the opposite
x(n) = YorX (n) and preceding is horizontal so y(n) = YorX (n−1),
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YorX (2n) =

{
YorX (n−1)−YorX (n) if n even

YorX (n)−YorX (n−1) if n odd
(75)

= (−1)n
(
YorX (n−1)−YorX (n)

)
=
∣∣YorX (n)−YorX (n−1)

∣∣ per (73)

(75) is how the sign removed by the recurrence absolute value alternates
according to n odd or even.

The following diagram shows examples 2n = 14, 16,

y x

y x

y x

y

n−1 = 7

n = 8, 2n = 16
expanded y

y x

y x

y x

y

y

n−1 = 6

2n = 14

n = 7expanded y

For the recurrence odd case, 2n+1 is odd so want x for YorX . In the
unexpanded coordinates, this is a Manhattan sum x+y, but then also step to
the new point in the expanded segment. This is per the point low bit formula
(67),

YorX (2n+1) = Re point(2n+1) = x(n) + y(n) + i dir(2n) (76)

y x

y x

y x

y

y

13

n=6

n+1 = 7
n=13 x+y

expanded
x

y x

y x

y x

y

y

15 n=7

2n+1 = 15

n+1 = 8

x+y

expanded
x

When n even, the segment expands on the left. When n odd, the segment
expands on the right (both before mirror image). So the desired x+y sum is at
the n+1 location in both cases.

When n even, the segment to n+1 is horizontal so y is the same at both,
hence YorX (n) for y and YorX (n+1) for the x at n+1. When n odd, the
segment to n+1 is vertical so x is the same at both, hence YorX (n) for x and
YorX (n+1) for the y at n+1. Thus (74) in both cases.

Algebraically, the same can be seen in (76) by expressing dir(2n) in terms
of dir(n). An extra low 0 bit in theorem 3 bit di�erence sum (29) gives

dir(2n) = −dir(n) +
(
1 if n odd

)
dir(2n) is even since the curve is horizontal at even segments, so can negate

in the i power at (77) without changing the result. When n even, have dir even
so the i power is real and is dx there. When n odd, have dir odd so the i power
is imaginary and the e�ect of �−1 when n odd� is to rotate back to get that as
a real dy ,
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i dir(2n) = i dir(n)−(1 if n odd) (77)

=

{
Re i dir(n) if n even

Im i dir(n) if n odd
=

{
dx (n) if n even

dy(n) if n odd

Putting this into (76) is a step of x or y to the next n according as n even
or odd. Pair YorX (n) and YorX (n+1) is the incremented and un-incremented
for all n, per (74),

YorX (2n+1) =

{
x+ y + dx if n even

x+ y + dy if n odd
= YorX (n) + YorX (n+1)

The same sort of argument gives recurrences for XorY . It can use n+1 for
both sum and di�erence cases.

XorY (2n) = XorY (n) + XorY (n+1)

XorY (2n+1) = (−1)n
(

XorY (n)−XorY (n+1)
)

For computer calculation, the base-4 to binary form in theorem 7 can be
used, with sign (−1)n to choose between x or y at its (68),(69).

Half dnorm rounded up is similar. It adds 1 to (72),

1
2

(
dnorm(n) + 1

)
=

{
x.dx + 1 if n even

y.dy + 1 if n odd

= 1, 1, 2, 0, 3, 1,−2, 2, 3, 3, 4,−2,−3,−1, . . .

Absolute values can be taken by multiplying through dx or dy to cancel
those signs, provided x, y 6= 0. When x=0 have dx =+1 and when y=0 have
dy =+1 so such a multiply holds for those too. The respective resulting +dx or
+dy is location n+1, hence (78).∣∣∣ 12(dnorm(n) + 1

)∣∣∣ = {x+ dx if n even

y + dy if n odd

= YorX (n+1) = XorY (n+2) (78)

A similar multiply through dx or dy cancels the sign in the full dnorm from
(70). Its resulting x+ (x+ dx ) is like 2× the segment midpoint.∣∣∣dnorm(n)

∣∣∣ = {2x+ dx if n even

2y + dy if n odd

= 2 Re (−i)dir(n).point(n) + 1

= 1, 1, 3, 1, 5, 1, 5, 3, 5, 5, 7, 5, 7, 3, . . .

5 Coordinates to N

point(n) can be inverted low to high to calculate n at a given location z. Suppose
z = point(n) and that in (63) the total sign changes would leave sign s on terms
below the last so s = GRS (n). Then

Draft 13 page 33 of 117



unpoint(z, s) z = Gaussian integer, s = ±1
loop until z=0 or z = −s or z = −i.s

if z ≡ i mod b2 then s← −s
bit 0 or 1 = z mod b bits of n low to high
if bit=1 then z ← z − s step to even point
z ← z/b unexpand

end loop

if z=0 and s=1 then n in unrotated curve
otherwise rotated or re�ected copy

The two s = ±1 are directions d = 0, 2 (horizontal) at an even point and
d = 1, 3 (vertical) at an odd point, respectively.

s = i dir − (1 if z odd)

This is s = idir(2n) = GRS (n) which would be the next sign factor in (63).
z odd is when n odd so that dir(2n) has an extra bit transition.

z ≡ i mod b2 is when the lowest two bits of n are 11 and so a sign change
for all powers below. The sign below is s so change to −s for the present term
and above.

For computer calculation everything can be done in Cartesian coordinates
x+iy without full complex number arithmetic. bit ≡ z mod b is simply x+y
≡ 0, 1 mod 2 and division z/(i+1) is (x, y) ← (x+y2 , x−y2 ). The test for z≡i
mod b2 is equivalent to x≡0 mod 2 and y≡1 mod 2 since z mod b2 goes in a
2×2 repeating pattern.

The loop reduces z by dividing b each time, except for the s subtraction.
Considering just magnitudes, |z| decreases when

|z| −
∣∣∣∣z − sb

∣∣∣∣ ≥ |z| − |z|+ 1√
2

=
(
1− 1

2

√
2
)
|z| − 1

2

√
2

> 0 when |z| > 1+
√
2

So |z| decreases until |z| ≤ 1+
√
2 and for points there it can be veri�ed

explicitly that all integer z and s=±1 reach one of the loop ends.

For a given n let other(n) be the point number which is the other visit to
that location. This can be found from n without calculating the location as
such.

. . . 6=t x t x t 1 0...0

�ip �ip

repeat ≥0 times

high low Figure 13:

other(n)

bit �elds

other(n) = 0,−,−, 7,−,−, 14, 3,−, 13,−, 31, 28, 9, 6, . . .

n in binary is divided into the �elds shown in �gure 13. t is the bit above
lowest 1-bit. This is per turn(n) from (3). Each bit x is arbitrary and is �ipped
until reaching bit above 6= t.

High 0-bits are understood on n as necessary to make the �elds shown. When
t=1 and the highest of n is one of the t bits then the x=0 above it is �ipped.
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This happens for points on the join side of the triangle. They are locations
within level k which have their second visit in the next level k+1.

If t=0 then the pattern might continue in�nitely into high 0-bits on n. This
occurs for points on the x axis and x=y diagonal. They have no second visit
within the curve.

This other bit �ip is found by taking bits of n and the forward/reverse End
terms they imply (63), then apply unpoint to those terms with opposite �nal
sign.

other(n) n 6= 0

s = 1 sign on n
h = −1 sign on other(n), starting opposite
δ = 0
loop

a0 = low bit of n, a1 = second lowest bit of n
if a1, a0 = 1, 1 then s← −s
z = b.a1 + a0 + δ
c0 = 0or 1 ≡ z mod b other(n) bits, low to high
if z ≡ i mod b2 then h← −h
δ ← (δ + a0.s− c0.h)/b
drop lowest bit of n

end loop

s is the sign below the last bit of n. If n bits are 11 then it changes to −s
for the present term of n and above. h is the sign below the bits of the other(n)
being calculated. Taking only the low bits of n and other(n) does not in general
give the same location. δ is the o�set from location n to other(n). It changes
when the End terms in n and other(n) are not the same (di�erent sign, or zero
and not zero). Bits of n and δ then give the other location modb and b2 for bit
of other(n) and sign change on h.

Following up through possible bits of n gives combinations of s, h, δ, bit as
states of a �nite state machine. This state incorporates a �current� bit since two
bits are required at each step. The next higher bit is taken as input and the
output is a bit of other(n) at the �current� position. The higher bit goes into
the new state. The initial state is s=1, h=−1, δ=0 and bit = low of n.

The states and outputs simplify to the bit �ips above. δ takes �ve possible
values 0, ±1, ±b.

The turn bit t above lowest 1 is unchanged by this other going up by states.
This is a complicated way to see the turn at �rst and second visits are the same
(see section 12.2).

Each bit x in �gure 13 is �ipped. Di�erences BITXOR(n, other(n)) which
occur are therefore 1-bits at every second bit in a single run.

0...0 1 0 1 0...0

≥ 2
low 0-bits

repeat ≥0 times

binary
Figure 14:

OXpred
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OXpred(c) =

{
1 if c = BITXOR(n, other(n)) for some n

0 otherwise

=1 at c = 4, 8, 16, 20, 32, 40, 64, 80, 84, 128, 160, . . . 4×A181666

= binary 100, 1000, 10000, 10100, 100000, 101000, . . .

The smallest n where a given c occurs is found from the bit �elds �gure 13.
Take t=1 so the high 6=t bit is 0, then take all the bits which will �ip as 0s.
The t bits are c shifted down, and the lowest 1-bit is immediately below them.

OXminN (c) = 1
2c+ 2CountLowZeros(c)−2 for c satisfying OXpred(c)

= 3, 6, 12, 11, 24, 22, 48, 44, 43, 96, 88, 86, . . .

The number of distinct XOR di�erences occurring within level k is

NumOXpredk =

2k−1∑
c=0

OXpred(c)

=

(
bk/2c
2

)
+

(
dk/2e
2

)
binomials (79)

=

⌊
k−1
2

⌋
.

⌈
k−1
2

⌉
=

⌊
(k−1)2

4

⌋
(80)

= 0, 0, 0, 1, 2, 4, 6, 9, 12, 16, 20, 25, . . . A002620

The binomials (79) are locations of the bit �ip run. In the bit �elds of �g-
ure 14, if an even number of low 0s then bk/2c − 1 remaining even positions.
If an odd number of low 0s then dk/2e − 1 remaining odd positions. The bino-
mials select two of them in each case to be start and end. The start and end
can coincide, so +1 on the possible positions. Products (80) follow from these
binomials.

Di�erences n− other(n) have either +1 or −1 at each bit �ip position ac-
cording to whether the �ip is 0→1 or 1→0 respectively. The di�erences which
occur are therefore ±1 at every second bit position in a single run.

0...0 ±1 0 ±1 0...0

≥ 2

low 0-bits

repeat ≥0 times

d = n− other(n)binary

Opred(d) =

{
1 if d = n− other(n) for some n

0 otherwise

=


1 if d =

∑
±2pj where

each pj+1 = pj + 2 and p0 ≥ 2

0 otherwise

=1 at |d| = 4, 8, 12, 16, 20, 24, 32, 40, 44, 48, 52, . . .

The number of distinct di�erences |n− other(n)| is
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NumOpredk =

( bk/2c−1∑
l=1

2l−1
(
bk/2c − l

))
+

( dk/2e−1∑
l=1

2l−1
(
dk/2e − l

))
(81)

= [2, 3].2bk/2c − k − 2 (82)

= 0, 0, 0, 1, 2, 5, 8, 15, 22, 37, 52, 83, . . . A077866

The sums (81) are over length l many bits of each ±1. The top-most bit
position is +1 to get the positive di�erences, leaving 2l−1 combinations of ±1
below. These l bits can be located at any of the remaining dk/2e − l (or ceil)
bit positions. Working through those sums gives powers (82).

The locations of �rst occurrence of each Opred di�erence follow from the
unfolding.

4 8

20

16

12 40

32

24

84

80

76

64

52

48

44

start

end

Figure 15:

k=7 locations of

�rst occurrence of

Opred di�erences

On unfolding, the new second half has the same set of di�erences within it,
so new di�erences are only at the join points. Those points have n decreasing
on the �rst half and increasing on the second half, from the unfolding of the x
and x=y sides ahead in points theorem 10.

The di�erences are then a high +1 with further ±1 every second bit position.
The smallest is all −1 and the biggest is all +1. In �gure 15 for example the
middle column has 44 = 64− 16− 4 up to 84 = 64 + 16 + 4.

The smallest new di�erence+1 then all−1 is bigger than the biggest previous
di�erence of +1 at second highest bit then all −1. The new smallest is previous
biggest +4, as for example 40 to 44 above.

The initial di�erence 4 is a column of one value, and the 8 is an anti-diagonal
of one value.

6 Segments in Direction

Theorem 8. The number of segments in direction d = 0, 1, 2, 3 mod 4 of the
alternate paperfolding curve level k are

S(k, d) =

{
1, 0, 0, 0 for d ≡ 0 to 3 if k=0
1
4

(
2k + 2 Re(−i)d.Endk

)
if k ≥ 1

S(k, 0) =

{
1 if k=0

2k−2 + 2b(k−2)/2c if k ≥ 1

= 1, 1, 2, 3, 6, 10, 20, 36, 72, 136, 272, . . . A005418
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S(k, 1) =


0 if k=0

2k−2 if k ≥ 1 even

2k−2 + 2b(k−2)/2c if k ≥ 1 odd

= 0, 1, 1, 3, 4, 10, 16, 36, 64, 136, 256, . . . A051437

S(k, 2) =

{
0 if k=0

2k−2 − 2b(k−2)/2c if k ≥ 1

= 0, 0, 0, 1, 2, 6, 12, 28, 56, 120, 240, . . . A122746

S(k, 3) =


0 if k=0

2k−2 if k ≥ 1 even

2k−2 − 2b(k−2)/2c if k ≥ 1 odd

= 0, 0, 1, 1, 4, 6, 16, 28, 64, 120, 256, . . . A007179

Proof. Unfolding for the next level k+1 repeats the curve, with directions turned
±1, so counts are the original plus d∓ 1 of unfold.

S(k+1, d) =

{
S(k, d) + S(k, d−1) if k even

S(k, d) + S(k, d+1) if k odd

The total segments is simply 2k. Since the curve always turns ±90◦ the
number of verticals and horizontals are the same for k ≥ 1.

total S(k, 0) + S(k, 1) + S(k, 2) + S(k, 3) = 2k

horizontals S(k, 0) + S(k, 2) = 1
2 2

k k ≥ 1

verticals S(k, 1) + S(k, 3) = 1
2 2

k k ≥ 1

Theorem 9. Among the �rst n segments of the alternate paperfolding curve,
the number in direction d mod 4 is

SN (n, d) = 1
4

(
n + 2 Re(−i)dpoint(n) +

(
(−1)d if n odd

))
(83)

SN (n, 0) = 0, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, . . .

SN (n, 1) = 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 4, . . .

SN (n, 2) = 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, . . .

SN (n, 3) = 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, . . .

Proof. Segments alternate horizontal and vertical so total horizontals are dn/2e,
which is SN directions 0 plus 2. The di�erence of directions 0 and 2 is the net
horizontal position Re point ,

SN (n, 0) + SN (n, 2) = dn/2e (84)

SN (n, 0)− SN (n, 2) = Re point(n) (85)

(84)+(85) and (84)−(85) give

SN (n, 0) = 1
2

(
dn/2e+Re point(n)

)
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SN (n, 2) = 1
2

(
dn/2e − Re point(n)

)
Similarly for the verticals

SN (n, 1) + SN (n, 3) = bn/2c
SN (n, 1)− SN (n, 3) = Im point(n)

SN (n, 1) = 1
2

(
bn/2c+ Im point(n)

)
SN (n, 3) = 1

2

(
bn/2c − Im point(n)

)
The ±Re, Im parts are selected in (83) by Re(−i)dpoint , and the �oor or

ceil n/2 by the (−1)d o�set part.

7 Boundary and Area

The boundary length of a given level k follows from its triangular shape,

Lk =

{
1 if k = 0

[4, 2].2bk/2c − [4, 0] if k ≥ 1
left boundary

= 1, 2, 4, 4, 12, 8, 28, 16, 60, 32, 124, . . .

Rk =

{
1 if k = 0

[2, 6].2bk/2c − [0, 4] if k ≥ 1
right boundary

= 1, 2, 4, 8, 8, 20, 16, 44, 32, 92, 64, . . .

Bk = Lk +Rk = [6, 8].2bk/2c − 4 total boundary

= 2, 4, 8, 12, 20, 28, 44, 60, 92, 124, 188, . . . 2×A027383

And likewise the number of unit squares on the boundary

start

end

boundary squares k=6

LQ6 = 15 left, grey

RQ6 = 8 right, black

BQ6 = LQ6 + RQ6 = 23

LQk = [2, 1].2bk/2c − [1, 0] left boundary squares

= 1, 1, 3, 2, 7, 4, 15, 8, 31, 16, 63, . . .

RQk = [1, 3].2bk/2c − [0, 1] right boundary squares

= 1, 2, 2, 5, 4, 11, 8, 23, 16, 47, 32, . . .

BQk = LQk + RQk = [3, 4].2bk/2c − 1 total boundary squares

= 2, 3, 5, 7, 11, 15, 23, 31, 47, 63, 95, . . . A052955

The unfolding to the respective side means

Lk = Lk−1 +Rk−1 = Bk−1 k even unfold
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Rk = Lk−1 +Rk−1 = Bk−1 k odd unfold

LQk = LQk−1 + RQk−1 = BQk−1 k even unfold (86)

RQk = LQk−1 + RQk−1 = BQk−1 k odd unfold (87)

The area enclosed by a given level k follows from its triangular shape too.

start end

area k=6

AL6 = 9 left, grey

AR6 = 12 right, black

A6 = AL6 + AR6 = 21

Since the curve always turns ±90◦ the unit squares enclosed on the left or
right side of the curve alternate. Left squares have an even x+y lower left
corner. Right squares have an odd x+y lower left corner.

ALk = 2k−2 − [1, 12 ].2
bk/2c + [1, 0] left area

= 0, 0, 0, 1, 1, 6, 9, 28, 49, 120, 225, . . .

ARk = 2k−2 − [ 12 ,
3
2 ].2

bk/2c + [0, 1] right area

= 0, 0, 0, 0, 2, 3, 12, 21, 56, 105, 240, . . .

Ak = ALk + ARk area

= 2k−1 − [ 32 , 2].2
bk/2c + 1

=
(
2b(k−1)/2c − 1

)(
2d(k−1)/2e − 1

)
= 1

2×0, 0×0, 0×1, 1×1, 1×3, 3×3, 3×7, 7×7, . . .
= 0, 0, 0, 1, 3, 9, 21, 49, 105, 225, 465, . . . A274230

Area and boundary are related by a general rule for non-overlapping curves.
Each segment has 2 sides and each enclosed unit square has 4 of the inside, so

side

side

4 sides
inside

So insides plus outsides is total 4A + B = 2N . For the alternate paperfolding
curve this is

4Ak +Bk = 2.2k

The left and right sides separately in a similar way, counting only the left or
right side of each segment.

4ALk + Lk = 2k 4ARk +Rk = 2k

Some enclosed unit squares are formed by 3 consecutive left or right turns.

+1

+1turn = +1
three consecutive left turns,

left-side enclosed unit square
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The number of such runs in curve level k follows from the unfolding. The
unfolding duplicates the runs, with lefts and rights swapped in the unfolded
copy. New runs might occur at the unfold point. For k ≥ 4 the unfold point
is not such a run as the curve turns away. So successive levels from there on
simply sum lefts plus rights, giving

Turn3leftk =

{
0, 0, 0, 1 if k = 0 to 3

2k−4 if k ≥ 4
(88)

Turn3rightk =

{
0 if k ≤ 3

2k−4 if k ≥ 4

The proportion of enclosed unit squares arising from such turn runs is then

Turn3leftk
ALk

→ 1

4

Turn3rightk
ARk

→ 1

4

Area increases by

dAk = Ak+1 −Ak = 1
2

(
2bk/2c − 1

)
.2dk/2e area increment

= 2k−1 − 2b(k−1)/2c

= 0, 0, 1, 2, 6, 12, 28, 56, 120, 240, 496, 992, . . . A122746

The join area between levels is the column or diagonal of unit squares in
between the unfolds,

JAk = Ak+1 − 2Ak join area

= 2bk/2c − 1

= 0, 0, 1, 1, 3, 3, 7, 7, 15, 15, 31, 31, . . . A052551

8 Points

In the triangular shape of each level, the outer points are single visited and the
inner ones are double visited, so from the shape

Sk = [3, 4].2bk/2c − 1 singles

= 2, 3, 5, 7, 11, 15, 23, 31, 47, 63, . . . A052955

Dk = 1
2 (2

k + 1− Sk) = Ak doubles = area A274230

Pk = Sk +Dk = 2k−1 + [ 32 , 2].2
bk/2c total

= 2, 3, 5, 8, 14, 24, 44, 80, 152, 288, . . . A290075

Doubles = area holds for any curve where each enclosed unit square has all
4 sides traversed, without overlaps. Each unit square is formed when and only
when a segment re-visits a point,
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A unchanged
D unchanged

S + 1
B + 2

unvisited point

A+ 1
D + 1

S − 1
B − 2

re-visited point

D = A double-visited = area

S = B/2 + 1 single-visited and boundary

Total points P and doubles D are also related

Dk = 1
2 (2

k + 1− Sk) from S + 2D = 2k + 1

Pk = 1
2 (2

k + 1 + Sk)

If there were no singles then it would be D doubles = P distinct = 1
2 (2

k+1)
half total points. Every 2 singles reduces the doubles by 1 and increases the
distinct points by 1 (as +2 singles, −1 double).

