—
—
r

e
M
n
0

taste

An open-source tool-chain for embedded software development

Maxime Perrof
ESA/ESTEC ™
TEC-SWE

wwwesa.int European Space Agency

Introduction - what is TASTE ?

A tool-chain targeting heterogeneous, embedded
systems, using a model-centric development approach

A laboratory platform for experimenting new software-
related technologies, based on free, open-source
solutions

A process supporting the creation of systems using
formal models and automatic code generation

T

Main targets and philosophy

Use DSL — select the most appropriate language to solve a
problem

But do not reinvent the wheel : use existing languages and tools

Mature languages with long-term support

Interoperable tools, limiting vendor lock-in

Not all languages however

We target safe systems

T

Supported technologies

@ @ Model analysis JRCHEDDAR
Code generation
& deployment
Debugging
& testing
Execution PolyORB
platform HI

Quick overview

Mode Management

/_

10 Hz

.
L

sensor data
—_—p

'y
actuators
'1—"—

[Conta J N\ (7 smte mame

SIMULINK
or
SCADE

J

FDIR-command ::= ENUMERATED {
safe-mode,
switch-to-redundant,

'}

AADL and ASN.1

are combined to provide a formal
precise, and complete description

of the system architecture and data

1 AOCS-tm ::= SEQUENCE {
attitude Attitude-ty,
orbit Orbit-ty,

N

Status at a glance

Mature tools with commercial support
AADL to Ada and C compilers
ASN.1 compiler (Ada and C) and tools
SDL editor with Ada code generator
Maturing tools (prototype-level)
GUI & Testing Framework
Model verification tools (Cheddar, Mast, Model Checker)

Hardware-Software co-engineering package
Support for SMP2

B

Distribution

Bundled in a virtual machine

—> full Debian Linux installation, with all dependencies
installed

— Update mechanism triggered from the desktop

Manual installation is possible (instructions on the Wiki)
— Ask for help.

Documentation and reference card on the desktop
—> Print the reference card !

Linux-based, but a Windows GUI prototype exists

T

The following slides show how TASTE can be used for
Software quick prototyping

Helping review process and improve software quality

In addition most of TASTE features are presented

Target : reactive and discrete systems

Communication :

Message exchanges between the system and its environment

Asynchronous and synchronous interactions

Algorithms, GUIs
Databases

Wide range of applications
Safety and mission-critical communicating systems
Real-time applications (embedded systems)

Wide range of architectures
X86 (Linux, Win32, Xenomai, FreeBSD), SPARC (Leon), ARM
32 and 64 bits

TASTE as a support for reviews

Model the requirements and/or the design

To help understanding a specification or a design

What is the system intended to do?
Who are the actors (scope)?

What is the expected behaviour?
What is the data ?

To get an executable representation of the system
Early and independent testing — valuable inputs for a review or project support
To improve the quality of the specification

Formal models enable various verifications,

Detect ambiguities — less risk of having incomplete requirements

Tools help finding many classes of
errors in specifications

Ambiguities with data — often no shared data dictionnary.
Inconsistencies with namings, semantics, scope...

Missing interface information (behaviour, off-nominal
handling, parameter constraints...)

Sequencing (dynamic) issues — what is done in what order, etc.

Completeness of paths

B

TASTE process

1) Describe the system logical architecture and interfaces with ASN.1 and AADL
2) Generate code skeletons and write the applicative code or models

3) Capture the system hardware and deployment

4) Verify models

5) Build the system and download it on target

6) Monitor and interact with the system at run-time

Formal languages

TASTE relies on formal languages :

ASN.1 and AADL to capture the software architecture and data

SDL, Simulink, SCADE, C, Ada, VHDL, ... to capture the software
behaviour

MSC and Python to test
Combine graphical AND textual notations

If anything goes wrong, human can fix textual syntax
Diagrams for easier understanding

But some information is textual by nature

Avoid languages with weak semantics or syntax

TS

AADL

Architecture Analysis and Design Language, a
standard from SAE

Used to model the logical and the physical
architecture of the system

Textual and graphical representations

Used in TASTE to capture the system structure,
interfaces, hardware and deployment.

ST

TASTE interface view

Two entities : containers and functions, to
capture the system logical architecture

P

(EeGntainer) Satellite System

Onboard SW

i

™

Ground SW

Function

A function is a terminal level entity. It has a behaviour that can
be triggered through a set of provided interfaces.

