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PREFACE.

THE history of Greek mathematics is, for the most part, only
the history of such mathematics as are learnt daily in all
our public schools. And very singular it is that, though
England is the only European country which still retains
Euclid as its teacher of elementary geometry, and though
Cambridge, at least, has, for more than a century, required
from all candidates for any degree as much Greek and mathe-
matics together as should make this book intelligible and
interesting, yet no Englishman has been at the pains of
writing, or even of translating, such a treatise. If it was not
wanted, as it ought to have been, by our classical professors
and our mathematicians, it would have served at any rate to
quicken, with some human interest, the melancholy labours
of our schoolboys.

The work, as usual, has been left to Germany and even
to France, and it has been done there with more than usual
excellence. It demanded a combination of learning, scholarship
and common sense which we used, absurdly enough, to regard
as peculiarly English. If anyone still cherishes this patriotic
delusion, I would advise him to look at the works of Nessel-
mann, Bretschneider, Hankel, Hultsch, Heiberg and Cantor,
or, again, of Montucla, Delambre and Chasles, which are so
frequently cited in the following pages. To match them we
can show only an ill-arranged treatise of Dean Peacock, many
brilliant but scattered articles of Prof. De Morgan, and three
essays by Dr Allman. I have treated all these writers with
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freedom and have myself added matter which is not to be found
in any of them, but they strike me still with humiliation such
as a classical scholar feels when he edits a text which Bentley
has edited before him.

My own book represents part of a collection of notes
which I have for many years been making with a view to
a general history of the great city of Alexandria. The fact
that the history of Alexandrian mathematics begins with the
Elements of Euclid and closes with the Algebra of Diophantus,
both of which are founded on the discoveries of several pre-
ceding centuries, made it necessary that I should extend my
inquiries over the whole field of Greek mathematics. In
this way, the materials for an account of the Alexandrian
Mathematical School grew to exceed the reasonable limits
of a chapter, and I have thought it desirable to publish them
as a separate essay. I shall treat the Literary School with
the same fulness.

As a history of Alexandria ought to be interesting to
most people, I took especial pains that my treatment of the
Mathematical School, which was the oldest, the most con-
spicuous and the longest-lived of them all, should not be
excessively technical. I have tried to put my account of it
generally in such a form as should be useful and attractive to
readers of various tastes. As a matter of fact, mathematicians
will here find some account of every extant Greek mathe-
matical book and a great number of pretty proofs translated
from the ipsisstma verba of the ancients. Greek scholars will
find nomenclature and all manner of arithmetical symbols
more fully treated than in any other work. A student of
history, who cares little for Greek or mathematics in par-
ticular, but who likes to watch how things grow, will be able
to extract from these pages a mnotion of the whole history
of mathematical science down to Newton’s time, and will find
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some very curious questions raised which it is his especial
duty to answer. It was impossible to satisfy the requirements
of all readers, but each will perhaps be willing to concede
something to the claims of the others, and wherever a subject
is introduced but inadequately treated, I have at least given
references to sources of fuller information, if any such exist
to my knowledge.

As the whole book is an endeavour to compromise between
conflicting claims, I have allowed myself, with the same intent,
some inconsistency in two details. In the first place, I have not
drawn a strict line between pure and mixed mathematics,but have
given an account of the Phaenomena and Optics of Euclid and
the mechanical books of Aristotle and Archimedes, while I have
omitted any summary of Ptolemy’s astronomical theories. The
former are books which are little known, which are short, which
came in my way and which are almost purely deductive. A com-
plete history of Greek astronomy is tolerably common, is long,
is founded for the most part on non-mathematical writers and
would consist largely of a history of astronomical observations.
In the second place, I have tried to write proper names
(following indeed Smith’s Dictionary of Greek and Roman
Biography) in a way which should generally indicate the
Greek form and pronunciation without offending the ordinary
eye. I have always -written ¢ for « and final -us for -os. I
have generally not Latinized names ending in -wv, because it is
sometimes inconvenient and the Latin usage was inconsistent
with itself; for instance, it retained Conon but altered Platon.
I have left in their English form, the names of well-known
writers. Thus the reader will find Plato, Aristotle and Euclid
side by side with Heron, Nicoteles and Neocleides. If I must
offend somebody, I would soonest offend a pedant.

The complete MS. of this book left my hands last January
and the whole edition has been printed off, sheet by sheet,



viii PREFACE.

at various intervals, since that time. I have therefore been
unable to correct any errors or omissions which I observed too
late or to incorporate new matter which appeared after the
sheet to which it was relevant had gone to press. The chief
notices which I wish to insert are given in the Addenda
which immediately follow this preface.

My work, dreary as it has often been, has been enlivened
by one constant pleasure, the interest and unselfish assistance
of many friends. Two of them, in particular, deserve recogni-
tion very near the title-page. The first is Mr F. T. Swanwick,
late scholar of Trinity College, Cambridge, and now Mathemati-
cal Lecturer in the Owens College. He has, with incredible
care and patience, read through the whole book from page 66,
has made a hundred valuable suggestions and has saved me
a hundred times from myself. The other is Mr Joseph Jacobs,
late scholar of St John’s College, Cambridge, whose wide
intellectual interests and unsurpassed knowledge of bibliography
have made the book far more useful and entertaining than
it otherwise would have been. I would say more of their
kindness to me but that I would not have them held respon-
sible for any slips which they may have overlooked in my work
but would not have made in their own.

JAMES GOW.

LincoLn's INN.
October, 1884.



ADDENDA.

P. 24. THE relevant passages of Nicolaus Smyrnaeus and Bede are
printed, with an interesting plate, by M. Froehner in an article
on certain Roman tesserae in Annuaire de la Soc. Numismatique,
Paris, 1884. Mr A. 8. Murray gave me the article in pamphlet
form, newly paged.

P. 44, Prof. Robertson Smith informs me that gematria is certainly
from yewperpla, by a common Semitic transliteration.

P. 108 n. 3. In the Journal of Philology, x111. No. 25. pp. 107—113,
Mr T. L. Heath, after proving by new evidence that the
algebraic s of Diophantus is not the final sigma, shows that
s° occurs in cursive MSS. as an abbreviation of dpifuds, used in its
ordinary sense, for which also dp. is sometimes found. Hence he
suggests that Diophantus’ s is merely a contraction of dp. This
theory is pretty but I do not think it is true, for three reasons.
(1) The contraction must be supposed to be as old as the time
of Diophantus, for he describes the symbol as 73 s instead of ra
or v dp. Yet Diophantus can hardly (as Mr Heath admits)
have used cursive characters. (2) The abbreviation s° for
dplfpds in its ordinary sense is very rare indeed. It is mot
found in the MSS. of Nicomachus or Pappus, where it might
most readily be expected. It may therefore be due only to a
scribe who had some reminiscence of Diophantus. (3) If s is
for dp., then, by analogy, the full symbol should be s* (like &°, «*)
and not s”.

Pp. 110, 111. ». In the Géttingen Nachrichten, 1882. pp. 409—413,
Prof. P. De Lagarde suggests that the x of modern algebra is
simply the regular Spanish representative of the :Arabic letter,
which is the initial of skat, the Arabic name of the unknown
quantity. This may be (but I believe is not) true of Luca
Pacioli, Tartaglia and other early Italian algebraists. The
accounts which I have seen of their works are inconsistent and
inconclusive. But their more important successors had no
prepossession whatever in favour of . Wallis (in his Algebra,
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1685. p. 127.), says “ Whereas it was usual with Harriot (as
before with Vieta and Oughtred) to put consonants B, C, D, &e., °
for known quantities and vowels, 4, %, I &c., for unknown,
Descartes chooseth to express his unknown quantities by the
latter letters of the alphabet (as 2, y, ) and the known by the
former letters of it as a, b, ¢, &c.” Thus Descartes probably
set the fashion, but he may have resumed an old tradition.

P. 129. There seems to be a reference to a Hebrew harpedonaptes
in Micah 11. 5.

Pp. 182—185. Dr Allman, in Hermathena No. x., has another
paper on Greek Geometry from Thales to Euclid. This deals
very elaborately with Archytas and Eudoxus.

Pp. 189 and 238. A statement that the parallelogram of forces was
known to Aristotle was struck out of p. 189 as incorrect, but
by accident, no substitute was inserted. The omission is rectified
on p. 238.

P. 204. There is a very remarkable article by Dr Klamroth “iiber
den Arabischen Euclid” in Zeitschr. Deutsch. Morgenlind. Ge-
sellsch. 1881, pp. 270—326. This gives a most careful account
of the Arabic texts of Euclid. It would appear that Euclid’s
Elements was the first Greek book translated into Arabic.

P. 208. In the American Journal of Math. 1. pp. 46—48,
Mr G. B. Halsted has a ‘Note on the First English Euclid’ from
which it appears, among other things, that Billingsley became
Sir Henry Billingsley, and was Lord Mayor of London in
1591.

Pp. 263 and 277 n. Ihave wrongly followed Thevenot and Fabricius
in the note on p. 277. The Philon mentioned by Vitruvius was
an Athenian architect and is clearly not the engineer Philon, part
of whose work is in the Veteres Mathematici. The latter Philon
seems to be identical with Philon of Byzantium, who is
mentioned on p. 263. If so, then Philon of Byzantium had
certainly heard Ctesibius lecture and must be assigned to a date
about 150 B.c.

Philon’s construction should have been given on p. 263.
He describes a circle about the rectangle ABDC. A ruler,
cutting 4 B produced in #, AC produced in @, and the circle in
H, D, is turned about the point D until #H equals DG. The
line FHDG is called “Philo’s line” in modern geometry, but its
author did not know its singular property.
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AN ALPHABETICAL LIST OF

THE CHIEF GREEK MATHEMATICIANS

WITH THEIR APPROXIMATE DATES.

(N.B. All dates are B.c., unless A.D. is expressly prefixed.)

Flor. cir. Flor. cir.

Anaxagoras, 460 Joh, Philoponus, A.D, 650
Anaximander, 560 Menaechmus, 340
Anaximenes, 530 Menelaus, A.p. 100
Antiphon, 430 Metrodorus, A.p. 320
Apollonius, 230 Nicomachus, A.p. 100
——— Archimedes, 250 Nicomedes, 180
Archytas, 400 Nicoteles, 250
Aristaeus, 320 Enopides, 460
Aristotle, 340 Pappus, A.D. 300
Asclepius Trall., A.D. 600 Perseus, 150
Autolycus, 840 Philippus, 320
Bryson, 430 Philolaus, 430
Conon, 250 Philon Byz., 150
Democritus, 410 Plato, 380
Dinostratus, 320 Prooclus, A.D. 450
Diocles, 180 Ptolemy, A.D. 150
Diophantus, A.D, 360 - Pythagoras, 530
Eratosthenes, 250 Serenus, A.p. 50
o~  Eueclid, 290 Sextus J. Afric., A.D. 200
Eudemus, 820 Simplicius, A.D. 550
Eudoxus, 860 Thales, 600
Eutocius, " A.D, 550 Theaetetus, 880
Geminus, 70 Theodorus, 420
Heron, 120 Theodosius, 60
Hipparchus, 130 Theon, Alex., A.D. 380
Hippias, 430 Theon, Smyrn., A.p. 100
Hippocrates, 430 Theudius, 320
Hypatia, A.D. 410 Thymaridas, A.D. 250
Hypsicles, 180 Zeno, 450
Iamblichus, A.D. 340 Zenodorus, A.p, 150




At haec omnia ita tractari praecipimus ut non criticorum
more in laude et censura tempus teratur; sed plane historice res
ipsae narrentur, judicium parcius interponatur. De modo autem
hujusmodi historiae conficiendae illud inprimis monemus, ut...
seriatim (ab ultima antiquitate facto principio) libri praecipui
qui per ea temporis spatia conscripti sunt in consilium adhibe-
antur, ut ex eorum non perlectione (id enim infinitum quiddam
esset) sed degustatione et observatione argumenti, stili, methodi,
Genius illius temporis Literarius veluti incantatione quadam a

mortuis evocetur.
BacoNn, De Augm. 11 iv.



PART I. PROLEGOMENA TO ARITHMETIC.

CHAPTER 1.

THE DECIMAL SCALE.

1. IN the book of Problemata, attributed to Aristotle, the -
following. question is asked (Xv. 3): “Why do all men, both
barbarians and Hellenes, count up to 10 and not to some other
number?” It is suggested, among several answers of great
absurdity, that the true reason may be that all men have ten
fingers®: “using these, then, as symbols of their proper number
(viz. 10), they count everything else by this scale.” The writer
then adds “ Alone among men, a certain tribe of Thracians
count up to 4, because, like children, they cannot remember
a long sum neither have they any need for a great quantity of
anything.”

It is natural to regret that an author who at so early a date
was capable of writing this passage, was not induced to ask
himself more questions and to collect more facts on the same
and similar subjects. Had he done so, he might have anti-
cipated, by some two thousand years, the modern method of
research into prehistoric times and might have attempted, with
every chance of success, a hundred problems which cannot now
be satisfactorily treated®. In the fourth century B.c. and for
long after, half the Aryan peoples were still barbarous and there
must still have survived, even among Greeks and Italians,
countless relics of primitive manners, forming a sure tradi-

1 Cf. Ovid, Fasti 111, v. 121 8qq. lines as would be taken by a modern

3 It seems probable that Aristotle evolutionist. See Sir H. Maine, Early
himself was inclined to reconstruct ZLaw and Custom, pp. 196, 197.
‘primitive history on much the same

G. G. M. 1
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tion of the past. Nearly all these materials, so abundant in
Aristotle’s day, are irretrievably lost to us and the primeval
history of Aryan culture depends now chiefly on the evidence
supplied by comparative philology. It is so with the art of
calculation. We may assume evolution and, by careful com-
parison of the habits of the existing lower races, we may form
ab extra a theoretical history of arithmetic among our fore-
fathers; but almost the whole (so to say) internal evidence
is concealed in a few numeral words. To the etymology of
these a few pages may here be fitly devoted, not only because it
is habitual with our generation to commence every inquiry
from the beginning of things, but also because Greek arithmetic
offers no other prehistoric inquiry but this, because, in fact,
ordinary Greek calculation remained to the last so clumsy and
primitive, that if any progress in the art is to be ascribed to
the Greeks, it can be exhibited only by going back to the
beginning.

2. The words for 1000, and every higher power of 10,
are different in all the great branches of the Aryan family
of languages, and the cardinal numerals up to that limit are
manifestly derived, by mere addition or composition, from the
first ten. These last, therefore, are of by far the greatest
interest and importance and the present inquiry may be
confined to them. Before examining the individual words,
however, it will be well to consider the whole group. The
first three are adjectives, agreeing with only casual and partial
exceptions (e.g. 8vo) in gender and case with the substantives
which they qualify. The same might be said of the fourth, but
that in Latin quattuor is wholly indeclinable. The rest, from
five to ten, are generally uninflected and have or had originally
the form of a neuter singular’. In Sanskrit, indeed, these six
numerals are declined as adjectives but they do not take the
gender signs and in older writers are often employed without
any inflexions at all®. In old Slavonic they are extended by
a suffix (as in Semitic tongues) into abstract nouns of the

1 The final sibilant of ‘six,’ ‘sex,” primeval. Schieioher, Vergl. Gram. §
etc. is part of the root, and the ap-  237. 6 and 8.
parently dual ending of octo is not 2 Whitney, Sanskrit Gram. § 486c¢.



THE DECIMAL SCALE. 3

feminine singular and are so declined' (cf. Gr. mepmds etc.),
but this usage is also obviously late and may be ignored in
a general discussion of the origin of the words. For the present
purpose, it may be stated broadly that the first three are
adjectives, the fourth is generally an adjective but sometimes
an uninflected noun, the remaining six are uninflected nouns
only. All of them, in all Aryan tongues, are constructed of
the same materials, which, moreover, seem familiar enough
in different connexions. The difficulty is how to adapt the
apparent meanings of the roots to a numerical signification.
Some metaphor probably underlies each word, but though
metaphor, as we shall see, is competent to make numerals, it is
not able to extend their application. Things are not eight or
ten by a metaphor. They are so as a pure matter of fact, and
we are thus debarred from inferring the original meanings of the
numerals from any subsequent usage of them by transference.
The propriety of each numeral to its signification must be
explained @ priori or not at all. And this, apart from any
linguistic difficulties, constitutes the chief objection to the
etymologies hitherto proposed by Bopp, Lepsius, Pott and
others’. Sometimes they do not explain the choice of the
particular name, sometimes they involve patent anachronisms.
When for instance they say that pankan and saptanm, ‘five’ and
¢ seven,’ mean ‘following,’ because they follow ‘four’ and ‘six’

1 Bopp, Comp. Gram. § 313. Stade, and 3: or else ka, qua=1.

Lehrd. der Hebr. Spr. p. 216.

2 Bopp, § 308 sqq. Pott, Die qui-
ndre etc. Zihlmethode, pp. 130 sqq.
On p. 142 Pott, discussing Lepsius’ de-
rivations, points out that he ascribes
to 1 (besides its original éka) the forms
k, tsh, p and ¢ in the composition of
the other numerals. The common
derivations, taken chiefly from Bopp,
are set out in Morris, Hist. Outlines
of Eng. Accidence, p. 110 n. The
following only need be cited :
Three=‘what goes beyond’ (root tri,

tar, to go beyond).

Four (quattuor)=‘and three,’ i.e. 1

Five=‘that which comes after’ (four).
8k. pashchét=after.

Siz, 8k. shash is probably a compound
of two and four.

Seven="*that which follows’ (six).

Eight, 8k. ashtdn=1+and +3.

Nine=new=that which comes after 8
and begins a new quartette.

Ten=two and eight.

Pott, in Etym. Forschungen, 2nd ed.,

1859, 1. p. 61 n., declares his opinion

that the numerals are derived from

names of concrete objects, but suggests

no particular etymologies.

1—2
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4 THE DECIMAL SCALE.

respectively, they suggest no reason why any other numeral
above 1 should not have been called by either or both of these
names: so when they say that navan, ‘nine, means ‘new’
(véos etc.) because it begins a new quartette, they assume a
primeval quaternary notation and do not explain why ‘five’
was not called navan: so again when they say that navan
means ‘last’ (véatos etc.) because it is the last of the units,
they evidently speak from the point of view of an arithmetician
who has learnt to use written symbols. What one really wants,
in this as in so many other problems of philology, is to get at
the point of view of the primitive language-maker and to see
from what sources he was likely to get his numerals. And
" this can only be done by a careful examination of the habits
and languages of modern savages.
- 3. It is probably familiar enough to most readers that
many savage tribes are really unable to count, or at least have
no numerals, above 2 or 3 or 4, and express all higher numbers
by a word meaning ‘heap’ or ‘plenty,’ and that every nation,
which can count further than this, uses a quinary or decimal or
vigesimal notation or a combination of these’, which is generally
founded on, and expressly referred to, the number of the fingers
and toes. These facts, which are beyond dispute®, suggest two
initial questions, first, what is the real difficulty which a savage
finds in separating the units which go to make a multitude ? and

1 No nation has a purely quinary or  Zeitschr. respectively. Also Tylor,

vigesimal notation at all. The Mayas
of Yucatan, however, and the Aztecs
have special words and signs for 20,
400 and 8000. Pott, Zdhlmethode supr.
ecit. pp. 93, 97, 98. Wilson, Prehistoric
Man, 11. p. 61.