Total points can have a copy of D added in to make the total n points,

Pk +Dk = 2k + 1

With D = A, this is Euler's formula for regions of a connected planar graph.
Vertices are points P , edges are 2k segments, and regions are A enclosed unit
squares.

vertices + inside regions = edges + 1

Theorem 10. Points n of the alternate paperfolding curve on the x axis are
characterized by the following Xpred , and obtained by Xnum on an index m
starting m=0 for the �rst x axis point.

Xpred(n) =

{
1 if n base-4 digits only 0 or 1

0 otherwise
x axis

= 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, . . . A151666

gXpred(x) =

∞∏
j=0

(
1 + x4

j)
(89)

Xnum(m) = m in binary change to base-4 digits 0,1 m≥0
= 0, 1, 4, 5, 16, 17, 20, 21, 64, 65, 68, 69, . . . A000695

Points n on the x=y diagonal are similarly

Gpred(n) =

{
1 if n base-4 digits all 0 or 2

0 otherwise
x=y diagonal

= Xpred(2n) (90)

= 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, . . .

gGpred(x) = gXpred(x2) =

∞∏
j=0

(
1 + x2.4

j)
Gnum(m) = m in binary change to base-4 digits 0,2
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= 2 Xnum(m)

= 0, 2, 8, 10, 32, 34, 40, 42, 128, 130, 136, 138, . . . A062880

Proof. The theorem can be veri�ed explicitly for k≤ 2. Thereafter segments
expand twice as

new x axis points

new diagonal points

Existing points n become 4n. Each new x axis point is +1 from an existing
point there, so base-4 digits 0,1 only. Each new x=y diagonal point is +2 from
an existing point, so base-4 digits 0,2 only.

Diagonals are Xpred(2n) at (90) simply by the digits, or since those diagonals
are the x axis points of the previous level in �gure 2 and expand (64).

expand(x+ 0i) = x+ xi

gXpred at (89) is per Neil Sloane in OEIS A000695. It is a usual way to
form characteristic sequences of numbers with certain digits. A product of k
many terms is all n with up to k many base-4 digits. The next product term
1 + x4

k

is then 1 to keep existing and x4
k

to copy up to those n with a 1-digit
at position k. Similarly gGpred .

There are 2k points on the x axis so 4k−2k non axis points. These are n
with at least one base-4 digit 2 or 3, or equivalently at least one odd position
1-bit. The m'th non axis point can be calculated by a recurrence splitting m
within 4k−2k levels.

for 4k−2k ≤ m < 4k+1−2k+1

NonXnum(m) =

{
4k + NonXnum

(
m− (4k−2k)

)
if m < 2.(4k−2k)

m+ 2k+1 if m ≥ 2.(4k−2k)
(91)

= 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, . . .

base-4 = 2, 3, 12, 13, 20, 21, 22, 23, 30, 31, 32, 33, . . .

At (91), the m+2k+1 case is a high base-4 digit 2 or 3 on the resulting n.
That digit ensures NonXpred and allows the remaining m to run through all
digit values below. The descent 4k + NonXnum is a high base-4 digit 1 and so
still restricted to NonXpred in the digits below.

Draft 13 page 43 of 117

http://oeis.org/A062880
http://oeis.org/A000695


0, NonXpred

1, NonXpred

2, all digits

3, all digits

4k − 2k many

4k − 2k many

4k many

4k many

Theorem 11. n = NonXnum(m) can be calculated by the following bit proce-
dure

k ←

{
1 if m=0

blog4mc+ 2 if m> 0

n ← m+ 2k (92)

loop k ← k− 1

if bit 2k+1 of n is 1 then end loop (93)

if bit 2k of n−2k is 0 then n ← n− 2k (94)

Proof. This procedure is implicit in recurrence (91). During the loop, n holds
the result so far in the high base 4 digits, and an m+ 2.2k in the low digits.

result m+ 2.2kn = base 4 digits

khigh low

Figure 16

O�set +2.2k on m means the second case of (91) becomes

m+ 2.2k ≥ 2.(4k−2k) + 2.2k = 2.4k

which is the bit test at (93). The o�set is also already the result m+2k+1.
In recurrence (91), k having 4k−2k ≤ m means the �rst case there is a 1

digit for the result. Its +4k to the result and index −(4k − 2k) moves that digit
from m to the result. In the procedure, this is no change to the n since the
2k part of the index change consumes half the 2.2k o�set already in n, leaving
2.2k−1 which is the desired o�set in the next iteration k−1.

m < 4k−2k is a 0 digit in the result. O�set 2.2k must reduce to 2.2k−1 by
subtracting 2k. For m with its o�set, this range condition and then with the
subtraction is

m+ 2.2k < 4k−2k + 2.2k m small so digit 0

m+ 2.2k − 2k < 4k−2k + 2.2k − 2k = 4k

If n−2k leaves bit position 2k as 0 then it's smaller than 4k and is the digit
0 case, and this subtraction is the new n, as at (94).

It can be noted n− 2k never borrows above the low digits 0 to k inclusive,
since o�set m+ 2.2k means the digits there are ≥ 2.2k.

At k=0, the single digit remaining in n is m + 2.20 = 2or 3 so always end
loop at (93). This is when all other digits are 0 or 1 and just lowest digit 2 or 3
ensures NonXpred .

For computer calculation on big integers, n− 2k could be done in-place and
if the bit test says not wanted then add back +2k to undo. If preferred, some
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bit scanning can determine when the subtract is wanted. If bit 2k is already 0,
or it is 1 but all 0s from k to 2k−1 inclusive, so borrow will change it to 0, then
the subtract is wanted. On some CPUs, doing the arithmetic might be just as
fast as bit scanning. Input values of suitably uniform distribution should keep
the subtract within a single machine word most of the time anyway.

Initial k at (92) can be any value large enough that m < 4k+2− 2k+2, so
after the �rst decrement m < 4k+1− 2k+1 the same as in recurrence (91). If
the bound was just 4k+1 then initial k = blog4mc+ 1 would su�ce, but −2k+1

means sometimes 1 bigger is needed, hence +2.

Each Gnum point is on the x=y diagonal and is also the �rst visit by the
curve to a given y horizontal. That holds in k=0 and in two unfolds like �gure 3
the new part 2 likewise.

The m'th NonGnum point, being NonGpred , has a similar recurrence to
NonXnum. For NonGnum, digits 1 and 3 have all digits below, and digit 2 is
restricted to NonGpred below.

for 4k−2k ≤ m < 4k+1−2k+1

NonGnum(m) =


m+ 2k if m < 2.4k−2k

2.4k + NonGnum
(
m− (2.4k−2k)

)
if 2.4k−2k ≤ m < 3.4k−2.2k

m+ 2k+1 if m ≥ 3.4k−2.2k

(95)

= 1, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15, . . .

base-4 = 1, 3, 10, 11, 12, 13, 21, 23, 30, 31, 32, 33, . . .

Theorem 12. n = NonGnum(m) can be calculated by the following base-4 digit
procedure

k ←

{
1 if m=0

blog4mc+ 2 if m> 0

n ← m+ 2k

loop k ← k− 1

if digit k of n is 3 then result n (96)

r ← n− 2k

if digit k of r is 1 then result r (97)

if digit k of r is 0 then n ← r

Proof. Like NonXnum �gure 16, n holds the result so far in the high base-4
digits and an m+ 2.2k in the low digits.

O�set +2.2k on m means the third case of (95) becomes

m+ 2.2k ≥ 3.4k−2k − 2.2k + 2.2k = 3.4k

which is test for digit 3 at (96). The o�set is already the result m+2k+1.
Reduced r = n− 2k is ready for similar comparisons for the �rst and second

cases in (95). For digit 2, the index change in the recurrence is no change to n.
For digit 1, the reduced o�set +2k in r is the result m+2k.
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For digit 0, the o�set in n must reduce to 2.2k−1 for the next loop, and that
new n is r.

At k=0, the single digit remaining is m + 2.20 = 2or 3 and (97),(96) give
result 1 or 3 respectively. This is when all other digits are 0 or 2 and just the
lowest digit 1 or 3 ensures NonGpred .

For bignum computer calculation, r can be an in-place n− 2k. This subtract
is wanted when digit 1 (end of procedure), or digit 0 (next iteration), and
otherwise an add back can undo for digit 2 next iteration.

From the triangular shape, single-visited points in the curve continued in-
�nitely are the x axis and the x=y diagonal.

Spred∞(n) = Xpred(n) orGpred(n)

=

{
1 if n base-4 digits only 0, 1 or only 0, 2

0 otherwise

= 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, . . .

Snum∞(m) = 0 if m=0, and otherwise:

m+1 in binary, remove second highest bit a (98)

interpret rest as base-4 digits, multiply 1+a

= 0, 1, 2, 4, 5, 8, 10, 16, 17, 20, 21, 32, . . . A126684

base-4 = 0, 1, 2, 10, 11, 20, 22, 100, 101, 110, 111, 200, . . .

Snum∞ bit form (98) works by having second highest bit a select whether to
be 0,1s or 0,2s. Using the second highest bit makes alternating runs of k many
of each. Taking the bits of m+1 leaves a single initial m=0 for the n=0 which
is common to the x axis and x=y diagonal.

The double-visited points are those neither x axis nor x=y.

Dpred∞(n) =

{
1 base-4 digits any digit 3 or both 1,2

0 otherwise

= binary 1-bit at both odd and even positions

= 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, . . .

=1 at n = 3, 6, 7, 9, 11, 12, 13, 14, 15, 18, 19, 22, 23, 24, . . . A176237

base-4 = 3, 12, 13, 21, 23, 30, 31, 32, 33, 102, 103, 112, . . .

The other(n) procedure of section 5 also identi�es single-visited points. An
n which has no other(n) is Spred∞. In the bit �elds of �gure 13 this is t=0 and
then every second bit also 0 so that there is no 6=t bit. When t and these other
0s fall at odd positions they give base-4 digits 0,1 and when at even positions
base-4 digits 0,2.

Spred∞ has runs of at most 2 consecutive single-visited points after the initial
3 of n=0 to 2.

Within a given expansion level k, the points at the end of the triangle are
single-visited too. They are either unfolded x points or x=y points according
as k odd or even.
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Spredk(n) =

{
1 if other(n) not within k bits

0 otherwise

= Spred∞(n) or

{
Xpred(2k − n) if k even

Gpred(2k − n) if k odd

Dpredk(n) =

{
1 if other(n) within k bits

0 otherwise

= 1− Spredk(n)

Dpred is 1 at both n and other(n), so half is count D,

Sk =

2k∑
n=0

Spredk(n) Dk = 1
2

2k∑
n=0

Dpredk(n) (99)

These sums can be calculated from the bit �elds of other(n) per �gure 13.
This is more complicated than singles and doubles by the triangular shape, but
gives a combinatorial interpretation to the number of such points.

At each double-visited point, the curve turns either left or right.

DpredLeftk(n) = Dpredk(n) and turn(n) = +1

DpredRightk(n) = Dpredk(n) and turn(n) = −1

A double-visited point with right turn encloses area on the left of the curve
since the curve must eventually curl around to revisit the point and the trian-
gular shape of the curve does not encircle the curve origin. Similarly a double
with a left turn encloses area on the right of the curve.

right
turn

double-visited point
right turn encloses

square on left of curve

Each such double corresponds to an enclosed unit square, so similar to (99)

ARk = 1
2

2k∑
n=0

DpredLeftk(n) ALk = 1
2

2k∑
n=0

DpredRightk(n)

For the curve continued in�nitely the left and right doubles are

DpredLeft∞(n) = Dpred∞(n) and turn(n) = +1

= 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, . . .

=1 at n = 6, 9, 13, 14, 22, 24, 25, 29, 30, 33, 36, 37, . . .

=0 at n = 0, 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 15, . . .

DpredRight∞(n) = Dpred∞(n) and turn(n) = −1
= 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, . . .

=1 at n = 3, 7, 11, 12, 15, 18, 19, 23, 26, 27, 28, 31, . . .

=0 at n = 0, 1, 2, 4, 5, 6, 8, 9, 10, 13, 14, 16, . . .
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These predicates are cross related,

DpredLeft∞(n) = DpredRight∞(2n)

DpredRight∞(n) = DpredLeft∞(2n)

since expanding to point 2n is the same single or double visited nature of n,
and �ips the turn left/right per the turn recurrence (1).

Single visited points are all on the boundary. They are left turns on the
right boundary and conversely right turns on the left.

k even

start endL

R
R

k odd

start

end

L

R L

The counts of such points follow from the triangular shape. There is a single-
visit of the respective turn between each boundary square. The start and end
points have no turn so +2 in the total (100).

Sleftk = RQk − 1 = [1, 3].2bk/2c − [1, 2]

= 0, 1, 1, 4, 3, 10, 7, 22, 15, 46, . . .

Srightk = LQk − 1 = [2, 1] .
(
2bk/2c − 1

)
= 0, 0, 2, 1, 6, 3, 14, 7, 30, 15, . . .

Sk = Sleftk + Srightk + 2 (100)

Single-visited points with left turns in the curve continued in�nitely are
simply the x axis points Xpred except for n=0 where there is no turn. Similarly
single-visited points with right turns are the x=y diagonal Gpred except for
n=0.

8.1 Boundary Segment Numbers

Segments on the left boundary of the curve continued in�nitely are the diagonal
stair-step. They are the segments before and after each Gpred point,

Lpred∞(n) = Gpred∞(n) or Gpred∞(n+1) (101)

= base-4 digits 0, 2 and optional low 13...33 (102)

= 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, . . . n≥1 A270803

gLpred∞(x) =
(
1+

1

x

)
gGpred(x) − 1

x

Lnum∞(m) = Gnum
(⌊m+1

2

⌋)
− (m mod 2) m≥0 (103)

= 0, 1, 2, 7, 8, 9, 10, 31, 32, 33, 34, 39, . . . A270804

(103) uses the low bit of m to select −1, 0 for the n and n+1 cases at (101).
There is no segment preceding point 0, hence m+1 to skip that.

Gawron and Ulas [10] reach Lpred∞ as compositional formal inverse of the
Thue-Morse sequence. They give digit form (102) for that result and note also
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that Lnum has runs of 4 consecutive integers so a low 2-bits can be taken from
m to select those runs as

Lnum∞(4m+r) = 4Gnum(m) + r for r = −1, 0, 1, 2 (104)

Their inverse is for generating functions with terms taken mod 2 which when
composed (either way) cancel to just x. gLpred∞ is without its constant 1 term,

h(x) = gLpred∞(x)− 1 so constant term 0 (105)

gThueMorse
(
h(x)

)
= h

(
gThueMorse(x)

)
= x coe�s mod 2

ThueMorse(n) = 0 or 1 ≡ CountOneBits(n) mod 2

= 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, . . . A010060

gThueMorse(x) = x+ x2 + x4 + x7 + · · ·

The inverse is unique since it is successive powers gThueMorse(x)j , which
have low term xj , summed so as to cancel successive terms other than the low
x. Gawron and Ulas reach (105) by substituting into a suitable identity on
gThueMorse.

A similar but easier inverse is gXpred without its low 1 term.

h(x) = gXpred(x)− 1 so constant term 0

gXpred(x) = (1+x) gXpred(x4) identity, base-4 new low 0 or 1 (106)

h(x) + 1 = (1+x) (h(x4) + 1)

h(x) = (1+x)h(x4) + x (107)

Inverse v(x) is to satisfy h(v(x))=x. Substitute x→ v(x) into (107), and use

g(x2) = g(x)2 (108)

which is true of any polynomial with coe�cients mod 2, so

h(v(x)) =
(
1 + v(x)

)
h(v(x))2 − v(x)

x =
(
1 + v(x)

)
x2 − v(x)

v(x) = −1 + 1 + x

1− x4
compositional inverse

0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, . . . repeating 1,1,0,0 except �rst term

Taking a compositional inverse like this requires constant term 0. For
gXpred , that can also be arranged by a shift up rather than omitting the con-
stant term. The inverse of this is the Baum-Sweet sequence [3], also shifted.
Merta [19] shows this from the other way, starting at shifted Baum-Sweet and
�nding its inverse is shifted Xpred .

BaumSweet(n) =

{
1 if n in binary all runs of 0-bits are even length

0 if n in binary any run of 0-bits is odd length

= 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, . . . , n≥1 A086747

gBaumSweet(x) = x . gBaumSweet(x2) + gBaumSweet(x4) (109)
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Identity (109) is copy the sequence for either a new low 1-bit or new low 00
pair, both of which preserve all runs of 0s having even length. The rest, low
10, is zeros in the sequence since the low 0 there is an odd length run. So, and
using (108) again to move powers inward or outward,

h(x) = x . gXpred(x) so constant term 0

1

x
h(x) = (1+x)

1

x4
h(x4) as at (106)

1

v(x)
h(v(x)) =

(
1 + v(x)

) 1

v(x)4
h(v(x))4

1

v(x)
x =

(
1 + v(x)

) 1

v(x)4
x4

1

x4
v(x)4 =

1

x
v(x) + x.

1

x2
v(x)2 by multiplying v(x)5/x5 (110)

(110) mod 2 is per (109) with v(x) = x.gBaumSweet(x). A search of the
OEIS for sample values of v suggested Baum-Sweet, but it's not too hard to
recognise (110) powers v(x2) and v(x4) are spreads for something bit-wise, then
try factors of x each side.

Segments on the right boundary of the curve continued in�nitely are two
segments before and one after the Xpred points,

Rpred∞(n) = Xpred∞(n or n+1 or n+2)

= base-4 optional low 03...32 or 03...33 then 0, 1 above

= 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, . . .

Segment n has point n at its start, so in the following diagram n+2 goes
forward from the segments marked to the x axis points shown with dots. From
the segment expansions, all of the axis is of these forms.

Xpred∞(n+2) segments

The m'th right boundary segment can be written in terms of the Xpred base
conversion. An even and odd pair of x axis points have total 4 segments before
and after, so Xnum of m/2 and adjust to take those segments. There are no
segments before the initial x=0, 1 pair, hence +1 and the o�sets rotated.

Rnum∞(m) = Xnum(bm/2c+1) − [1, 0, 2, 1]

= 0, 1, 2, 3, 4, 5, 14, 15, 16, 17, 18, 19, . . .

base-4 = 0, 1, 2, 3, 10, 11, 32, 33, 100, 101, 102, 103, . . .

8.2 Enclosure Sequence

As each segment is successively appended to the curve, it may enclose a new
unit square on the right or left of the curve, or not.
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start

Right enclosures

...

start

Left enclosures

...

A new enclosed unit square is formed when a point is re-visited. So a segment
enclosing a unit square has the second-visit of a double-visited point at its end.
In the other(n) bit �elds (�gure 13), a second visit is where the highest bit
to �ip is a 1, so that other(n) becomes smaller. Any further bits �ipped are
arbitrary.

DpredFirstk(n) = Dpredk(n) and n < other(n)

DpredFirst∞(n) = Dpred∞(n) and n < other(n)

= 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, . . .

=1 at n = 3, 6, 9, 11, 12, 15, 18, 19, 22, 24, 25, . . .

DpredSecond(n) = Dpred∞(n) and n > other(n)

= 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, . . .

=1 at n = 7, 13, 14, 23, 26, 27, 28, 29, 31, 39, 45, . . .

DpredFirstk is �rst visit to a point which will be re-visited within level k.
DpredFirst∞ is the �rst visit to a point which will eventually be re-visited by
the curve continued in�nitely, which means a revisit either in k, or in k+1 across
the join.

For DpredSecond no distinction is needed between a level k and continuing
in�nitely since the other visit precedes n.

Totals through to 2k are the number of double-visited points D,

Dk =

2k∑
n=0

DpredFirstk(n) =

2k∑
n=0

DpredSecond(n)

At each second-visit the curve turns either left or right. When it turns left
it is away from the unit square just enclosed on the right. When it turns right
it is away from the unit square just enclosed on the left. The turn is never to
the same side as the square as that would overlap a side of that square.

right
enclose

n−1 n turn left at right side enclosure
or would overlap segment
of square just enclosed

Taking the second-visit predicate with turns is

DpredSecondL(n) = DpredSecond(n) and TurnLpred(n)

turn to left, encloses on right

=1 at n = 13, 14, 29, 45, 46, 49, 52, 53, 54, 56, 61, . . .
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DpredSecondR(n) = DpredSecond(n) and TurnRpred(n)

turn to right, encloses on left

=1 at n = 7, 23, 26, 27, 28, 31, 39, 55, 58, 71, 87, . . .

The totals of these are then left and right side areas

ALk =

2k∑
n=0

DpredSecondR(n) ARk =

2k∑
n=0

DpredSecondL(n)

Up to 3 unit squares can be enclosed consecutively on a given side. The next
segment encloses the square between those 3 on the opposite side.

right
encleft

enc

left
enc

left
enc

25 3 left enclosures
are 3 right turns
so next segment
is a right enclosure26

This is a run of 3 turns same direction all of which are second visits to
double-visited points. The �rst such run for left enclosures occurs at points
n=26, 27, 28 which are binary 11010, 11011, 11100.