All interfaces of a function have visibility and control access on
the function's internal data (static data).

With one exception, the interfaces of a function are mutually
exclusive, and run to completion (it is not possible to execute
concurrently two interfaces of a function, as they share state

data).

» Edit Data

Properties of a function

Eunction Attributes EunctionnaIStatEE.] ﬂeport]

Attributes
Label
Container
Language
Source text

Instance name

Values
Onboard_SW
Satellite System
C

Ok

Optional
« context
parameters »

Ada

C

GUI

sDL

Simulink
Scadeb

RTDS

VHDL

SystemC
Blackbox_device

» Edit Data

The

implementation

Eunction Attributez-] EunctionnalStates ﬂeport]

language

Mame
My Tuneable Parameter

A Compilation_Flag

Type
MyReal
TASTE_Directive

Default Value
Ll42.0
«| compiler-option: "-DRT"

b

MyChoice

MyEnum

Mylinteger

My Oct5tr

MyReal

MySeq

MySeqOf
Simulink_Tunable_Parameter
TASTE_Directive

Context Parameters

The « Functional State » tab offers a space for flexibility :

Context parameters allow defining constants at model level
and make them accessible from user code

Support for C, Ada and Simulink (instructs code generator to
generate « tuneable parameters », which are global variables)

Value can be generated from an external source
TASTE directives are used to fine-tune the build process

with additional properties (e.g. compilation or link flags that
are specific to a piece of code)

Used to integrate Simulink code when it requires special defines (-
DRT, -DUSE_RTMODEL)

When a property proves usefulness, it gains a dedicated entry in the

Provided and required interfaces

A provided interface (Pl) is a service offered by a function. It can

be

Periodic, in which case it does not take any parameter, and is used to
handle cyclic tasks

Sporadic (or asynchronous) and optionally carry a parameter. The
actual execution time is decided by the real-time scheduler (call is

deffered)

Synchronous, with or without protection and optionally carry
parameters (in and out)

The protection is a semaphore (in C) or a protected object (in Ada) preventing
concurrent execution of several interfaces of the same function.

Use unprotected interface to implement e.g. « getter » functions
Caller blocks on execution (call is immediate) — Just like a direct function call.

At runtime, synchronous functions execute in the caller's thread space.

Function parameters

» Edit Data

Pl Attributes | Parameters ﬂepcrrt-

Name Type Encoding Protocol Direction
My Param MyChoice [

Apply Cancel

Each parameter has a type (from the ASN.1 model),
a direction (in or out), and an encoding protocol :

Native : means memory dump — no special treatment
UPER : compact binary encoding
ACN : user-defined encoding

Skeleton example : Simulink

0 fiomel -] BHBDE s REE®

$)

m Bus bypes in base waorkspace Bus elerments

putbeolean Mame |Dimensi0n| DatafBus T... | Sample Time | Cumplexityl Sampling M. .. |

ﬂ — choiceld: choiceldsx uinta ﬂ -1 real j Sample. ..
autenum — baalchaice boolchaice boolean ﬂ -1 real j Sample. ..
— enumchoice enumchoice ink3z ﬂ -1 real j Sample. ..

= intchoice intchoice uink3 =] -1 real | Sample...

+-- & T_MESTED
= T_OCTSTR
B = T_SEQUF Bus name Header file that contains typedef for bus

= T_—S";QUENCE T_CHOICE

outfloat

—¥ Bus description
= T_SET

= T_SETOF

= Loaded bus objects existing in hase workspace Help | Clase ‘

outchoice

I outset
| outoctstr

Build script

A build script for the system is generated
automatically : build-script.sh

It may need to be tuned to select the runtime (C
or Ada) or for advanced options

Before calling the script, a deployment diagram

has to be filled

TS

Deployment view

Map functions on hardware
Centralized and distributed systems

Can add buses, drivers.. Extensible (every
component is described in an AADL file

Simple_C_Function

> Edit Data
Proc r Attribute
Attribute

Name
Classifier

Location

carina_proc
ari
ari

PR

SDL, MSC and ASN.1

SDL : Specification and Description Language
(ITU-T standard)

SDL is a state machine modelling language

ASN.1 : Abstract Syntax Notation One (ISO, ITU-T)

Describe data types and constraints

and data physical representation

MSC : Message Sequence Charts (ITU-T) a.k.a.
Sequence diagrams

A behavioural specification language and tracing tool

T

ASN.T

International, widely used standard (ISO and ITU-T)

Simple text notation for precise and complete data
type description

Real added value : the physical encoding rules
(compact binary encoding, endianness-neutral, but
also XML encoding, legacy encoding specifications).