2 See, for instance, Pott, Die quin.
Zihlmethode, ete., with an appendix
on Finger-names, supra cit.: Pott,
Die Sprachverschiedenheit in Europa
eto., on the same subject, being a
Festgabe zur xxv. Philologenversamm-
lung: and an article by the same
writer in Zeitschr. fiir Volkerpsycho-
logie, Vol. x11. These will be cited
hereafter as Pott, Zdllm., Festgabe and

Primitive Culture, 1. ch, 7 : Lubbock,
Orig. of Civilisation, ch. 8, and Prehist,
Times (4th ed.), p. 588. Another col-
lection of similar facts will be found
in Dean Peacock’s article ¢ Arithmetic’
in the Ency. Metropolitana. It may be
added here that the Maoris are said to
use an undenary scale (Pott, Zdahlm.
Pp. 75 and 76) in which rests are taken
at 11, 121, 1331, etc, but this is
doubted. The Bolans or Buramans of
'W. Africa are also said to use a senary
scale (Pott, Festgabe, p. 30). These
cases, if correctly reported, seem to be
the only complete exceptions to the
rule stated in the text.
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secondly, why are the fingers—which, one would say a priori,
are as hard to count as any other collection of five or ten
things—always adopted as the means and basis of calculation ?
The answer seems to be, at least in part, as follows. A savage
knows large and familiar things by special distinguishing marks
and these special peculiarities prevent him from forming, in the
case of such things, the generalizations which are essential to
arithmetic. A black cow and a dun cow, a tall child and a short
one, a wood-chopper and a battle-axe, his own hut and his
neighbour’s, are not, to him, essentially similar, but essentially
different from one another and from everything else, to be
spoken of by proper and not by generic names, not forming part
of a class and therefore not requiring to be counted. In respect
of these things, he does not count, he enumerates : as if a man,
‘when asked how many children he has, should say, not that he
has 3 or any other number, but that he has Tom and Susan
and Harry and so on, naming each individual'. With small or
unfamiliar things, on the other hand, with beans or fruits, for
instance, or strangers from another tribe, the savage, though he
is compelled to generalize, is not necessarily compelled to
count, for there are many ways of roughly indicating a quantity,
without knowing its component parts. Everybody has tried the
difficulty of counting quickly a number of spots irregularly
disposed, and what we are unable to do quickly, a savage may
well be unable to do at all. In order to count a heap correctly,
it is essential that the same thing be not counted twice, and

1 Compare Lubbock, Orig. of Civil.
pp. 292—294, and the quotations from
Galton and Lichtenstein, as to the
special knowledge of individual animals
by which a savage, unable to count a
high number, keeps his herds together
and conduects his barter. Tylor (Prim.
‘Cult, 1. p. 803 and passim) gives
abundant examples of proper names
applied by savages to inanimate objects.
The same writer (1. p. 254) relates that
some Australians, as well as other
“tribes, have a series of nine proper
names which they give to their children

in order of seniority and which might
well serve for numerals, yet they can-
not actually count above 2. So also,
according to Dr Rae (cit. Lubbock,
Prehist. Times, p. 525), many Eskimos,
who are said by Parry (also loc. cit.)
to have numerals up to 10 at least,
cannot count their children correctly
even when they have only four or five.
But quaere, whether a man, who could
not count his own children, would find
the same difficulty in counting & num-
ber of strangers.
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respectively, they suggest no reason why any other numeral
above 1 should not have been called by either or both of these
names: so when they say that navan, ‘nine, means ‘new’
(véos etc.) because it begins a new quartette, they assume a
primeval quaternary notation and do not explain why ‘five’
was not called navan: so again when they say that navan
means ‘last’ (véatos etc.) because it is the last of the units,
they evidently speak from the point of view of an arithmetician
who has learnt to use written symbols. What one really wants,
in this as in so many other problems of philology, is to get at
the point of view of the primitive language-maker and to see
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by a word meaning ‘heap’ or ‘plenty,’ and that every nation,
which can count further than this, uses a quinary or decimal or
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secondly, why are the fingers—which, one would say a prior:,
are as hard to count as any other collection of five or ten
things—always adopted as the means and basis of calculation ?
The answer seems to be, at least in part, as follows. A savage
knows large and familiar things by special distinguishing marks
and these special peculiarities prevent him from forming, in the
case of such things, the generalizations which are essential to
arithmetic. A black cow and a dun cow, a tall child and a short
one, a wood-chopper and a battle-axe, his own hut and his
neighbour’s, are not, to him, essentially similar, but essentially
different from one another and from everything else, to be
spoken of by proper and not by generic names, not forming part
of a class and therefore not requiring to be counted. In respect
of these things, he does not count, he enumerates : as if a man,
when asked how many children he has, should say, not that he
has 3 or any other number, but that he has Tom and Susan
and Harry and so on, naming each individual', With small or
unfamiliar things, on the other hand, with beans or fruits, for
instance, or strangers from another tribe, the savage, though he
is compelled to generalize, is not necessarily compelied to
count, for there are many ways of roughly indicating a quantity,
without knowing its component parts. Everybody has tried the
difficulty of counting quickly a number of spots irregularly
disposed, and what we are unable to do quickly, a savage may
well be unable to do at all. In order to count a heap correctly,
it is essential that the same thing be not counted twice, and

1 Compare Lubbock, Orig. of Civil.
Pp. 292—294, and the quotations from
Galton and Lichtenstein, as to the
special knowledge of individual animals
by which a savage, unable to count a
high number, keeps his herds together
and conducts his barter. Tylor (Prim.
Cult. 1. p. 303 and passim) gives
abundant examples of proper names
applied by savages to inanimate objects.
The same writer (1. p. 254) relates that
some Australians, as well as other
‘tribes, have a series of nine prupsr
names which they give to their chiluws

in order of seniority snd which might
well serve for numerals. yu8 Guey exn-
not actually count sbove Z 85 s,
according to Dr Kee &t Lakiver,
Prehist. Times, p. 925 nay Enkivwr,
who are ssid by Faz3 ales il 2 ¢
to have nunwesis 3 % 1) 23 437,
cannot eomis fer duddmen vrrses r
even whes Sier 3ews iy Ly o 4 s
But gusore, vhefier s nea vy .
Dot CONIE i BPA. RUdr vl Lo
the same dilexicr n vinac oy s L
Ter of gy
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this, to the unpractised calculator, can be secured only by
arranging the things in such a form that the counting may
follow a definite direction from a fixed beginning to a fixed end.
Given such an arrangement, it is further necessary that the
calculator should have words or other symbols to serve as a
memoria techniea of each successive total, otherwise he will be
as ignorant at the end of the counting as he was at the
beginning. But a savage, who ex hypothesi is making his first
essay in counting, can hardly be expected both to arrange his
units and to invent his symbols immediately. Time and
practice and some hard thinking are obviously necessary before
he can master both operations.

4, These difficulties, however, are soonest surmounted
with very small numbers, of which any arrangement is bound
to be more or less symmetrical and of which so definite an
image may be retained in the memory that names or symbols
are unnecessary for the mere operation of counting. But some
means of communicating a total, and, with a higher number,
some memoria technica of the arrangement adopted are still
wanting. For both these purposes, the fingers and toes are
especially well adapted. They are a moderate number of
similar things, easily generalized, symmetrically disposed and
arranged in four groups of small contents. They can be so
moved, shown, concealed or divided, that they will exhibit any
number under 21: they are so familiar that the eye is
constantly practised in counting them, and they are so uni-
versally supplied to human beings that they can be used to
communicate arithmetical results. '

But men did not arrive at this use of the fingers till they had
already made some little progress in calculation without them.
That this is the true history of the art of counting is evident
if we consider the following facts in order. First, there is
hardly any language in the world in which the first three or
four numerals bear, on the face of them, any reference to the
fingers. Secondly, there are many savage languages in which
these numerals are obviously taken (not from the fingers but)
from small symmetrical groups of common objects. Thus,
‘two’ is, among the Chinese, ny and ceul, which also mean

<
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‘ears:’ in Thibet paksha © wing:’ in Hottentot ¢’ Koam ‘hand:’
and so also among the Javanese, Samoyeds, Sioux and other
peoples. So again with the Abipones, ‘four’ is geyenkiiaté,
‘ ostrich-toes:’ ‘five’ is neenhalék, ‘a hide spotted with five
colours:’ with the Marquesans * four’ is pona, ¢ a bunch of four
fruits,’ etc.' Thirdly, there are also many savages who, having
only a very few low numerals, count to much higher numbers
dumbly by means of the fingers®.

5. But just as, in the examples quoted above, the name
of the pattern group (e.g. ears or hands) becomes the name of
the number which that group contains, so with finger-counting
the savage, advancing in intelligence, begins to name the
gesture with or without performing it, and this name becomes
the symbol of the number which the gesture is meant to
indicate. Hence all the world over, in nearly every language
under the sun where names for the higher units exist and show
a clear etymology, the word for ‘five’ means ‘hand,” and the
other numbers, up to 10 or 20, as the case may be, are merely
descriptive of finger-and-toe-counting. In Greenland, on the
Orinoco, and in Australia alike, ‘six’ is ‘ one on the other hand,’
‘ten’ is ‘two hands, ‘eleven’ is ‘two hands and a toe’ and
‘twenty’ is ‘one'man®’ In some cases, we find even greater
definiteness. Among the Eskimos of Hudson’s Bay the names
of the numerals  eight,’ ‘nine’ and ‘ten’ mean respectively the
‘middle,’ ‘fourth’ and ‘little finger,’ and the same use of actual
finger-names is observed also among the Algonquin Indians of
North America, the Abipones and Guarani, of the South,
the Zulus of Africa and the Malays of the Asiatic islands*.

6. Enough has now been said, or at least references
enough have been given, to show that wherever a quinary,
decimal or vigesimal notation is adopted in counting, there

1 For other examples, and especially low numbers (e.g. couple). See also

for a curious set of Indian poetio
numerals, in which e.g. ‘moon’ stands
for 1 and ‘teeth’ for 32, see Tylor,
Prim. Cult. 1. pp. 252, 253, 256, 259,
and reff. Civilised peoples (ib. p. 257)
sometimes employ a similar nomen-
clature, though not often with very

Farrar, Chaps. on Lang. pp. 198—201.

2 Tylor, Prim. Cult. 1. p. 244.

3 Tylor, Prim. Cult. 1. pp. 247—
251.

4 Pott, Zihlm. pp. 190 and 801,
Zeitschr. pp. 182, 183, Festg. pp. 47, 48,
83.
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is the strongest possible presumption that the notation is
founded on the number of the fingers and toes: and secondly,
that wherever these scales are used and the etymology of the
numerals is obscure, the most likely explanation will connect the
higher units with the gestures used in finger-and-toe-counting.
If we turn, then, to the languages of the Aryan peoples, we
shall find many signs that they acquired the art of calculation
slowly and by precisely the same modes as we see in practice
among modern savages. There is no word for ‘counting’
common to all the Aryan tongues, but the special words
generally mean ‘to arrange’ or ‘ to group’ (dpcfpueiv’, numerare,
rechnen) and a similar notion must underlie the double uses of tell,
putare, Aéyewv.  Again, three numbers only are distinguished in
the inflexions of nouns and verbs, viz. the singular, dual and plural.
This, like the three strokes which mark plurality in Egyptian
hieroglyphics, seems to point to a time when 3 was the limit of
possible counting. It is noticeable also, in this regard, that
‘three’ always retained a notion of great multitude®: that
Sanskrit employs, for this numeral, two distinct roots, ¢r- and
tisar-°; and that, after ‘three, the first divergence appears
in the grammar of the Aryan numerals. The common use of a
duodecimal notation in measurements of length and capacity
and the sudden variation in the grammatical position of
‘four’ may be taken as evidence that ‘four’ was a separate
addition to the numerals and that 8 and 4 were for some
time used together as limits of the groups used in count-

ing*. The use of yeip and manus to signify ‘a number,

1 Cf. Odyssey x. 204. 3ixa dpifuciv
must originally have meant ¢ to arrange
in two groups.’

2 Cf. 7piodf\os, ter feliz, &d Tpicov
in Eur. Or. 434. The suggestion was
.-W. von Humboldt’s. That about the
dual and plural was Dr Wilson’s. See
Tylor, Prim. Cult. 1. p. 265.

8 Cf. Irish tri, masc.: teoir, teoira,
fem. : Welsh ¢ri, mase.: teir, fem.

4 Hence also Pindar’s rpls rerpaxe Te,
Horace’s terque quaterque beati, ete.

(cf.n.2). Inhieroglyphicnumeral-signs,
though the system is denary, units,
tens, etc. are grouped by threes and
fours and not by fives, (e.g. 7 is written,
|I|I|I| invariably, and similarly for 70,
700, etc.). Observe also that Egyptian,
like Aryan, had a dual. The oceasional
use of more than one group-limit in
counting is common enough. Thus,
beside the examples given a little later
in the text, the Bas-Bretons use trio-
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the common phrases éml SaxTvAwy gupBaihesfac and digitis
computare and many references in ancient authorities® suf-
ficiently attest the practice of finger-counting in the earliest
historical times, and there are some signs that the practice was
not yet settled before the separation of the Aryan races. Thus
the Homeric meumdfew (lit. ‘to five’), meaning ‘to count,’
and the form of the Latin numeral signs imply the occasional
use of a quinary notation, while the Kelts and Danes use,
to some extent, a vigesimal (e.g. quatre-vingts), from which we
derive our habit of counting by scores.

7. A further question still remains, whether any connexion
can be traced, in the Aryan languages, as there certainly can in
most savage tongues, between the first ten numeral words and
the gestures used in counting with the fingers. It has been
already pointed out that in Aryan languages there is a difference
in kind between the first three or four numerals and the last
seven or six. The former are adjectives and are so inflected :
the latter are nouns neuter in form and uninflected *; inter-
jections, as it were, thrust into the sentence in brackets, like
the dates in a history-book. This difference in kind seems to
point to a difference in etymology and also in antiquity. The
higher numerals, being nouns, are names of things and, being
uninflected, are names of things which are not really connected
with, and subject to the same relations as, the other things
mentioned in the same sentence. Secondly, the general abrupt-
ness of the transition from low inflected numerals to higher
uninflected forms points to some sudden stride in the art of
counting. All the facts are readily explained if we conceive
that among the Aryans, as among many other races, the
counting of low numbers was learnt before the use of the
fingers suggested itself, and that so soon as the fingers were
seen to be the natural abacus, a great advance in arithmetic

uech (=3 x 6) for 18 : the Welsh have
dennaw (=2x9) : the old Frisian has
tolftich (=twelvety) for 120. See
further Pott, Festg. pp. 33 and 38.

1 Boethius (p. 395, 3 sqq. ed. Fried-
lein) says the ancients used to call
the units ‘digiti.’ The Italian game

‘morra’ is of very remote antiquity
and, like most games, seems to be de-
scended from a serious exercise.

2 Pott, Festg. p. 40, points out that
inflexions begin again with the com-
pounds of ten (e.g. triginta, a neuter
plural, trecenti, ete.).
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was immediately made. The higher unit-numerals would then
be the names of the gestures made in finger-counting or, as
among the Algonquins etc., the actual names of the fingers in
the order in which they were exhibited in counting.

8. The evidence that 3 or 4 was once the limit of Aryan
reckoning has been already adduced. If the fact is so, then the
numerals up to that limit probably bear no reference to the
fingers, but they are so ancient that it is useless now to
inquire into their origin. But the following numerals are
neither so ancient nor so curt in form. Their original names
appear to have been pankan or kankan (5), ksvaks or ksvaksva
(6), saptan (7), aktan (8), navan (9) and dakan or dvakan (10).
Some allusion to finger-counting may well underlie these words.
Ever since A. von Humboldt first pointed out the resemblance
between the Sanskrit pafik’an and the Persian penjeh, ‘the
outspread hand,’ some connexion between the two has always
been admitted. It is possible, indeed, that penjeh is derived
from paiik’an and not wice versa, but if we return to the
primeval form, pankan, as Curtius points out', is probably
connected with =v§, pugnus and fist or kankan with the
Germanic hand. So also dvakan seems to be for dvakankan,
meaning ‘twice five’ or ‘two hands®’ dakan points to Sefids,
dexter®, déyopar etc. or else to Saxrtuos, digitus, zehe, toe.
Thus whatever original forms we assume for these two numerals,
their roots appear again in some name or other for the hand
or fingers. It is intrinsically probable, therefore, that pankan
means ‘hand’ and that dakan means ‘two hands’ or ‘right
hand.” It may be suggested, here, that the intervening numerals
are the names of the little, third, middle and fore-fingers of the
right hand. Thus the little finger was called by the Greeks
orirys®, by the Latins auricularis, This name is apparently

1 Griech. Etym., Nos, 629 and 384.

2 The Gothic numerals from 70 to
90 are compounded not with the
ordinary -tathun, but with -téhund,
which has been thought (wrongly no
doubt) to mean ‘two hands’ simply.

3 Sinister, sem-el, singuli are curi-
ously analogous to dexter (dec-ister),

decem, ete. The two hands may pos-
sibly have been called the ‘one-er’
and the ‘ten-er.’ The ordinary etymo-
logy takes dexter and sinister to mean
the ‘taker’ and ‘leaver’ respectively.