There cannot be 4 or more consecutive same-side enclosures or that would
be 4 turns and the segments would overlap.

Runs of right and left enclosures can occur. For example point n=106 has a
run of 8 consecutive enclosures. The following diagram shows how this run falls
within the preceding segments.

start

n=106 = base-4 1222

Figure 17:

eight enclosures

LLLR RLLR

A run of 8 is the longest which occurs. That can be seen by expressing Dpred-
Second as a state machine on the bits of n and applying some state machine
manipulations to make tests of n+1, n+2, etc. The intersection of DpredSecond
of 9 terms n through n+8 inclusive is empty.

State machine manipulations on the 8 intersection shows the �rst of each
DpredSecond run of 8 has base-4 digit pattern
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DpredSecondEight = ...any ... 1 ...2 or 3 ... 2 ...3 ... 22 base-4

high low

repeat ≥ 0 repeat ≥ 0

The last segment of a level k is non-enclosing so a run is entirely within a
single level. The number of runs within level k follows from some linear algebra
on the state machine state counts, or the digit pattern and summing over lengths
of the repeats,

EncEightk =


0 if k ≤ 3

2
3 2

k−6 − [1, 0].2

⌊
k−6
2

⌋
+ [ 13 ,−

1
3 ] if k ≥ 4

= 1
3

(
2

⌊
k−5
2

⌋
−1
)(

2

⌈
k−5
2

⌉
− (−1)k

)
= 0, 0, 0, 0, 0, 0, 0, 1, 1, 5, 7, 21, 35, 85, 155, . . . A097038

Runs of 8 all have the same enclosure side sequence shown in �gure 17. This
can be seen from turn(n) which is opposite to the enclosed side. It is bit above
lowest 1 bit and its position, on base-4 low digits 222 through 301, and is the
same when some 3s for 23...322.

9 Cumulative GRS

Brillhart and Morton [6] consider cumulative GRS (their s), and cumulative
alternating signs GRS (their t),

GRScumul(n) =

n∑
j=0

GRS (j) = 1,2,3,2,3,4,3,4,5,6, . . . A020986

GRScumulAlt(n) =

n∑
j=0

GRSalt(j) = 1,0,1,2,3,2,1,0,1,0, . . . A020990

Per dsum and ddiff (47),(48), these correspond to coordinates in the alter-
nate paperfolding curve. Most of the formulas by Brillhart and Morton have
corresponding geometric interpretations.

GRScumul(n) = Manhattan
(
point(n+1)

)
GRScumulAlt(n) = Leading

(
point(n+1)

)
Manhattan(z) = |Re z|+ |Im z|
Leading(z) = |Re z| − |Im z|

start

GRScumul(n)

anti-diagonal

x+y = s

GRScumulAlt(n)

leading diagonal

x−y = d

s+d
even
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Or with one expand and per dx , dy at (49),(50),

GRScumul(n) = Re point
(
2(n+1)

)
GRScumulAlt(n) = Im point

(
2(n+1)

)
These forms and the point procedure from theorem 7 can be used for bitwise

computer calculation of one or both GRScumul and GRScumulAlt .
Blecksmith and Laud [4] calculate GRScumul by a chain of probability ma-

trices on the bits of the target n.
Brillhart and Morton (Satz 3 and 4) give recurrences which can be written,

for r = 0 to 3,

GRScumul(4n+r) = 2GRScumul(n) +

{
−GRS (n) if r=0

+GRSalt(n) if r=2

GRScumulAlt(4n+r) = 2GRScumulAlt(n) +


[−1, 3].GRS (n) if r=0

−2GRSalt(n) if r=1

−GRSalt(n) if r=2

Both of these forms are base-4 digits of n becoming �bit� values variously
±1,±2,±3 according as GRS or GRSalt of the digits of n above.

Brillhart and Morton show GRScumulAlt(n) = 0 when n+1 written in bi-
nary has 0-bits at even positions. This is Gpred(n+1) since x−y = 0 is the x=y
diagonal. They show GRScumul(n) = GRScumulAlt(n) when n+1 has 0-bits
at odd positions. This is Xpred(n+1) since point x+y = x−y if and only if y=0
so the X axis. They show too that for given s,

GRScumul(n) = s has exactly s many solutions n (111)

This corresponds to visits to an s=x+y anti-diagonal in the curve. From
the triangular shape, there are bs/2c+1 points on such a diagonal and the curve
makes 2 visits to each, except the x axis only 1 visit, and when s even the x=y
diagonal point only 1 visit, for total s except at s=0 which has 1 visit.

Among the s many solutions of (111), there is a �rst and last. Brillhart
and Morton establish the last one GRScumulLastN (their formula here ahead
at (120)), for use in their lower bound on GRScumul(n)/

√
n.

GRScumulFirstN (s) = minimum n for which GRScumul(n) = s

= 0, 1, 2, 5, 8, 9, 10, 21, 32, 33, . . . s≥ 1 A212591

base-4 = 0, 1, 2, 11, 20, 21, 22, 111, 200, 201, . . .

GRScumulLastN (s) = maximum n for which GRScumul(n) = s

= 0, 3, 6, 15, 26, 27, 30, 63, 106, 107, . . . s≥ 1 A020991

base-4 = 0, 3, 12, 33, 122, 123, 132, 333, 1222, 1223, . . .

These correspond to �rst and last visits to a given s = x+y anti-diagonal of
the curve,

MfirstN (s) = minimum n for which Manhattan
(
point(n)

)
= s

= GRScumulFirstN (s) + 1 for s≥ 1
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= 0, 1, 2, 3, 6, 9, 10, 11, 22, 33, . . .

base-4 = 0, 1, 2, 3, 12, 21, 22, 23, 112, 201, . . .

MlastN (s) = maximum n for which Manhattan
(
point(n)

)
= s

= GRScumulLastN (s) + 1 for s≥ 1

= 0, 1, 4, 7, 16, 27, 28, 31, 64, 107, . . .

base-4 = 0, 1, 10, 13, 100, 123, 130, 133, 1000, 1223, . . .

Theorem 13. In the alternate paperfolding curve, the n which is the �rst visit
to anti-diagonal s = x+y is given by

MfirstN (s) = 0 if s=0, and otherwise:

= Gnum(h).4k + Xnum(2k−1) + 1 (112)

where s = h.2k+1 +2k (113)

= 1 +


bs/2c in binary modi�ed by:

if s even change low 10...00 to base-4 digits 11...11,

all other bits change to base-4 digits 0,2

(114)

= Xnum
(⌊s−1

2

⌋)
+ Xnum

(⌈s−1
2

⌉)
+ 1 (115)

In (113), 2k is the least signi�cant 1-bit of s and h is everything above.
In (114), the low 1000 can have zero or more low 0-bits. The 1 and those 0s

become base-4 digit 1s, and are not subject to the 0,1→ 0,2 of all other bits.

Proof. s = 0, 1 are respectively n = 0, 1 only. s=2k for k≥1 can be illustrated

start

s=2k

n=2.4k−1

U

G

M

This anti-diagonal s is an unfold of the x=y leading diagonal, pivoting at
point x=2k−1 marked U. The �rst point M on s is the last point G on x=y.
The points on x=y are Gnum from theorem 10 which are increasing so G is at
m = 2k−1−1 which becomes point M on s so that

MfirstN (2k) = 2.4k−1 −Gnum(2k−1−1) = 1
3 (4

k + 2)

= Xnum(2k−1) + 1 (116)

= 1, 2, 6, 22, 86, 342, 1366, 5462, . . . A047849

Xnum form (116) is simply that M is one segment above the x axis x=2k−1.
It and the 1

3 (4
k+2) form hold for k=0 too.

For 2k < s < 2k+1, the diagonal passes through the following curve sub-parts
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0 1

2

3

x=2k−1 x=2k

s=2k+1

s=2k

n = 2.4k−1

s

�rst is in part 2

Sub-curve 2 is the �rst on the diagonal. It begins at the middle n = 2.4k−1

shown so

MfirstN (2k+s) = 2.4k−1 + MfirstN (s) 2k <s< 2k+1

Each 2.4k−1 here is a base-4 digit 2 corresponding to a bit of s. Each digit is
at k−1 so one position below the bit of s and thus giving Gnum(h).4k of (112).

Digits (114) are the Gnum and Xnum combination.
For the pair of Xnum at (115), when s odd the two are the same so doubling

to Gnum base-4 digits 0,2. When s even, the low 1000 of s is �ipped in the �oor
thus giving low base-4 digits 1111 and above that the same in both.

The location in the curve of the �rst visit follows from M on s=2k for k≥1
then replications of that for other s, so the lowest 1-bit of s. For s=1 and all its
replications as s odd, the point is 1

2 from the diagonal. In (117) that is handled
by the absolute value.

MfirstZ (s) = point
(
MfirstN (s)

)
= s. 1+i2 +

∣∣2CountLowZeros(s) − 2
∣∣. 1−i2 s ≥ 1 (117)

= unexpand
(
s+

∣∣2CountLowZeros(s)−2
∣∣.i)

= 0, 1, 1+i, 2+i, 3+i, 3+2i, 3+3i, 4+3i, 7+i, . . .

start

s=0

s=4

s=8

s=16

s=24

MfirstZ

locations of

�rst visit to

anti-diagonals

Another geometric interpretation of location M, for even s, is to follow down
through gaps when corners of the curve are chamfered o�, until reaching the
last such gap. On reaching either a non-gap or the x axis the preceding point
is M.
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These gaps are all left turns in the curve too, since they are unfolds of the
part 0 diagonal x=y which are right turns. So the M location is the last double-
visited left turn of the run of such points starting from the top of the diagonal,
if any.

Theorem 14. The n which is the �rst visit to leading diagonal d = x−y is the
X axis n= Xnum(d).

Proof. d=0 is the x=y diagonal and n=0 at the origin is the �rst visit. Then d
in the range 2k ≤ d< 2k−1 is

0

1

2

3

d=2k

n=4k
d=2k+1

�rst n

on leading

diagonal d

Diagonal d=2k is not visited by parts 0 and 1 since only x=2k is within
their triangular shape but it is n=4k which is the �rst point in part 2.

Visits to d in the range 2k <d< 2k−1 are in part 2. That part is the same
structure as part 0 by unfolding, so reduce to d− 2k and consider the �rst visit
in sub-parts there. This eventually reduces to a d=2r at the lowest 1-bit of
d, which has �rst visit x=2r, and so the �rst visit to d is on the X axis at
x= d.

Theorem 15 (variant of Brillhart and Morton). The n which is the last visit
to anti-diagonal s = x+y is given by

MlastN (s) = 0 if s=0, and otherwise:

= 22k+1 −Xnum(2k+1−s) where 2k ≤ s < 2k+1 (118)

= 1 +

{
s−1 in binary, change to base-4 digits 2,3,

highest 1-bit change to 3 if s=2k, unchanged 1 if not
(119)

The s=2k case is when s−1 is all 1-bits. So the high digit of s−1 changes
to 3 when that makes all digits 3, and otherwise it is 1.

Proof. For s=2k, the triangular shape means the last point n = 4k of level 2k
is on the diagonal and is the last visit.

start

s=2k, n=4k

M

For 2k < s < 2k+1, the diagonal passes through the following curve sub-parts
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0

1

2

3

n=2.4k

x=2k

s=2k+1

s=2k

s

last is in part 3

Figure 18:

sub-parts

for MlastN

Sub-part 3 is the maximum. It is a reverse curve going down from the top
n=2.4k, so seek the �rst n on a leading diagonal d = x−y = 2k+1−s down from
there. Per theorem 14, this is Xnum(d) and so (118).

Digits (119) follow from the Xnum subtraction. Bits of 2k+1−s are bits of
s−1 �ipped 0↔1 then subtraction from 22k+1 �ips the sense again so base-4
digits 2,3 except the highest stays as 1. When s=2k changing the highest to 3
too gives the n=4k result (which is a high digit 1 too).

Brillhart and Morton[6, Satz 18] expand recurrences for GRScumulLastN to
reach

GRScumulLastN (s) = s− 1 + 2
3 (4

r−1) + 2

r−1∑
j=0

⌊
s− 1

2j+1

⌋
.4j (120)

where 2r ≤ s < 2r+1

This is the digits form (119) of MlastN (s−1), without 1+. The sum part of
(120) is base conversion binary to base-4 digits 0,1,

t + 2

r−1∑
j=0

⌊
t

2j+1

⌋
.4j = t in binary change to base-4 digits 0,1

At j=0, the sum term is bits of t above the lowest and this is added to t at
bit position 1 so doubling those bits, moving them to bit position 2. At j=1,
the term does similar to bits above the two lowest, and so on spreading bits out
to base-4.

2
3 (4

r−1) is base-4 all digit 2s so adds to give base-4 digits 2,3. The selection
of r in (120) handles the di�erent cases s=2k or 6=2k at (119). Selecting r from
s, whereas the bits from s−1, means for s=2k the resulting r is 1 bigger and
2
3 (4

r−1) has an extra high 2 to add, so high digit 3.

In theorem 15, the locations of MlastN are the vertical side of sub-part 3 of
�gure 18. So for s≥1, the real part is the high bit of s and the imaginary part
is the remainder.

MlastZ (s) = point
(
MlastN (s)

)
= 2k + r.i where s = 2k+r with 0<r<2k, for s≥1
= 0, 1, 2, 2+i, 4, 4+i, 4+2i, 4+3i, 8, . . . ReA053644, ImA053645
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start

s=0

s=8 MlastZ

locations of

last visit to each

anti-diagonal

The distance of each MlastZ from the x=y diagonal, measuring along the
anti-diagonal, is 2k at s=2k then decreasing down to 1, so high bit of s subtract
remaining bits. Brillhart and Morton [6, Zusatz page 141] have this as

GRScumulAlt(GRScumulLastN (s)) = 2k − r
where s = 2k+r with 0≤ r<2k

= 0, 1, 2, 1, 4, 3, 2, 1, 8, 7, 6, 5, 4, 3, 2, 1, 16, . . . A080079

which corresponds here to

Leading(MlastZ (s)) =

{
0 if s=0

2k − r if s ≥ 1

Visits to columns of given x follow from the anti-diagonals. On expand , the
anti-diagonals become columns. There is an extra point preceding the �rst, so
−1 in (121).

VfirstN (x) = minimum n for which Re point(n) = x

= 2MfirstN (x) − 1 x≥1 (121)

= 0, 1, 3, 5, 11, 17, 19, 21, 43, 65, . . .

VlastN (x) = maximum n for which Re point(n) = x

= 2MlastN (x)

= 0, 2, 8, 14, 32, 54, 56, 62, 128, 214, . . .

On further expansion, columns become anti-diagonals again, but only the
even anti-diagonals. All points on such an even diagonal are from the column
so direct relations

MfirstN (2x) = 2VfirstN (x)

MlastN (2x) = 2VlastN (x)

Brillhart and Morton �nd which n in the range 4k≤n<4k+1 have minimum
s = GRScumul(n). They show there are two n with equal minimum s = 2k+1.
One is the range start n = 4k. The other, for k≥1, is their mk. (At k=0 have
mk = 1 which is the range start 4k and the other equal minimum is instead
n=3.)

mk = 1
3 (5.4

k − 2) (122)

= 1, 6, 26, 106, 426, 1706, 6826, . . . k ≥ 0 A020989

= GRScumulLastN (2k+1) for k ≥ 1
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With GRScumul(n) = Manhattan(point(n+1)), the two n can be illustrated
in the curve,

s=2k+1

point(n+1) of n=mk =106

point(n+1) of n=4k =64 of n=4k+1−1=255

point(n+1)

k = 3

minimum GRScumul(n)

in range 4k ≤ n < 4k+1

Other visits to this anti-diagonal s = 2k+1 are in earlier parts of the curve,
so that (and which also follows from the bit patterns for GRScumulLastN ),

mk = GRScumulLastN (2k+1) for k≥ 1 (123)

Brillhart and Morton note GRScumul(n) grows as
√
n and show ratios√

3

5
<

GRScumul(n)√
n

<

√
6 (124)

They establish the upper bound by an considering ranges of n and some
induction for possible GRScumul in those ranges.

They establish the lower bound by showing s/
√

GRScumulLastN (s) >
√

3
5

for all s, ie. the largest denominator for a given numerator, and note the lower
bound is approached for s = 2k+1 per (123),(122).

Some ranges for the lower bound are possible too. Sub-curves help to see
which ranges to use.

Theorem 16 (Brillhart and Morton).√
3

5
<

GRScumul(n)√
n

Proof. The theorem can be veri�ed explicitly for n < 8. Suppose then it is true
up to n < 2.4k for some k ≥ 1. The following diagram shows sub-curves up to
n = 8.4k. Each sub-curve is length n = 1

2 4
k.
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0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

mk mk+1

s=2k s=2.2k s=3.2k

n= 1
2
4k

n=2.4k

n=8.4k

sub-curves

The end of sub-curve 3 is n = 2.4k. All n above there have

s = GRScumul(n) = Manhattan(point(n+1)) ≥ 2.2k for n ≥ 2.4k

n = 2.4k to mk+1 inclusive can use this minimum s for

GRScumul(n)√
n

≥ 2.2k√
mk+1

>
2.2k√
1
3 .20.4

k
=

√
3

5

Sub-curves 14 and 15 are n = 7.4k to 8.4k and they have s ≥ 3.2k so for
them

GRScumul(n)√
n

>
3.2k√
8.4k

=
3√
8
>

√
3

5

Sub-curve 13 is a copy of sub-curve 3 shifted by +2k horizontally and n o�set
+5.4k. Take an n+ 5.4k > mk+1 in sub-curve 13. This is n > mk in sub-curve
3 since mk+1 = mk + 5.4k. Then

GRScumul(n+ 5.4k)√
n+ 5.4k

=
GRScumul(n) + 2k√

n+ 5.4k
>

√
3
5n + 2k√
n+ 5.4k

induction

=

√√√√(√ 3
5n+ 2k

)
2

n+ 5.4k
=

√√√√ 3

5
+

2
√

3
5n .2

k − 2.4k

n+ 5.4k

>

√√√√ 3

5
+

2
√

3
5
5
34
k .2k − 2.4k

n+ 5.4k
=

√
3

5

Sub-curve 13 after mk+1 has bigger n so it's not enough to use just s ≥ 2.2k,
it must be shown s becomes bigger too. Appealing to sub-curve 3 handles that
by equivalents of sub-curves 14 and 15 within the sub-part, recursively down.
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0 2

1

mk

n=2.4k successive

sub-curves

like 14 and 15

after mk

within part 3

Ratios s = GRScumul(n)/
√
n = x+y and t = GRScumulAlt(n)/

√
n = x−y

can be illustrated by plotting the paperfolding curve as point(n+1)/
√
n. The

following diagram is an approximation to the resulting limit set as n→∞.

s=
√
6

s=
√
2

s=
√

3
5

t=
√
3

x=
√ 3

10 x=
√
3

Figure 19:

sub-curve �lling,

upper bounds,

k=4

n+1 = 4k

to 4k+1−1

This approximation is made by taking a little triangle on the side of each
segment n+1. Points of the sub-curve there will be shrunk (towards the origin)
by between 1/

√
n and 1/

√
n+1. The convex hull around the triangle corners

shrunk by each is an upper bound on where points in the sub-curve might fall.
The orientation of the triangle is from the segment direction.

/
√
n+1

/
√
n

So indentations and holes shown in �gure 19 are de�nitely empty, but the
solid areas are only upper bounds and may have more holes or indentations.
Many of the holes are small and can be seen only at high resolution.

Brillhart, Erd®s and Morton[7] show limits s/
√
n and t/

√
n are continuous,

which means the shape in �gure 19 is connected. Geometrically, this is the curve
path variously shrunk by /

√
n but remaining continuous. They draw plots of

those coordinate functions against fractional n too.
Brillhart and Morton [6] had also shown all values

√
3
5 to

√
6 in (124) occur

as limits s = x+y. The geometric interpretation is that a projection of the
shape onto the x=y diagonal �lls that extent. Similarly their t=0 to

√
3 is a

projection onto an x=−y anti-diagonal.
The portion of the x=y diagonal between

√
2 and

√
6 is in fact �lled already

by Gnum points on that diagonal, as shown by Gawron and Ulas [10, theorem
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3.8] on squared reciprocal ratios. Their theorem is for Lnum∞ which is a super-
set of Gnum, but their proof uses only Gnum (the Lnum∞ points are adjacent
to Gnum points per (104)).

Theorem 17 (Gawron and Ulas). Those n with GRScumulAlt(n)=0, being
n = Gnum(s)− 1, have ratios GRScumul(n)/

√
n which are dense in the range√

2 to
√
6.

Proof. n = Gnum(s) − 1 gives GRScumul(n) = 2s so ratios to be considered
are 2s/

√
Gnum(s)− 1.

The lower bound is approached by s=2k which has n = Gnum(2k) − 1 =
2.4k−1.

The upper bound is approached by s=2.2k−1 which per Brillhart and Mor-
ton is Gnum(s) = 2

3 (4.4
k − 1).

For s in between, the ratios are dense if squares of the ratios are dense. The
increment from one squared ratio to the next is, for k>3,

4(s+1)2

Gnum(s+1)−1
− 4s2

Gnum(s)−1
<

8s+ 4

Gnum(s)−1
<

16.2k

2.22k − 1
<

1

2k−3−1
(125)

These increments run from the lower bound to the upper bound and are
made arbitrarily small by choosing k big enough.