Separate the encoding rules from the types
specification

T

ASN.1 — basic types

INTEGER
- My-int ::= INTEGER (0..7)
value My-int ::=5
REAL
- My-real ::= REAL (10.0 .. 42.0)

BOOLEAN
ENUMERATED

- My-enum ::= ENUMERATED { hello, world }
OCTET STRING

My-string ::= OCTET STRING (SIZE (0..255))
value My-string::= 'DEADBEEF'H
BIT STRING

- Mye-bitstring ::= BIT STRING (SIZE (10..12))
value My-bitstring ::= '00111000110'B

ASN.1 — complex types

SEQUENCE
- My-seq ::= SEQUENCE {
X My-int,
y My-enum OPTIONAL
}
value My-seq::= { x5}
CHOICE

- My-choice ::= CHOICE {
choiceA My-real,
choiceB My-bitstring

}

value My-choice ::= choiceA : 42.0

SEQUENCE OF

- My-seq ::= SEQUENCE (SIZE (0..5)) OF BOOLEAN
value My-seq:= {1, 2,3
SET / SET OF

ASN.1 benefits — CFDP example

_ Length (bits)

Direction 0 —tfo Used to perform FDU forwarding.
Transmission Mode
CRC Flag

= for future use
field length
d for future use

fentity IDs

Source entity (D variable

Transaction sequence number | varable
am; g 2
this entity.
Destination entity ID variahla i

‘||F-lddald an.i file data.

These fields are not
application
semantics! They
concern the binary
encoding rules of the
PDUs and should
not be mixed with
the protocol useful
information.

R e

CFDP in ASN.T

Keep only application-semantic data

Tools will generate encoders and decoders to add
the other fields

Packet-ty ::= SEQUENCE {
version Version-ty,
direction Direction-ty,
transmission-mode Transmission-mode-ty,
crc-flag CRC-flag-ty,
source-entity-id Entity-id-ty,
transaction-sequence-number Transaction-sequence-number-ty,
destination-entity-id Entity-id-ty,
data Datafield-ty
}

Version-ty ::= INTEGER (0..7)

Direction-ty ::= ENUMERATED { toward-file-receiver, toward-file-sender
}

ASN.1 : The exoskeleton case study

hardware

: Communication & | [REGIET
interface (1)

State Management | BMALCEA®)

(SDL/RTDS)

software Robotic arm

Exoskeleton 1
interface (Actuators)

(Sensors)

] N\ '8
L G\
! r A N
:"‘ 2 4 A

Control law

> g S
_] $

- (Simulink)

I

L]

L —

Solution : ASN.1 and ACN

One logical model for the end user (in ASN.1),
And one separate model describing the encoding
— No need to worry about endianness, fields ordering, etc.

= Edit and load Data View - o x

dataview.asn ¢ dataview-unig.acn

5 littlel]

OF REAL (-1000 .., 1000)

C» Tab Width: 8 % Lnl, Call

Our ASN.1 compiler

Developped by Semantix (now Neuropublic) for ESA
Free software (LGPL)

Unique features — no competing tool :

Generates optimized C code (fast, low memory footprint)
Or SPARK/Ada code

No malloc, no system call

Automatically generates test cases for a given grammar
Generates ICDs documents in HTML format

Supports ACN for customized encodings (e.g. PUS format)

Can be used independently from TASTE

TASTE includes backends
Simulink

to ASN.1 types to SDL,

ACN - the basics

ACN allows to specity legacy encodings

It can be used to describe the binary format of
PUS packets, leaving the interesting part only
(payload data) in the ASN.1 side.