4 The finger-names which follow are
taken from the appendix to Pott’s
Zéihlmethode. Comp. also his article
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explained by the Germans who call this finger the ‘ear-cleaner’
(e.g. Dutch pin, pink (‘poker’) oorvinger). Now ksvaks or
ksvaksva seems to be a reduplicated form, containing the same
root a8 Eéw, Eaivw, Evpéw etc., and meaning ‘scraper.” The name
saptan seems to mean ‘follower’ (&r-opuar etc.), and the third
finger might very well be so called because it follows and
moves with the second, in the manner familiar to all musicians®.
The name aktan seems to contain the common root AK and
to mean, therefore, ¢ projecting,’ a good enough name for the
middle finger. Lastly, the first finger is known as doragrinds,
index, salutatorius, demonstratortus (= ‘beckoner,’ ‘pointer’) and
this meaning probably underlies navan, which will thus be
connected with the root of movus, véos, ‘new’ etc. or that of
vevw, nuo, ‘nod’ etc. or both. Whatever be thought of these
suggested etymologies, it must be admitted that there is no
evidence whatever that our forefathers counted the fingers of
the right hand in the order here assumed. They may have
adopted the reverse order, from thumb to little finger, as many
savages do and as in fact the Greeks and Romans did with that
later and more complicated system of finger-counting which we
find in use in the first century of our era and which will be
described hereafter in these pages. If this reverse order be

in Zeitschr., pp. 164—166. It is
curious that this writer should not

‘nameless:’ in Greek also éwiBdrys or
éxifalos, which may mean ‘rider’ (éweu-

have attempted to make any use, by
comparison, of the facts which he had
80 industriously collected. Similarly
in his article on ‘Gender’ (Geschlecht)
in Ersch and Gruber’s Encyclopaedia,
Vol rxm., he gives the facts about
gender in every language under the
sun, but draws no conclusion from
them. It is to be observed, however,
that both essays were written before
the evolution-theory was distinctly
formulated. Some other finger-names
may be here added. The third finger
is generally known either as the ‘ring-
finger’ (8akTuhiiTys, annularis, golding-
er), or as ‘leech-finger’ (medicinalis,
arzt.): in Sanskrit also, anaman or

Barns). The first finger is also called
‘licker’ (Aexavés, Platt D. pott-licker).
Mr J. O. Halliwell (Nursery Rhymes
and Tales, p. 206) gives as English
finger-names toucher, longman, leche-
man, littleman, and explains that the
third finger is called lecheman because
people taste with it as doctors try
physic. He cites also such names as
Tom Thumbkin, Bess Bumpkin, etc.
with Norse parallels.

1 So in Odschi or Ashantee the
middle finger is called ensatia hinné,
‘king of the fingers,’ and the third is
ensatiasafo-hinné, ‘field-marshal.’ (Pott
in Ersch and Gr. sup. cit.).
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assumed, the numerals may still be explained in accordance
with other finger-names in common use®, beside those which
have been cited. But after all, the main support of such
etymologies is their great a prior: probability. The theory,
on which they are based, brings the history of Aryan counting
into accord with the history of counting everywhere else: it
explains the Aryan numerals in a way which is certainly correct
for nearly all other languages; it explains also the singular
discrepancy in the forms of those numerals and some peculiar
and very ancient limitations of Aryan counting. It is hardly to
be expected that such a theory should be strictly provable at
all points, ’

9. Scanty as is the evidence for the first steps of Aryan
calculation, there is none at all for those which follow. It will
be conceded, however, that so soon as the fingers were used as
regular symbols or a numeral nomenclature was adopted, further
progress could not have been difficult. Doubtless at first, as in
S. Africa at the present day®, the numbers from 10 to 100
required two, and those from 100 to 1000, three calculators.
But the assistance of coadjutors could be dispensed with, in
mere counting, so soon as the memory was trained to remember,
without embarrassment, the multiples of 10 or the habit was
adopted of making a mark or setting aside a symbol at the
completion of each group of 10% Addition scan be performed
with the fingers, but, in the case of high numbers, the process

1 On this plan, ksvaks is the
thumb, saptan the forefinger, navan,
the third finger. Of these navan,
‘nodder,’ is a8 good a name for the
third finger as saptan, for the same
reason. Saptan may mean ‘sucker,’
(8wbs, sapio, saft, sap) pointing to
the finger-names \ixavds pott-licker,
mentioned in the previous note. For
this, compare the Zulu names for 7,
which are kombile ‘point,’ or kota
“¢lick.” (Pott, Festg. p. 48.)

2 Schrumpf in Zeitschr. der Deutsch.
Morgenl. Gesellsch. xv1. 463.

3 Multiples of 10 were expressed by

mere compounds, neuter plurals in
form, up to 100. This last is supposed
to have been named dakan-dakanta,
of which the last two syllables only
survive. But the later word was &
neuter singular, uninflected (thus the
& of ékaréy is said to be a relic of &).
Multiples of 100 are again compounds
and plurals, but in Latin and Greek,
curiously enough, they are plural ad-
jectives, with inflexions of gender.
The words for 1000 are different in all
the great branches of Aryan speech
and are all of very obscure origin.

-~ —_—
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involves a severe tax on the memory. This tax is the more
severe with subtraction, because here, to take even the most
favourable conditions, the numerals have to be remembered
backwards. It is probable therefore that both these operations
were very carly performed by means of other symbols, such
as pebbles (Yrneoe, calculi). The multiplication-table is merely
a summarised statement of additions and a division-table would
be merely a summarised statement of subtractions. Continual
practice, leading to well-remembered inductions, was alone
necessary to give considerable facility in the four rules of
arithmetic.

10. Butdivision, when it came to be conducted with nicety,
introduced a new difficulty. The divisor was not always a
whole factor of the dividend and there was then a remainder.
What was to be done with this? The question, no doubt, first
arose with concrete units, in a case, for instance, where 23
apples were left to be divided among 24 men. Here obviously
each man will get a fraction of an apple but there are two ways
of ascertaining the fraction. Onue is to divide each apple into
24 equal parts, and to give to each man 23 such parts. The
other is to subdivide 23 into groups, say 12, 8 and 3, and so to
give each man first §, then 4rd, then }th of an apple. This
latter method of treating a remainder (by taking parts of it at a
time) is clearly analogous to the way in which the whole
dividend has previously been treated, and no doubt it re-
commended itself, on this account, to the calculators of anti-
quity. But it had also an especial advantage in this, that the
fractions which it produces are more readily represented with
primitive symbols. Given only the fingers or pebbles, it would
puzzle any man to represent directly that fraction of an apple
which we call $jths, but it would not be so difficult to indicate
3 +3+4" An advantage of the same kind would attend the
practice of dividing the unit always into the same fractions (say
12ths or 10ths) and expressing every other fraction, as nearly as

1 1f should be mentioned here, also, used at all, so that there would be a
that fractions with low denominators tendency to express the latter in terms
would naturally be familiar long before  of the former.
those with high denominators were
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possible, in terms of these. As with the former plan the
numerator, so with the latter the denominator might be taken
for granted and so both the symbols of fractionsand calculations
with them would be nearly the same as those for whole numbers.
And as a matter of fact, the ancient treatment of fractions
always did avoid the necessity of handling numerators and
denominators together. On the one hand, the astronomical
reckoning, introduced into Greece from Babylonia, used only
the sexagesimal fractions of the degree, and the Romans used
for all purposes the duodecimal fractions of the as'; thus on
these systems the denominators were implied. On the other
hand, and much more commonly, every fraction was reduced to
a series of ‘submultiples’ or fractions with unity for numerator,
and thus the consideration of numerators was avoided. This
practice was retained in Greek arithmetic to the very last. The
Greeks had long since abaudoned the old symbolism of numbers
but they had adopted another, which, though less clumsy to
look at, was even more unmanageable in use. They could
state fractions as easily as whole- numbers, but calculation
of any kind was still so difficult to them that they preferred to
get rid of numerators and to reduce denominators to a series of
numbers, some of which were so low that they could be bandled
mechanically and the rest so high that they could often be dis-
carded without materially affecting the result®,

1 Each of the Roman fractions had tors less than 9 (or compounded of

a special name. o we might use
shilling for &th, ounce for fyth, inch
for $;th, etc. of any unit whatever.
The Aryans, however, do not seem to
have had a special name for any merely
numerioal fraction, except a half. The
Arabs used to distinguish expressible
from inexpressible fractions. The
former are all such as have denomina-

any units), and these had special
names: the latter (e.g. v5) had no
names. Cantor, Vorl, tiber Gesch. der
Math. 1. p. 615.

2 Thus Eutocius, in the 6th century
after Christ, reduces 3§ to 3 + 4, which
is 53y too small. Nesselmann, Alg.
der Griechen, p. 113,



CHAPTER II.

EGYPTIAN ARITHMETIC.

11.  THE preceding pages contain probably all the meagre
facts from which it is still possible to discern how the Greeks
came by their arithmetical nomenclature, both for whole
numbers and for fractions. The subsequent progress of calcu-
lation, that is to say, the further use of the elementary
processes, depends on many conditions which cannot well be
satisfied without & neat and comprehensive visible symbolism.
This boon the Greeks never possessed. Yet even without it a
retentive memory and a clear logical faculty would suffice for the
discovery of many important rules, such for instance as that, in
a proportion, the product of the means is equal to the product
of the extremes. It is probable, therefore, that much of the
Greek arithmetical knowledge dates from a time far anterior to
the works in which we find historical evidence of it. It is
probable, again, that the Greeks derived from Egypt at an early
date as many useful hints on arithmetic as they certainly did on
geometry and other branches of learning. It becomes necessary,
therefore, to introduce in this place some account of Egyptian
arithmetic, both as showing at what date certain arithmetical
rules were known to mankind and as providing a fund of know-
ledge from which the Greeks may have drawn very largely
in prehistoric times. The facts to be now stated are in any case
of great importance, since they furnish the only compact mass of
evidence concerning the difficulties which beset ancient arith-
metic and the way in which they were surmounted.
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12. Quite recently a hieratic papyrus, included in the
Rhind collection of the British Museum, has been deciphered
and found to be a mathematical handbook, containing problems
in arithmetic and geometry’. The latter will be treated on a
later page. The book was written by one Ahmes, (Aahmesu =
moon-born), in the reign of Ra-a-us (Apepa or Apophis of the
Hyksos XVIth or XVIIth dynasty), some time before 1700 B.c.
but it was founded on and follows, not always correctly, an older
work. It is entitled “Directions for obtaining the knowledge of
all dark things,” but it contains, in fact, hardly any general rules
of procedure but chiefly mere statements of results, intended
possibly to be explained by a teacher to his pupils. The
numbers with which it deals are mostly fractional and it
is therefore probable that Ahmes wrote for the élite of the
mathematicians of his time.

He begins with a series of exercises in reducing fractions,
with 2 for numerator, to submultiples. ¢Divide 2 by 5’ or ex-
press 2 divided by 7’ etc. is his mode of stating the proposition
and he gives immediately a table of answers, for all fractions
of the form 2—n2+ i UP to . He does not state, however, why
he. confines himself to 2 as a numerator or how he obtains,
in each case, the series of submultiples which he selects. It is
possible that numerators higher than 2 were subdivided®, but
the second question is the more interesting and has been very
carefully discussed®. It is to be observed that such a fraction as
o5, Wwhich Ahmes distributes in the form g4 5 147 giy may be
expressed also as i ;45 and in various other ways, and

1 Eisenlohr, Ein mathematisches
Handbuch der alten Egypter, Leipzig,
1877. A short account of the papyrus
was given by Mr Birch in Lepsius’
Zeitschrift for 1868, p, 108. It was
then supposed to have been copied,
not earlier than 1200 B.c., from an
original of about 3400 B.c. The latter
was written in the reign of a king
whose name is not legible in Ahmes’
papyrus, but who is supposed to have

been Raenmat or Amenemhat ITI. The
British Museum possesses also an older
leather-roll on a mathematical subject,
but this apparently is too stiff to be
opened.

2 Eg fr=dr+r=3+vc+7y the
last two fractions being copied from
the table.

3 Cantor, Vorlesungen, 1. pp. 24—
28. Eisenlohr, pp. 30—34.
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similarly, with all the other fractions, Ahmes has adopted only
one of many alternatives. Later on in the book' he gives a
rule for multiplying a fraction by 3. “When you are asked
what is § of §, multiply it by 2 and by 6: that is § of it: and
similarly for every other fraction.” Here it is meant that the
denominator must be multiplied by 2 and by 6, and Ahmes’
rule is, in effect, that § of }L is 2—{'-' + 6la’
employs in the table for all fractions of which the denominator
is divisible by 3 (e.g. §=} {5 etc.). But the words ‘similarly
for every other fraction’ are of twofold application. They may
mean that § of any other fraction is to be found by the same
method, or that 3, #etc. of any fraction may be found by
multiplying denominators in a similar manner. The evidence
of the table, however, goes to show that Ahmes was ignorant of
the latter of these rules’. For instance, finding 2 expressed as
% % one would expect this formula to be used with all
the other fractions of which the denominator is divisible by 5,
but it is used, in fact, only for &, %, . Again, a few of
the examples in the table are, as we say, “proved” by being
treated backwards. Thus if } is } + g, then J + 5% should be 2,
and this fact (expressed in the form 1} }+1=2).is what
Ahmes points out. It has been suggested therefore that the
mode by which the fractions of the table were distributed, was
by taking first of all the submultiple which, when multiplied by
the original denominator, should be as nearly as possible 2
(eg. $x7=1]), and then adding the remainder. But this
process is clearly not employed with most of the distributions
(e.g. & is given as 4 J; o instead of § 1}y etc). This

neglect of the most simple and obvious analogies is observable

and this formula he

1 Eisenlohr, p. 150.
2 The subject is most carefully ex-
amined by Cantor. If p be a prime

number, then 1%[ is a whole number,

and ?— 1 +1_
P p+l. p+l
o g xXP
prime denominators occurring in the
G. G. M.

, but of 24

table, only five are treated on this
plan. So again if p and ¢ are odd

numbers, then P—;—q is & whole number
2 1
ANd — = c———— | e—— -Onl
pPxq pPt+q P+q v
qx_z' pX P)

two denominators, out of the forty-
nine, are treated on this principle.

2
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throughout the table and we must conclude that it was compiled
empirically, probably by different persons and at different times,
certainly without any general theory.

13. Immediately after the table, Ahmes gives six calcula-
tions, unfortunately mutilated, showing how to divide 1, 3, 6, 7,
8 and 9 loaves respectively among 10 persons’, and then follow
17 examples of segem calculation, that is, of raising fractions by
addition or multiplication to whole numbers or to other
fractions®.  For this purpose a common denominator is chosen,
but not necessarily one which is divisible into a whole number
by all the other denominators. Thus, in the problem to increase
1 4 4 o 7% to 1, the common denominator taken is evidently
45, for the fractions are stated as 11}, 5§ §, 44, 13, 1. The
sum of these is (23} 1 §) (). Add to this } + /; and the sum
is 3. Add } and the desired 1 is obtained. From other
examples here and elsewhere in the book it is plain that
Ahmes did not use direct division. If it was required to raise
a by multiplication to 4, his plan was to multiply a until he
found a product which either was or was nearly b. Thus in
the example, numbered by Eisenlohr (32), where 1} } is to be
raised by multiplication to 2, he finds on trial that 1} } x 1} {4
produces 2§3.  The difference, {3;, between this product and 2
is then separately treated®.

14. After this preliminary practice with fractions, Ahmes
proceeds to the solution of simple equations with one unknown®.
Eleven such are given, expressed, for instance, as follows,

(no. 24) ‘Heap, its Tth, its whole, it makes 19 (i.e. $+ 2z =19).

In this particular case, Ahmes goes on, in effect, to state

1 Eigenlohr, pp. 49—53. In these
examples, the denominator is con-
stant, as, in the first table, the numer-
ator.

2 Eisenlohr, pp. 53—60.

8 It should be mentioned that Ahmes
does not multiply directly with a high
number but proceeds by many easy
stages. In order to multiply by 13,
for instance, he multiplies by 2, then
(doubling) by 4, then (doubling) by 8

and adds the necessary products.
Cantor, Vorles. 1. pp. 31, 32, and 41.

4 The unknown quantity is called
hau or ‘heap.’ In these examples &
pair of legs walking, so to say, with or
against the stream of the writing, are
used as mathematical symbols of addi-
tion and subtraction. Three horizontal
arrows indicate ‘difference’ and a sign
< means ‘equals.” Cantor, pp. 32, 33.
Eisenlohr, pp. 22—26.

-
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8717 =19: divides 19 by 8 and multiplies the quotient (2} §) by 7
and so finds the desired number 164 4, but he has also various
other methods of treating the two sides. For instance, in
no. 29, where ultimately §$ = =10, he first finds the value of
3% as 1} {; and then multiplies this by 10, so as to find
#=134". These equations are followed by the table of
Egyptian dry measures, and then are added two examples of -
Tunnu- or difference-calculation, i.e. of divisions according to
different rates of profit. The examples are ‘ Divide 100 loaves
so that 50 go to 6 and 50 to 4 persons,’ and ‘divide 100 loaves
among 5 persons, so that the first 3 get 7 times as much as the
other 2. What is the difference (funnu)?’ After this, the
writer passes to geometry, but he recurs at the end of the book
to these algebraical problems and gives about twenty more
examples of the same kind. Most of them are simple, but in at
least three Cantor sees evidence that Ahmes was acquainted
with the theory of arithmetical and geometrical series. The
solution which he gives of the second problem above quoted is
as follows: ‘the difference is 5% : 23, 174, 12, 63, 1. Multiply
by 13 : 38, 294, 20, 103 4, 13" The series first given amounts
only to 60, and each of its terms must be multiplied by 1%, in
order to produce® the requisite sum 100. The difference 5}
must have been found from the equation

a+(a—b?7+(a—2b)=(a—3b)+(a—4b), .

whence 11 (@ — 46) = 2b and b = 5} (a — 4b). Ahmes then assumes
(a —4%) =1, and so by experiment findsits true value. Another
example (no. 64) is ‘Ten measures of corn for 10 persortz. The
difference between each person’s share and the next’s is th of
a measure” The solution runs: ‘I find the mean, 1 measure.
Take 1 from 10: remainder 9. Halve the difference, ie. .
Take it 9 times, that gives you } {5 Add it to the mean.
Deduct 4th of a measure for each person so as to reach the end.’

1 Other examples in Cantor, pp. stance of a ‘falscher ansatz,’ a falsa
32—34. positio or ‘tentative assumption,’ on
2 Upon this Cantor (Vorles. p. 36) which see below § 70. n.
remarks that it is the first known in-
2—2
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These consecutive sentences mean, in modern algebraical form,
‘Find 2. Find (n—1). Find3. Findlx(n-1). Addto
n 2 2 n
% (n—1),’ ie. these directions imply a knowledge of the formula
for finding the sum or the first term of an arithmetical progres-
sion, The evidence, however, for Ahmes’ knowledge of
geometrical series is confined to the fact that in one example
(no. 79) he states such a series and calls it a ‘ladder’ (Sutek).

15. One might naturally expect that a nation, which at
8o early a date had acquired so much proficiency in arithmetic,
would in another thousand years make much further progress
or would at least discover and begin to remove the obstacles
which prevented such progress. But the Egyptian intellect,
like the Chinese, seems to have been rather shallow, and the
ancients themselves, who were indebted to Egypt for the
rudiments of many sciences, observed with surprise that no
greater advance was made in that country. In geometry, for
instance, it is certain that the later Egyptians added nothing
whatever to the learning of Ahmes’ day, and though as to
arithmetic there is little or no direct evidence, yet two facts
raise a presumption that Ahmes’ book represents the highest
attainment of Egypt in that science. First, no improvement
was made in Egyptian arithmetical symbolism, and secondly,
the Greeks did not derive directly from Egypt any more
arithmetical learning than is given by Ahmes. This latter fact
renders it unnecessary to pursue further in this place an
inquiry into Egyptian arithmetic, but it is probable, never-
theless, as will be seen hereafter, that Egyptians, educated in
Greek learning, made some important additions to Greek
mathematical methods.