Gawron and Ulas show density by constructing a sequence of s which con-
verges to any desired ratio q by taking a new low 1-bit on s whenever doing so
remains ≥ q (corresponding to ≤ the ratio here). They show such a sequence
always has in�nitely many 0-bits, and therefore is arbitrarily close to q because
the step for an ever-smaller 1-bit would go past it.

The increments used at (125) can be negative, but the upper bound ensures
they cover the range as they go low to high. Increments are negative when
enough low 1-bits of s.

Theorem 18. Step 2s/
√

Gnum(s)− 1 to 2(s+1)/
√

Gnum(s+1)− 1 is an in-
crease or decrease according to, and where k = blog2 sc so 2k ≤ s < 2k+1,

increase if CountLowOnes(s) ≤ dk/2e (126)

decrease if CountLowOnes(s) > dk/2e
unchanged never

decrease s = 1, 3, 7, 15, 23, 31, 47, 63, 79, 95, 111, 127, 159, . . .

binary 1, 11, 111, 1111, 10111, 11111, 101111, 111111, 1001111, . . .

Proof. Let dGnum be Gnum increment.

dGnum(s) = Gnum(s+1)−Gnum(s)

= 1
3

(
4CountLowOnes(s)+1 + 2

)
(127)

= 2, 6, 2, 22, 2, 6, 2, 86, 2, 6, 2, 22, . . . 2×A276391

(127) is since s+1 changes s low bits 0111 to 1000, giving corresponding
changes in the bits of Gnum.
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GRS ratio squared steps are

4(s+1)2

Gnum(s+1)− 1
− 4s2

Gnum(s)−1

=
(8s+4)

(
Gnum(s)−1

)
− 4s2

(
Gnum(s+1)−Gnum(s)

)(
Gnum(s)− 1

) (
Gnum(s+1)− 1

)
The numerator is

step = (8s+4)
(
Gnum(s)−1

)
− 4s2dGnum(s)

step 6=0 since Gnum and dGnum are both even so �rst term ≡ 4 mod 8 and
second term ≡ 0 mod 8.

To �nd where step is an increase, make a lower bound for Gnum(s) by
comparing 3Gnum(s) and s2k+2. They have high 1-bit at the same place, but
3Gnum(s) is each bit of s repeated so the highest 0-bit of s2k+2 has a 1-bit in
3Gnum(s). For example,

1 1 1 1 0 0 1 1 1 1 0 3Gnum(s)

1 1 0 1 1 s2k+2

high 0 of s 2k+1

2k+1 is immediately below the bits of s in s2k+2, and it can be added without
exceeding 3Gnum(s). If 3Gnum(s) has a 0-bit there, as shown in the example,
then that comes from a 0-bit in s2k+2 at some higher position. The highest
0-bit of s2k+2 has a 1-bit in 3Gnum(s) so bigger. Thus, and equality at s=1,

3Gnum(s) ≥ s2k+2 + 2k+1

Using this, writing l = CountLowOnes(s), and at (128) using s+1 ≤ 2k+1,

step ≥ (8s+4)
(
1
3s2

k+2 + 1
32
k+1 − 1

)
− 4s2 1

3

(
22l+2 + 2

)
= 4

3

(
s2
(
2k+3 − 22l+2

)
+ (4s+1)2k+1 − (2s+4)(s+1) + 1

)
≥ 4

3

(
s2
(
2k+3 − 22l+2

)
+ (4s+1)2k+1 − (2s+4)2k+1 + 1

)
(128)

= 4
3

(
s2
(
2k+3 − 22l+2

)
+ (2s−3)2k+1 + 1

)
> 4

3s
2
(
2k+3 − 22l+2

)
for s≥2 (129)

≥ 0 when k+3 ≥ 2l+2 so l ≤ dk/2e per (126)

Case s=1 is not covered by (129) but can be veri�ed explicitly. It is not an
increase and does not have l ≤ dk/2e.

To �nd where step is a decrease, make a simple upper bound for Gnum(s)
by shifting s up to the same high bit position,

Gnum(s) ≤ s2k+1

Gnum has s bits spread down with 0s between, so the second-highest 1-bit
of s2k+1 has a 0-bit at corresponding position in Gnum. Equality is when s=2k

which has no further 1-bit. So
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step ≤ (8s+4)(s2k+1 − 1)− 4s2 1
3

(
22l+2 + 2

)
= 4

3s
2
(
3.2k+2 − 4.22l + 4

)
+ 4s2k+1 − 8s2 − 8s− 4

< 4
3s

2
(
3.2k+2 − 4.22l + 4

)
− 8s− 4 using s ≥ 2k (130)

≤ 0 when 2l ≥ k+2 so l > dk/2e converse of (126)

At (130), the +4 is overcome when 2l≥k+2 since di�erence 3.2k+2 − 4.22l

< 3.2k+2 − 4.2k+2 = −2k+2 ≤ −4.

2

6

s=64

decrease
s=127
1111111decrease

s=79
1001111

decrease
s=95

1011111

decrease
s=111
1101111

k=6 squared ratios

4s2/(Gnum(s)− 1)

for 2k ≤ s < 2k+1

decrease when low 1-bits

> d6/2e = 3, being s = 79, 95, 111, 127

10 Midpoint Curve

A midpoint curve can be made by connecting the midpoints of each segment of
the alternate paperfolding curve.

midpoint(n) = 1
2 (point(n) + point(n+1))

start

midpoint curve,

with alternate paperfolding curve
shown dashed

k=0 k=1

start

end

k=2

start

end

k=3

start

end

k=4

start
end

k=5

start

end k=6

start
end

The alternate paperfolding curve turns ±90◦ so the midpoint curve goes
by diagonals. At each midpoint the midpoint curve can turn +90◦, 0◦ or−90◦
according to the paperfolding curve turn (section 2) before and after that mid-
point.
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paper −1, +1

paper +1, −1

MidTurn = 0
straight

paper +1, +1

MidTurn = +1
left

paper −1, −1
MidTurn = −1

right

Counting the �rst midpoint point as n=0, the �rst midpoint curve turn is
at n=1. The alternate paperfolding curve vertices before and after midpoint n
are turn(n) and turn(n+1). The midpoint turn sequence is then

MidTurn(n) =

{
turn(n) if turn(n) = turn(n+1)

0 if turn(n) = −turn(n+1)
n ≥ 1

= 1
2 sturn(n) from (9)

= 0,−1, 0, 1, 1, 0,−1, 0, 0,−1,−1, 0, 1, 0, 0, 1, . . .

MidDir(n) =

n∑
j=1

MidTurn(j)

= 0, 0,−1,−1, 0, 1, 1, 0, 0, 0,−1,−2,−2,−1,−1,−1, 0, 0, . . .

gMidDir(x) =
1

1− x
gMidTurn(x) = 1

2

1

1− x
gsturn(x)

11 Graph

The alternate paperfolding curve as a graph is, by its construction, a planar unit
distance graph and has an Euler path from start to end (traverse all edges once).
It is bipartite like any graph on a square grid since vertices can be separated
into those with coordinates x+y odd or even and edges are only between odd
and even.

The curve has no Hamiltonian path start to end (visit all vertices once) for
k ≥ 3 since the curve start and end are degree-1, and the other corner of the
triangle shape has a hanging square. All three of these would have to be ends
of a Hamiltonian path.

If the hanging square is removed then for k ≥ 4 there is still no Hamiltonian
path since start and end lead to vertices with two degree-2 neighbours. A path
entering or leaving at the centre vertex shown cannot visit both the upper and
lower.

start or end . . .
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An independent edge set in a graph is a set of edges with no end vertices in
common, also called a matching since it is vertices in pairs with edge between.
A perfect matching is all vertices in such pairs. A perfect matching is possible
only for an even number of vertices.

The alternate paperfolding curve points Pk is even for k=0 or k≥3 but there
is no perfect matching except the single pair k=0. For k≥3 the start vertex
must pair with the vertex to its right, which leaves the vertex at 1+i only able
to pair with the vertex to its right, and so on up the x=y diagonal. For k even
this leaves the hanging square at the top only able to pair 3 of its 4 vertices.
For k odd this leaves the end vertex at the top unpaired.

even
k=4

hanging square,
unpaired

start end

odd
k=5

end, unpaired

start

11.1 Diameter and Wiener Index

Shortest paths in the graph are by stair step. From the triangular shape of the
expansions the diameter of the graph is

Diameterk =

{
1, 2, 4 if k ≤ 2

2.2bk/2c + [−1, 1] if k ≥ 3

= 1, 2, 4, 5, 7, 9, 15, 17, 31, 33, . . . k≥3 A086341

The diameter endpoints are unique for all k. In k≤ 2 they are path start to
end. For k≥ 3 they are curve start to the far corner away from start and end.

A

B

start end

D diameterC

even
k=6

start

end

diameter

odd
k=7

For k odd ≥ 3 the diameter path is unique to the hanging square then 2
choices there. For k even the path up the triangle can take horizontal and
vertical steps in any order not going above the diagonal. The number of such
paths A to B is the Catalan numbers (one of their many interpretations).

Catalan(n) =
1

n+1

(
2n

n

)
= 1, 1, 2, 5, 14, 42, 132, . . . A000108

The hanging square at D has 2 paths C to D whereas C�B just one in the
triangle A�B, so count 2×. The curve height then gives
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DiameterCountk =


1 if k ≤ 2

2 if k odd ≥ 3

2

h−1

(
2h−4
h−2

)
if k even ≥ 4, with h = 2k/2

= 1, 1, 1, 2, 4, 2, 264, 2, 5348880, . . .

The Wiener index is a measure of total distance between pairs of vertices in
a graph.

Wiener index = 1
2

∑
vertices u,v

distance(u, v) (131)

Factor 1
2 has the e�ect of taking distance between a pair u, v in just one

direction, not also its reverse v, u.

Theorem 19. The Wiener index of the alternate paperfolding curve k graph is

Wk = [ 1
15 ,

11
120 ]4

k.2bk/2c + [ 12 ,
11
24 ]4

k

+ [ 56 , 1] 2
k.2bk/2c + [2, 2512 ]2

k − [ 125 ,
131
30 ]2bk/2c

= 1, 4, 20, 65, 272, 1022, 4768, 20780, . . .

Proof. For even k, it's convenient to start from a whole triangle and adjust for
absent parts.

row of edges

triangle grid,

height n=5

vertices

Shortest paths going between vertices within this triangle are horizontal and
vertical stair-step so are x plus y o�sets.

A row of edges is crossed by paths between vertices above and below. The
number of vertices above is a triangular number, and the rest below. The
number of paths crossing the row is the product. Columns of edges the same
by symmetry.

T (n) =

n∑
j=1

j = 1
2n(n+1) triangular numbers (132)

= 0, 1, 3, 6, 10, 15, 21, . . . A000217

Wtriangle(n) = 2

n−1∑
j=1

T (j).
(
T (n)− T (j)

)
= 1

30 (n−1)n(n+1)(n+2)(2n+1)

= 0, 0, 4, 28, 108, 308, 728, 1512, . . . n≥2 2×A067056

The paperfolding curve does not have the top-most vertex. The total path
lengths to it to be subtracted are distance down to each row then lengths along
are the triangular numbers sums.
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WtriangleTop(n) =

n∑
j=2

j(j−1) + T (j−1) = 1
2 (n−1)n(n+1)

= 0, 0, 3, 12, 30, 60, 105, 168, . . . A027480

Along the x axis every second edge is absent in the paperfolding curve.
A�ected paths are between vertices on the axis and each must be 2 longer to go
up and along the y=1 row. A�ected paths are those across an odd to even x.
So for n vertices

Wextra(n) =

n−2∑
x=0

n−1∑
x2=x+2−[0,1]x

2 = (n−1)2 − [1, 0]

= 0, 0, 0, 4, 8, 16, 24, 36, . . . A137932

Every second edge of the right-most vertical is absent too. The net Wiener
index of the even case curve height n is then

Weven(n) = Wtriangle(n)−WtriangleTop(n)

+ Wextra(n) + Wextra(n−1) for n ≥ 1

= 1
30 n(2n

4 + 7n3 − 8n2 + 47n− 120)

= 0, 1, 20, 90, 272, 663, 1404, . . . n≥1

For odd k a similar calculation can be made starting from a pyramid of
height n. Its total number of vertices is n2. Rows of edges have a square
number of vertices above and the rest below. Columns up to the middle have a
triangular number of vertices to the left and the rest to the right. By symmetry
the columns after the middle are the same. The paperfolding curve has the
right-most x axis vertex absent, and every second edge of the x axis absent.

pyramid

height n=5

Wpyramid(n) =

n−1∑
j=1

j2 (n2 − j2) + 2

n−1∑
j=1

T (j).(n2 − T (j))

= 1
30 (n−1)n(n+1)(11n2+1)

= 0, 0, 9, 80, 354, 1104, 2779, 6048, . . .

WpyramidEnd(n) =

n∑
j=2

j(j−1) + T (j−1)

+

n−1∑
j=1

j(2n−1−j) + T (j−1)

= 1
6 (n−1)n(8n−1)

= 0, 0, 5, 23, 62, 130, 235, 385, . . .

Wodd(n) = Wpyramid(n)−WpyramidEnd(n) n ≥ 1

+ Wextra(2n−2)
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= 1
30 (n−1)(11n

4 + 11n3 − 39n2 + 126n− 240)

= 0, 4, 65, 316, 1022, 2624, 5783, . . . n≥1

With height of the paperfolding curve 2bk/2c + 1 many vertices,

Wk =
[
Weven(2bk/2c + 1),Wodd(2bk/2c + 1)

]
TheWiener index can be used for mean path length between pairs of vertices.

Such a mean is usually taken over vertex pairs in one direction (like the Wiener
index) and excluding a vertex to itself, so pairs are binomial

Pairsk =

(
Pk
2

)
= 1, 3, 10, 28, 91, 276, 946, . . .

Wk

Pairsk
= 1, 4

3 , 2,
65
28 ,

272
91 ,

511
138 , . . .

This mean path length can be expressed as a fraction of Diameter which is
the longest path.

Wk

Pairsk .Diameterk
→ 4

15
= .2666 . . . if k even (133)

→ 11

30
= .3666 . . . if k odd A040006

These are the same means as in the whole triangle or whole pyramid graphs
respectively, essentially since the modi�cations made for the alternate paper-
folding are only linear out of quadratic total paths.

A geometric distance calculation can be made to give x and y distance be-
tween two points n and m in curve k (all of 0 to 2k, not just the distinct
locations) . Like the Wiener index, the sum here is distance n to m and not
also back the other way. So for example WV 0 = 1 is the single segment z=0 to
z=1.

WV k =

2k∑
n=0

2k∑
m=n+1

ReImDiff
(

point(n), point(m)
)

(134)

ReImDiff (z1, z1) =
∣∣Re(z1−z2)∣∣+ ∣∣Im(z1−z2)

∣∣i
=

([
2
15+

2
15 i,

7
30+

2
15 i
]
4k +

[
2
3+

1
3 i,

2
3+

2
3 i
]
2k +

[
1
5−

7
15 i, −

4
15+

2
15 i
])

2bk/2c

(135)

= 1, 2+2i, 10+6i, 40+28i, 180+156i, 1040+632i, . . .

The sum at (134) is calculated using the triangular shape of level k. Points
on the boundary lines are single-visited and points inside are double-visited for
total 2k+1. Working through those sums and locations gives the power form
(135). (It can be convenient to start with a triangle or pyramid of height n like
above then put in n = 2bk/2c.)

The limit mean x, y distances between points is di�erent in k even or odd.
Using height 2bk/2c as a scale factor,
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WVpairsk =

(
2k+1

2

)
= 1, 3, 10, 36, 136, 528, 2080, . . . A007582

WV k

WVpairsk .2
bk/2c →

4

15
+

4

15
i = .2666...+ .2666...i if k even

→ 7

15
+

4

15
i = .4666...+ .2666...i if k odd

start end

4
15

4
15

k even

mean x, y

distance

limits

start

end

7
15

4
15

k odd

These limits are the same as two points chosen in the respective triangle or
pyramid, ignoring single or double visited. The single-visited points in the curve
are only 2k/2 out of the 2k total, so do not a�ect the limit.

The k even Re and Im limits are the same by symmetry and per the coef-
�cient of the high 4k term in (135). The other terms are di�erent Re, Im since
there is no top-most point 2k/2.(1+i). With Leading for Re− Im di�erence,

Leading(WV k) = ( 132
k + 2

3 )2
k/2 k even

= −
2k∑
n=0

Leading
(
2k/2 (1+i) − point(n)

)
= 1, 4, 24, 176, 1376, 10944, . . . k even A103334

12 Twin Alternate

Two copies of the alternate paperfolding curve can be placed back to back, start
to end. Call this a twin alternate. The sides touching are either the x axis
or the x=y diagonal according as even or odd level. In both cases they mesh
perfectly.

It's convenient to number twin alternates starting k=0 as a unit square, so
that level k is four curves level k, which is two curves k+1. This numbering
gives 2k unit squares inside, and all expansions have non-overlapping segments.

start

end

k even

start

end

k odd four sides
each level k

The sub-curve shown thick is the plain curve in its normal direction, �rst
segment East. The initial levels are then
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start

end

start

end

start

end

start

end

start

end

start

end

k=0

k=1 k=2 k=3 k=4 k=5

In terms of two back to back curves the shape is

start

end

k even

start

end

k odd

The expand rule from �gure 2 holds for the twin alternate, with suitable
rotation. However the mirror image in that rule means whereas the inside was
on the left of the segments going anti-clockwise, after that mirror image the
same segments go clockwise and the inside is on the right.

Each twin alternate level is a subset of the preceding. This can be seen in
sub-curves of the sides

0

1

start

end

k even

k+1 odd

0 1

start

end

k odd

k+1
even

Figure 20:

k+1 curves and

k sub-curves

For k+1 odd its sub-curves are two k even twin alternates. The second copy
attaches up at the North West corner. Similarly k+1 even has sub-curves two
k odd. The second copy attaches on the right at the East corner.

The unit squares inside the twin alternate can be numbered according to
these copies. A given k is copied either North West or East according as k even
or odd. The result is a kind of Z-order replication progressing away from the
initial unit square at the origin. Each alternate bit of n goes either i−1 North
West or 2 East. The bottom left corner of each unit square is then

TSquare(n) = (i−1)x+ 2y = 2y−x + xi

= 0, −1+i, 2, 1+i, −2+2i, −3+3i, 2i, −1+3i, . . .

x = even position bits of n (136)

= 0, 1, 0, 1, 2, 3, 2, 3, 0, . . . A059905

y = odd position bits of n

= 0, 0, 1, 1, 0, 0, 1, 1, 2, . . . A059906

The boundary follows from the 4 sub-curves in a square. Two of each side
left and right are the twin alternate boundary so
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TBk = 2Bk = 4, 8, 16, 24, 40, 56, 88, . . . 4×A027383

TBQk = 2BQk = 4, 6, 10, 14, 22, 30, 46, . . . A027383

The number of distinct points is the parallelogram shape extents, less one
at each far corner

TPk = (2b
k+1
2 c+1)(2b

k+2
2 c+1) − 2 (137)

= 2.2k + [3, 4]2bk/2c − 1

= 4, 7, 13, 23, 43, 79, 151, 287, . . . 1
2 A183977

Theorem 20. The diameter of twin alternate k as a graph is

Tdiameterk = [3, 4] 2dk/2e − 2

= 1
2Bk+1 = BQk+1 − 1 (138)

= 2, 4, 6, 10, 14, 22, 30, . . . A027383

which is attained between the top left and bottom right corners only. The number
of paths of this length between those vertices is binomials,

TdiameterCountk =



2 if k=0

4

(
4h−4
h−2

)
4h2 + 4h+ 6

3h (3h−1)
if k even ≥ 2

4

(
3h−4
h−2

)
h2 + h+ 6

2h (2h−1)
if k odd

where h = 2dk/2e

= 2, 4, 4, 52, 172, 50388, 802620, . . .

Proof. Since the grid is convex, distances between vertices are the geometric
stair-step, except within the top or bottom rows where there are absent edges.
Those absent edges add +2 to relevant paths but those distances are still smaller
than top left to bottom right.

The correspondence to boundary length at (138) is since the lengths across
and diagonally up go as the boundaries of the component paperfolding curves.

Diameter paths go A�E through a grid like

A

B

D

E

C

It's convenient to count paths across the parallelogram grid B to D. The
hanging square at A has 2 paths A�C whereas 1 path B�C, so 2× the parallel-
ogram paths. Likewise at E for total 4×.