MySeq ::= SEQUENCE {
alpha INTEGER,
gamma REAL OPTIONAL

}

MySeq[] {
alpha [1],
beta BOOLEAN [],
gamma [present-when beta, encoding IEEE754-1985-64]

}

ACN — more examples

COLOR-DATA ::= CHOICE {
green INTEGER (1..10),
red INTEGER (1..1000),
blue IA5String (SIZE(1..20))

}

MySeq ::= SEQUENCE {
colorData COLOR-DATA

b MySeq [1 {
activeColor1 COLOR-TYPE T[],
activeColor2 COLOR-TYPE T[],
colorData <activeColor1, activeColor2> []

}

COLOR-DATA<COLOR-TYPE:type1, COLOR-TYPE:type2> [] {
green [present-when typel==1 type2==10],
red [present-when typel1==20 type2==20],
blue [present-when typel1==50 type2==20]

COLOR-TYPE [encoding pos-int, size 8]

ACN - documentation

User manual in the TASTE VM :

/home/assert/tool-src/doc/acn

Specification and Description Language (standard from ITU-T)
A formal language for describing state-machines, graphically or textually.

Easy to use, yet very powerful (manipulation of data, precise and complete
semantics)

Various mature commercial tools (e.g. RTDS)

TASTE comes with an integrated SDL editor including an Ada code
generator and natively supporting ASN.1: OpenGEODE

Prototype level, under development

Free software, open source

Restricted to TASTE scope (embedded, real-time systems)
TASTE also supports commercial tools (Object GEODE, RTDS)

Major SDL elements for behavioural
design

TASK | Action

I[Running jl A state

CALL Procedure

call

Input (triggers a
transition) Procedure

definition

Input

t > Output (sends a Variables

Outpu message)

declaration

<'> Decision Label/Join

Typical transition diagram

(Stopped) State

—

' Possible inputs
‘ run(a) <' i My comment is rich (and CommentS)

housekeeping (1) >

Transition body

writeln
(*ais too big! - decrementing')

‘ a:=a-1 ‘

."'f ‘-H\‘
(Here :I
S
e

(Running) NEXt State

Data manipulation (overview)

b

hello, world}

a:=4
bi=1{
c:={ah5 btaste},
i =h llo, |
g:=b:{a 33, b you},
ei=g. This is a comment
e = a:TRUE, [Amultiline one, | mean rugiE] BHISE
b(O) = hello, I
--h := {mantissa 1, base 2, exponent 5}, |
h:= 425,
i=d{}
a:=if elathen 8 else if b(0) = hello then a else 9 fi fi, ‘ housekeeping(42) > ‘ a:=(a+1) mod 10 ‘
ji={a{x5y6} 1}
k= { {h4} {x5} }.
li=a:{x5} Al—
writeln
(ELEREEE) ‘ {'Calling GMNC") ‘
| | computeGNC(a, a)
(q \|
AN A
. . . housekeeping(a)
Notation Is Native
compliant with operators

ASN.1

Start : initialization transition

« A state machine has exactly
one start transition
Start
* The start transition is executed
Start .
e at process creation (do not call
transition o
required interfaces there)
First state »
* The start transition
- Sets the initial state
- May execute initial actions

(initialization of variables)

State / Nextstate

 Each state has a name
A comment can
- be attached to a
STATE

* |n a given state, the process is
expecting to receive messages

Shortcuts
idle, on, Multiple . e Any state
Shortcut
@ L Arrival state
« Unique
| * |s the initial state of other
a transitions

@ Most recent
state

Composite states

Entry procedure: called
| enkry automatically upon entrance
inside the nested state

[reset_all)

| J
|
‘ awitch_en < maintenance ! Switch_off < /::\ — T
‘ for each in register ‘

Running
e —_— 4—\ _'_) callrestart{each);
(oM) "'/A endfor

SERWVICE CFF I l
‘ Failure ‘ Record< L

Funning)
T I (_
mai[jtenthe(Recording)

\1 &'

oM wia reset_all ,-J

Exit procedure: called
| exit automatically when leaving
() f i \ the nested stakte
OFF
l o~ i “,

Rebook

(
\

Hierarchical state machines
Entry and exit procedures
Multiple entry and exit points

Input

» Fires a transition : the transition is
executed when the process
consumes the signal
‘ Anger < ‘ tooLate < * In a given state, the process can
expect several signals

* May have parameters (use
variables to store their values)

Shortcuts

‘) < AIIsignaIsnot‘ a.b< 2orb
explicitely

mentioned

Output

* Transmission of a signal
in TASTE terms : invocation

of a sporadic required interface

 May have a parameter

Task, Procedure call

« Elementary action

‘ foo 1= 42 ‘ forma| or
of process fransition

Informal task

‘ Req #123' ‘ informal Task setting a variable to a
| given value
‘ foo =42, ‘
bar:=5+ 5

Call an external procedure
In TASTE terms, call a
synchronous required interface
(protected or unprotected)

compute
{inP, outP)

Can have input and output
parameters

writeln
('"Hello!")