16, The theories suggested and the facts adduced in the
foregoing pages may be shortly summarised as follows. Primitive
peoples, when they have learnt to generalise, begin to learn to
count. They commence counting with groups of two or three
things only but soon arrive at counting five. When they reach
this limit, they at once begin to use the fingers, or the fingers
and toes, as the means and basis of calculation and are hence-

e —————
—

—-————

—



EGYPTIAN ARITHMETIC. 21

forth committed to a quinary or denary or vigesimal scale.
The gestures used in finger-counting suggest names for five
and the higher units, and with such names and with the use of
the fingers it is possible to attain a fair dexterity in calculation
with whole numbers. It is not so easy, however, to find names
or symbols for fractions, but the difficulty here is very much
reduced if a constant numerator or a constant denominator be
adopted, and one or the other of these devices was, for more
than one reason, employed by all nations which ever got as far
as the arithmetic of fractions. It is evident, nevertheless, that
fractions were at first and remained a stumblingblock to
calculators: for the oldest extant collection of arithmetical
examples is chiefly devoted to them and the latest Greek
writer on arithmetic still uses the ancient devices for expressing
them. Such are the antecedents of Greek arithmetic, so far
as they can be discovered from the evidence of the Greek
language and of the usages of later Greek calculators. It
cannot be doubted, however, that Greece received directly a
good deal of arithmetical learning from Egypt, but this, at
its best, can hardly have dealt with more abstruse subjects than
the solution of simple equations with one unknown and some
portions of the theory of arithmetical and geometrical series.



PART II. GREEK ARITHMETIC.

-CHAPTER III.
GREEK CALCULATION. Logustica.

17, A distinction is drawn, and very naturally and pro-
perly drawn, by the later Greek mathematicians between dp.6-
pntwey) and NoyiaTikn, by the former of which they designated
the “science of numbers,’” by the latter, the ‘art of calculation®.’
An opposition between these terms occurs much earlier and is
frequently used by Plato, but though Aoyigrikn can hardly
mean anything but ‘calculation,’ it is not quite clear whether
apbunricy then bore the sense which it had undoubtedly
acquired by the time of Geminus (say B.c. 50). That it did
s0, however, is rendered pretty certain by many circumstances.
It is probable, in the first place, that the Pythagoreans would
have required some variety of terms to distinguish the exercises
of schoolboys from their own researches into the genera and
species of numbers®. In Aristotle® a distinction, analogous
to that between the kinds of arithmetic, is drawn between
yewdaiala, the practical art of land-surveying, and the philo-
sophical yewuerpla. Euclid, who is said to have been a
Platonist and who lived not long after Plato, collected a large
volume of the theory of numbers, which he calls dpifunTicy
ounly and in which he uses exactly the same nomenclature and
symbolism as we find in those passages where Plato draws
a philosophical illustration from arithmetic*. It may therefore
‘be assumed that Noyioricy and dpiBuntiry covered, respec-

1 See esp. Geminus cited by Proclus, the needs of merchants,” with which
Comm. Eucl. (ed. Friedlein), p. 38. comp. Plato, Rep. 525 c.
2 Thus Aristoxenus (apud Stob. Ecl. 3 Metaph. 11. 2, 26.

Phys. 1. 19. c. 2 ad initium) says that 4 Cf. Euclid vi1. with Plato, Theaet.
DPythagorasfirst raised dpifunricn ‘above 147, 148, or Rep. 546 c.
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tively, the same subjectmatter in Plato’s time, as afterwards
and since he uses these terms casually, with no hint that they
were novel, we may infer that the distinction between them
dates from a very early time in the history of Greek science and
philosophy?.

But though the opposition of apifuntics and NoyioTikr is
as clear as that of theory to practice or science to art, an
historical account of either would necessarily involve frequent
reference to the other. Just as many of the rules of modern
arithmetic are proved by algebra, so with the Greeks the rules
of proportion, the rules for finding a greatest common measure
and the like were discovered by and belonged to dp:BunTikn,
while the discovery of prime, amicable, polygonal numbers etc.,
which are part of the subjectmatter of @piBunTissj, is obviously
due to induction from the operations of Aoyiaruer. It is, however,
desirable and even necessary to keep the two apart, for the
record of Greek arithmetical theory is far fuller and more exact
than that of Greek practice and, besides, the ‘symbolism of the
former was entirely distinct from that of the latter. The two
departments, therefore, Aoyiariks) and apilfuntiks, will be kept
separate in the following pages, but it is to be premised that
probably Greek logistic, or calculation, extended to more difficult
operations than can be here exhibited and that probably Greek
arithmetic, or theory of numbers, owed much more to induction
than is permitted to appear by its first and chief professors.

1 The Platonic passages may be
here mentioned. In Gorg. 451 B ¢ dp*
and \oy. are opposed, but both are
described as 7éxpa:, dealing with ‘odd’
and ‘even,’ the special aim of \oy.
being to find out quantity, both ab-
solute and relative. In Euthyd. 290
B C \oy. is opposed to some philo-
sophical use of numbers, not there
named. But in Rep. 525 c»p and
Philedb. 56 o E, a distinction is drawn

. between popular ap. and Aoy. together
and the philosophical species of both,
. the basis of the distinction being that
the former use unequal and dissimilar
units, while the latter use equal units,

contemplated absolutely. The difficulty
of course is to perceive what Plato
meant by popular dp. and philosophical
MNoy. It seems to be a satisfactory ex-
planation to suppose that Plato was
here thinking of those rules of \oy.
which are proved deductively (popular
dp.) and those doctrines of ap. which
are proved inductively (philosophical
Aoy.). Thus the proportion 2 apples :
1 obol :: 6 apples : 3 obols is & piece
of popular apfunricy; the fact that
‘all the powers of 5 end in 5’ (e.g. 25,
125, 625, ete.), is a piece of philo-
sophical Noyrrixy.
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18. In a historical account of ordinary Greek calculation,
the first subject which demands attention is the customary
symbolism. This also is the subject which ought to be capable
of most satisfactory treatment, for here the record, if there is
any at all, can hardly be deceptive: and this again is the most
important subject, for a good symbolism is itself suggestive,
while a bad one stifles the ingenuity, and a nation’s arithmetical
reputation may be made or marred by the written forms with
which it represents numbers.

At the time when the inquiry into the prehistoric develop-
ment of Greek logistic must perforce be abandoned, we have
found the Greeks in possession of a complete numerical nomen-
clature, with a decimal scale, and accustomed to use the fingers
or pebbles (Yrfdoc) as aids to calculation. These symbols were
no doubt at first used, and continued always to be used, in the
most primitive way, each finger or stone representing a single
unit’. But the progress of commerce and the increasing
adroitness of Greek merchants introduced far more complex
conventions into the use of fingers and pebbles, and though it
is probable that these improvements were really subsequent to
the invention of some sort of written symbols, yet the antiquity
of the instruments themselves and the narrow limitations of
their use render it desirable that they should be described first,
before proceeding to the history of written signs.

19. A mediaeval Greek, one Nicolaus Smyrnaeus (called
also Rhabda or Artabasda), in a work entitled éx¢pacis Tod
SaxTulirod uérpov, written probably in the 13th or 14th
century?, describes fully the finger-symbolism which was in use
in his time and probably for some fifteen hundred years before.
On this system, the operator held up his hands, so that the

1 Herod. v1. 63, 65. Arist. Problem.
XV.

2 It is printed in Schneider’s Eclog.
Phys. 1. p. 477, also by N. Caussinus
in his Eloquentia Sacra et Humana,
Bk. 1x.ch. 8, pp. 565—568 (Paris, 1636),
and elsewhere. See Roediger’s article
in Jahresb. der Deutsch. Morgenlind.
Gesellsch. for 1845, pp. 111—129.

Roediger, who has been followed by
many writers, supposed that Nicolaus
Smyrnaeus was of the 7th or 8th
century, but Dr Giinther (Vermischte
Untersuch. zur Gesch. der Math. 1876)
has lately discovered him to be & con-
temporary of Manuel Moschopulus, a
much later writer,

S m——
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fingers were erect, the palms facing outwards. The 3rd, 4th and
5th fingers (to use the German description) might be éxres-
vépevoe or straight, cvoreA\ouevor bent’ or ‘ half-closed, xAwo-
uevor or ‘closed’ The subsequent gestures may be thus
described :

(@)

On the left hand :

for 1, half-close the 5th finger only:

»
»
»
”»
»
»
»

»

-0

2, » the 4th and 5th fingers only:

3, . the 3rd, 4th and 5th fingers only:
4, the 3rd and 4th fingers only :

5 the 3rd finger only:

6, the 4th finger only :

7, close the 5th finger only :

8, , the 4th and 5th fingers only:

9, , the 3rd, 4th and 5th fingers only.
The same operations on the right hand gave the

thousands, from 1000 to 9000,
(c) On the left hand :
for 10, apply the tip of the forefinger to the bottom of the

”»
»
”
»
»
»

»

”»

@

thumb, so that the resulting figure resembles &:

20, the forefinger is straight and is -separated by the
thumb from the remaining fingers, which are
slightly bent:

30, join the tips of the forefinger and thumb:

40, place the thumb behind (on the knuckle of) the
forefinger :

50, place the thumb in front (on the ball) of the fore-
finger:

60, place the thumb as for 50 and bend the forefinger
over it, so as to touch the ball of the thumb:

70, rest the forefinger on the tip of the thumb:

80, lay the thumb on the palm, bend the forefinger

~ close over the first joint of the thumb and

slightly bend the remaining fingers:

90, close the forefinger only as completely as possible.

The same operations on the right hand gave the

hundreds, from 100 to 900.
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Nicolaus himself does not give signs for numbers above
9000, but Martianus Capella, a writer of the 5th century, says
(De Nuptus, Lib. viL. p. 244 of Grotius edn. 1599) ‘nonnulli
Graeci etiam pvpia adjecisse videntur’ by means, apparently, of
‘quaedam brachiorum contorta saltatio’ of which he does not
approve. The motions were probably the same as those de-
scribed by Bede in his tract ‘De loquela per gestum digitorum®’
Different positions of the left hand on the left breast and hip
gave the numbers from 10,000 to 90,000: the same motions

_with the right hand gave the hundred thousands and the hands
folded together represented a million.

20. The finger-symbolism here described was in use, in
practically the same form, in Greece and Italy and throughout
the East certainly from the beginning of our era’ but there is
unfortunately no evidence as to wkere or when it was invented.
By far the oldest passage in which any reference to it may
be supposed to occur is Aristophanes, Vespae, 1L 656—664,
where Bdelycleon tells his father to do an easy sum, ov ¥¢ois
@A\ dmo yepos. “The income of the state,” says he, “is nearly
2000 talents: the yearly payment to the 6000 dicasts is only
150 talents.” “Why,” answers the old man, “we don’t get a
tenth of the revenue.” It is clear, from this reply, that the
‘easy sum’ in question amounted only to dividing 2000 by 10 or
multiplying 150 by 10, an operation which does not require the
more elaborate finger-signs. Failing this passage, there is

1 Opera, Basileae, col. 171—178. Gesch. des Rechenunterrichts (Jena,

. The material part is given by Roediger.
The finger positions described by Bede
differ slightly, in one or two cases,
from those of Nicolaus Smyrnaeus,
and both again vary slightly from
those used in the East, where the
units and tens were represented (not
always, v. the Arabic poem in Bulletino
Boncompagni, 1863, 1. pp. 236, 237) on
the right hand and not on the left.
The reader is referred to Roediger’s
article above mentioned. Plates will

- be found in Journal of Philology, Vol.
1. p. 247, in Stoy’s pamphlet Zur

1876), in Neue Jahrbd. fiir Phil. u. Pid.
15thsupplbd. p. 511, and in manyother
places. A large collection of references
is given by Prof. Mayor in his note to
Juvenal, Sat. x. 248. More, esp. to
late Jewish and Arabic writers, in
Steinschneider’s Bibliogr. Hebr. Vol.
XxI. pp. 39, 40.

2 The same or something like it is
still used by Persian merchants. See
De Sacy in Journ. Asiatique, Vol. 2,
and Tylor, Primitive Culture, 1. p.
246, n.

- —e.
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another possible reference, equally doubtful, to this system
of finger-symbolism in Plautus, Miles Gloriosus, 11. 3, but the
first clear references to it occur in Plutarch and authors of his
time'. Pliny, indeed, says that there was, in his time, a statue
of Janus, erected by Numa, of which the fingers indicated 365
or 355 (the reading is doubtful, cf. also Macrobius, Conv. Sat.1.9),
the number of days in the year, but no importance can be
attached to such a statement. All that we can allege of the
system is that it is mentioned only in later classical literature,
that it then appears to be of universal diffusion and that
it was far more persistent in the East than in the West®. If we
oconsider that such a system can have been of no use in calcu-
lation, save as a memoria technica for some number with which
the mind of the reckoner was not immediately engaged—if, in
other words, we consider that such a system was useful to
represent numbers but not to calculate with them, then it
becomes probable that it was invented in the first instance as a
secret means of communication between merchants® or as a
numerical gesture-language between persons who were ignorant
of one another’s tongues. Phoenician and Greek commerce
would make it widely known: the later diffusion of Latin and
Greek and the larger use of writing would ensure its gradual
extinction in the West, but it would still preserve its original
utility in the motley and ignorant crowds of the Eastern bazaars.

21. In reckoning with pebbles, no doubt at first each
pebble represented one of the objects to be counted, the advan-
tage of course being that space was saved and the memory
relieved by a good coup d’'eil, for it will be conceded that it is
casier to count 100 pebbles than 100 cows or to find 10 times

.1 Plut. Apophth. 174b. Pliny, Hist. stood it afterwards (see ibid. p. 313).

Nat. xxxiv. 8. 83. For other reff. see
Prof. Mayor’s note on Juv. x. 249,
above referred to, or Dean Peacock’s
article drithmetic in Encycl. Betro-
politana.

2 Erasmus, in his ed. of Jerome (111
25 B ¢) published in 1516, confessed
his ignorance of the finger-symbolism
referred to by the saint. He under-

3 The Persian system mentioned by
De Sacy and Tylor (see note above) is
used only in secret, when for instance
a dragoman wishes to have one price
with the seller and the other with his
master. See also the opening words
of Roediger’s article. Another sugges-
tion as to the origin of this symbolism
will be made below, § 25.
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10 in pebbles than in sacks or such other articles of commerce.
So soon as the heap contained one pebble for each object,
the calculator would begin afresh and by arranging the pebbles
in groups of 10, arrive at the total and the name of the total,
without having his attention embarrassed by petty circum-
stances’. This use of pebbles in mere counting, where each
represents a real object, would naturally precede their use
in calculations where some pebbles would represent imaginary
objects. A great number of pebbles could be dispensed with if
the -operator, on completing a group of 10, laid aside a large
pebble or a white one and then began again with the pebbles of
the original group. He would soon find that there would be no
need for a variety of pebbles, if he always laid pebbles repre-
senting 10 in a separate place from those representing units.
In this way, he would arrive at a neat visible symbolism for a
high number, which would greatly facilitate operations in the
four rules of arithmetic. Such an advanced pebble-symbolism
the Egyptians and the Chinese had from a time ‘whereof
the memory of man runneth not to the contrary’ It can
hardly be doubted that they invented it independently and
imparted it to the nations around. Wherever and whenever
invented or borrowed, the Greeks and Italians had it also and
used it by preference for all ordinary calculations down to the
15th century of our era. The evidence for its use, however, is
singularly late. Homer and Pindar do not allude to it, but it is
plain that it was in regular use by the 5th century B.c., though
the authorities even of that time do not state explicitly how the
calculation with pebbles was conducted®. It cannot be doubted,

1 In a London night-school I have
often seen a boy, in order to multiply
say 12 by 10, make 120 dots on his
slate and then count these. What he
wanted was the name of the total and
he did not always get this right. With
primitive man, I imagine, the use of
pebbles would not arise till numeral
names had partly superseded finger-
counting. If, for instance, a savage
sold something for 50 cows, he would
indicate his price by naming it, and

would then, with the aid of pebbles,
ascertain whether he had got the price
he bargained for. Thus the Mexicans
acquired a set of numerals, used in
counting animals and things, which
runs centetl, ontetl, eto. or ¢ one-stone,’
‘two-stone,’ etc. Other similarexamples
are cited in Tylor, Early Hist. p. 163.

3 Diogenes Laertius (1. 59) ascribes
to Solon a saying that courtiers were
like the pebbles on & reckoning-board,
for they sometimes stood for more,

c— - —_
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however, that the pebbles were arranged in lines, either hori-
zontal or perpendicular, and that the pebbles on the first line
represented units, those on the second tens, those on the third
hundreds and so on. How many lines there were and how
many pebbles might be placed on each there is no evidence to
show. It may be added that fractions in the form of ‘sub-
multiples’ would not present any difficulty when the system of
local values for the pebbles was once introduced. If for instance
a line were appropriated to pebbles of the value of 44, it would
be as easy to discern that 12 pebbles on that line are equal in
value to 1 on the urits line, as to perceive that 10 pebbles on
the unit line may be replaced by 1 on the tens line. But since
a great many lines devoted to fractions would have been incon-
venient, probably a few lines only were devoted to certain
selected fractions, and all other fractions were reduced as nearly
as possible to terms of these.

22. The surface on which such lines were drawn, or the
frame on which strings or wires were stretched, for the purpose
of pebble-reckoning, was called by the Greeks &Ba§ or aBaxtov.
This name seems to point to the common Semitic word abag
meaning ‘sand,’ and it is said that a board strewn with sand,
on which lines might be drawn with a stick, was and still is a
common instrument for calculation in the East. It is the more
desirable also that some Oriental origin for the dBaf should
be found because, in late Greek writers, we find a general
tradition that Pythagoras, who certainly studied out of
Greece, was the inventor or introducer.of the instrument. It
cannot, however, be considered that the Semitic origin of
dBak is rendered at all probable by such considerations. The

sometimes for less. This, if gennine ed as they wrote from right to left, the

(butef. Polyb. v. 26, 13), is the first and
also one of the most explicit references
to the pebble-symbolism. If this be
doubted, then the earliest authentic
reference is probably a fragment of
Epicharmus (ed. Ahrens, 94, 8): then
Aeschylus (4dgam. 570), then perhaps
Herodotus (11. 36), who says that, in
pebble-reckoning, the Egyptians count-

Greeks from left to right. It may be
that the abacus with the Greeks was
not 8o old as writing, for the Greeks

did not originally write from left to

right, but either from right to left or
Bovarpogndor. They may have counted
from right to left, but can hardly have
counted Bovorpopndéw.
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word itself in the sense of ‘reckoning-table’ is not used for
certain in any writer before Polybius (aBdxiov in v. 26, 13)
who belongs only to the 2nd century B.c. It is, however, used
in the sense of plain ‘board’ in many different connexions*.
Assuming it to be true, also, that the Semites did generally use
a sanded board for their calculations®, it does not appear that this
was called abag, and the step from Semitic abaq ‘sand’ to Greek
aBaf a ‘board’ remains practically as wide as before. Lastly,
the tradition which connects the @Ba§ with Pythagoras as well
as that which connects him with a Semitic people, is so late and
belongs to so imaginative authors® that®no reliance can be
placed upon it. Of course, a few lines drawn with a stick
in the dust and a handful of stones were as efficient an
instrument for calculation as was needed and must always have
been used by Greeks upon occasion. Such an vmpromptu
ledger would indeed frequently be preferable 6 a more
elaborate device, since it could be adapted to different fractions,
different monetary scales etc, while a permanent machine
would probably be restricted to one scale and a few selected
fractions. But whether such a scheme of lines drawn on the
ground could ever in Greek have been called dBaf there is
no evidence to show.