Number the parallelogram rows 0 to n and columns likewise 0 to n plus
possible w many additional columns up to the edges after w (drawn thick).
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0

1

. . .

n

0 1 . . . n 1 . . . w

y

01. . .n

u

Figure 21:

parallelogram

numbering for paths

Paths can be counted by the crossings of the edges after w. The number of
paths to the vertices in column w is given by entries of the Catalan triangle.
Likewise from the end to the column after w. For distance x horizontal to a
column and y down (or up), the Catalan triangle is

cat(x, y) =

(
x+y

y

)
x−y+1

x+1
A009766

Total paths are then products of the counts to each side of each thick edge

C(n,w) =
n∑
y=0

cat(n+w, y) . cat(n, u) where u = n−y

=

n∑
y=0

(
n+w + y

y

)
n+w − y + 1

n+w + 1

(
n+ u

u

)
n− u+ 1

n+ 1

=

n∑
y=0

(
n+w + y

y

)
u+ w+1

n+w + 1

(
n+ u

u

)
y + 1

n+ 1
(139)

At (139) the cat factor part n−y becomes u and conversely n−u becomes
y. The resulting factors can be applied into the opposite binomial. y/(n+1)
reduces the y binomial to y−1, and u/(n+w+1) reduces the u to u−1. The
factors are y+1 and u+w+1 so leaves 1 or w+1 on the original binomial,

C(n,w) =

n∑
y=0

((
n+w + y

y − 1

)
+

(
n+w + y

y

)
1

n+w + 1

)
·
((

n+ u

u− 1

)
+

(
n+ u

u

)
w+1

n+ 1

)
When factor y=0 is taken out, the resulting binomial has y−1 negative which

is understood as binomial = 0. Likewise u=0. If preferred those terms can be
taken separately with indices running from y=1 and/or to y = n−1 as necessary.
In any case the factors depend only on n,w and can be taken out to leave sums
of binomial products of the form,

n∑
y=0

(
a+ y

y

)(
b+ u

u

)
=

(
a+ b+ n+1

n

)
This identity is crossings like �gure 21 but of a full rectangle, so that the

number of paths to the crossing column is binomial of distance a left, b right,
and rows 0 to n. The binomials are how many ways to arrange the vertical steps
among the total steps in each case.
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0 1 . . . a
0start

1

. . .

n

y

end
01. . .b

u paths across

rectangular grid

Working through the terms and bringing them to common base n in the
binomial gives

C(n,w) =

(
3n+w + 1

n

)
(n+w+2)(n+w+3)− 2n

(2n+w+2)(2n+w+3)

The binomial numerator runs 3n+w+1 down to 2n+w+2. The smallest two
can cancel with the denominator of the factor if preferred, and which shows the
result is of course an integer.

For the twin alternate, the relevant height and width are

n = h−2, w =

{
h+1 if k even

1 if k odd
where h = 2dk/2e

TdiameterCountk = 4 C(n,w) k ≥ 1

As a remark, the parallelogram cross-products above are conceived for w≥0
but some similar calculation shows the formula holds for w = −1,−2 too, which
is rows shortened, and Catalan triangle entries taken as 0 outside the triangle.

w=−2 gives factor n(n−1)/(2n (2n+1)) which can be incorporated into a
reduced binomial,

C(n,−2) =
(
3n− 1

n− 2

)
= 1, 8, 55, 364, 2380, . . . n ≥ 2 A013698

Theorem 21. The Wiener index of twin alternate k as a graph is

TW k = [ 4320 ,
16
5 ]4k.2bk/2c + 8.4k + 1

12 [31, 32]2
k.2bk/2c

+ [2,−2]2k − 1
15 [101, 92]2

bk/2c

= 8, 40, 212, 936, 4420, 21552, 104616, . . .

Proof. Similar to the curve Wiener index in theorem 19, it's convenient to start
from an equivalent size full grid and subtract. For the twin alternate this is a
parallelogram grid. Consider width w and height h many vertices.

width w=6
height h=4

w=4
h=6

All shortest paths go by stair steps. Total paths can be calculated by cross-
ings of vertical and horizontal edges, with triangular numbers T from (132).
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Wpar(w, h) =

h−1∑
y=1

yw (h−y)w rows of vertical edges (140)

+ 2

m−1∑
x=1

T (x)
(
wh− T (x)

)
columns slope (141)

+

M−m−1∑
x=1

(
T (m) + xm

)(
wh− (T (m) + xm)

)
middle (142)

where m = min(w, h), M = max(w, h)

Vertical edges in a row are crossed by paths going between the vertices above
and the vertices below. For y vertex rows below there are yw vertices below
and (h−y)w above, per (140).

Similarly horizontal edges in columns. Columns in the sloping part have a
triangular number of vertices to the left and the rest to the right. The paral-
lelogram is symmetric so the same in the sloping part on the right, for (141).
The middle columns have the triangle sloping part plus some full columns of h
vertices to the left, for (142). The size of the sloping part is min(w, h), and the
middle extends to max(w, h).

Working through the sums, and taking w=1 to mean no edges,

Wpar(w, h) = 1
60


0 if w≤1

5whm
(
2M(M+h) +m2 − 3

)
− 10w2h

− (m−2)(m−1)m(m+1)(m+2)
if w≥2

where m = min(w, h), M = max(w, h)

h=1 = 0, 1, 4, 10, 20, 35, 56, . . . path A000292

h=2 = 0, 10, 28, 60, 110, 182, 280, . . . w≥2 A006331

h=3 = 0, 35, 88, 176, 308, 493, 740, . . .

The twin alternate does not have the degree-1 bottom right vertex. Its
contribution to Wpar is distance 2y to get to each row which sums to a triangular
number, times the w vertices in each row. Then across each row a triangular
number sum of distances.

WparEnd(w, h) = 2wT (h−1) + hT (w−1) w≥2
= 1

2wh(w + 2h− 3)

The twin alternate also does not have the degree-1 top left vertex. By
symmetry its contribution is the same WparEnd . Subtracting both removes the
path between them twice. This is length (w−1) + 2(h−1) so add that back.

The twin alternate also has every second edge on the bottom row absent.
Extra distance caused by this is Wextra from theorem 19, provided there is a
full row above to go along, which means h ≥ 3. Likewise the top row edges.

TWpar(w, h) = Wpar(w, h) + 2Wextra(w−1) w≥2, h≥3 (143)

− 2WparEnd(w, h) + (w−1) + 2(h−1)

TW k = TWpar
(
2

⌈
k+1
2

⌉
+1, 2

⌊
k+1
2

⌋
+1
)

(144)
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k=0 at (144) is w=3, h=2. It does not have h≥3 but its Wextra(w−1)=0
so formula (143) holds there too.

The twin alternate has TP many vertices (137) and the number of pairs of
distinct vertices is a binomial.

Tpairsk =

(
TPk

2

)
= 6, 21, 78, 253, 903, 3081, . . .

Mean path length between such a pair is then

TW k

Tpairsk
=

4

3
,
40

21
,
106

39
,
936

253
,
4420

903
, . . .

This mean path length can be expressed as a fraction of Tdiameter which
is the longest path. Limits follow from the coe�cients of the highest powers in
each term.

TW k

Tpairsk .Tdiameterk
→ 43

160
=

129

480
= .26875 if k even (145)

→ 4

15
=

128

480
= .2666 . . . if k odd

The odd limit is the same as the even limit of the plain curve at (133). Two
even curves back-to-back make an odd twin alternate.

12.1 Twin Alternate Area Tree

When the corners of the twin alternate curve are chamfered o�, the unit squares
enclosed inside the curve are connected through the resulting gaps. Call this an
area tree.

start

end

middle
edge

twin alternate k=6
area tree

An equivalent de�nition is to connect unit squares which are on the left of
consecutive curve segments. When the curve turns to the right the unit squares
on the left of the segments are distinct. A turn is always left or right (never
straight ahead) so those connections are at corners of the squares

edge between unit squares
on left sides of consecutive

curve segments

Mandelbrot [17] conceives these area connections as rivers. The curve is the
riverbank going upstream until reaching a source and then back down along the
other side of the river and tributaries. For a closed curve like the twin alternate
the squares inside the curve form entirely inland waterways. For area enclosed
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on the outside of a curve (or any unclosed curve), the rivers �ow eventually to
the �sea� outside.

It's convenient to draw the tree turned +45◦ using factor b/2. The start of
the curve at the origin can be taken as the root. Successive levels extend by
copying.

start

end

k=6 twin alternate area tree

TAVertexToZ (n) = TSquare(n). b2
= y−x + yi Z-order x, y per (136) (146)

In this layout, edges are horizontal and vertical. From the Z-order point
numbering, the negative x axis is points n = Xnum(x). The leading diagonal
x=y North East is points n = Gnum(y) (the same as the curve in fact).

The area tree is quite sparse when straightened to a line of its diameter.

start

k=7 twin alternate area tree straightened to branches o� the diameter

The twin alternate curve is symmetric in 180◦ rotation so the squares con-
nected by the new middle edge are at equivalent positions in each half. So the
middle edge is the centre and the two halves are isomorphic. likewise each half
has isomorphic halves across its centre edge, etc, all the way down to a single
vertex.

halves identical across centre edge,
each half likewise identical across centre edge

A tree with this recursive isomorphic halves property always has 2k vertices.
Various such trees can be made by choosing which vertex of each half to connect.
The connection can be between the same vertex in each half, like the twin
alternate area tree has, or between any two of equal eccentricity.

A straight-line path of 2k vertices is trivially such a tree and is the only
such tree for k ≤ 2. For k=3 there is the 8-path and one non-path. The twin
alternate area tree is the 8-path. For k ≥ 4 the twin alternate area tree is one
among several trees.

Theorem 22. Label vertices of twin alternate area tree k with point numbers
n per TAVertexToZ at (146). A horizontal edge is between a given n and least
signi�cant bit toggled,
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h 1

edge, horizontal, k ≥ 1

left h 0 right

A vertical edge is between two n points of the following form

h 11 00 . . . 00upper

edge, vertical, k ≥ 2

11 . . . 1100hlower

zero or more bits

Proof. In twin alternate k suppose the unit squares at corners are point numbers
sk start, ek end, and ak, ck opposite corners. Corner c is at the connection to
the copy for the next level and a is the other corner. Twin alternate curve k+1
consists of two copies of k

start

ek+1

2k + ek

ck+1

ek

2k

ak+1

ck

2k+ak

0 1

k odd
0

1

start

ek+1

2k + ek

ck+1

ek

ak+1

2k

ck2k+ak

k even

Figure 22:

corner vertex

numbers

The vertex numbers in each part 1 have 2k added which is a high 1-bit. The
start is sk = 0 always. The end point e is in the 1-part each time so add 2k

always for all 1-bits.
Corner ak+1 is the start in part 1 each time. Corner c is e in part 0 each

time. So

ek = 2k − 1 k many 1-bits

ak =

{
0 if k=0

2k−1 if k ≥ 1

ck =

{
0 if k=0

ek−1 if k ≥ 1
=

{
0 if k=0

2k−1 − 1 if k ≥ 1

The connection in level k+1 is from c in part 0 to a in part 1 which is ck to
2k+ak. For k=0 this is c0 = 0 to a0+20 = 1. For k ≥ 1 it is 2k−1−1 to 3.2k−1

per the theorem. Expansions replicate the connections of previous levels.
The direction of the edges follows by k=0 explicitly, and then k ≥ 1 by

considering the direction of the last segment of the sub-curves, which by the
unfoldings is down for k even and up for k odd.

Or the bit patterns give the direction too. k=0 is a change of the low bit
x only so horizontal. k ≥ 1 increments both x and y going lower to upper , so
that TAVertexToZ has real part y−x unchanged so vertical.
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00000001

00100011

01000101

01100111

10001001

10101011

11001101

11101111

start

k=4 twin alternate area tree

Z-order vertex bit patterns

These bit patterns can be used to construct the tree for computer calculation,
including drawing it in sheared Z-order shape by following the edge directions.
For a whole tree it's probably most e�cient to make edges upper to lower by
a loop over bit patterns. If going by n or an isolated part of the tree then
horizontal edges are always simply the low bit toggled, and some bit-twiddling
on n can identify when n has an edge to an upper and/or lower vertex,

TAVertexToLower(n) n ≥ 0

mask = BITXOR(n, n−1) lowest 1 and all bits below

if BITAND(n,mask+1) 6= 0 bit above lowest 1

then n is an upper and has edge downwards to

lower = n−mask − 2

TAVertexToUpper(n)

mask = BITXOR(n, n+1) lowest 0 and all bits below

if BITAND(n,mask+1) = 0 bit above lowest 0

then n is a lower and has edge upwards to

upper = n+ mask + 2

Direction upper or lower from n can also be a parameter 0 = go down, or
1 = go up. A possible low run of that bit is skipped and the next run (opposite
bit) must be more than a single bit long. mask is the same as above but applied
with an XOR to toggle the low run and next two bits.

TAVertexToOther(n, direction = 0 down or 1 up)

transitions = BITXOR(n, 2n+direction)

mask = BITXOR(transitions, transitions−1)
if BITAND(transitions, mask+1) = 0

then there is an edge to

BITXOR(n, 2mask + 1)

Predicates for when a vertex n has an upper or lower neighbour follow from
the bit patterns. They are simply a test of bit above lowest 1-bit or 0-bit.

TAVertexToUpperPred∞(n) =
(
BitAboveLowestZero(n) = 0

)
(147)

= 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, . . . A014577

TAVertexToLowerPred(n) =
(
n≥1 andBitAboveLowestOne(n) = 1

)
Going to lower always reduces n so the same in a tree level k or tree con-

tinued in�nitely. Going to upper increases n and (147) is for the tree continued
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in�nitely.

Theorem 23. The number of vertices of degree 0, 1, 2 or 3 in twin alternate
area tree k are

TADegCount(k, 0) =

{
1 if k = 0

0 if k ≥ 1
A000007

TADegCount(k, 1) =

{
0, 2, 2 if k = 0 to 2

2k−2 if k ≥ 3

= 0, 2, 2, 2, 4, 8, 16, 32, 64, 128, . . .

TADegCount(k, 2) =

{
0, 0, 2 if k = 0 to 2

2k−1 + 2 if k ≥ 3

= 0, 0, 2, 6, 10, 18, 34, 66, 130, 258, . . . k≥3 A052548

TADegCount(k, 3) =

{
0 if k ≤ 2

2k−2 − 2 if k ≥ 3

= 0, 0, 0, 0, 2, 6, 14, 30, 62, 126, . . . k≥3 A000918

Proof. The degree of the connecting vertices ck and ak are the same by symme-
try. The degree follows either from the curve ends which meet there, or from
edges by the bit patterns. In either case for k ≥ 3 they are degree 2.

The connection increases them to degree 3 and leaves other vertices repli-
cated. So

TADegCount(k+1, 1) = 2TADegCount(k, 1) k ≥ 3

TADegCount(k+1, 2) = 2TADegCount(k, 2) − 2

TADegCount(k+1, 3) = 2TADegCount(k, 3) + 2

Second Proof of Theorem 23. Vertex degrees can also be counted from the bit
patterns of theorem 22.

For k ≥ 1 every vertex can toggle its low bit for the left to right edge so
degree ≥ 1. n is only one of these left or right so degree cannot be 4, only at
most 3.

Degree-1 vertices those n which are neither upper nor lower forms. For
k ≥ 3, an n with one or more trailing 1-bits is not lower when entirely 11...11
or 011...11, but they are both upper so not degree 1. The other not lower are
...1011...11 and must have only one trailing 1-bit to avoid being upper , thus
n ≡ 5 mod 8. Similarly n with trailing 0-bits giving only n ≡ 2 mod 8.

TADegCount(k, 1) = count n ≡ 2, 5 mod 8

= 2.2k−3 k ≥ 3

Degree-2 vertices are upper but not lower or vice-versa. For k≥ 3, an n =
...0011...11 with ≥ 1 trailing 1-bits is a lower and to avoid being an upper must
be just one trailing 1-bit so ...001. Conversely, an entire 11...11 or 011...11 is
not lower but is upper . Other non-lower are ...1011...11 is and if ≥ 2 trailing
1-bits then it is an upper . With h many high bits for the latter, and n with
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trailing 0 bits treated the same �ipped,

TADegCount(k, 2) = 2

(
2k−3 + 2 +

k−4∑
h=0

2h
)

k ≥ 3

Degree-3 vertices are those n which are both upper and lower forms. Even
n = 1100...00 is an upper . It is also a lower only in no trailing 1s form 00,
so must have ≥ 2 trailing 0-bits. Similarly odd n = 0011...11 must have ≥ 2
trailing 1-bits.

· · · 11
00

00 · · · 00
11 · · · 11

DegCount3predk(n) when n =

≥ 2 bits

The bits above these endings are arbitrary so with h many such bits,

TADegCount(k, 3) = 2

k−4∑
h=0

2h

A yet further approach for TADegCount(k, 1) is that a degree-1 vertex has
all sides of the twin alternate unit square consecutive and so is on the left of
a sequence of 3 left turns (88). There are Turn3leftk+1 of these in each of the
two curves making up a twin alternate. For k≥2 the start and end turn away
so they do not form any further 3-left, so that

TADegCount(k, 1) = 2Turn3leftk+1 k ≥ 2

The total of all degrees is twice total edges in the usual way for any graph.
The twin alternate has 2k unit squares inside so the area tree has 2k−1 edges.

2k−1 = 1
2

3∑
d=0

d.TADegCount(k, d)

The degree of a given vertex n follows from the bit patterns. An upper is a
1-bit above lowest 0. A lower is a 0-bit above lowest 1. But in both cases the
bit above cannot be outside k bits for a level k tree.

TADegreek(n) =
(
1 if k ≥ 1

)
+ TAVertexToLowerPred(n)

+ TAVertexToUpperPredk(n)

TAVertexToUpperPredk(n) = TAVertexToUpperPred∞(n)

and n 6= 2k−1, 2k−1−1

For the tree continued in�nitely there is no restriction,

TADegree∞(n) =


2 if n = 0

2− BitAboveLowestZero(n)
+ BitAboveLowestOne(n)

if n ≥ 1

= 2, 2, 1, 3, 2, 1, 2, 3, 2, 2, 1, 2, 3, 1, 2, 3, 2, 2, 1, . . .
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Using BitAboveLowestZero(n) = BitAboveLowestOne(n+1) per the bit pat-
terns in �gure 4, this can be written as increment

TADegree∞(n) =

{
2 if n = 0

2− dBitAboveLowestOne(n) if n ≥ 1

where, for n ≥ 1,

dBitAboveLowestOne(n)=BitAboveLowestZero(n)−BitAboveLowestOne(n)

=BitAboveLowestOne(n+1)−BitAboveLowestOne(n)

= 0, 1,−1, 0, 1, 0,−1, 0, 0, 1, 0,−1, 1, 0,−1, 0, . . . n≥1

Each 1 in dBitAboveLowestOne is at n ≡ 2 or 5 mod 8 and are the degree-
1 vertices from the second proof above. In between them is exactly one −1
for a degree-3 vertex. This can be seen �rstly by n ≡ 1 = binary 001 and
n ≡ 6 = binary 110 are always dBitAboveLowestOne(n)= 0. Then at n ≡ 3
mod 4 further bits to the lowest zero are some x011...11. This increments to
n ≡ 4 mod 4 = x100...00. They have dBitAboveLowestOne = x−1 and −x
respectively so one is 0 and the other −1, hence exactly one −1.

The cases can be written out

dBitAboveLowestOne(n) =


−BitAboveLowestOne(n) n≡0 mod 4

BitAboveLowestOne(n+1) n≡1 mod 4

1− BitAboveLowestOne(n) n≡2 mod 4

BitAboveLowestOne(n+1)− 1 n≡3 mod 4

Locations of the various degree vertices in the tree can be illustrated,

k=8

degree 1 vertices degree 2 vertices degree 3 vertices

The degree-3 locations are pairs of vertices in the same layout as the whole
twin alternate area tree. That can be seen in an initial level such as a single pair
in k=4, then replication of the tree replicates the pairs (and makes the degree-2
connection vertices into degree-3).

The connection argument for the degree counts above also gives counts of
edges which have vertices of degree 1, 2 or 3 at each end. Twin alternate k≥4
has corner square degree-2 as above, and also the squares connected to that
corner are degrees 2 and 3. When the degree-2 of each half are linked their
adjacent edges change from 2,2 and 2,3 to 2,3 and 3,3 and the new edge is 3,3
also. So

TAEdgeCount(k, 2,2) = 2TAEdgeCount(k−1, 2,2) − 2 k ≥ 6

TAEdgeCount(k, 3,3) = 2TAEdgeCount(k−1, 3,3) + 3
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TAEdgeCount(k, other) = 2TAEdgeCount(k−1, other)

With initial counts calculated explicitly,

TAEdgeCount(k, 1,1) =

{
1 if k = 1

0 otherwise

TAEdgeCount(k, 1,2) =

{
0, 0, 2, 2 if k = 0 to 3

2k−3 if k ≥ 4

= 0, 0, 2, 2, 2, 4, 8, 16, 32, . . .

TAEdgeCount(k, 2,2) =

{
0, 0, 1, 5, 8 if k = 0 to 4

5.2k−4 + 2 if k ≥ 5

= 0, 0, 1, 5, 8, 12, 22, 42, 82, . . .

TAEdgeCount(k, 1,3) =

{
0, 0, 0, 0 if k = 0 to 3

2k−3 if k ≥ 4

= 0, 0, 0, 0, 2, 4, 8, 16, 32, . . .

TAEdgeCount(k, 2,3) =

{
0, 0, 0, 0, 2 if k = 0 to 4

2k−2 if k ≥ 5

= 0, 0, 0, 0, 2, 8, 16, 32, 64, . . .