Writeln : built-in print function

Decision

« Control structure
To represent conditional action
sequences

A decision can have more than
two answers

- Multiple answers must be
mutually exclusive

-The last answer can be ELSE

« Useful to build loops

Labels and branches

 Allow rerouting
» Loop description
* « Don't repeat yourself » (DRY)

But do not use to describe
complex algorithms..

injout tutu r--1-_-,-i nteger;

Procedures

Start

Transition

Return

Sequential sub-functions

Can have parameters (in and in/out)
Have visibility on the parent variables
Same constructs as a process

Local variables

But no internal states

SDL and ASN.1

TASTE-Dataview DEFINITIONS ::

BEGIN .
’ * Declare variables of ASN.1 types
INTEGER (0..255) « Use strings and arrays
ii1= OCTET STRING (SIZE (0..20))
--A Demo to fest octel strings &
-- using various symbals,
DCL first_msa, msg My Ockstr;
DCLseq SeqOf
"DataView.asn" 10L, 167C 1,1
(Wait >
first_msg = 'Say hello first! + Skring assignmenkt ge(msg)
go(msg)
seq = {1,2,3} Switch-case
on skrings
Boolean test
on sktring value i
Concatenate
seqi=seq//{4,5) |[— (N (3
two SEQUENCE CF
Wo Q | | |\ end) l\ ELSE /I
(TRUE > (FALSE)
Wait rezult o " : Concatenate
| | ('Goodbye!") msg = msg //* skrings
]] i Send raw ,
rezult('Welcome]|> Ao rezult(first_msa) >
| \Wait } rezulk(msa)

(Running) (Wait)
- - Running

Quality criteria for state machines

State oriented

Use variables for storing data, not object states
Complexity

Number of states

Number of transitions per state

Avoid decisions in waterfall

Minimum of data

Graphical justification comments

Use hyperlinks for better traceability

T

Summary

SDL includes a complete data model

Declare and use variables within transition symbols

Design is complete

Designers without expertise in programming languages can build
complete executable models

TASTE allows communication with external code

Best approach : model behaviour with SDL, algorithms with
Simulink, and drivers with Ada or C

B

Graphical user interfaces

Interactive execution

Edit the interface view :

: 5 $ taste-edit-interface-view
Use for unit testing

(Eontainer) TEST_Gontrol

\ Create a function and set
‘ it the language to GUI

doControl
GUI interfaces must always hold
one parameter

No manual code is required

Control Scheduler

setControl

|-
r

Log_control

X Edit Data -OXx
Function Attributes | EunctionnalStates | Beport |
Attributes values Dashboard
Label Dashboard

Container

Language

Source text

Instance name Functionl

Result

Creates an additional binary

¥ dashboard

MSC

taste -

Available te

Fun

Load

Edit

Log_control

setControl

The GUI provided
interfaces, data is
updated each time
the interface is called

The GUI required
Interfaces, you can fill
data and send the

messages

Useful features

Plot numerical data (in real-time)

Record MSC (sequence diagrams)

Log_control

Plot 4

1500 f - i
Log control.torque cmd_x roll b

Log_control.torque_cmd_z_vyaw_b
.

—-1000

—=1500
100 200 300 400 500

The built-in MSC editor

Edit MSC, modify the recorded scenario

Re-run the recorded scenario

—> Regression testing

» Describe the scenario you want
to see (verify)

« Execute it against the running
binary

 If message ordering or parameters
are different than the expected
scenario, an error will be raised

Ultimate testing power : Python

MSC scenarii are translated to Python

Edit one of these Python scripts to get a template,
and write full-featured test suites

Example of application : unit testing of a control
law developed with Simulink

T

Python API (1)

Write a scenario using Python decorators

Parallel scenarii can run concurrently

@Scenario
def MyScenario(self):
"' Run 1n pa - send periodic messages """
for 1 1 o) :

'{ FALSE, TRLE }')

Python API (2)

Send a message

Wait for a specific message

'Hello', '{ name *, age 35 }')
"Hello', '#*', 1gnoreOther=True)

ge with the parameter "age" having value 35. Mame 1s not checke
= Walt until 1t received "Hello", whatever the parameters