23. It must be admitted, also, that hardly anything is
known of the normal Greek dBaf, using that word in the sense
of a reckoning-board with permanent lines drawn on it and
possibly permanent balls or pebbles attached to it. Three types

1 The word seems first to ocour in
the sense of ‘trencher’ in Cratinus,
KXeoB. 2 (cit. Poll. x. 105). Hesychius
says it was a synonym for wdxrpa
‘trough.’ Pollux also cites dBdxcov
from Lysias, without stating its mean-
ing. It is oddly accented.

2 The evidence adduced by Cantor,
Math. Beitrige, p. 141, is not satis-
factory on this point, but the fact is
hardly worth disputing. A sanded
board was certainly used by Greek
geometers, but is nowhere attributed
to arithmeticians. Cf. Cic. Nat. Deor.

2, 18, 48. Tusc. 5, 23, 64, and other
quotations collected by Friedlein,
Zahlz. § 76, pp. 52, 3. See also
Cantor, Vorl, pp. 109—111. It seems
to me not unlikely that dBaf was a
childish name for the board on which
the alphabet was written and from
which the children read their Byra
d\ga Ba, Bira € Be, eto. (Athenaeus,
x. 453). "ABat would be the ‘ABC
board,’ the termination being chosen
by analogy from =lvaf.

3 Iamblichus, for instance, and the
pseudo-Boethius, cited post.
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at least.of such a machine are well known. One of these is the
Russian tschotii, in which each wire carries 10 balls!, Some
advance is shown in the Chinese suan-pan?, where the whole
field of the frame is divided by a transverse string: each wire
on that part of it which is below this string carries 5 balls:
and on the part which is above 2 balls, each of which is worth
5 of those below. On both these machines, apparently, it is
possible and usual to remove balls from one wire to another
as the case may require. But the third type is the Roman
abacus, which, at any rate in its highest development, was
closed, so that balls or buttons could not be removed from the
wire or groove in which they were originally placed. A few
specimens of this sort, constructed with grooves in which
buttons (claviculr) slide, are still preserved. One of them which
is figured in Daremberg’s Dictionnaire des Antiquités (s.v. abacus)
and is in the Kircher Museum at Romne, may be roughly
represented thus:

bl

J
Z

Leaving out of consideration, for a moment, the two grooves on
the extreme right, it will be seen that the remaining 7. contain
buttons representing units, tens, etc. up to millions. The lower

1 The balls are differently coloured, 2 Sudn =reckon : p’hudn =board.
some of the 10 being white and some Goschkewitsch, an authority quoted by
black. The instrument was intro- Hankel, Zur Gesch. der Math. p. 54,
duced into the schools of Eastern says that ¢‘the practised Chinese
France after the great Russian cam-  reckoner plays with the fingers of the
paign. It is common enough in right hand on the suan pan as on a
Pestalozzian schools. See further musical instrument and grasps whole
Cantor, Math. Beitr. pp. 129, 130. numerical chords.”
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grooves contain 4 buttons each, the higher 1 each, which
represents 5 of the same value as those in the lower corre-
sponding groove. The letters indicating the values of the
buttons are obscure above C, but are plain enough on another
specimen, which once belonged to one Welser, in whose works
published at Nuremberg in 1682 there was given a drawing of
his abacus (pp. 442 and 819)*. The sign O which distinguishes
the penultimate groove on the right, stands for uncia, and as
there are 12 wunciae to the as, here the lower portion of the
groove has 5 buttons for 5 wunciae, the upper 1 button for
6 unciae. The signs appended to the last groove on the right
are S for semuncia (g4th of an as): O for sicilicus (5th of an as):
and Z for sextula (y5nd of an as). It is not, however, very clear
why there should be 4 buttons in this groove or what was
the value of each and how, if of different values, they were
distinguished from each other. Welser’s abacus, which in other
respects is exactly similar to this, had three separate grooves
for these fractions, the first containing 1 button for the
semuncia (g4th): the second 1 button for the sicilicus (Fsth):
the third 2 buttons, each representing a sextula (y4jnd). These
grooves therefore together (and no doubt the last groove of the
Kircher abacus) represent 4§ths of an uncia® Both abact are
capable of representing all whole numbers from 1 to 9,999,999
and the duodecimal fractions of the as in common use. Since
such an abacus could seldom represent more than one number
at a time, it is probable that, in calculating with it, the larger
of the two numbers to be dealt with would be represented on
the table. The smaller would be mentally added or subtracted

1Reproduced by Friedlein in Zeitschr.
fir Math. u. Physik. Vol. 1x. 1864,
Plate 5. Seealso p. 299. A descrip-
tion of this abacus is given also in
Friedlein’s Zahlzeichen, p. 22, § 82.
A figure of it is given in Darem-
berg, Dict. des Ant. 8.v. arithmetica.
M. Ruelle, the writer of the article,
says that 4 Roman abaci (which he
names) are known, but it does not
appear that they are all now in exis-
tence. i

3 This statement, which is taken
from Friedlein, seems unlikely. On
theanalogyof all the preceding grooves,
we should expect the table to conclude
with jths of the uncia, and not }§ths.
It will do so if the last two buttons be
taken to represent, not sextulae, but
dimidiae sextulae, the ordinary sign of
which is easily to be confused with
that of the sextula. See Friedlein,
Zahlz, Plate to § 48.
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as the case may be, and the buttons would be successively
altered so as to represent the sum or remainder. Multiplica-
tion can only have been performed by repeated additions, and
division by repeated subtractions®,

24. It will be seen that the types of abacus now known
are not very diverse from one another, and there is no cause to
be greatly distressed by our ignorance of what the Greek dBaf
was. A certain table, however, which may be an dBaf, was
discovered in 1846 in the island of Salamis and this, which can
be partly explained by reference to the Roman instruments,
‘must serve to assure us that there cannot have been any great
superiority in the Greek &Baf at any time. This “Salaminian
table ” may be figured thus®:

XMPHEAMHCTX

==
=

XLIHUVeHul Xed L
XLIHUVeHulX

1 Unless indeed the abacus is used
merely a8 a memoria technica. Thus
the Chinese, in dividing, first represent
the dividend, then, breaking it up as
the remainders successively are ob-
tained, place, on the wires from time to
time vacated, balls to represent the suc-
cessive ciphers of the quotient.
actual division is done in the mind by

G. G. M.

The .

use of the multiplieation-table. Thus
Goschkewitsch (cited by Hankel uti
sup.) says many modes of division
have been proposed for the Russian
tschotil, but they all involve the uge of
a second board or of a board and
paper. :

3 There is a drawing of it in Da-
remberg 8.v. Abacus: also in Revue

3
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It is made of marble and is very large, being about 5 ft.
(1'5 metres) long by 24 ft. (75 metre) wide. The letters upon
the margin are easily explained. | is the customary Attic sign
fora drachma. Theletters which, in the table, stand on the left '
of this sign are II for 5 (mévre), A for 10 (8éka), P for 50, H for
100 (éxatdv), M for 500 and X for 1000 (y/\coc) in the ordinary
Attic style. To these are added, in one row, the signs R for
5000 and T for rdAavrov or 6000 drachmae. The signs which
stand to the right of | in the table are the fractions of the
drachma, viz. | for }th (obol), C for {4th (§ obol), T* for gth
(retaprnpopiov of the obol) and X for yaAxods (jth of the
obol, gth of the drachma). The last three fractions, it will be
observed, when added together make jths of an obol, which is
the real unit of the table. On the principle of & Roman abacus,
this scale would be thus distributed :

C T X

EEXES]

Fo

But it will be seen that the lines of the Salaminian table do
not fall in with this arrangement. Here we have 11 lines, with 10
intervals, in one place: and 5 lines, with 4 intervals, in another.
If the table be really an &Baé, the simplest explanation is that

Archéolog. 1846, p. 296, where a very
minute desoription of the stone is
given by M. Rangabé. Another Greek
abaz is also figured on the Darius-vase
at Naples, The numerals on it are
of the same kind as those on the
Salaminian table and it is held by the

reckoner so that the columns are’
perpendicular to his body. But it is
too small and roughly drawn to furnish
important information.

1 rerapryuoplor is Bockh's expla-
nation: M. Vincent proposed rpiry-
poplov,
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the 10 spaces at one part of the board contained stones repre-
senting values from a talent to an obol, in the order TRXMHE

ADF|: and the 5 spaces at the other part of the board contained
stones representing values from an obol to a chalcus, in the
order |, C, T, X. The transverse line would serve to distinguish’

two sums which were to be added together or subtracted one
from the other: or again, as in the Roman system, the numbers
compounded with [ might have been placed above this line.
The crosses on the line are merely aids to the eye in keeping
the various rows distinct. -~ Operations with fractions of the obol
would be separately conducted at the lower end of the table.
The table also being very large, perhaps two people would work
at it at once, or because it was heavy, it might be desirable to
use it from either side and therefore a table of customary values
would be repeated in various parts of the table. The received
explanation, however, of the use of the table is different from
this, The well-known archaeologist, M. Vincent®, considered
that the table served two purposes: that it was an &8af, and
also a scoring board for a game something like tric-trac or back-
gammon, When it was used as an &Baf, fractions of the
drachma were calculated at the end of the table on the 4 spaces
there reserved: sums from the drachma to the talent were
calculated on five of the other ten spaces, and the remaining
five were used for calculations from one talent to 10,000 talents.
It is an objection to this theory that a Greek merchant or tax-
gatherer can seldom have had occasion to calculate above a few
talents, since the whole revenue of Athens in her prime was not
2000 talents®. But the suggestion which M. Vincent adopts
from M. Rangabé®, that the Salaminian table was also a scoring-
board for some kind of werrela is extremely attractive. Pollux,
who vaguely describes two kinds of this game (1X. 97), says that
each player had 5 lines and 5 counters, and that the middle
line was ‘sacred’ (iepa rypappn). M. Rangabé therefore sug-

1 Revue Archéol. 1846, p. 401 sqq. he must have spent 10 talents in
. 3 Bee, however, Theophrastus, Char.  charity.
VI. (ed. Jebb), where the boastful man 3 Itid. p. 295 8qq.
reckons, on just such an abacus, that
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gested that the lines marked with a cross on the table are really -

the lepal ypappal, and that two players, sitting opposite to one

another, would play at some kind of backgammon, each player-

confining his counters to his own side of the transverse line.
The counters were moved according to throws with dice, as in
backgammon. Anyone, who is acquainted with the latter
game, will be able to suggest two or three very good forms of it
which might be played on this table and in which the lines
marked with a cross should be truly iepal, either because no
‘blot’ might be left there or because they should be an asylum
where no solitary wanderer could be ‘taken up’ The 5 lines
at the opposite end of the table would serve for some less
elaborate merrela or for a third player or might, in some way,
have been used to determine the values of the throws.

25. It will be seen, from the preceding observations, that our
knowledge of the abacus of antiquity is derived entirely from
Roman sources, and that the mode in which it was used must
be inferred simply from the appearance of extant instruments
and the practice of modern nations. It would seem, however,
that the use of the abacus was combined with the more
advanced finger-symbolism above described. Thus the Emperor
Frederick the Second (Imp. A.D. 1210—1250) in a treatise on
the art of hawking’, says that the hands must, on various
occasions, be held in certain positions, such as abacistae use for
representing certain numbers in accordance with Bede’s or
Nicolaus’ instructions. Now since only one number could, as a
rule, be represented at a time on the abacus, a calculator who
was operating with two high numbers, would require a memoria
technica of both, and it would be very convenient to represent
one on the abacus, the other on the hands. It is indeed

1 Reliqua Libr. Frederici II. (ed.
Bchneider 1. p. 1}02) quoted by Roe-
diger: “Replicet indicem ad extremi-
tatem pollicis et erit modus secundum
quem abacistae tenent septuaginta cum
manu,” with more directions of the
same kind. Thus also Leonardo of
Pisa (about A.p. 1200) in his Liber
Abbaci (ed. Boncompagni p. 5) says

that after mastering the apices (i.e.
the numerical signs used with the
abacus) the pupil must learn ‘com-
putum per figuram manuum secun-
dum magistrorum abbaci usum anti-
quitus sapientissime inventam.’ He
then gives the scheme after Bede.
Vide Friedlein, Zahlz. p. 56.
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possible, considering the lateness of all allusions to this finger-
symbolism, that it was originally invented as a companion to the

abacus.
26.

of Greek practical arithmetic.

A few-words only remain to be added on this branch

Western abacistae had intr

duced, certainly by the 10th century, a considerable improve-
mert in theuse of their instrument, which consisted in discarding
pebbles and substituting for them the Roman numeral signs or
the letters of the alphabet in order, so that thenceforth 525, for
instance, was represented by V. IL V. or EBE in the last three

columns of the abacus'.

At the end of the first book of the

Geometria, attributed to Boethius (who died A.D. 524) the
author states (Frledlems ed PP- 395—397) that Pythagorea.ns
used with the abacus certain nine signs which, he calls apices of
whlch he gives the forms. (The names are added apparently
by a later hand.) The forms are obviously the parents of our
own so-called Arabic numerals (except 0, which is not mentioned
in Boethius)®, and some of the names are also pure or nearly
pure Arabic: the forms are also practically identical with the
Gobar-numerals used by the Arabs of N. Africa in the 9th

century, which again are admittedly of Indian origin.

Upon

these facts an endless controversy has arisen among historians,
the questions in dispute being whether Pythagoras or any
Pythagoreans might. not have procured these signs from India
and used them secretly for their quasi-theosophical arithmetic®:
whether the later Alexandrians might not have obtained the

1 Gerbert (ob. 1003) sometimes uses
the Roman numerals, but generally
the apices. Boethius or rather a pseudo-
Boethius (Friedlein’s ed. pp. 426—429)
of a much later date mentions the use
of the alphabet (cf. Friedlein Zahlz.
pp. 54, 55, §§ 78—80). It will be ob-
served that with an abacus on which
numbers were represented by signs in
.appropriate columns, the four rules
of arithmetic could be performed pre-
cisely as we perform them. Addition,
subtraction and multiplication were
soin fact. Division, however, was not.

See Hankel, Zur Gesch. der Math. pp.
317—323.

2 It is doubtful whether the cipher
was at first used by the Western Arabs
among the Gobar-signs. It was intro-
duced to Europeans first apparently in
the book Liber Algorismi, a translation
of the work of Mohammed ben Musa
Alkh4rismi, made in the 12th century.
Gobar or gubér means ‘dust.’

3 This was Cantor’s opinion, Math.
Beitrige, p. 221 sqq., but in Vorle-
sungen, p. 610 and elsewhere he follows
Woepcke (see next note).
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signs from India or elsewhere and given them to the Italians on
the one hand, the Arabs on the other': and lastly whether the
passage in Boethius.is not a forgery®. It is sufficient here to
repeat, what is admitted by all parties that there is no evidence
in any Greek author that these apices were known to the Greeks :
that there is also no evidence whatever that the Greeks ever
used any written numerical signs with the abacus: that the
MSS. of Boethius containing the apices are certainly not older
than the 11th century: that no trace of such signs is to be
found elsewhere in any European writer before the end of the
10th century or thereabouts: that the Indian signs, from which
the apices are derived, seem to be not older than the 2nd or 3rd
century: that the Arabs themselves did not obtain the Indian

arithmetic and Indian numerals till the time of Alkhérizmi
(cir. A.D. 800) and that Arabian mathematics did not begin to
pass from Spain to other European countries till about the
time of Grerbert (ob. A.D. 1003). The mere statement of these
facts is surely sufficient to assure any reader that the connexion
of the Greeks with the apices, if not absurd, is purely con-
Jjectural and need not be discussed at length in a short history
of Greek mathematics®. If it were admitted that the Greeks
knew of the apices at all, there would still be no reason what-
ever to think that they ever used them in calculation.

27. The apices, it must be remembered, were used only
with the abacus. No writer, even of the middle ages, ever in
the course of his text exhibits a number in these symbols. If
he purposes to illustrate the method of division, he states his
example with Roman numerals, then draws an abacus and

1 Woepcke (Journal Asiatique, 1863,
1. p. 54 8qq.) suggests that the later
Alexandrians got these signs from
India: Theod. Henri Martin (dnnali
di matem. Rome 1863, p. 350 sqq.)
suggests that they got them partly
from Egyptian, partly from Semitic
sources,
. 3 This is Friedlein’s opinion, main-
tained in many articles. The most
convenient reference is to Zahlz. pp.
15—19, 23—26, 51—54, 66, 67. Still

later and on the same side is Weissen-
born, in Zeitschr. Math. Phys. xxIv.
(1879), Hist. Lit. Abth. Supplement-
heft, published also in Teubner’s A4b-
handlungen zur Gesch. der Math. Part
11. 1879. This latter writer rejects the
whole Geometria, not merely the arith-
metical passages at the end of Bk. 1.
and Bk, 1r.