TAEdgeCount(k, 3,3) =

{
0, 0, 0, 0, 1 if k = 0 to 4

3.2k−4 − 3 if k ≥ 5

= 0, 0, 0, 0, 1, 3, 9, 21, 45, . . . k≥4 A068156

Various graph-theoretic topological indices are based on sums over edges and
their vertex degrees. Notice all the edge types (except the solitary 1,1 in k=1)
go as a power 2k so all contribute to a limit if taking a mean index over number
of edges.

As an example, the second Zagreb index M2 of Gutman and Trinajsti¢ [12]
is product of vertex degrees at the ends of each edge.

ZagrebM2 (graph) =
∑
edges

degree1 .degree2

TAZagrebM2 k =
∑

d1,d2=1,2,3

d1.d2.TAEdgeCount(k, d1,d2)

=

{
0, 1, 8, 24, 63 if k = 0 to 4

81 . 2k−4 − 19 if k ≥ 5

= 0, 1, 8, 24, 63, 143, 305, 629, 1277, . . .

12.1.1 Twin Alternate Area Tree Diameter, Wiener Index

Theorem 24. The diameter of twin alternate area tree k is

TAdiameterk = [7, 10].2bk/2c − 2k − 7 (148)

= 0, 1, 3, 7, 13, 23, 37, 59, 89, . . . A053599
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This is uniquely attained between the geometrically most distant vertices of the
parallelogram shape.

Proof. The twin alternate curve has connection corner c and other corner a on
alternating sides of start and end in the manner of �gure 22.

start

end

a

c
k even

start

end

ca
k odd

twin alternate k,
four sides
each level k

Let TAcornerEcck be the eccentricity of vertex a or c. The twin alternate is
symmetric in 180◦ rotation so they have the same eccentricity. The claim will
be this eccentricity is

TAcornerEcck = [5, 7].2k − k − 5 (149)

= 0, 1, 3, 6, 11, 18, 29, 44, 67, . . .

Formulas (148) and (149) hold trivially for k=0 which is a single vertex so
that TAdiameter0 = TAcornerEcc0 = 0.

Tree k+1 comprises two sub-trees as per �gure 20. A path which goes
between the two halves has length which is the eccentricity of the corner on
both sides and an edge between,

TAdiameterk+1 = 2TAcornerEcck + 1

which is the theorem (148). Also per that formula this distance is greater than
TAdiameterk which would be the maximum staying only in one half of the tree.

For TAcornerEcck+1, new corner C in k+1 is shown in the following diagram.

r

RQk

C

A
start

end

k odd

l

LQk

CA

start

end

k even

Figure 23:

new corner vertex

eccentricity

The longest path going from C to anything in the other tree half is distance
to the middle connection vertex, the edge across, and eccentricity of the corner
in the other half. Going to the middle requires following unit squares on the
boundary of the curve sides marked r or l for the odd or even cases respectively.
There are RQk or LQk boundary squares, so that many vertices, less 1 to count
edges between them, plus 1 for the middle edge between the tree halves,

LRQk =

{
LQk if k even
RQk if k odd

(150)

= BQk−1 for k ≥ 1 (151)

TAcornerEcck+1 = TAcornerEcck + LRQk (152)
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TAcornerEcck =

k−1∑
j=0

LRQj

This is per (149), and comparing to the diameter formula is greater than
TAdiameterk which is an upper bound on any path from C to a vertex in the
�rst tree half.

The corner eccentricity construction repeatedly goes to the far half sub-tree.
Working through the expansions this is the far corner of the parallelogram shape.

As a remark, in �gure 23 it can be seen the new A corners are the same
right or left side to the middle so that their eccentricity is the same as C, per
the 180◦ symmetry noted above.

k=7 diameter path
k=8

diameter

path

The LRQ count of boundary squares on alternating sides at (150) occurs
below too. Form (151) as BQ is the curve unfolding from (86),(87).

Theorem 25. The height of twin alternate area tree k (eccentricity of its start)
is

TAheightk = [4, 6].2bk/2c − k − 4 (153)

= NumOpredk+2

= 0, 1, 2, 5, 8, 15, 22, 37, 52, . . . A077866

Proof. Tree k=0 is a single vertex so height 0. For k≥1, in �gure 23 suppose
the eccentricity of the start for tree k+1 is attained by going into the second
tree half. Per �gure 23 it goes around the right or left side boundary squares to
the midpoint then corner eccentricity k at the middle.

RLQ =

{
RQk if k even
LQk if k odd

= 2bk/2c

TAheightk+1 = TAcornerEcck + RLQk (154)

= TAcornerEcck + 2bk/2c

This is the theorem (153), and working through the formulas shows it is
greater than TAheightk which would be the height staying only in the �rst half.

Notice at (154) the left/right sides are swapped from the corresponding
corner eccentricity (152), so RLQ here instead of LRQ .

start

k=7 height

start

k=8

height
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Theorem 26. The Wiener index (131) of twin alternate area tree k is

TAW k = [ 1514 ,
43
28 ].4

k.2bk/2c − ( 14k+1)4k − 1
142

k (155)

= 0, 1, 10, 84, 584, 3984, 24864, . . .

Proof. As in �gure 22, the tree comprises two halves connected across middle
edge c, a.

Let TAwS be the sum of distances from start vertex s to all other vertices,
and let TAwC be the sum of distances from corner connection vertex c to all
other vertices.

TAwSk =
∑

v
distance(s, v)

= 0, 1, 4, 18, 56, 200, . . .

TAwC k =
∑

v
distance(c, v)

= 0, 1, 6, 22, 80, 248, . . .

TAwS can be calculated from the two k−1 sub-trees. For s to vertices in
the lower half the total distance is TAwSk−1. For s to vertices in the upper half
take �rst the distance from s to c, which is RLQk−1 as from the diameter in
theorem 24. There are 2k−1 vertices in the upper half, so that factor on this
distance. Then a is the same as c by symmetry so TAwC k−1 from a to the
upper vertices.

Similarly TAwC , except the distance e to c is LRQk−1

TAwSk = TAwSk−1 + 2k−1RLQk−1 + TAwC k−1 (156)

TAwC k = TAwSk−1 + 2k−1LRQk−1 + TAwC k−1 (157)

starting TAtwS0 = 0, TAtwC 0 = 0

(156)+(157) is a recurrence for sum TAwSC = TAwS + TAwC

TAwC k = TAwSC k−1 + 2k−1LRQk−1

TAwSC k = 2TAwSC k−1 + 2k−1BQk−1 = 2k−1
k−1∑
j=0

BQj

The Wiener index can then be calculated from TAwC of the two tree halves.
Distance between vertex pairs both in the upper half is Wiener TAW k−1, and
the same for both in the lower half. For one vertex in the lower half and one in
the upper there is distance TAwC k−1 to go from lower vertices to c, multiplied
by 2k−1 upper vertices which each one then goes to. The same upper vertices
to a. Then add 4k−1 total paths going across edge c, a.

TAW k = 2TAW k−1 + 2.2k−1TAwC k−1 + 4k−1

= 2k−1(2k−1) + 2k
k−1∑
j=0

TAwC k−1

The result is sums and sums of sums of powers of 2 which can be worked
through for (155).

Second Proof of Theorem 26. The Wiener index can also be calculated bottom-
up by considering traversals of edges.

Take each of the 2k vertices in tree k and possible edges in directions a, b, c, d
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to adjacent unit squares. Let a, b, c, d be the number of vertices in the sub-tree
on the other side of each such edge respectively. (Vertices are at most degree-3
so at least one of these counts is 0 for no other vertices and no edge there.)

1
2

a

1
2

b

1
2

c
1
2

d

TAW k = 1
2

∑
vertices

∑
t=s,a,c,e

t (2k − t)k
vertex

(158)

The Wiener index is sum of crossings of each edge. The number of paths
crossing an edge is product of number of vertices on each side. For example e
on one side and everything else 2k−e on the other. Summing over all edges at
each vertex counts edges twice (the vertex at each end) so 1

2 at (158).
Each vertex expands 1, 2 and 3 times per the following diagrams. A little

care is needed for which original edge goes to which new vertex. It's convenient
to use the de�nition of the tree as unit squares inside curves. Each segment
expands to 2 segments and the edges remain between the original segment ends.
Segments are drawn here expanding on the left to k+1, then on the right to k+2,
then on the left to k+3. Done this way the a, b, c, d corners are �xed locations.
By symmetry a right, left, right alternating expansion is the same �nal result.

2a 2b

2c2d

k+1

4a 4b

4c4d

k+2

8a 8b

8c8d

L

L

M

M

k+3

In k+3, the horizontal pairs of vertices shown encircled are the expansion of
each vertex in k+2. Crossings of the edges from one pair to another and from
a pair to the outside are the same as k+2 but with 2× vertices each side so
4TAW k+2.

The two L vertices are leaves so their edges are crossed 1 for each of the
2k+3 − 1 vertices on the other side.

The two M edge crossings by vertices on each side are

(8a+8d+ 3) (8b+8c+ 5) + (8a+8d+ 5) (8b+8c+ 3)

= 32(2a+2d+ 1) (2b+2c+ 1) − 2
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Product (2a+2d + 1)(2b+2c + 1) is crossings of the middle edge in k+1.
TAW k+1 also counts crossings of its outer edges. They are 4TAW k since k is
entirely outer edges. So net for k+3 is

TAW k+3 = 4TAW k+2 between pairs

+ 2 (2k+3 − 1).2k L pairs

+ 32
(
TAW k+1 − 4TAW k

)
− 2.2k M pairs

The Wiener index divided by number of vertex pairs is a mean distance
between vertices. Such a mean is usually taken over vertex pairs in one direction
(like the Wiener index) and excluding a vertex to itself, so number of pairs is

binomial
(
2k

2

)
= 1

2 (4
k − 2k). This mean can be expressed as a fraction of

TAdiameter . The limit of that fraction as k→∞ follows from coe�cients of the
highest powers in each term.

TAW k
1
2 (4

k − 2k) .TAdiameterk
→ 15

49
=

300

980
= 0.306122 . . . k even

→ 43

140
=

301

980
= 0.307142 . . . k odd

Like the mean in the whole twin alternate graph at (145), the odd and even
cases are not the same but di�er by just 1.

Gutman, Furtula and Petrovi¢ [11] consider a terminal Wiener index which
is distances between pairs of terminal vertices (ie. leaf nodes, degree 1).

Theorem 27. The terminal Wiener index of twin alternate area tree k is, in
terms of the full Wiener index,

TATW k =

{
0, 1, 3, 7 if k = 0 to 3
1
16TAW k + 1

16 4
k − 13

32 2
k if k ≥ 4

(159)

= 0, 1, 3, 7, 46, 300, 1784, 10736, . . .

Proof. Make a calculation similar to TAW theorem 26 above. c and a are non-
terminal vertices for k−1 ≥ 3 and remain so on joining. So the calculation
simply replaces vertex count 2k with TADegCount(k, 1).

TAtwSk =
∑
leaf v

distance(S, v)

= 0, 1, 3, 7, 18, 58, ...

TAtwC k =
∑
leaf v

distance(C, v)

= 0, 1, 3, 7, 24, 70, ...

TAtwSk = TAtwSk−1 lower k≥4
+ TADegCount(k−1, 1).RLQk−1 s to c

+ TAtwC k−1 a into upper

TAtwC k = TAtwSk−1 upper k≥4
+ TADegCount(k−1, 1).LRQk−1 e to a

+ TAtwC k−1 c into lower

starting TAtwS3 = 7, TAtwC 3 = 7
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TAtwSC k = TAtwSk + TAtwC k

= 2TAtwSC k−1 + 2k−3BQk−1 k ≥ 4

= 14.2k−3 + 2k−3
k−1∑
j=3

2BQj

TAtwC k = TAtwSC k−1 + 2k−3LRQk−1 k ≥ 4

TATW k = 2TATW k−1 halves

+ 2TADegCount(k, 1).TAtwC k−1 c, a into halves

+ TADegCount(k−1, 1)2 across c to a

= 2.4k−3 + 5.2k−3 + 2k−2
k−1∑
j=3

TAtwC k−1 k ≥ 4

TATW term 1
16TAW in (159) arises essentially from the number of terminal

vertices TADegCount(k, 1) being 1
4 of the total 2k (for k≥3).

The mean distance between distinct pairs of terminal vertices as a fraction
of the diameter has the same limit as the full TAW .

TATW k(
TADegCount(k,1)

2

)
.TAdiameterk

→
[15
49
,
43

140

]
same as TAW

12.1.2 Twin Alternate Area Tree Parent, Depth, Width

Theorem 28. Label the vertices of twin alternate area tree k with point numbers
n and layout per TAVertexToZ at (146). The parent of vertex n ≥ 1 is in the
direction given by the following state machine on bits of n high to low.

d=0 right

d=1 up

d=2 left

d=3 down

0 1

0

1

0 1

0

1

start

Figure 24:

TAparentDir(n),

bits of n

high to low

TAparentDir(n) = �nal state of bits high to low

= 0, 2, 3, 1, 0, 3, 0, 2, 1, 2, 3, 3, 0, 2, 3, 1, 0, . . . n≥1

TAstepDir(n, d) =


TAVertexUpper(n) if d = 1

TAVertexLower(n) if d = 3

BITXOR(n, 1) if d = 0or 2

TAparent(n) = TAstepDir(n,TAparentDir(n))

= 0, 3, 0, 7, 4, 1, 6, 9, 14, 11, 8, 3, 12, 15, 12, 19, 16, . . . n≥1
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The initial state is d=3. Since n ≥ 1 there is always a high 1-bit so always
a transition from there to d=0 (right). If n=1 then that is the only transition.

Proof. In the corners of theorem 22, the parent node is towards the start s. The
expansion of �gure 22 shows how aiming towards a given corner in k+1 becomes
some corner of k according to the high bit of n.

For example when aiming for s, if the high bit of n is 1 then must go towards
the 0�1 connection at 2k+a, across that edge, and from there to the start. For
�nding the parent it's enough to know the new state is �to a or if already there
then across�.

to e

to c

to s

to a

0

1

0 1

0

1

0 1

start

Figure 25:

TAparentDir

aiming-for

For the direction, if k=1 with k=0 sub-parts then �to a� is edge across
horizontal to the right (the k odd case in �gure 22, turned +45◦). Similarly �to
c� is horizontal to the left.

The �to s� and �to e� cases occur when �to a� or �to c� was k ≥ 1 and
therefore is an edge down or up.

The TAparentDir state machine in �gure 24 has the same structure as the
dir mod 4 state machine in �gure 10, but directions +1 mod 4 there, and an
0↔1 bit �ip for the transitions out of states 1, 2 there, which are states 0, 1
here.

The e�ect of these transition bit changes is that the runs of 1-bits which dir
identi�es become like

1111111 00000 111111 00000 111111dir(n)

1010101 10000 101010 01111 010101TAparentDir(n)

A high run of 1-bits in dir becomes alternating 1010 in TAparentDir . That
alternating run ends with a bit a. The following run of 0-bits in dir becomes
either 1000 or 0111, whichever repeats bit a instead of alternates. The next run
of 1-bits in dir is again alternating bits in TAparentDir , beginning with a.

The bit changes from dir to TAparentDir can be expressed by bit pairs as

Flip1110 (n) =

{
at 11 pair in n, output �ip pair low and all below

at 10 pair in n, output �ip pair low

= 0, 1, 3, 2, 6, 7, 4, 5, 12, 13, 15, 14, 9, 8, 11, 10, 24, . . .

binary = 0, 1, 11, 10, 110, 111, 100, 101, 1100, 1101, . . .

TAparentDir
(
Flip1110 (n)

)
+ 1 ≡ dir(n) mod 4
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Pairs 11 or 10 are found in n without any �ips. The output begins as n and
is modi�ed by 0↔1 �ips. The �ip at a pair is the lower bit of that pair, and for
11 also all bits below it. These �ips are cumulative, so some will cancel.

An even length run of 1-bits has an odd number of 11 pairs, thereby giving
the di�erent styles 1010 or 0101 for run of 1-bits below. An odd length run of
1-bits has an even number of 11 pairs so net unchanged below. The 10 �ip is at
the bottom of each run of 1-bits and gives 1000 or 0111 for the 0-bit runs.

The inverse, from TAparentDir runs to those of dir is a �ip the other way
around. 10 is low and all below, and 11 just the low.

UnFlip1110 (n) =

{
at 10 pair in n, output �ip low and all below

at 11 pair in n, output �ip low

= 0, 1, 3, 2, 6, 7, 4, 5, 13, 12, 15, 14, 8, 9, 11, 10, 26, . . .

binary = 0, 1, 11, 10, 110, 111, 100, 101, 1101, 1100, . . .

UnFlip1110
(
Flip1110 (n)

)
= n inverse

dir
(
UnFlip1110 (n)

)
− 1 ≡ TAparentDir(n) mod 4

The state machine of �gure 24 is bits high to low. Some usual state machine
manipulations can take bits low to high instead.

12345

yes non

1

0

1

0
1

0

1
0

0

1

(opposite)
start
d=1

(opposite)
start
d=2

start
d=3

start
d=0

TAparentDir(n) = d bits of n low to high

The start state is 2 to test for TAparentDir(n) = 0 (right), or start state 1
to test for TAparentDir(n) = 3 (down). In both cases an n is accepted by ever
reaching �yes�, or ending in the double-circle accepting states. Reaching �non�
or ending in a non-accepting is an n not of the respective parent direction.

The start state is 4 or 5 to test for TAparentDir(n) = 2 or 1 respectively.
For these the sense of accepting or not accepting is opposite.

State 1 is never a �nal state since n≥1 has at least one 1-bit. So the accept-
ing-ness of that state does not matter. It is reckoned non-accepting for a little
symmetry.

For d=0, an even n goes immediately to �non�. This is simply that even n
has no edge to the right at all (its horizontal edge is to the left). For odd n the
low 1 goes to state 3. From there base-4 digits 0 or 3 return to state 3 each
time. This can be written as

TAparentDir(n) = 0 i� n odd and bn/2c base-4 entirely 0,3,
or lowest non-0,3 is 2

For d=3, state 1 skips low bits 100...00 before this test.
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A state machine low to high with a single start and a direction result accord-
ing to �nal state is possible, by what is e�ectively simultaneous transitions from
the various starts. Written out as a full DFA it becomes a little complicated.

High 0-bits on n do not change the state machine results. In all states a
run of 0s remains the same accepting-ness. Geometrically these 0s are simply
vertices n in the �rst half, quarter, etc, within a bigger tree.

The way the tree is constructed extending at corner ck means there are two
spines continuing in�nitely. A given k is extended at ck = 2k−1−1. The next
expansion is at ck+1 = 2k−1 = ek. Ie. the further copy is from a vertex ek in
the original level k.

One spine is the verticals upward from the root. The other spine is stair-step
North West.

01

367

12

15

2425

3031

48

51

60

63

start

...

...

k=6
twin alternate area tree

two spines continuing in�nitely

From the ck connection replication, these are vertices

TAspineV (m) = 3Xnum(m) vertical

= 0, 3, 12, 15, 48, 51, 60, 63, 192, 195, . . . A001196

TAspineNW (m) =
⌊
3
2 Xnum(m)

⌋
stair-step (160)

= 0, 1, 6, 7, 24, 25, 30, 31, 96, 97, . . .

The North West x=−y line is 6Xnum then each following horizontal is +1.
The �oor at (160) combines these.

Also from the tree construction, the vertices in these two halves are those n
with odd or even length in binary.

vertical spine part vertices = 0, 2, 3, 8, 9, 10, 11, 12, 13, 14, . . . A053754

NW spine part vertices = 1, 4, 5, 6, 7, 16, 17, 18, 19, 20, . . . A053738

k=7

NW spine vertical spine

start start

k=8

twin alternate
area tree

on each spine

The �aiming for� procedure of TAparentDir can be applied to go towards end
e. Starting from n=0 or n=1 this steps along the two in�nite spines. Starting
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from other n goes �rst to the spine of its respective half then descends that
spine.

TAtospineDir(n) = �nal state of �gure 24 starting from d=1

= 1, 1, 2, 1, 1, 0, 2, 1, 2, 1, 2, 3, 1, 0, . . .

TAtospine(n) = TAstepDir(n,TAtospineDir(n))

= 3, 6, 3, 12, 7, 4, 7, 24, 9, 14, 11, 8, 15, 12, . . .

TAspine(m,n) = TAtospine(TAtospine(. . . (n))) m times

TAspine(m, 0) = TAspineV (m)

TAspine(m, 1) = TAspineNW (m+1) (161)

n=0 has TAtospine(0) = 3 so that under the state machine rule it goes up
the vertical spine. Starting from n=1 at (161) goes up the stair-step.

The depth of a vertex is its distance to the root. The root itself is depth 0.
The aiming-for corner procedure for parent direction gives the depth of vertex
n by summing distances across preceding trees.

Theorem 29. The depth of vertex n in the twin alternate area tree is given by
sums RLQ followed by run LRQ according to bit runs in n,

101...01 100...00 10...10 011...11 0101 . . .n =

high low

TAdepth(n) = RLQk+LRQk−1

+ · · ·
+LRQk−l

+ RLQp+LRQp−1

+ · · ·
+LRQp−q

+ · · ·

(162)

(163)

= 0, 1, 2, 1, 4, 5, 2, 3, 6, 5, 8, 7, 2, 3, 4, 3, 10, . . .