(msgId, val) = geth sgltimeout=10]
1t msgld == 'Hello’
print 'My name 1s', val.name.Get(] WS : > to fields as if there were parameters

Case study : GNC Unit test

We want to verify the Control part of a GNC

Input : navigation and guidance, comes from a
Simulink model (csv file with 3200 samples)

Output : torques — we want to check the curves

Interactive GUI is not adapted — needs automated
processing. Plotting can be postponed

T

TASTE model (interface view)

(Eontainer] TEST Control
f

‘ it ‘ < Simulink

| doCaontrol)

| Control_Scheduler

setControl

Control Scheduler SDL block

DCL ctrl_in Control_input;

DCL ctrl_out Con_out;

cute one
ontrol step DCL ctrl o

doControl
(ctrl_intnaw, ctrl_in!gui,

NCIATPE Ctrifbinary/binaries/dashboard-GUl) - GVIM1

File Edit Tools 5y Buffers Window Help

EE A S

@Scenario
def Exercise_dashboard(self):
11 dashboard processing' '’
roll, pitch, yaw = [1, [I, []
ﬁlth open('ctrl_input. csv', 'rt') as inp:
with open('ctrl input.csv', 'rt') as inp:
inp_lines = csv.reader(inp, delimiter=',"')
input_data = ("{igur {{ bank-angle-cmd {1[221} 1},
; {{ scale-height {1[21]},3
fp-speed {1[81},"
omega-y-b-pci-b {1[15]}
mach- number {l[lq]}
density {1[20]},
lift-accel {l[ln]}

fp-inclination-gc a1\ * Open CSV file and map columns
to the input vector

Test script

bank-angle {L[13]},%
omega-x-b- pc1 b {1[14]},"
aos {L[12]},
fp—a:imuth—gc {1[10]},Y
drag-accel {1[1?]},1
lonq1tude {10711,
velocity-pci-z {1[5]}
omega-z-b-pei- b {l[lb]}
declination {18},
veloclty-pcl-y
veloclty-pcl-
position-pcl-
position-pcl-
position-pcl-
for 1 in input_data:
print 'Sending', 1
self.sendMsg(' setcControl', i, lineNo=0)
(msgId, wval] = self.getMextMsg(timeout = 1)
if msgId and msgld == 'Log control': H '
roll.appendival. torque_cmd_:-:_r‘oll_b.Get(]l}l ° Send eaCh InpUt1 Wa-lt for
pltch.append(val.torque_cmd_y pitch _b.Get(}) =
yaw.append(val.torque_cmd_z_ yaw b.Get(])) the OUtpUt, and Store |t
else:
print 'Unexpected message, guitting...'
sys.exit(-1)

=
—~—
—

" m owm o owm

[
[
[
[
[

ey iy e
e

Lo T el I PN
[Yy
e e e

oo P

i} 11 .format(l=L) for 1 in inp_Llines)

display plots
f, axarr = plt.subplots(3, sharex=True)
axarr[o] .pletirell)
axarr[o].set_ylabel({'roll')
axarr[1].plet(pitch) . .
L) oo ylaRet Corteh] Plot the output using Matplotlib
axarr[z].set_ylabel('yaw']
axarr[o] .set_title('cControl output')
plt.show(])

return ©

def runscenario(udpController=MNone, callback=None]:

Result

Control output

500 1000 1500 2000 2500 3000 3500

More TASTE features

Support for FPGA development

Import/Export of components

PeekPoke to tweak internal data at runtime
Blackbox devices to write drivers

MAST, Cheddar and Marzhin for scheduling analysis
Coverage, Profiling

Windows GUI

SMP2 import/export mechanism to work with satellite simulators
(Simsat, Basiles, Eurosim)

TS

FPGA support

Function Attributes | FunctionnalStates | Report
Atkributes Yalues
Label
Container