3 Another brief discussion of the
apices question is given by Hankel,
pp. 323—328.
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inserts in it the necessary numbers with apices. Hence, closely
as apices upon an abacus resemble, and serve all the purposes of
our modern numerals, there is still a great gulf between the
two. The cipher is-yet to be invented before the abacus can be
discarded. It follows dgain, from the same fact, that whatever
be thought of the Greek acquaintance with apices, there can be
no doubt at all that these were never entitled to be described
as ordinary Greek characters for the numerals, They were not,
and could not have been, used in inscriptions or other writings, -
It remains to consider, in this place, what characters were used
in such documents. : )
28, It has been suggested above that probably, when the
use of the fingers in counting was first discovered, it required,
as in S. Africa at the present day, two men to count the higher
tens, three to count the higher hundreds and so on. A single
man, in counting say 40 or 60, would be apt to forget -how
many times he had counted his fingers through and would take
an assistant to record them, But he would soon find that he
could count high numbers by himself, if he kept some visible
record, to which he could afterwards return, of each group of 10,
- Suppose, for instance, that each time he had counted through
both hands, he pressed them on the ground, so as to leave an
imprint of his fingers. He would thus have a written record, in
groups of 10 perpendicular strokes’. Any other marks would,
of course, serve his purpose, but it is a curious fact that in all

1 In order clearly to represent the
arithmetical resources of primitive
man, I may as well state here what
I conceive to be & very early method
of counting. Suppose a man, who
has names for his fingers and knows
that all human beings have the same
number of fingers, desires to count
by himself 96 cows or other large
unmanageable objects. I suppose he
would first take a pebble for each cow
and seat himself before the heap of
pebbles. He would then take a pebble
for each finger up to 10, then press
his fingers on the ground : and would

repeat this process till he had exhaust-
ed the pebbles. The imprints of his
fingers would then shownineteen hands
and one finger over,or 9 men + 1hand
+1 finger, This he would call ‘ring
finger-men and right-thumb’ or by
some such name. The pebbles, the
fingers and the written marks are used
concurrently, but in time as his nomen-
clature became settled and his memory
improved, he would omit first one,
then two of the three symbols, and
would finally dispense with them all
and trust to his nomenclature alone.
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the most ancient specimens of any sort of writing, the units at
least are represented, not by dots or crosses or any other marks,
but by perpendicular strokes only. This want of variety
suggests that such strokes represent the fingers. The invention
of separate symbols for 10 and 100 would follow at a far later
time, The oldest known writings of the KEgyptians and
Phoenicians have such signs, but have no intermediate signs
(e.g. for 50 or 500). They repeat the unit-strokes up to 9: they
repeat the signs for 10 and 100 up to 9 times'. The ancient
Greeks, according to Iamblichus?®, did the same. It is probable
énough that such was the case, since an arithmetical written
symbolism may well suggest itself long before any other kind of
writing; but on the other hand, as some kind of writing is
necessary to explain to us the purport of arithmetical symbols,
and as the oldest Greek writings are of very late date and of the
most advanced art, we can hardly expect to find evidence in
support of Iamblichus’ statement.

29, It goes without saying that, in a very large proportion
of Greek inscriptions, the names of such numbers as occur are
written in full The oldest known compendious numerical
symbols are those which used to be called Herodianic signs.
The attention of modern students was first called to them by
one Herodianus, a Byzantine grammarian of the 3rd century,
who, in a passage printed. by Stephanus in the Appendiz
Glossariorum to his Thesaurus, declared that he had frequently
seen these signs in Solonic laws and other ancient documents,
coins and inscriptions. While Greek epigraphy was an unknown
science, this statement excited little interest, but it has since
been abundantly confirmed by the enormous mass of inscriptions
which the industry of scholars has, of late years, collected. In
this sort of numerals, a stroke | repeated not more than four
times, is the unit-sign par exzcellence and the other symbols are

1 See Pihan, Exposé des Signes de
Numération, ete. pp. 25—41, 162—
168.

3 In Nicom. Arithm. ed. Tennulius,
p. 80. An inscription from Tralles has
ereos || ||| || but Bockh suspects this to
be a forgery of late imperial times.

(See Franz, Epigr. Graeca, p. 847.
Bockh, C. I, G. no. 2919, Vol 11. p.
584.) Such forgeries were, of course,
not unusual when a city wished to
produce a documentary title to some
ancient privilege.
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merely initial letters of numeral names. [ (wévre) stands for
5: A (8éka) for 10: H (éxardv) for 100: X (yiAeoc) for 1000 :
M (pvpio) for 10,000, and there are further compendia P, [ ete.
for 50, 500 etc. as may be seen on the Salaminian table figured
above. From the frequency with which these signs occur in
Athenian inscriptions, they are now generally called Aftic. As
a matter of fact, no others are used in any known Attic in-
scription of any date B.c.' But they are by no means exclu-
sively Attic. They were used for instance in Boeotia, at first in
the forms of the local alphabet (thus M, V1, , ME, H, @, >, 1y
and afterwards, down to a late date, in: the Attic forms®. It is
probable, in fact, that these numerals were once universally
used in Greece but at present there is not enough evidence on
this point. They were at any rate known and used outside
Attica long after the alphabet came to be used for numerical
purposes. A great number of papyrus-rolls preserved at Hercu-
laneum, state on the title-page, after the name of the author,
the number of books in his work, given in alphabetic numerals,
and the number of lines in Attic numerals: e.g. 'Earuwcovpov mwepl
¢voews IE (dpif.) XXXHH. We might in the same way use
Roman numerals for the one division, Arabic for the other.
One author, who is presented with such a title page in these"
rolls, is a certain rhetorician called Philodemus, of Cicero’s time.
The papyri therefore cannot be older than 40 or 50 B.C. and
may be much later®,

mental evidence, therefore, as to the
early numeral signs, is very scanty.

1 In other words, no others occur in
Vols. 1. and 1. of the Corpus Inscr.

Atticarum.

3 See Franz, Epigr. Graeca, App. 11.
ch. 1, p. 348, Bockh, C. I. G. Vol. 1.
no. 1569 (p. 740 sqq.) and mno. 1570
(p. 750 8qq.) The latter -inscription
Bockh dates about 70 or 100 B.c. A
large majority of Greek Inss. (inclu-
ding all the oldest) do not contain
numerals at all. Inss. from places
outside Attica are very seldom older
than the 2nd century B.c. and are
mostly of imperial times. The monu-

The Herodianic signs are found, beside
Boeotia, in Arcadia with local pecu-
liarities (Lie Bas and Foucart, Inss. de
Peloponn. no, 34le): in Erythrae near
Halicarnassus about 250 B.c. (Rayet
in Revue Archéol. 1877, Vol. 33, p. 107
8qq.): and in Rhodes about B.c. 180
(Brit. Mus. Inss.), cf. Curtius in Bur-
sian’s Jahresb. for 1878.

3 See Ritschl, Die Alexandrinischen
Bibliotheken, pp. 99, 100, 123 note.
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30. But at some time which cannot now be certainly
determined, the Greeks adopted the practice of using the letters
of the alphabet in order as their numeral symbols, and this
style ultimately superseded the Attic in Attica itself and be-
came universal among Greek speaking peoples. The alphabet,
however, as used for numbers, was not the same as that used
for literary purposes, but contained some additions. The
following table will show clearly enough what the numerical

alphabet was:
a" B't ')", 8,: €= 1, 2,3, 4, 5.

.

*s =g,
&, n,0,0=17,8,9,10.
(e, B...... 9'=11,12...... 19.)

&, N, W, v, £, o, #' =20, 30, 40, 50, 60, 70, 80.
(xa', k', Na’y M3 etc.=21, 22, 31, 32 ete.)

* 0 =90.
P, 7, v, ¢, x, ¥, o' =100, 200, 300...... 800.
* 3 =900.

(pea’y pxB’ ete. =111,122 ete.)
a, B 1, 8, e ete.=1000, 2000, 3000 etc.

B
My or M, M, M etc. = 10,000, 20,000, 30,000 ete.

Tt will be seen that an alphabet of 27 letters® (including 3
strange letters, the so-called émlonua s, @, and ?) represents
all the numbers from 1 to 999 and that numbers under this
limit are marked with an acute accent, placed immediately
behind the last letter, At 1000, the alphabet recommences,
but a stroke is now placed before the letter and usually, but
not always, somewhat below it. For 10,000 My, or M, the
initial of pvploc was generally used, and the coefficient of the
myriad, to use an algebraical expression, was usually written
over (but sometimes before or behind)*® this M, Sometimes

1 The 24 letters, exclusive of the éxl-
onua, are those of the Ionic alphabet,
introduced formally at Athens in 403
B.c. It was in use in Asia as early as
470 B.C.

2 If the coefficient was written first,
M was often omitted and a dot sub-
stituted (e.g. B.,0ru8 =29,342), In

MSS. again the myriads are sometimes
represented by &, f, ¥ ete. hundreds of
thousands (uvpidxis uvplor) by 4, 5, 4
ete. Vide, for authorities, Hultsch,
Metrologicorum Scriptorum Relliquiae,
Vol. 1. pp. 172, 173. Ritschl, Die
Alex. Bibl. p. 120. Nicomachus (ed.
Hoche) Introd. p. x. Friedlein Zahlz.
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“also (e.g. in MSS. of Geminus) 4, x, \ etc. are used for 10,000
" 20,000, 30,000 etc. in the ordinary sequence of the alphabet.

Thus the number 29,342, would be written Ic\.ﬂrpﬁ' or x0.7uB'.
But in a high number, since the digits were always arranged in
the same order, from the highest multiple of 10 on the left to
the units on the right, the strokes or accents which distinguish
thousands and units were often omitted and a stroke drawn
over the whole number. The left-hand letter would then have
a local value (e.g. fru6=9349)'. The symbolism for fractions
will be mentioned later. .

31. It has been commonly assumed, since the use of the
alphabet for numerals was undoubtedly a Semitic practice and
since the Greek alphabet was undoubtedly derived from Semitic
sources, that therefore the Greeks derived from the Semites the
numerical use of the alphabet with the alphabet itself®. And
this theory derives further colour from the fact that the Greek
numerical alphabet contains three Semitic letters which were,
within historical times, discarded from the literary alphabet.
Yet this evidence is in all probability wholly illusory. The
Greek alphabet was derived from thé Phoenicians but the
Phoenicians never used the alphabet for numerical purposes at
all®. The Jews and Arabs did, but the earliest documentary
evidence for the practice, even among them, is not older than
141—137 B. c. when dates, given in alphabetic numerals, appear
on shekels of Simon Maccabaeus’. The Greek evidence goes a
good deal further back than this.

pp. 9—11, §§ 12—17. Nesselmann, Madden, Coins of the Jews, p. 67.

Algebra der Griechen, pp. T4—T79.

1 Cf. for instance C. I. 4. Vol. .
nos. 60 and 77.

2 See for instance Nesselmann, 4lg.
der Griechen, pp. 74—79. Cantor,
Math, Beitrige, pp. 115—118. Vorles.
pp. 101—107. Friedlein, Zahlz. p. 9,
§ 12, ete.

3 The ordinary forms of Phoenician
numerals are upright strokes for units:
8 horizontal stroke for 10: A for 20,
and kI for 100.

¢ See Schroder Phonikische Sprache.

Also Dr Euting’s letter quoted by
Hankel, Zur Gesch. der Math. p. 34.
It was Hankel who first proclaimed
the relevancy of these facts to the
history of the Greek numerals. But
Ewald and Nordheimer had, long be-
fore, stated that the Hebrew numerals
were used ‘‘after the Greek fashion’
and that they do not appear till a late
time. Hankel abides by the common
opinion that the Greek numerical
alphabet dates from the 5th century
B.C.
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Against these facts it may be urged (1) that the Jewish
practice of Glematria, adopted by the later Kabbalists, is said
by them to be very early, and is perhaps as old as the 7th
century B.c. This was a curious system of Biblical interpre-
tation, whereby two words were treated as interchangeable, if
their letters, considered as numerals amount, when added
together, to the same sum®. And again (2) both the Hebrew
and the Greek literary alphabets are too short for a good
arithmetical symbolism and both are supplemented up to the
same limit (the 27th letter in each standing for 900). But as
to (1), it must be observed that the supposed antiquity of
gematria depends solely on a merely conjectural and improbable
comment on Zechariah xii. 10®. There is in fact no clear
instance of gematria before Philo or Christian writers strongly
under Philonic influence (e.g. Rev. xiii. 18; Ep. Barn. c. 9)°
The practice belongs to Hellenistic Jews; its name is Greek
and it is closely connected with Alexandria, where, we shall see,
alphabetic numerals are first found. And as to (2), it seems
more likely that the Jews took the idea of alphabetic numerals
from the Greeks than wice versa. The Greeks could, by hook
or by crook, furnish the necessary 27 alphabetic symbols. The
Jews could not. Their alphabet is only 22 letters, and the
numbers, 500 to 900, must be represented by the digraphs
PJ'\, "N ete. compounded of 100-400, 200-400, etc.* There is in

1 See Cantor, Vorles. 1. pp. 87, 3 Cf. Biegfried’s Philo, p. 830.

104—5, quoting Lenormant, La Magie
chez . les Chaldéens p. 24, Also Dr
Ginsburg’s monograph, Kabbalah p.
49 and the same writer's article Kab-
balah in Ency. Brit. 9th ed. Vol. xmr.
The Gematria is employed in Rev. xiii,
18, where 666, the number of the beast,
is the sum of the Hebrew letters in
Nerun Kesar. So in Gen. xviii, 2
‘Lo! three men’ is by gematria found
equivalent to ¢These are Michael,
Gabriel and Raphael.’ Gematria is
by metathesis from ypauuarela.

3 Hitzig, Die xn1. kleinen Propheten,
p. 878 sqq. cited by Cantor Vorl, p.87.

¢ The later Hebrew alphabet has
five final forms ™ D }» ) ¥ (cf. Greek
¢ and s), which are sometimes used to
represent the numbers 500—900. But
this cannot be an ancient practice.

-The square Hebrew characters, which

alone have finals, did not come into
use till the 1st or 2nd century B.c.,
and these five finals were not definitely
fixed for many centuries afterwards,
Vide the Table of alphabets in Madden
‘Coins of the Jews’ or Dr Euting’s,
appended toBickell’s Outlines of Hebrew
Gram. 1877.

- —————————— e ————— —— e — = -
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fact no evidence against, and a.good deal for, the supposition
that the Jews derived alphabetic numerals from the Greeks.
The contrary belief is perhaps only a relic of the old superstition
which counted it profane to question the priority of the Hebrews
in all arts.

32. But the date at which the Greeks adopted the alpha-
betic numerals is not easily to be determined. The alphabet
was indeed, at an early date, used guasi numerically but not in
the manner now under discussion. The tickets of the ten panels
of Athenian jurymen (heliastae) were marked with the letters of
the alphabet from a to «, s being omitted’. So also the books
of Homer, as divided by Zenodotus (flor. c¢. B.c. 280) were
numbered by the 24 letters of the ordinary Ionic alphabet,
s and @ being omitted : and the works of Aristotle were also
at some ancient time divided into books, numbered on the same
principle®. It seems unlikely that the regular numerical alpha-
bet (with s, ©, 2) was in common use at the time when these
divisions were made. Secondly, in the numerical alphabet s is
undoubtedly the digamma and this and @ occur at their proper
(t.e. original) places in the alphabet. But the evidence at
present forthcoming shows that there never was, in any Greek
country, a literary alphabet which contained both s and @ along
with both ¥» and @. One or other of the first had dropped out
before one or other of the second had been introduced®s The
last numeral ?, whether it represents the Phoenician shin* or
tsadé, occurs in.either case out of its place and .is clearly
resumed into the alphabet for numerical purposes only. These
facts surely raise a presumption that the numerical alphabet
was settled not casually and by local custom, but deliberately

1 Schol. to Aristophanes Plut. 277.
Hicks, Greek Hist. Inss. mo. 119, p.
202. Franz, Epigr. Gr. p. 349.

2 This appears from Alexander Aph-
rodisiensis, who (in Metaph. 9, 81, b.
25) quotes from ¢’ 7wy Nixou. a series
of definitions which belong to the
sizth book. The Aristotelian books so
numbered are the Ethics, Politics and
Topics.

3 See the charts appended to Kirch-
hoff Zur Gesch. des Griech. Alphabets
3rd ed. and pp. 157—160 of the text.
Such transcripts as that in Hicks Gr.
Inss. no. 63, p. 117 sqq. are mis-
leading. The original of this (see
Rhein. Museum, 1871 p. 39 sqq.) con-
tains neither % nor w.

4 The Greek odr. Herod. 1.
Franz, Epigr. Graeca, p. 19.

139.
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and by some man of learning’. Further, since no antiquarian
could of his own motion persuade a people to revive, and to
revive in their right places, letters which they had long since
discarded, it is probable that this particular antiquarian was
supported by some paramount political authority. It is plain
also that this authority did not reside at Athens or near
thereto, for the Athenians and Boeotians continued to use the
Herodianic signs for two or three centuries at least after the
alphabetic numerals appear elsewhere. It may be conceded,
indeed, that public inscriptions would be the last place in which
the new numerals would appear, but it is incredible that the old
signs should have been retained by mere custom so long if the
new had meanwhile been in common use. Lastly, it must be
mentioned that the alphabetic numerals were a fatal mistake and
hopelessly confined such nascent arithmetical faculty as the
Greeks may have possessed. The Herodianic signs were clumsy
but they did not conceal those analogies which ought to be
obvious to the tiro in arithmetic. An Athenian boy who had

been taught that I/} multiplied by |l amounted to Ml would
very soon have learnt that AAA multiplied by AAA would
amount to MHHHH and he might have guessed that, if Ml
added to M amounts to Al, then PA added to P would amount

to HA. And these are really the severest difficulties which can
occur with Herodianic signs. But, with alphabetic signs,
o Xof =0 isno clue to N’ xN'="2 or s +e=1a’ to & + ' =p/.
Such signs as these are no assistance to calculation and involve
in themselves, a most annoying tax on the memory. Their
advantage lies in their brevity alone, and it is to be suspected

1 It should be mentioned here that

we know of no fluctuation in the value
of the Greek letters. Q@ for instance
might occasionally have its Semitic
value 100, instead of 90, or = might
occasionally (@ or §° being omitted)
represent 100, instead of P. But
there is no known case in which any
such doubt ariges, It is, no doubt,
only an accident that > does not occur,

on any inscription earlier than the
13th or 14th century. Similar acci-
dents may have affected the record in
many other particulars, but we must
of course use the record as we find it.
As it stands, it points to Alexandria
as the place where the numerical alpha-
bet was invented and there never was
any reason to doubt this,
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that they were invented first for some purpose to which brevity
was essential or desirable.

33. It curiously confirms all the inferences which have here
been made, to find that the earliest evidence of these alphabetic
numerals is found on coins of Ptolemy II. (Philadelphus)
assigned to 266 B.C. The lateness of this date accounts for
the later persistence of Herodianic signs. Alexandria, if any-
where, was the place where an antiquarian might have formed
the numerical alphabet, and a king have published it, with
effect. Coins are precisely the documents on which it is
desirable to state numbers as concisely as possible’. Other
evidence begins also soon after the date of these coins and
in the same place. The oldest Graeco-Egyptian papyrus, which
is ascribed to 257 B.cC.% contains the numerals x6’ (=29), and
after this alphabetic numerals are common enough on Ptolemaic
coins and papyri®. They do not occur, however, on stone-
inscriptions, as might be expected, till somewhat later. The
earliest instance is probably ome of uncertain place (though
certainly from the Levant) ascribed to about 180 B.C.* or
another of Halicarnassus® of about the same date. A
Rhodian inscription of the same time still uses the He-
rodianic signs® but soon afterwards, say from 150 B.c. the
alphabetioc numerals are used invariably on all Asiatic-Greek
monuments’,

The cumulative evidence is surely very strong that the

10t willy be remembered that the ¢ In British Museum, not yet pub-

earliest Jewish evidence is found on
coins,

2 Now at Leyden, no. 879. See
Robion, quoting Lepsius, in Acad. des
Inscr. Suj. div. 1878, Vol. 9.

3 The K on some coins of Ptolemy
I (Soter) and the double signs AA,
BB eto. on those of Arsinoe Phila-
delphi are of doubtful signification.