These are the runs of 1-bits in UnFlip1110 (n),

111...11 000...00 111...11 000...00 11 . . .UnFlip1110 (n) =

The bit runs in n at (162) are alternating 1, 0. Between each is a run either
1000 or 0111. It starts with a repeat bit a, ie. not alternate, and has zero or
more opposite bits 1−a. The next alternating run starts with a.

The indices k etc for RLQ and LRQ terms are the bit positions of all alter-
nating 1, 0 run bits. Bit positions are counted starting 0 for the least signi�cant
bit as usual.

Proof. In the manner of TAparent , the distance to the start s follows by the
state machine of �gure 25.
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to a

to e

to c

to s

0
add LRQ

1

add RLQ 0

1

0 add LRQ
1

0

1 add RLQ

start

On expansion, when the target corner is in the opposite half of the tree
the distance across that other half is added. In the manner of TAdiameter
theorem 24 this is either RLQ or LRQ following the boundary squares on the
right or left side of the sub-curve.

The positions where RLQ or LRQ distances are added are then the n bit
runs of the theorem, and per the dir to TAparentDir correspondence these runs
are the bits of UnFlip1110 .

UnFlip1110 (n) itself has a geometric interpretation as the total sizes of all
power-of-2 sub-trees traversed to reach n.

Let WidthS (k, d) be the number of vertices at depth d from the tree start. Let
WidthC (k, d) be the number of vertices at depth d from the corner connection
c, in the manner of TAcornerEcc from theorem 24. Mutual recurrences follow
by the tree as two k−1 halves,

WidthS (k, d) = WidthS (k−1, d) + WidthC (k−1, d−RLQk−1) (164)

WidthC (k, d) = WidthS (k−1, d) + WidthC (k−1, d−LRQk−1) (165)

starting

WidthS (k, 0) = WidthC (k, 0) = 1

WidthS (k, d) = WidthC (k, d) = 0 if d < 0

so, depths d = 0 to TAheightk,

WidthS (0, d) = 1

WidthS (1, d) = 1, 1

WidthS (2, d) = 1, 2, 1

WidthS (3, d) = 1, 2, 2, 1, 1, 1

WidthS (4, d) = 1, 2, 3, 3, 2, 2, 1, 1, 1

WidthS (5, d) = 1, 2, 3, 3, 3, 4, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1

The two terms of (164),(165) are vertices from the �rst and second k−1 sub-
parts. For the second sub-part the depth d is reduced by the distance to the
connection point and is then WidthC .

The sum of widths at all depths is the total 2k vertices
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2k =

TAheightk∑
d=0

WidthS (k, d) =

TAcornerEcck∑
d=0

WidthC (k, d)

The maximum width is unbounded with increasing k since there are 2k

vertices within TAheightk and the latter grows only as 2bk/2c.
The width at d is the number of solutions to TAdepth(n) = d so from (163)

RLQw+LRQw−1+ · · ·+LRQx +RLQy+LRQy−1+ · · ·+LRQz + · · ·

zero or more LRQ

index gap ≥ 1 index gap ≥ 1

d =

k−1 ≥ w

These runs are in the WidthS recurrence (164) too. An RLQ subtraction
from d goes to C and WidthC can stay there for a run of LRQ subtractions.

So a combinatorial interpretation of WidthS is the number of ways to write
d as sums of RLQ and LRQ terms in such runs.

RLQ

LRQ

gap

start

The index positions are signi�cant. The RLQ values repeat, and values 1,2
repeat LRQ at the low end too. These become distinct ways to make d, where
runs and gaps permit.

WidthS (4, 3) = 3 ways

3 = RLQ3 + RLQ1 = 2 + gap+ 1 + gap

3 = RLQ3 + RLQ0 = 2 + gap+ gap+ 1

3 = RLQ2 + RLQ1 = gap+ 2 + gap+ 1

RLQ0 = LRQ0 = 1 are the same but the runs and gaps mean they never
make distinct forms. RLQ0 only occurs when the position above it (index 1) is
a gap, whereas LRQ0 only occurs when not a gap.

As a remark, all of RLQ and LRQ are distinct except for 1 and 2 noted
and RLQ repeat pairs. From the power formulas two LRQ fall between each
RLQk = 2bk/2c pair,

RLQ2k+3=RLQ2k+2 > LRQ2k > LRQ2k−1 > RLQ2k+1=RLQ2k k≥2

The same run forms apply for WidthC except it starts in an LRQ run already.
So start LRQk−1 and further LRQ terms then a gap etc, or gap immediately
with no high LRQk−1 at all.

Repeatedly expanding (164) is WidthS as sum of WidthC , where depth < 0
is taken to have width 0.
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WidthS (k, d) =

k−1∑
j=0

WidthC (j, d−RLQj) d ≥ 1

For a given d these WidthC terms are 0 when j big enough that d−RLQj < 0.
So when k is big enough WidthS (k, d) does not change with further increases in
k. This is the width of a twin alternate area tree continued in�nitely. (WidthC
treated similarly would be the same as WidthS since (165) becomes only its
WidthS term when k big enough that d−LRQk−1 < 0.)

WidthS (∞, d) = WidthS (k, d) for k where RLQk > d

= 1, 2, 3, 3, 4, 6, 6, 5, 6, 8, 9, 9, 11, 13, 11, 9, 10, 12, 12, 12, . . .

0 1 2 4 8 16

twin alternate

area tree

continued

in�nitely

12.1.3 Twin Alternate Area Tree Independence and Domination

The twin alternate area tree has a perfect matching (section 11) by horizontal
pairs of vertices. This is the expansion of each k−1 vertex to 2 adjacent vertices
in k (the low bit toggle in the numbering of theorem 22). Or top-down k is two
copies of k−1 starting from perfect matching of the 2 vertices in k=1.

An independent set in a graph is a set of vertices which have no edges between
them, so no adjacent vertices in the set. The independence number is the size
of the largest independent set of the graph. The independence ratio is the
proportion of this to the number of vertices.

Any tree with a perfect matching has independence ratio 1
2 . An independent

set can have at most one vertex of each pair, and a set of that size can be
constructed working outwards taking neighbours opposite present/absent. So
for twin alternate area tree k,

TAindnumk =

{
1 if k=0

2k−1 if k≥1
TAindRatiok =

{
1 if k=0
1
2 if k≥1

Taking neighbours alternately present/absent is unique up to complement,
but there are various other sets attaining TAindnumk too. At each vertex absent
from the set its neighbours in other pairs can be either present or absent.

A dominating set in a graph is a set of vertices which has every vertex of the
graph either in the set or adjacent to one or more of the set. The domination
number is the size of the smallest set which dominates in the graph.

Theorem 30. The domination number of twin alternate area tree k is
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TAdomnumk =

{
1, 1, 2 if k = 0, 1, 2

3 . 2k−3 if k ≥ 3

= 1, 1, 2, 3, 6, 12, 24, 48, 96, 192, . . . A098011

The number of dominating sets of this size is

TAdomnumCountk =

{
1, 2, 4 if k = 0, 1, 2

22
k−2

if k ≥ 3

= 1, 2, 4, 4, 16, 256, 65536, 4294967296, . . .

Proof. The domination number for k≤3 can be veri�ed explicitly. In k=3 it can
be noted that if any combination of the start, end and connection vertices are
optionally allowed to be undominated then the size of the smallest dominating
set is still TAdomnum.

start1

2c

a5

6end
Figure 26:

k=3 twin alternate area tree

TAdomnum3 = 3,

unchanged by optional undominated

In �gure 26, the optional undominating would mean only vertices 2, 5 and
the middle 1,6 need be dominated. Their separation means TAdomnum3 = 3
vertices are still required to do so.

Suppose the theorem and optional undominating is true of some k−1 ≥ 3.
When two copies of k−1 join, there could be a cross-domination allowing the
connection vertex in one half to be undominated. But that does not reduce
TAdomnumk−1 in that half, so the two halves

TAdomnumk = 2TAdomnumk−1 k ≥ 4

In k the optional undominated vertices are some of the start, end and con-
nection vertices of the two k−1, so that their optional undominating in k again
still gives TAdomnumk there.

The count of dominating sets can be veri�ed explicitly for k≤3. Thereafter
the sets are all those in each half, so product

TAdomnumCountk = TAdomnumCount 2
k−1 k ≥ 4

The domination ratio is the ratio of domination number to number of vertices
in a graph. For the twin alternate area tree this is

TAdomRatiok =
TAdomnumk

2k
=

{
1, 12 ,

1
2 if k = 0, 1, 2

3
8 if k ≥ 3

An independent dominating set in a graph is a set of vertices which is both
independent and dominating. This is equivalent to being a maximal independent
set. A maximal independent set is an independent set to which no further vertex
can be added and still be an independent set. This means dominating since any
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undominated vertex would have no neighbour and so could be added and still
be independent.

The independent domination number of a graph is the size of the smallest
independent dominating set. Or equivalently, the size of the smallest maximal
independent set and as such also called the lower independence number.

The independent domination number is always ≥ the domination number,
since requiring independence restricts the dominating sets considered. The two
are equal for the twin alternate area tree, but a smaller count of sets.

Theorem 31. The independent domination number of twin alternate area tree
k is equal to the domination number

TAindomnumk = TAdomnumk

The number of independent dominating sets of this size is

TAindomnumCountk =

{
1, 2, 3, 4 if k = 0 to 3

72k−4

if k ≥ 4

= 1, 2, 3, 4, 7, 49, 2401, 5764801, . . . k≥4 A165425

Proof. The theorem can be veri�ed explicitly for k≤ 4. Then for k=4,

start

ac

end

1

23

4

6

13

k=4 twin alternate area tree

TAindomnum4 = 6,

unchanged by optional undominated

Similar to theorem 30, for k=4 if any combination of the start, end and
connection vertices are optionally allowed to be undominated then the size of
the smallest independent dominating set is still TAindomnum4 = TAdomnum4

= 6. Those vertices undominated separate the rest into 5 parts. The middle is
a path-4 requiring 2 vertices for domination.

The number of independent dominating sets in k=4 can be seen by consid-
ering how the vertices shown in �gure 27 might be rearranged. 1, 4 dominate
as many vertices as possible in their tail. But 2 can come inwards to 3. Doing
so allows 1 to move up to 6, and when that happens 4 can then move out-
wards too. These moves are 3 sets. Likewise by symmetry 13 etc in the upper
half. But 3 and 13 cannot both move inwards or not an independent set. So
TAindomnumCount4 = 1+3+3 = 7.

All these k=4 independent dominating sets have all of start, end and con-
nection vertices absent. So on joining all combinations of sets in k−1 remain
independent in k, giving

TAindomnumCountk = TAindomnumCount 2
k−1 k ≥ 5

A total dominating set in a graph is a set of vertices for which all graph
vertices are adjacent to one or more in the set. This di�ers from an ordinary
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dominating set in that a vertex in the set does not dominate itself, it must have
some neighbour.

Theorem 32. The number of total dominating sets in twin alternate area tree
k is

TAtotdomsetsk =

{
0, 1, 4, 25 if k = 0 to 3

302k−3

if k ≥ 4

= 0, 1, 4, 25, 900, 810000, 656100000000, . . .

Proof. The theorem can be veri�ed explicitly for k≤ 4. Then for k=4,

s

ac

e

23

45

1011

1213

Figure 27:

k=4 twin alternate area tree

part of total domination,

s, a, c, e always dominated

Vertex 3must be present to dominate leaf vertex 2, and 3 then also dominates
the start vertex s. Similarly 4, 11, 12 required and dominate a, c, e.

All higher k are formed by connections across those s, a, c, e. Since they
are already dominated in their k=4 parts there are no additional sets formed
by cross-domination at those connections, only the sets formed within k=4. It
can be veri�ed explicitly that k=4 has 302 = 900 sets. Further k squares that
successively.

The total domination number is the size of the smallest total dominating
set of a graph. Similar to theorem 32, from no cross-domination the total
domination number and count of sets of that size are

TAtotdomnumk =


none if k=0

2 if k=1

2k−1 if k ≥ 2

= none, 2, 2, 4, 8, 16, 32, . . .

TAtotdomnumCountk =


0 if k = 0

1 if k = 1 to 3

22k−3

if k ≥ 4

= 0, 1, 1, 1, 4, 16, 256, 65536, 4294967296, . . .

The total domination polynomial of a graph has terms cnxn where cn is the
number of total dominating sets of n vertices. Again similar to theorem 32,
from no cross-domination after k=4 this is a power
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TAtotdompoly(x) =



0 if k = 0

x2 if k = 1

x2 (x+1)2 if k = 2

x2 (x2+3x+1)2 if k = 3(
x4 (x+1) (x+2) (x2+3x+1)

)
2k−3

if k ≥ 4

A semi-total dominating set in a graph is a set of vertices where each not
in the set has a neighbour in the set, and each in the set has a neighbour or
distance 2 away in the set (or both). Semi-total is similar to total domination,
but relaxes to allow set members dominated up to distance 2 away. It is still
a plain dominating set and so falls between the conditions of total and plain
dominating.

The semi-total domination number of a graph is the size of the smallest
semi-total dominating set.

Theorem 33. The semi-total domination number of twin alternate area tree k
is the same as the domination number for k≥ 4,

TAsemitotdomnumk =

{
none, 2, 2, 4 if k ≤ 3

TAdomnumk if k ≥ 4

The number of semi-total dominating sets of this size is

TAsemitotdomnumCountk =

{
0, 1, 3, 11 if k = 0 to 3

1 if k ≥ 4

Proof. The theorem can be veri�ed explicitly for k≤ 3. For k=4 the unique
minimum semi-total dominating set is

start

ac

end

k=4 twin alternate area tree

TAsemitotdomnum4 = 6

unique such set

Similar to theorem 30, if any or all of the start, end and connection vertices
are optionally allowed to be undominated, and/or their neighbours allowed to
be present and undominated, then the size of the smallest set is still this sole
TAsemitottdomnum4 = 6.

So on connecting to k ≥ 5 by two k−1 halves, any cross-domination to one
of the halves doesn't reduce the size there, and hence TAsemitottdomnumk =
2TAsemitottdomnumk−1 is the best, and attained by the single set each half.

A perfect dominating set in a graph is a dominating set where each vertex
not in the set is dominated by just one from the set. The perfect domination
number of a graph is the size of the smallest perfect dominating set.
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Theorem 34. The perfect domination number of twin alternate area tree k is
the same as the domination number.

TAperfdomnumk = TAdomnumk

The number of perfect dominating sets of this size is

TAperfdomnumCountk =

{
1, 2, 2, 2 if k = 0 to 3

22k−4

if k ≥ 4

= 1, 2, 2, 2, 2, 4, 16, 256, 65536, . . .

Proof. The theorem can be veri�ed explicitly for k≤ 4. For k=4 the two perfect
dominating sets are

start

ac

end

start

ac

end

k=4 two sets

TAperfdomnum4 = 6

TAperfdomnumCount4 = 2

Both sets have all start, end and connections absent so on joining for k=5
there is no cross-domination and they remain perfect dominating. The new
start, end and connections are likewise absent so likewise perfect dominating in
bigger k too. The number of sets formed this way is product in each half so

TAperfdomnumCountk = 2TAperfdomnumCount2k−1

Suppose there are no other such sets in some k−1 ≥ 3. This is so for k=4
above. If the connection C is in the set then this is not of these forms and
therefore is at least 1 vertex bigger. In the other half its connection would be
undominated. From TAdomnum theorem 30, such an undominated does not
reduce the size of any dominating set there, so total in k is too big.

The disjoint domination number of a graph is the smallest combined size of
two disjoint dominating sets. In the twin alternate area tree, the two sets can
both be the minimum TAdomnum size.

Theorem 35. The disjoint domination number of twin alternate area tree k is

TAdisdomnumk =

{
none if k=0

2TAdomnumk if k ≥ 1

= 2, 4, 6, 12, 24, 48, 96, . . . k≥1 k≥1 A058764

The number of pairs of such sets is

TAdisdomnumCountk =

{
0, 1, 2 if k = 0, 1, 2

22
k−3−1 if k ≥ 3

= 0, 1, 2, 1, 2, 8, 128, 32768, . . . k≥3 A058891
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Proof. For k < 3 the theorem can be veri�ed explicitly. For k=3 the tree is a
path and �gure 26 shows a TAdomnum3 = 3 dominating set. Reversing it along
the path, so 2, 6, c, is a further dominating set of 3 vertices and is disjoint.

For k ≥ 4, the replications in theorem 30 constructing TAdomnum mean the
two sets remain disjoint, thus giving two sets each TAdomnum, and no extra
sets by cross-domination. The k=3 pair is the only pair in k=3. Further k is
product counts in each half, and 2× since can also �ip the pairings in the second
half relative to the �rst.

TAdisdomnumCountk = 2TAdisdomnumCount2k−1 k ≥ 4

The independent and dominating set counts grow as various powers cn where
n = 2k is the number of vertices. c=1 would be a single set (each vertex only 1
choice), and c=2 would be all sets (each vertex 2 choices present or absent), or
c=3 for set pairs of TAdisdomnumCount the (each vertex in set A,B, or none).
The counts can be compared by their base c.

2k
√

TAtotdomsetsk = 301/8 = 1.529819 . . . k≥4
2k
√

TAdomnumCountk = 21/4 = 1.189207 . . . k≥3 A010767

2k
√

TAindomnumCountk = 71/16 = 1.129324 . . . k≥4 A011240

2k
√

TAtotdomnumCountk = 21/8 = 1.090507 . . . k≥4 A010770

2k
√

TAdisdomnumCountk → 21/8

2k
√

TAperfdomnumCountk = 21/16 = 1.044273 . . . k≥4 A010778

2k
√

TAsemitotdomnumCountk = 1 k≥4

12.2 Twin Alternate Turn Tree

For any non-crossing closed curve or curve continuing in�nitely and not encir-
cling its start on a square grid, the turn at revisited points is the same for each
visit. An opposite turn would either enclose either the end or the start.

R

L

opposite turns would
enclose curve end

R

L

opposite turns would
enclose curve start

The twin alternate is a closed curve of this type. Some of its points are right
turns. Those points and the segments between them form a tree.

start

end

twin alternate k=6,

right turn points

and segments between
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This is a subdivision of twin alternate area tree k−1, ie. an extra vertex
inserted in each edge. That follows from the same sort of connection arguments
used in that tree. The connection c between the two twin alternate halves is on
the boundary so is a left turn. The connection changes it to a right turn and
the rest of the halves are copies of the previous level.

As from the turn recurrence (2), the turn at odd n is alternately L,R at
n ≡ 1, 3 mod 4 respectively. Since the curve turns either left or right at every
point, this gives the odd turns at every second point in a 2×2 grid.

R R R R R

L L L L L L

R R R R R

L L L L L L

R R R R R

L L L L L L

R R R R R

turns

at odd

locations

The R turns are at z ≡ i mod b2 in the pattern. The turns with one trailing
0-bit, so n ≡ 2, 6 mod 8, are then a copy at 45◦ and opposite R,L, and so on.

R R L R R R L R R R L R R R L

L L R L L R L L R L L

L R R R L R R R L R R R L R R

L L L L L L L L L L L L

R R L R R R L R R R L R R R L

L L R L L R L L R L L

L R R R L R R R L R R R L R R

turns at

locations

0 to 2

trailing

0-bits

The e�ect is to make twin alternate curves tiling the plane. The left turns
likewise, turned 90◦.

13 Fractional Locations

A fractional point 0≤f≤1 in the alternate paperfolding curve fractal is a limit

fpoint(f) = lim
k→∞

unexpandk
(

point
(
bf .2kc

))
fractional point

unexpandk(z) = expand−k(z) =

{
z/Endk if k even

z/Endk if k odd

n = bf.2kc is the �rst k bits below the binary point of f . Stopping there
means an f somewhere in a sub-curve k. That sub-curve has a �xed �nite extent
which decreases as 1/

√
2k so fpoint converges on some z.

The e�ect of repeated unexpands this way is that f = 0 to 1 is a triangular
region on the left of the endpoints. This is an even curve level unexpanded an
even number of times. Such an unexpand is simply scale by 1/2k/2. For an odd
level pyramid with end at the top, the unexpands are mirror image and scale
giving the same result.
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start 0

f=0
end 1

f=1

1+i

As from point in section 4, fpoint is a change of f bits 2−j to terms ±End−j .
The ± signs are per the rule at (63), �ip below each 11 bit pair.

1 1 1 1 0 1 1 0f = . · · ·

+End−1 +End−2 −End−3 +End−4 −End−6 −End−7fpoint(f) =

− − − −

When f is rational, its bits are an initial �xed part then a repeating periodic
part (of length at most denominator− 1). The End terms and sign changes are
then likewise periodic and give a location as some x+iy with rational x, y.

If the periodic part of f has an odd number of 11 bit pairs then that is
a net negative on the resulting End terms. This can be accounted for in the
calculation, or doubling the length of the periodic part ensures an even number
of sign changes for purely periodic in End terms.

When f is irrational, it might give a rational Re or Im. The simplest is
when there are 1-bits only at even positions so End terms all real and Im=0.
An example eventually all even positions is the Kempner-Mahler number, a sum
of powers of powers of 2 of a type Kempner [14] showed is transcendental.