Language

vhill_aes

PI Attributes Paramebers

Mame YpE Encoding Protocal Direction

@

Specify the function parameters
using ASN.1 data types

VHDL Generated interface

library ieee
use ieee std logic 1164 all

use work config all

entity vhdl aes is
port
arg_choiceIdx : in std logic vector(7 downto @
arg_t vhdl aes arg set key t arg key length : in std logic vector 7 downto ©
arg t vhdl aes arg set key t arg key content: in octStr 32
arg_t vhdl aes_arg encrypt_t_arg encrypt _direction : in std logic vector(7 downto ©
arg t vhdl aes arg encrypt t arg encrypt in: in octStr 16
result choiceldx : out std logic vector(7 downto ©
result t vhdl aes result status : out std logic
result t vhdl aes result out: out octStr 16

start vhdl aes : in std logic
finish vhdl aes : out std logic
rst_vhdl_aes : in std logic

clk_vhdl_aes : in std logic

end vhdl aes

Code skeleton to be filled by the user

architecture archivhdl_aes of vhdl_aes is

begin
process clk vhdl aes rst vhdl aes
variable run : std logic
begin
if rst vhdl aes='6' then -- Asynchronous reset

finish _vhdl aes == '8’
-- write your resets here
run := '1°

elsif clk_vhdl_aes'euentiﬁnd clk vhdl aes="1" then

if start vhdl aes = '0' then
finish vhdl aes <= '@’
run := "1’

elsif run = '1' then

-- write your logic to compute outputs from inputs here
-- and when your results are ready, set...

== run := '8"';

-- finish vhdl aes <= '1';

end if

end if
end process
end archivhdl aes

Glue code generated by TASTE

Glue in VHDL (IP cores to read/write data on the
PCI bus)

Glue code on the Leon side

if (var T VHDL Arg.kind == 1t vhdl_aes arg set key PRESENT) {

qned tmp = 1; tﬁ
AWriteRegister (BASE_ADDR + Ox4, tmp): ¥

unsigned tmp = var T VHDOL Arg.u.t vhdl_aes arg set key.t arg key length;
ESAWriteRegister (BASE_ADDR + 0x8, tmp):

.1_vhdl_a

.1_vhdl

.t _vhdl

.t _vhdl_aes :
. tmpd:

Import-Export components

Right click in the Interface view to import or
export components

Example : the PeekPoke component

Used to monitor runtime data (e.g. Simulink
tuneable parameters) without user code
modification.

Allow to modify data in memory at runtime

Useful to tune algorithms

T

ASN.1 to SQL / Working with
databases

ASN.1
data model

Matlab
C, Ada, Spark ’
P Scade,

VHDL

TASTE relies on ASN.1 to ensure consistency of data at each level of the process :
Engineering, processing, testing, documentation, communication, data storage and retrieval.

ASN.1 to SQL magic

Use the same ASN.1 model to create SQL schemas — keep
consistency (one SQL table per ASN.1 data type is created
by the toolchain, automatically)

Use case : telecommand/telemetry storage

Describe TM/TC data format in ASN.1 and ACN
Use C/Ada binary encoder/decoders in flight code
Use ICD generator to document format at binary level

Pick TC/Store TM in the SQL database for post-processing —
field format is correct by construction

Very flexible : using SQLAlIchemy to be compatible with
Oracle, SQLite, PostgreSQL...

Python interface

A simple API

INTEGER (0..20)

Can work with any DB. Here is an example with PostgreSQL
engine = create_engine(
'postgresql+psycopg2://taste:tastedb@localhost/test', echo=False)

Create data using the ASN.1 Python API
a = MyInt()
a.Set(5)

Add the value to the SQL table called MyInt
aal = MyInt_SQL(a)
aid1l = aal.save(session)

A simple APl — Retrieve data

Data is retrieved using SQL queries, or SQLAlchemy API

Retrieve ALL records in the MyInt table
all_values = self.session.query(MyInt_SQL)

for record in all values:

The magic :@ data is transparently converted back to ASN.1
print record.asn1.Get()

Query data with the full power of databases. It will be converted
automatically to ASN.1 structures.

Use case :

Query all TC with type=XX and subtype=YY (1 line of code)
Select the ones you are interested in

Encode them with ASN.1/ACN to a PUS packet (1 line of code)
Send them to the satellite (1 line of code)

Check the results

Demo of the complete features in
/home/assert/tool-src/DMT/tests-sqglalchemy

Run make (password for the db is tastedb)
Run pgadmin3

Properties Dependencies Dependents

Edn Data - myta
File Edit

iic data
[PK] integ integer

Retrieving details on table Myint... Dene,

Scratch pad

4 rows.

Ecosystem

Web entry point : http://taste.tuxfamily.org

User (public) and developpers (private) mailing lists
— Register to the user mailing list !

Bug track system

SVN repository with all sources (hosted at ESA)
Stable and trunk branches

Nightly build and regression testing

ST

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77