4 C. I. G Vol. 1v. pt. xxxIxX. no.
6819." No. 6804 was clearly not written
at the dates which it mentions.

8 C. I. G. Vol. 1. no. 2655.
Epigr. Gr. p. 849.

Franz,

lished.

7 In the Asiatio inseription no. 6819,
above cited, and many more, the
numbers are arranged in their alpha-
betic order, e.g. nx, {x. The coins of
Ptolemy Philadelphus above-cited were
struck at Tyre. These two facts may
perhaps suggest some Semitic influence
in the use of alphabetic numerals, but
I cannot attach any weight to them.
The practice of writing numerals in
their alphabetic order survivedin Mace-
donia and N. Greece till the 2nd cent.
See C. I. G. 11. nos. 1965, 1970, 1971.
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alphabetic numerals were first employed in Alexandria early
in the 3rd century B.c. It remains to be added that two of the
foremost Greek mathematicians were during this century very
much interested in the further abbreviation of Greek numerals.
Archimedes (B c. 287—212) and Apollonius of Perga (flor.
temp. Ptol. Euergetes B.C. 247—222) both suggested new
modes of stating extremely high numbers, the former in his
Yrapplrns, the latter probably in his wwvrdxiov. These will
be described later on but are mentioned here to show that
probably arithmetical symbolism was one of the Alexandrian
subjects of inquiry at precisely the time when the new symbol-
ism first appears on Alexandrian records.

84, Butitistime to return to the alphabetic numerals as used
in calculation. Fractions (Aemra) do not appear on inscriptions
but are represented in MSS. in various ways. The most common
methods are either towrite the denominator over the numerator
or to write the numerator with one accent and the denominator

,
—xa’

twice with two accents each time (e.g. :Z’ or « or ¢ xka'’ ka”).
Submultiples, or fractions of which the numerator is unity, are
the most common.
the denominator is written above the line or is written once
with two accents, (e.g. ™ or \8” =4;)*. Some special signs are
found, viz. signs similar to L, C' and 8 for } and w" for §.
Brugsch gives, on the authority of Greek papyri®, the signs | for
addition, 7 for subtraction, and /7 for a total. Another com-
mon compendium is the form X for éNdrTwy and its inflexions®,

With these, the numerator is omitted, and

1 For some more minute details see
Nesselmann, Alg. der Gr. pp. 112—115.
Hultsch, Metrol. Scriptt. 1. pp. 172—
175. Friedlein Zahlz. pp. 13—14.

It is to be remembered that though
fractions with high numerators ocour
in Greek writers, yet they represented
only the ratio between the numerator
and denominator. In calculation, they
were reduced, as among the Egyptians,
to & series with unity for numerator
and these two conceptions of a fraction,
as a ratio and as a portion of the unit,

were alone permissible in Greek arith-
metic. See Cantor Vorl. pp. 107, 174,
405. Hankel, p. 62, and Hultsch, loc.
cit.

2 Numerorum Demoticorum Doctrind,
1849, p. 81, See plate 1. appended
to Friedlein Zahlz. and reff. there
given.

3 In Heron’s Dioptra (ed. Vincent

'p. 178) and the scholia to the Vati-

can Pappus (ed. Hultsch, Vol. mr p,
128). Nesselmann, Alg. Gr. p, 305 and
n. 17.

J
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It remains to be mentioned only that the Greeks had no cipher.
The 6 which Delambre found in the Almagest is a contraction
of ovdév, and occurs only in the measurements of angles,
which happen to contain no degrees or no minutes’. It stands
therefore always alone and is not used as a digit of a high
number. The stroke which Ottfried Miiller found on an Athenian
inscription, and which Bockh thought to be a cipher, is clearly
explained by Cantor’ as the <ota, the alphabetical symbol
for 10.

85. Of calculation with these alphabetic numerals very
little mention is made in any Greek literature. It would seem
from the technical names for addition and subtraction (viz.
ouvrifévar and ddacpely, vmefarpeiv) and from some passages
of classical authors that these operations were generally per-
formed on the dBaf® Multiplication, also, was, if possible,
performed by addition*, but it cannot be doubted that an
expert reckoner would master a multiplication-table and have
the alphabetic signs at his finger-ends. For such a person, for
a mathematician, that is, who was competent to read Archimedes,
Eutocius, a commentator of the 6th century after Christ, performs
a great number of multiplications with alphabetical numerals ®.
The date of the writer and the work to which they are appended
alike show that these are masterpieces of Greek arithmetic.
A specimen or two, with modern signs added for more convenient
explanation, may be here inserted :

1 Astronomie Ancienne, 1. p. 547,
1. pp. 14 and 15. Theon in his com-
mentary says nothing of this 6 which
indeed may be only the introduction
of late transcribers who knew the
Arabic signs (v. Nesselmann, 4lg. Gr.
p. 138, and note 25. Friedlein, Zahlz
p. 82). )

2 See Math. Beitr. p. 121 sqq. and
plate 28. Hultsch, Scriptt. Metrol.
Graeci, Praef., pp. v. vi.,, Friedlein,
Zahlz, p. T4.

G. G. M.

3 Cf. Theophrastus Char. (ed. Jebb)
v, n. 10 and xmor, n. 2,

4 Lucian, ‘Eppdripos, 48, Friedlein,
Zahlz. p. 15.

5 Torelli’s ed. of Archimedes (Oxford,
1792), Circuli Dimensio, p. 208 sqq.
The forms as they stand in MSS. are
given p. 216. See also Nesselmann,
Alg. Gr. pp. 116—118. Hankel, p.
56. Friedlein, Zahlz. p. 76, where
many misprints in Nesselmann are
corrected,

4
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afe
ofe 265
— 265
M M 2 20000, 12000, 1000
MB vy 7 12000, 8600, 300
' we 1000, 300, 25
- 70225,
M oke

The mode of proceeding is apparent on the face of this example.
Each digit of the multiplier, beginning with the highest, is
applied successively to each digit of the multiplicand beginning
with the highest. Examples of multiplication, where fractions

are involved, are also given by Eutocius. One of them is as

follows®:
v Ly
oy L ¥

L2 _
M B xm8 s

3013 3 }
3013 3 1

9000000, 39000%, 1500, 750.
30000, 130, 5, 2}.
9000, 39, 1}, % %
1500, 6§ 3,
750, 8L b %

9082689 4.

Multiplications are given also by Heron of Alexandria ( flor. B.C.
100) and are conducted in precisely the same way as those of
Eutocius®. In other words, for 700 years after the introduction

1 In this specimen, the letter L re-
' presents the Greek sign for 3. See
above, p. 48.

3 It will be observed here that
Eutocius treats 13 as a single digit.
He knew the multiplication table for 13.

3 Geometria, ed. Hultsch, 36 and 83,
pp. 81 and 110. They are printed
also by Friedlein, Zaklz. pp. 76, 77.
The second of them begins: movddes

¥’ kal Newra rpiakootébrpira kYt Sv &
wo\vmhagiaouds yiverar ovrws® 3’ &
PpRS™" kal ' Td kY NY'NY ThB MY NY’
k.7.\. In modern figures, the problem
is 1433 x 14334.

It is worked out as follows:
14x14=196 : 14 x 3§ =" : 3 x14=
¥ and 33 x 33 (=" -35) =33 + - b

The sum (ouod) is 19652 + 5 . ¥ =
216 + 3% . 7.
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of the alphabetic numerals, no improvement was made in the
style of Greek calculation. And if such were the performances
of professional calculators, it may be conceived that those of the
unlearned were yet more clumsy. Thus Hankel* quotes from
a work written as late as 944 A.D., some multiplications in which
the writer finds by addition that 5 times 400 is 2000 and that
5 times 9 are 45! It can hardly be doubted that some Greek
compiled a multiplication table and that children at school were
practised in the use of it, as Roman children were, but no trace
of such a table survives nor is any clear mention of it made
in any Greek writer.

36. No example of simple division nor any rules for
division are found in Greek arithmetical literature. The
operation must have been performed by subtracting the
divisor or some easily ascertained multiple of the divisor from
the dividend and repeating this process with the successive
remainders. The several quotients were then added together®.
But the Greeks had no name for a quotient and did not conceive
the result of a division as we do. To a Greek 5 was not the
quotient of 3%, The operation did not discover the fact that
5 times 7 is 35 but that a seventh part of 35 contains 5, and so
generally in Greek a division sum is not stated in the form
“Divide @ by b,” but in the form “Find the bth part of a.”
This is the sort of nomenclature which would naturally be
expected among a people who were constantly compelled to
resort to the &Baf with its concrete symbols.

But though there is no instance of a simple division, there
is more than one of what, in our schools, is called ‘compound’
division, where the dividend and the divisor both consist of a

1p. b5, citing De argumentis lunae,
wrongly attributed to Bede. (Patro-
logia, ed. Migne, Yol. 90, p. 702.) On
p. 56 Hankel gives a division from the
same book. To divide 6152 by 15,
multiples of 15 are first tried in order
up to 6000. The remainder is 152.
Then 15, 30, 60, 90, 120, 150. Re-
mainder 2. The answer is 400+10
and 2 over.

2 The process with whole numbers
may be inferred from that with frac-
tions. Heron (Geometria, ed. Hultsch,.
12. 4, p. 56) divides 25 by 13, finds a
quotient 1+3+3+,++% and adds
these terms together to 1}3. Obviously
the intermediate stages were }3=14%
=%+3} = 3+4#} ete. See Friedlein,
Zahlz p. 79.

4—2
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whole number with fractions. These occur in Theon’s com-
mentary on Ptolemy’s ueyd\n ovvrafis (the Almagest). Here
for astronomical purposes it is frequently necessary to conduct
operations with degrees and the sexagesimal fractions, minutes,
seconds etc. (wmpdra éfnkoatd, Sevtepa éfnroota, ete.)’. The
rules for such operations are easy to perceive, if it be re-
membered that degrees are the units, minutes 4;ths and seconds
sgoths of the unit. Hence Theon rightly premises that where
a dividend consists of degrees, minutes, seconds, etc., division by
degrees produces a quotient of the same denomination as the
dividend : division by minutes produces a quotient of the next
higher denomination to the dividend: division by seconds a
quotient of two denominations higher than the dividend etc.
And in multiplication, of course, the denominations are similarly
lowered. There is no occasion here to give a specimen of
Theon’s multiplication, for it follows precisely the same lines as
that of Eutocius, exhibited above, p. 50. But it is desirable to
show his method of division, since no other specimen of the
process is procurable. He divides agie £’ v’ (i.e. 1515° 20'15”)

by k€ (8’ ¢ (ie. 25° 12/ 10”) in the following manner*

1 The Latin for these was partes
minutae, partes minutae secundae. The
sexagesimal system is beyond question
of Babylonian origin. In Greek ma-
thematical literature, the circle is
divided into 360 parts (ruifuara .or
uotpas) first in the 'Avagpopixés of Hyp-
sicles (cir. B.c. 180). The division of
the diameter into 120 parts with sexa-
gesimal fractions appears first in Pto-
lemy (cir. A.p. 140), but was probably
introduced by Hipparchus (cir. s.c. 130).
This trigonometrical reckoning was
never used save by astronomers. See
Cantor, Vorles. pp. 70, 76, 274, 311,

336, 351. Hankel, p. 65. Friedlein,
Zahlz. pp. 81—82. Nesselmann, 4lg.
der Griech. pp. 139—147. Theon’s
Commentary (ed. Halma) pp. 110—119.
185—6. A summary of Hypsicles’ book
is given by Delambre, Astron. Anc. 1.
See also post §§ 65, 140.

2 Theon does not himself give a
scheme of a division, as he does of &
multiplication. He merely describes
the process. The scheme in the text
with modern figures is from Delambre,
Astron. Anc. 11. p. 25. A translation
of Theon’s words is given by Nessel-
mann, p. 142,
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25° 12" 10”)1515° 20’ 157(60° 7" 33"
25° x 60° =1500°
Remr. 15° =900’

: 920" (bringing down 20’ from dividend.)
. 12"x 60° =720

Remr. éa—()’
10” x 60°= 10’
Remr. 190
25° x 7' =175
Remr. 15" = 900"

915” (bringing down 15”.)
12'x7' = 84”

Remr. 831"
10"x7= 1"10"
Remr. 829" 50"
25° x 33" = 825"
Remr. 4" 50" =290"
12 x 33" = 396"

The quotient therefore 60° 7' 33" is a little too high, but he'e
Theon leaves it. The length and timidity of the operation
sufficiently show with what difficulty it was performed®.

387, There is another operation, the Extraction of a square
root, which—though indeed no specimen of it with ordinary
numbers occurs in any Greek writer,—was so frequently per-
formed, and at such an early date, by Greek arithmeticians
that some mention of it must be made in this place. Archi-
medes in his Circuli Dimensio® gives a great number of
approximate square-roots.  He states, for instance, that 138t is

1 There is extant & meagre tract on  ete. Halle, 1879. See also the preface,
Multiplication and Division with Sexa- pp. xir. xvi, of Hultsch’s mr. Vol. of
gesimal Fractions, attributed either to  Pappus.

Pappus or to Diophantus. It wasedited 2 Prop. 1. pp. 206—208 (ed. Torelli).
by C. Henry, Opusculum de Multiplic. The whole work is given post § 126,
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greater than /3 which is greater than 38§ : so also
/349,450 > 591} and /1,373,04333 > 1172} and
5,472,182, > 23391 ".

He does not, however, give any clue to the mode by which he
obtained these approximations. Nor does his commentator
Eutocius, but the latter states that the rule for finding an
approximate square-root (¢mws Ol gvveyyvs Tiv Svvauévny
mhevpav edpeiv) was given by Heron 'in his Metrica, by
Pappus, Theon and several other commentators on Ptolemy.
Only one of the works, to which Eutocius here alludes, is now
extant. Theon, in his commentary on the Almagest, gives the
rule, and an explanation of the rule, and some examples, of

extracting a square-root with sexagesimal fractions,

It is clear

that Archimedes did not use Theon's method, and no other is

1 The approximations might still be
improved. 591}, 1172}, and 2339} are
nearer to, and also smaller than, the
roots of the numbers in question. Other
roots which Archimedes gives, are too
large. Nesselmann, 4lg. Gr. p. 108—
110. From the fact that Archimedes
gives both too small and too large ap-
proximations, it has been supposed
that he used continued fractions, but
(apart from the difficulty of suggesting
a Greek symbolism for these) it is ob-
jected to this theory that Archimedes’
approximations are not so close as
those which continued fractions would
produce. Many other modes, by which
he might have found his values for /3,
have been suggested. The simplest
(De Lagny’s) is as follows. Archime-
des selected fractions such that the
square of the numerator is nearly 3
times the square of the denominator.
He would in this way find two series:

%" '}’ %%’ H’ ';'33'9 A,ﬁa%l. all > ,\/5: &n-(.i
$ 1 I 185 85 394 all < VB

Both these series are constructed on the

same principle, each numerator being
twice the preceding numerator + thrice
the preceding denominator, and each
denominator being twice the preceding
denominator + the preceding numera-
tor. This is closely similar to the pro-
cedure of Diophantus. Archimedes,
however, takes the 6th term of the
first series and only the 4th of the
second. It is therefore essential to this,
as to every other explanation of the
same kind, that Archimedes besupposed
to have been less careful with one ap-
proximation than with the other. (For
more theories and criticisms thereon
see Heiberg, Quaestiones Archimedeae,
1879, pp. 60—66.) As it is unlikely
that Archimedes, if he had a scientific
method, would have failed to use it
rigorously, some writers (e.g. Nessel-
mann, loc. cit. and Friedlein, p. 81) are
of opinion that he found his approxi.
mations only by repeated trial: others
however (e.g. Cantor, Vorl. pp. 272—4,
and Heiberg sup. cit.) believe that he
had a method which we cannot dis.
cover.
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forthcoming in any Greek writer. It would seem also, from
Theon’s language, that his method was by no means old or
familiar, and we must conclude, therefore, in default of evidence,
that the earlier Greeks found square-roots by experiment only.
The process would certainly take a long time, but we have no
reason to suppose that the Greeks were unwilling to spend a
long time on a simple arithmetical problem. They may, of
course (without going so far as Theon’s method), have derived
many useful hints from geometry: e.g. the square-root of a
number is twice that of one quarter of the number: or 4 times
that of {4 or 9 times that of g, etc., and in this way, they may
easily have reduced the number to be experimented on down to
some reasonable limit. It is useless, however, to expend
conjecture on a subject on which there is not a particle of
evidence.

388. Theon’s method of extracting a square-root may be best
explained by a paraphrase of his own words, “I ought to
mention ” he says “how we extract the approximate root of a
quadratic which has only an irrational root. We learn the
process from Euclid 1r. 4, where it is stated : ‘If a straight line
be divided at any point, the square of the whole line is equal to
the squares of both the segments together with twice the
rectangle contained by the segments’ So, with a number
like 144, which has a rational , ) 8
root, as the line afB, we take a v
lesser square, say 100, of which the root is 10, as ay. We
multiply 10 by 2, because there are two rectangles, and divide
44 by 20. The remainder 4 is the square of By, which must be
2. Let us now try the number 4500, of which the root is
67° 4 55”. Take a square aBy3, containing 4500 degrees
(nolpac). The nearest square number is 4489, of which the
side (root) is 67°. Take an=67° and aefn the square of az.
The remaining gnomon B¢3 contains 11°, or 660'. Now divide
660" by 2a7, ie. 134. The quotient is 4. Take €6, nx = 4,
and complete the rectangles 6% (k. Both these rectangles
contain 536’ (268" each). There remain 124/, =7440”. From
this we must subtract the square {A, containing 16”. The
remaining gnomon SAJ contains 7424”. Divide this by 2z«
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(=184° 8'). The quotient is 55”. The remainder is 46” 40",
which is the square Ay, of which the side is nearly enough 55”.”

a 7 K 8
670 4 | 55"
4489 268 | &
-
2
€
s
¢ 268' 16”
6 Y
55" 3688” 40"
B v

'So in general Theon concludes “ when we seek a square-root, we
take first the root of the nearest square-number. We then
double this and divide with it the remainder reduced to minutes
and subtract the square of the quotient, then we reduce the
remainder to seconds and divide by twice the degrees and
minutes (of the whole quotient). We thus obtain nearly the
root of the quadratic’.” In this procedure, with its continual
references to a geometrical figure, we have a conspicuous
instance of the fact, stated at the beginning of this chapter, that
Greek Moyiorikr) must often have sought its rules in the
discoveries of the scientific dpifunTicn. No doubt it was so in
many other cases. It is hardly to be believed that while
philosophers were aware of the modes of finding a Greatest
Common Measure and a Least Common Multiple and well
versed in the treatment of series and proportions, the common
people should have been unable to adapt these results of
apiBunTicy to the needs of their own daily calculation. The
meagre records of Greek logistic, however, contain no mention

1 Theon gives another example, also  as the result. The procedure is ex-
with a figure. Inthis case he findsthe actly the same as in the preceding
square root of 2°28' and finds 1°34’15”  example.
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of any of these subjects. The theoretical treatment of them is
alone known and this belongs to dpifunTier the subject of the
next chapter.