KM =

∞∑
j=0

1

22
j =

1

2
+

1

4
+

1

16
+

1

256
+

1

65536
· · ·

= 0.81642150 . . . A007404

= 0.11010001 . . . binary A036987

After the initial 1
2 all 1-bits are at even positions. The End terms e�ectively

halve the number of 0s between so with the KM bit pattern this is j−1 in each
term, so limit

fpoint(KM ) = 3
2 −KM + 1

2 i

= 0.683578...+ 0.5i

= .1010111011111...binary

1
2 i

start end A267442

For the alternating signs sum C(2,∞) of Shallit at (16), the alternating signs
in the sum give 1-bits in runs. Working through their positions is

fpoint
(
C(2, k)

)
= 1

2+
1
2 i +

k−1∑
j=0

ij−1

22
j (166)
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=

(
1
2 +

bk/2c−1∑
j=0

(−1)j

44
j

)
+

(
1
2 −

dk/2e−1∑
j=0

(−1)j

24
j

)
i

→ 0.746093... + 0.062484...i
start end

(167)

The i power in (166) is a kind of rotating sum with terms 1, i,−1,−i instead
of alternating ±1. The real and imaginary parts are separated at (167), with
2j or 2j+1 worked into the denominator. The resulting 4j powers in each are
variants Kempner also noted have transcendental limits.

Theorem 36. Fractional points f on the x axis (right boundary) are

fXpred(f) = 1 if f =


1

or base-4 digits only 0,1

or (n+ 2
3 )/4

k where n odd integer

of k many base-4 digits 0,1

Fractional points f on the x=y diagonal are

fGpred(f) = 1 if f =


base-4 digits only 0,2

or (n+ 5
6 )/4

k where n integer

of k many base-4 digits 0,2

Fractional points f on the vertical at x=1 are

fVpred(f) = 1 if f =


base-4 digits only 2,3

or (n+ 1
3 )/4

k where n even integer

of k many base-4 digits 2,3

fGpred and fVpred both allow k=0 for no digits just f= 5
6 or f= 1

3 respectively.

Proof. f at the top corner z = 1+i is found by considering two expansions,

start 0 end 1

1+i

sub-part 2

Only sub-curve 2 touches the top corner point z = 1+i. Likewise in sub-
curves of it so that f = .222... base-4 = 2

3 is the only f there.
f at the start of the curve is only f=0 by a similar argument. Only sub-curve

0 touches the start so f = .000... base-4.
For the theorem, take the curve sides x axis, g diagonal, and v vertical. The

curve comprises self-similar halves,
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start end

g

x

v =⇒

start end

0

0 x

0 g

1

1 ṽ

1 g̃

The respective sides are then

x = 0g or 1111 . . . g = 0x or 1ṽ v = 0g̃ or 0101 . . .

Side x is g of part 0, so a 0 bit followed by g. Also the start of the unfolded
part 1, which is f=0 unfolded to f=1 and represented as binary .111....

Side g is x of part 0, and v of part 1. The unfolding means the latter is
reversed 1− v which is indicated by ṽ. The e�ect of that negation is to �ip bits
0↔1.

Side v is the top corner of part 0 which is f= 2
3 so bit 0 followed by 1010....

Also g of part 1, in reverse which is bit �ipped.
These descents, with sides forward and reversed, are then a state machine

x g ṽ1non

x̃ g̃ v0non

t1 non

t0 non

01

0

1

0

1

0 1 0

1

0

1

0

1

0

1
0

1

0
1

Figure 28:

boundary

f bits

The starting state is the desired x, g, v side. An f with bits remaining always
in the state machine is on the boundary. If it ever reaches �non� then f is non-
boundary.

The base-4 digit conditions and o�sets of the theorem can be expressed as
state machines and are the same as �gure 28.

The fXpred case of digits all 0,1 includes exact fractions n/4k when in�nite
trailing 0 digits. The state machine in �gure 28 matches such fractions ending
zero bits 1000... and also ending in�nite 1-bits 0111.... Similarly fGpred case
digits 0,2.

The fVpred case of digits all 2,3 includes exact fractions n/4k when all trail-
ing 3s. The state machine in �gure 28 matches those both as trailing 1-bits and
trailing 0-bits.

When considering whether a given f is on the boundary it might be known
or proved f is not a 3rd or 6th and so not subject to the + 2

3 etc cases. For
example any irrational f is not a 3rd. The conditions then become, reckoning
the �rst bit below the binary point as position −1 so odd,

fXpred = 0s at all odd bit positions

fGpred = 0s at all even bit positions

fVpred = 1s at all odd bit positions
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The remaining combination would be 1s at all even bit positions. This is
an fMpred on the middle anti-diagonal line x+y = 1 between the two half sub-
curves. Points there are 0 v or 1 x̃, both of which are 1s at even positions.

The fXpred case n+ 2
3 is the top point of sub-curves directed West. In the

�nite iterations these are in enclosed unit squares on the x axis. The �rst such
is n=6 to 7 which is the biggest such sub-curve in the fractionals and goes 6

16
to 7

16 with top point f = (6 + 2
3 )/16 = 5

12 at x= 1
2 .

6
16

7
16

6
64

7
64

22
64

23
64

0 1x= 1
2 , f=

5
12

start end

fXpred case

(n+ 2
3
)/4k

Theorem 37. Fractional locations z in the alternate paperfolding fractal are
visited 1, 2, 3 or 6 times each.

Curve start z=0 and the top z = 1+i have 1 visit each.
Curve end z=1 has 2 visits.
Other exact binary locations z = (x+iy)/2k for integer x, y, k have 3 visits

when on the boundary or 6 visits when inside.
Other locations straight or 45◦ diagonal between exact binary points have 1

visit when on the boundary or 2 visits when inside.
Other locations have 1 visit.

Proof. As in the proof of theorem 36, curve start and top are 1 visit and the
curve end is 2 visits (top of part 0 and start of part 1).

Successive expansions put sub-curve ends at new exact binary locations be-
tween existing ones. At an exact binary z this is as follows. The dashed sub-
curves have expanded to A,P,B and C,P,D.

A

B

C

D
P exact binary point

expandk(z) smallest k

Sub-curve A end has 2 visits, being f= 1
3 and f=1 in that sub-curve. Likewise

B, but its f=1 is the same as in A so 3 visits. If z is on the boundary (the
boundary being A across to D) then these are the only visits. If z is not on the
boundary then sub-curves C and D are 3 more visits.

A location z straight or 45◦ diagonal between exact binary points is between
sub-curves

straight or 45◦ diagonal

between exact binary points
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Since z here is not an exact binary fraction, subsequent expansions have
the location always between two such sub-curves this way. So only ever 2 bit
patterns of f adjacent to the point and so 2 visits when inside the curve or 1
visit when the boundary.

Otherwise z is inside a sub-curve and remains inside on every expansion so
is always a �nite distance away from anything except its contained sub-curve
and so just 1 visit.

Theorem 38. The number of visits for a point f in the alternate paperfolding
fractal are

O = f odd position bits eventually all 0s or all 1s

E = f even position bits eventually all 0s or all 1s

fvisits(f) =



1 if f = 0or 2
3

2 if f = 1or 1
3

and otherwise

1 if neither O,E

1 if one of O,E and f on the boundary

2 if one of O,E and f not on the boundary

3 if both O,E and f on the boundary

6 if both O,E and f not on the boundary

Proof. An f which is eventually O or E is one of fXpred , fGpred or fVpred for
those bits, so on the boundary of some sub-curve.

When both O and E, f is eventually 0 or 1 when O and E both 0s or both 1s,
or eventually 1

3 when they are opposites. These are at a corner of the sub-curve
which is an exact binary z so 3 or 6 visits.

When just one O or E, the location is on a sub-curve boundary but never
an exact binary and so its z is straight or 45◦ between exact binary and so 1 or
2 visits.

Neither O nor E means never on the boundary of a sub-curve so z always
within a sub-curve and so 1 visit.

The case of one of O,E can be f either rational or irrational. When rational
it is an f with an eventually repeating pattern of base-4 digits. A denominator
for the repeating part is some 4h−1, but not 3 since that is an exact binary
location. Such a denominator has a factor 3, but also other factors. For example
fpoint( 7

15 ) =
2
3+

1
3 i is on the x+y=1 anti-diagonal and not an exact binary.

The case of neither O,E can be f either rational or irrational. A rational
example is fpoint( 25 ) =

3
5+

1
5 i. Its expansions go in a cycle of f within sub-curves

2
5→

4
5→

2
5 . Both it and fpoint( 45 ) are non-boundary in their sub-curves.

start end

fpoint( 2
5
) = 3

5
+ 1

5
i fpoint( 4

5
) = 4

5
+ 2

5
i
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Theorem 39. The only �xed points fpoint(f)=f of the alternate paperfolding
curve are f=0 and f=1.

Proof. The �xed point requires y=0, so an fXpred boundary point. From
the fXpred cases or bit patterns, the maximum f , other than f=1, is f =
.011010... = 5

12 . So there are no �xed points in the range 5
12 < f < 1.

The �xed point requires x−f = 0 but it can be sees x > f in the range
0 < f < 1

2 by considering sub-curves in that range.

0

1 3

2

x=0 x= 1
4 x= 1

2
x=1

f= 1
8

f= 1
4

f= 1
2

f = 0 to 1
2

sub-curves

Parts 2 and 3 are f = 1
4 to

1
2 and x = 1

2 to 1. So x > f other than f= 1
2 .

Part 1 is f = 1
8 to

1
4 and x = 1

4 to
1
2 . Only f=

1
4 is common to these and that

point is x= 1
2 , so x > f .

Part 0 can be taken in further sub-curves. They scale x/2 and f/4 so that
f is yet smaller, giving x > f other than at f=0.

x−f and y can be illustrated by plotting as functions of f .

x−f
y

f=0 5
12

1
2

f=1

1

0

− 1
3

Figure 29

A �xed point would be an f axis touch by both x−f and y at the same
place. But x−f touches only at and above 1

2 , and y touches only at and below
5
12 , other than f=0 and f=1.

Theorem 40. The diagonal �xed points fpoint(f) = (1+i).f of the alternate
paperfolding curve are curve start f=0 and the middle f= 1

2 at z= 1
2+

1
2 i.

Proof. A diagonal �xed point requires both x=f and y=f . As from theorem 39,
x > f for 0 < f < 1

2 so there are no diagonal �xed points in that range.
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For 3
4 ≤ f ≤ 1 have y < 1

2 , so f > y and no diagonal �xed points in that
range.

For 1
2 < f < 3

4 , consider 4 sub-parts of it as follows,

0 1

2

3

f= 1
2

f = 1
2+

1
16

f= 3
4

x= 1
2 x= 1

2+
1
4

x=1

Parts 1,2,3 are at least + 1
4 from the start at x= 1

2 so x ≥ 3
4 . But those parts

have f at most + 1
4 from the start f= 1

2 so f < 3
4 and x > f . In part 0, a

corresponding argument applies but with x o�set halved and f o�set quartered,
so again x > f , and so on in successive sub-parts.

The conditions for a diagonal �xed point can be illustrated by plotting x−f
and y−f as functions of f .

f

f=0

x−f
y−f

1
4

5
12

1
2

3
4

1
0

2
3

A diagonal �xed point would be an f axis touch by x−f and y−f at the
same place. x−f is in black the same as �gure 29. y−f is in grey. It descends
to y−f = −1 which is y=0 at f=1.

For f > 3
4 , y−f is all negative with no axis touches so no diagonal �xed

points. There are x−f axis touches in that range, but no y−f .
Conversely, in 0 < f ≤ 3

4 have various y−f axis touches, but x−f is positive
except at f= 1

2 .
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Index

A area, 40
α in�nite word, 11
AL area left side, 40
Alt11Pairs, 16
AR area right side, 40
area, 39
area tree, 77

b base, 25
B boundary segments, 39
Baum-Sweet sequence, 49
bit twiddling, 3, 18, 80
BitAboveLowestOne, 3
boundary, 39
boundary segment numbers, 48
BQ boundary segments, 39

cat , Catalan triangle, 74
Catalan number, 67
Catalan triangle, 74
combinatorial, 47, 96
compositional inverse, 48�50
continued fraction, 7
coordinates, 25
CountLowZeros, 3

D double-visited points, 41
dA area, 41
dAlt11Pairs, 17
dBitAboveLowestOne di�erence, 83
ddiff step of x−y, 21
Dean's α, 11, 23�24
depth, 94
Diameter shortest path, 67
DiameterCount , 68
dir direction, 14
dnorm increment, 30
dominating set, 97
domination number, 97�98
domination ratio, 98
Dpred double-visited point, 46, 47
DpredFirst visit, 51

DpredLeft double-visited left turn,
47

DpredRight double-visited right turn,
47

DpredSecond visit, 51
dsum step of x+y, 21
dx , dy steps, 20

End location, 25
Euler planar graph formula, 42

fGpred on diagonal, 106
�xed point, 110
fpoint fractional, 104
fractal, 104
fractional locations, 104
fvisits, 109
fVpred on vertical, 106
fXpred on x axis, 106

generalized, 13, 15, 21, 23, 25
gLpred inverse, 48�49
Gnum on diagonal, 42
Golay-Rudin-Shapiro sequence, 20
Gpred on diagonal, 42
graph, 66
Gray code, 16
GRS , Golay-Rudin-Shapiro

sequence, 20
GRS4 , 22
GRSalt , alternating, 21
GRScumul cumulative, 53
GRScumulAlt alternating, 53
GRScumulFirstN , 54
GRScumulLastN , 54
GRSrunSpred , 23
GRSrunSpredAlt , 24
gXpred inverse, 49�50

Hamiltonian path, 66

independence number, 97
independent domination, 98�99
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independent domination number, 99
independent edge set, see matching
independent set, 97

Kempner-Mahler number, 105
Koch curve, 16

L left boundary, 39
Leading distance, 53
Lnum left boundary, 48
lower independence number, 99
Lpred left boundary, 48
LQ left boundary squares, 39
LRQ boundary squares, 85

mk of Brillhart and Morton, 59
Manhattan distance, 53
MaskAboveLowestOne, 3
matching, 67, 97
maximal independent set, see

independent domination
MfirstN on anti-diagonal, 54
MfirstZ on anti-diagonal, 56
MidDir direction, 66
midpoint curve, 65
midpoint of segment, 65
MidTurn midpoint turns, 66
MlastN on anti-diagonal, 55
MlastZ on anti-diagonal, 58
morphism, 12, 19

NonGnum not diagonal, 45
NonXnum not x axis, 43

Opred double-visit o�set, 36
other n visit, 34
OXpred double-visit �ip, 36

P distinct points, 41
palindrome, 13, 25
parent, 90
perfect domination number, 101
perfect matching, 67, 97
period doubling, 16
PmOneBits, 16
point location, 29
points, 41

R right boundary, 39
rivers, 77
RLQ boundary squares, 86

Rnum right boundary, 50
Rpred right boundary, 50
RQ right boundary, 39

S single-visited points, 41
S(k, d) segments in direction, 37
semi-total domination number, 101
Shapiro polynomials, 20
Sleft points, 48
SN segments in direction, 38
Snum single-visited, 46
Spred single-visited, 46, 47
square-free word, 11
Sright points, 48
Stern-Brocot tree, 8
sturn, 5
subdivision, 104
swap23 , 22

T triangular numbers, 68
TAcornerEcc, 85
TADegCount area tree degrees, 81
TADegree vertex degree, 82
TAdepth of vertex, 94
TAdiameter , 84
TAdisdomnumCount , 102
TAdomnum domination number, 98
TAdomnumCount , 98
TAdomRatio domination ratio, 98
TAEdgeCount area tree edges, 83
TAheight , 86
TAindnum independence number,

97
TAindomnum independent

domination number, 99
TAindomnumCount , 99
TAindRatio independence number,

97
TAparent vertex, 90
TAparentDir direction to parent, 90
TAperfdomnum perfect, 102
TAperfdomnumCount , 102
TAsemitotdomnum semi-total, 101
TAsemitotdomnumCount , 101
TAspine vertex, 94
TAspineNW , 93
TAspineV , 93
TAstepDir , 90
TAtospine vertex, 94
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TAtospineDir direction down spine,
94

TAtotdomnum domination number,
100

TAtotdomsets total dominating sets,
100

TATW terminal Wiener index, 89
TAVertexToLower , 80
TAVertexToLowerPred , 80
TAVertexToOther , 80
TAVertexToUpper , 80
TAVertexToUpperPred , 80
TAVertexToZ , 78
TAW Wiener index, 87
TAZagrebM2 index, 84
terminal Wiener index, 89
Thue-Morse sequence, 48
total dominating set, 99�100
total domination number, 100
total domination polynomial, 100
tree, 77, 103
TSquare, 72
turn sequence, 3
turn tree, 103
Turn3left consecutive, 41
Turn3right consecutive, 41
TurnLeft , 9
TurnLpred , 4

TurnRight , 9
TurnRpred , 4
TurnRun, 5
TurnRunSpred start of run, 6
TurnRunStart , 7
TurnsL count, 18
TurnsR count, 18
TW Wiener index, 75
twin alternate, 71

unexpand , 104
unpoint , 34

VfirstN on column, 59
VlastN on column, 59

W Wiener index, 68
width, 95
WidthS area tree, 95
Wiener index, 68, 75, 86

Xnum on x axis, 42
XorY coordinate, 31
Xpred on x axis, 42

YorX coordinate, 31

Zagreb index, 84

OEIS A-Numbers

A000007 1 then 0s, 81
A000108 Catalan numbers, 67
A000217 triangular numbers, 68
A000292 1

6n(n+1)(n+2), 76
A000695 base 4 digits 0, 1, 42, 43
A000918 2n−2, 81
A001196 base 4 digits 0, 3, 93
A002620 b 14n2c, 36
A003188 Gray code, 16
A003324 Dean's α, 11
A005418 2n−2 + 2b(n−2)/2c, 37
A006331 1

3n(n+ 1)(2n+ 1), 76
A007179 1

2

(
2n − [2n/2, 0]

)
, 38

A007404 Kempner-Mahler number, 105
A007582 2n−1.(2n+1), 71
A007814 CountLowZeros, 3
A009766 Catalan triangle, 74

A010060 Thue-Morse, 49
A010767 4√2, 103
A010770 8√2, 103
A010778 16√2, 103
A011240 16√7, 103
A013698 binomial

(3n+2
n−1

)
, 75

A014081 count 11 bit pairs, 20
A014577 regular paperfolding sequence, 80
A016116 2bn/2c, 25
A020985 Golay-Rudin-Shapiro, 20
A020986 Brillhart and Morton s, 26, 53
A020989 1

3 (5.4n − 2), 59
A020990 Brillhart and Morton t, 26, 53
A020991 GRScumulLastN , 54
A022155 where GRS = −1, 19, 22
A027383 3.2k−2 and 4.2k−2, 39, 73
A027480 1

2n(n+ 1)(n+ 2), 69
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A030300 runs 2k many 0, 1, 8
A036987 Kempner-Mahler binary, 105
A037481 base 4 digits 1212..., 17
A038189 BitAboveLowestOne, 3
A040006 11/30, 70
A043291 base 4 digits 3030..., 17
A047849 1

3 (4n+2), 55
A051437 2n + (2(n−1)/2 if n odd), 38
A052548 2n+2, 81
A052551 2.2bn/2c − 1, 41
A052955 2.2k−1 and 3.2k−1, 39, 41
A053599 7.2k−4k−7 and 10.2k−4k−9, 84
A053644 most signi�cant 1-bit, 58
A053645 sans most signi�cant 1-bit, 58
A053738 odd length binary, 93
A053754 even length binary, 93
A058764 2, 4 then 3

2 2n, 102
A058891 22

n−1, 102
A059905 even position bits, 72
A059906 odd position bits, 72
A062880 base 4 digits 0, 2, 43
A065359 PmOneBits, 16
A067056 1 then

(n− 1)n(n+ 1)(n+ 2)(2n+1)/60, 68
A068156 1 then 3.(2n−1), 84
A068915 YorX , 31
A077866 3(2k−1)− 2k and 4(2k−1)− 2k,

37, 86
A077957 2n and 0s, 25
A080079 runs 2k down to 1, 59
A086341 2k±1, 67

A086747 Baum-Sweet, 49
A097038 1

3 (2dn/2e−1)(2bn/2+1c−(−1)n),
53

A098011 d3.2n−4e, 98
A100260 GRS 4, 22
A103334 d 13 2n−1 (4n−1+2)e, 71
A106665 NextTurnLpred, 4
A122746 2.2n − 2dn/2e, 38, 41
A126684 base 4 digits 0, 1 or 0, 2, 46
A137932 n2 − (n mod 2), 69
A151666 pred base 4 digits 0, 1, 42
A153435 digits 1100 1100..., 17
A165425 72

n−3 , 99
A171977 MaskAboveLowestOne, 3
A176237 base 4 with digit 3, or both 1, 2,

46
A181666 binary 1010... 00...00, 36
A183977 2n + [3,4].2bn/2c − 2, 73
A203463 where GRS = +1, 19, 22
A203531 GRS run lengths, 24
A209615 turn, 3, 4
A212591 GRScumulFirstN , 54
A267442 3

2 −Kempner-Mahler binary, 105
A270803 predicate base 4 digits 0,2, and +0

or −1, 48
A270804 base 4 digits 0,2, and +0 or −1,

48
A274230 (2dn/2e−1)(2bn/2c−1), 40, 41
A276391 1

3 (2.4CountLowZeros(n) + 1), 63
A290075 1, 1 then 2k + [2,3].2bk/2c, 41
A292077 TurnRpred, 4
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