39. Before closing this account of Aoyioikr, it remains to
add a few facts, isolated here either because they did not have,
or do not seem to have had, any real influence on the methods
of Greek ealculation or because the original report of them is so
meagre or doubtful or disconnected that it would have caused
unnecessary disturbance to have mentioned them before.

It has been stated, already (sup. p. 48), that in the 3rd
century B.C. the abbreviation of the Greek arithmetical symbolism
attracted the attention of (inter alios) Archimedes and Apol-
lonius. This remark, however, though it has been often made
with less reserve, seems to some writers to convey a suggestio
Jalsi, inasmuch as abbreviation of the symbolism was not the
ostensible object of the works in which Archimedes and
Apollonius proposed their improvements in arithmetical nomen-
clature. It is, therefore, desirable that some fuller account of
these works should be given than could be conveniently
inserted elsewhere.

In a pamphlet entitled +fappirps’ (in Latin trans.
arenarius ‘the sand-reckoner’) addressed to Gelon, king of
Syracuse, Archimedes begins by saying that some people think
the sand cannot be counted, while others maintain that, if it
can, still no arithmetical expression can be found for the
number. “Now I will endeavour” he goes on “to show you,
by geometrical proofs which you can follow, that the numbers
which have been named by us (? me) and are included in my
letter® addressed to Zeuxippus, are sufficient to exceed not only
the number of a sand-heap as large as the whole earth but of
one which is as large as the universe. You understand, of

1 Torelli’s Archimedes, pp. 319 sqq.
It is printed also, in Heiberg’s Quaes-
tiones Archimedeae. It is probable that
Archytas of Tarentum, whom Horace
(Od. 1. 28. 1) calls ‘numero carentis
arenase mensorem,’ had been busied
with the same problem as that of the
yapplrys. Archytas was a contempo-

rary of Plato and at least 100 years
earlier than Archimedes.

2 It appears from c. i. sec. 7 that this
letter was entitled dpxalf. It is clear
that it was concerned only with the
nomenclature which Archimedes is now
about to introduce again (cf. also c. iii.
sec, 1) and not with any special problem.



58 GREEK CALCULATION. Logistica.

course, that most astronomers mean by ‘the universe’ the
sphere of which the centre is the centre of the earth and the
radius is a line drawn from the centre of the earth to the centre
of the sun.” (But Archimedes himself would be willing to sup-
pose the universe a sphere as large as that of the fixed stars,
according to Aristarchus of Samos') Assume the perimeter of
the earth to be 3,000,000 stadia® and in all the following cases
take extreme measurements. The diameter of the earth is larger
than that of the moon, and that of the sun is larger than that of
the earth. The diameter of the sun is 30 times® that of the
moon and is larger than the side of a chiliagon inscribed in a great
circle of the sphere of the universe*. (This is proved geometri-
cally.) It follows from these measurements that the diameter
of the universe is less than 10,000 times that of thé earth® and
is less than 10,000,000,000 stadia®.

Now suppose that 10,000 grains of sand not < 1 poppy-seed,
and the breadth of a poppy-seed not < Jsth of a finger-breadth.
Further, using the ordinary nomenclature, we have numbers up
to a myriad myriads (100,000,000). Let these be called the
first order (mpdroc dpifpol) and let a myriad myriads be the

1 It is at this point that Archimedes 3 Eudoxus, he saye, made it 9 times,

mentions the theory of Aristarchus of
Samos (advanced in his yroféges) that
the earth goes round the sun and that

" the orbit of the earth is comparatively
& mere spot at the centre of the sphere
of the fixed stars. Archimedes doesnot
seem to have understood this language
and certainly did not adopt this theory.
See Heiberg’s note, op. cit. p. 202. A
treatise of Aristarchus De distantia
lunae et solis is extant. See Wallis’
‘Works Vol. 1. and Delambre 4stron.
Ane. 1. ch. v. and 1x, )

2 ¢Though some,” adds Archimedes,
‘take it at only 200,000 stadia. I will
take it at 10 times the approved size.’
He refers to Eratosthenes, who calcu-

lated the circumference to be 252,000 -

stadia. Delambre 1. ch, 7. A stadium
was nearly 200 yards,

Pheidias the son of Acupater 12 times

- and Aristarchus between 18 and 20

times larger than that of the moon.

4 Aristarchus, he says, made it ,35th
of the zodiacal circle, but his instru-
ments cannot have been able to make
80 nice a measurement. Archimedes
goes on to describe his own apparatus,
by which he found-that the diameter of

200
27’ 0” and 32'56"). See Delambre Astr.
Ane. 1. €. IX.

5 Following the rule that the dia-
meter of a circle is less than } of the
perimeter of any inscribed regular poly-
gon, above a hexagon,

6 Following tho rule that the circum-
ference of a circle is more than 3 times
its diameter.

. 0
the sun is between aad and % (i.e.
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unit of the second order (8evtepor dpifuol) and let us reckon
units, tens, etc. of the second order up to a myriad myriads:
and let a myriad myriads of the second order be the unit of
the third order (vplroi dpifuoi) and so on ad lb. If numbers
be arranged in a geometrical series of which 1 is the first term
and 10 is the radix, the first eight terms of such a series
(10°—10") will belong to the first order: the next eight to the
second order and so on. -Thus, the terms from 1 to 10 millions
may be called the first octad: 10° to 10" may be called the
second octad and so on'. Using these numbers, and following
the rule that spheres are to one another in the triplicate ratio of
their diameters, Archimedes ultimately finds that the number
of grains of sand which the sphere of the universe would hold is
less than a thousand myriads or ten millions of the 8th actad.
This number would be expressed in our notation by 10* or 1
with 63 ciphers annexed.

40, Now though this work is ostensibly devoted to a
fanciful subject and though it is full of references to recondite
discoveries in astronomy, geometry and dpcfunTiksj, yet it is
plain that it contains matter which might have had, and
perhaps was intended to have, an important bearing on the

1 At this point Archimedes incidental-
1y adds that it will be convenient (xproc-
pov) to observe the following fact. In
any geometrical series beginning with
1, if any two terms be multiplied, the
product will be a term as far from the
greater of the two multiplied as the
lesser was from unity, and as far from
unity as the sum of the distance of both
the multiplied terms, less 1. E.g. in
the geometrical series a, b, ¢, d, ¢, f, g,
h, i, k, 1, where a is unity, d X h=1, and
1 is as many terms (less 1) from a as d
and h together. It will be seen that
Archimedes is referring to the fact
which we express by saying that
a™ x a®=a™m, He does not again
refer to this fact, and does not other-
wise, as some say,anticipate themethod
of logarithms, I have omitted from

the text a further nomenclature which
Archimedes suggests. There may ben
octads of the first period, of which the
last number will be 108#-1, This num-
ber, 108*-1, will then begin the first
octad of the second period and so on.
See Heiberg op. cit. p. 59. Nesselmann
pp. 122—125.

It may be mentioned here also that
the Greeks always began a geometrical
series from 1, though they could give
no reason for the practice. They did
not know that 1=n° Theon Smyr-
naeus (ed. Hiller, p. 24) says explicitly
that “1 is not a number, but is the
beginning of number,” and this was the
common Greek notion, though incon-
sistent with their practice. See Cantor
Vorles. pp. 134, 368, Aristotle Metaph.
x11r, 8, eto,
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Greek symbolism, which belongs to Aoyiorikj. This matter
also had previously been published, without any practical appli-
cation, in the lost Apyai, addressed to Zeuxippus. It deals
indeed, as we know it, entirely with nomenclature and not a
word is said of symbolism. But it is pretty clear (see especially
the last note) that Archimedes’ procedure was to write down
the powers of 10 in order from 1 as far as necessary, then to
divide the series into groups of 8 terms each and, when it was
necessary to multiply two terms together, merely to add the
numbers of their places in the series and so find at a glance
their product and the name of the product. It can hardly be
doubted that in writing down the powers of 10, in order to
bring them within a manageable space, he employed a symbol-
ism®, He would have required a symbolism of only 10 signs.
Thus if a, B, v, &, € & 7, 0, ¢, A were his symbols for numbers
from 1 to 10, then

his first octad might be, a, A%, AB—AY,

» second :

,, third w » A/
On this principle, such a number as 1,957,362 would be written
AN eNgAyABEAB. This symbolism, of course, is more cumbrous
than ours but it is far shorter than the Herodianic and far more
convenient than the common Greek alphabetic signs. If adopted,
it would have immensely simplified procedure in the four
rules of arithmetic ;—would have brought it in fact nearly to
the perfection of the Indian method. Yet, whatever symbolism
Archimedes himself used (if any), it is quite certain either that
he did not publish it or that it never obtained any vogue.
No allusion to it occurs in the yraupirns or in any other
Greek mathematical work, But a good many reasons may be
suggested why a new symbolism would, in Archimedes’ time,
have been singularly inopportune. The alphabetic numerals

1 To take only the second octad, the
last term of this is 10!® or a thousand
million millions, This, in Greek, is
xe\edkis puplac pupiddes pupddwr. The
force of language, even Greek, will
not go much further. The symbolism

suggested in the text is not intrin-
sically improbable, Compare the Ma,
M3, ete. of Apollonius to be presently
mentioned, and compare the proposi-
tion quoted from Iamblichus below
§ 63,
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had in all probability been lately introduced at Alexandria.
The professors of dpifuntici did not require a new symbolism,
since geometrical figures were sufficient for the problems which
they dealt with. Thirdly, the efficacy of Archimedes’ symbols
would at first appear principally in calculations with very high
numbers and there was then hardly anybody, save Archimedes
himself, who was interested in calculations with such numbers.

41, That it is not at all far-fetched to suppose that
Archimedes had in mind, when he invented his new nomen-
clature, the improvement of customary methods of calculation,
will be apparent if we consider the similar work of Apollonius.

At the end of his commentary on the Circult Dimensio,
Eutocius says that he had done his best to explain the
numbers used by Archimedes, but that Apollonius, using other
numbers, had in his *Qxvroxior' obtained a closer approxima-
circumference
‘ diameter °
He then mentions some other persons who had maliciously
criticised Archimedes and adds ‘They use multiplications
and divisions of myriads, which it is not easy to follow
unless one has been through a course of Magnus’ Arith-
metic®’; and concludes by recommending Ptolemy’s method
with sexagesimal fractions. The passage is so vaguely worded
that it is impossible to feel sure whether the *Qxvrokiov, or
*Aid to Delivery,’ of Apollonius has any connexion whatever
with the multiplications of myriads mentioned afterwards. The
book itself is lost and its name does not occur elsewhere. At
any rate, Apollonius did invent a system of multiplication
connected with a nomenclature in which myriads played a
large part. Some account of both is to be gathered from the
fragmentary 2nd Book of Pappus, but unfortunately the first
half of the book is lost and with it the name of Apollonius’ work
and much precise information have doubtless disappeared.

tion to the arithmetical value of the ratio

1 The first ed. had *QcvréBoov. The  Zahlz. p. 78, thinks it was a ‘ready-
emendation was originally Halley’s reckoner’ or multiplication-table only.
(pref. to his ed. of Apollonius) and was 2 This work is not elsewhere mention-
subsequently found to be correct by ed. Itis tantalising to think what it
reference to two Paris MSS. Friedlein, may have contained. '
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Apollonius, taking, like Archimedes, a geometrical pro-
gression of the powers of 10 from 1 to 10" divided them into
groups of 4 terms, tetrads and not octads. The first tetrad
(1—1000) he called povades: the 2nd (10,000—ten millions)
uvpiddes amhai: the 3rd pupiades Sumhal etc. The first
number of each tetrad is the unit of that tetrad, and the
higher tetrads are (at least in Pappus) distinguished by the
signs Ma, MB, My etc. Thus the number 5,601,052,800,000
or, according to the Greek division, 5,6010,5280,0000 is written
by Pappus My. ¢ kal MB. s kal Ma. ea.

The fragment of Pappus contains examples, selected by that
writer, illustrative of Props. XIV.—XXV. in the original work
of Apollonius. The examples are of the following kind :

Prop. XIV. Let there be given several numbers, each less
than 100 but divisible by 10. It is required to find their
product without multiplying them. Let the numbers be
50, 50, 50, 40, 40, 30. The pythmenes of these are 5, 5, 5, 4, 4, 3,
which, multiplied together, produce 6000. There are also 6 tens,
which, divided by 4, give quotient 1 and remainder 2. The
product of these tens is therefore 100 of the uvpiades amhat.
This, multiplied by 6000, produces 60 of the pvpiddes Simhai.
This is the product of the numbers proposed.

The other examples are all of this sort (the numbers
in each case being varied’) and all are designed to illustrate
a new rule, viz. that in multiplying numbers together, the
coefficients of the powers of 10 only need be multiplied. These
coefficients are called mvOuéves or fundamental numbers. Thus

1 The concluding part of Apollonius’
book is given (though not in Ap.’s
words) by Pappus (m. 25). The last
prop. was ‘‘Let two or more numbers
be given, each less than 1000 but divi-
sible by 100: and other numbers each
less than 100 but divisible by 10: and
finally other numbers less than 10. It
is required to find their product.” After
performing this, Apollonius returned
to the problem which he had originally
set himself, viz. to multiply together

all the numerals contained in the line
*Apréudos Kkhetre kpdros Efoxov éwvéa
xobpat. h
The product is uvpiddes Tpioxaidexa-
mA\al pQS” dwdexamhal &y évdexamhal
S, or
196.1000013+368.100002+ 4800.1000011,
Pappus then tries his own skill on
another line:
Mivw dede fed Anuihrepos dylaokdpmov
which seems carefully chosen to avoid
high numbers.
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8 is the mvfunw of 80: 5 of 500: 7 of 7000 etc. In multiplying
80 by 600, it is necessary only to multiply 8 by 6. The product
of the powers of 10 may be discovered by reference to the
geometrical progression of fetrads. It is evident that this
latter part of the rule is borrowed from the discovery of
Archimedes mentioned above. We have here, in fact, the
suggestion of the Yrauuirns, with only an easy alteration (hardly
an improvement) of the nomenclature, put into actual practice.
Yet still there is no reference to an abbreviated symbolism.
In many places® Pappus says that Apollonius used ypaupal,
which made his solutions far more readily intelligible: but
these ypappal were beyond question straight lines. They were
used presumably to represent the terms in the progression of
tetrads and also to represent other numbers and the mvfuéves
of these, but they can hardly have served any higher purpose
than merely to prevent mistake. It must have been a certain
convenience to distinguish the pythmenes in this way: e.g.

2 a p—a

K B a— etc.

A—— T .
where a, B,:yetc. are pythmenes not only of tens (¢, «, \ etc.), but
of hundreds (p, o, 7 etc.)®. In spite, however, of the absence of
evidence, it is difficult to believe that Apollonius wrote his
book without using some special symbolism and it is still more
marvellous if, having written the book, he did not see that -
it could not become popular without an accompanying symbol-
ism. His symbolism, however, if he had any, was not published
or never attracted attention, and thus he, as well as Archimedes,
lost the chance of giving to the world once for all its numeral
signs. That honour was reserved, by the irony of fate, for
a nameless Indian of an unknown time, and we know not whom
to thank for an invention which has been as important as any
to the general progress of intelligence.

1Eg 1m 6. 5: 8 28: 18, 10. of the numbers. Thus it does not ap-
(Hultsch’s Ed.) pear that 4’ is the rvfuif of X or 7, but
2 The wvfuéves of tens and hundreds, it is easy to see that rpels is the wviusfe
though absolutely concealed by the of rpidxorra and rpiaxéoior.
symbols, were discernible in the names
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42, Another arithmetical symbolism is also attributed to the
Greeks. It was first mentioned by Noviomagus (De Numeris,
Cologne, 1539. Lib. 1. c. 15) who said it was used by ¢ Chaldaci
et astrologi’. It consisted of a curious set of signs (somewhat
resembling railway-signals) in which the value of the symbol is
determined, as it were, by the position of an arm attached to a
post. Thus l—is I: —is 10: — is 100 and — is 1000 : ——is
2: 1 is 20: —~is 200 and — is 2000. ~Z_is3: N\ is4:
= is5: — i86: c_is7: * is 8 and co—is 9. All these
signs, when reversed, represent ten times higher values, as with
those for 1 and 2 above exhibited. The ‘post’ was often drawn
upright: T, F, [* ete. and several ‘arms’ might be attached
to one post. Thus Y=5543: Y =2454: TH=3970 etc. It
cannot be said that this is a first-rate symbolism: but it is
compact in form and it preserves also, to the eye, the analogies
which are the greatest aids to calculation. It is impossible to
say what is the origin of these signs, or where or at what date
they came into use. Friedlein thinks they may be really
Chaldaean and have belonged to the mediaeval art of horoscopy®,
which Noviomagus professed.

43, Calculation seems to have been regularly taught in
Greek schools as early as there were any schools at all®, It
became also a favourite subject of the Sophists, among whom
the polymath, Hippias of Elis, was its most famous professor*.
Socrates himself seems to have had a limited liking for it.
According to Xenophon®, he told his pupils to learn Aoyiouovs,
but to beware of the idle pursuit of this as of other branches of
learning : so far as was useful (or beneficial, &¢périuor) he was
always willing to forward them. As we have just previously

1 Nesselmann (pp. 83—84) took them
from Heilbronner’s Historia Matheseos
(pub. 1742). Heilbronner said he got
them from Geminus and Hostus, a
German antiquary of the 16th cent.
Cantor (Math. Beitr. pp. 166—167)
found the passage in Hostus, who refers
to Noviomagus. Friedlein finally un-
earthed the passage of Johannes Novio-
magus who says he had the signs from

Joh. Paludanus Noviomagus. The MS,
of Geminus, which Heilbronner saw,
remains undiscovered.

3 Friedlein, Zahlz, pp. 12, 18.

3 See the Excursus on Education in
Becker’s Charicles.

4 Cf. Plato Protagor. 318 E.
Min. 367—368.

5 Memor. 1v. 7. 8. For geometry, see
. 7. 2,

Hipp.
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been informed, by the same authority, that Socrates thought
there was no need for more geometry than would enable a man
to measure or parcel out a field, it may be presumed that he
preferred the practical art of logistic to the theories of dpifun-
7). Plato, however, was not of the same mind. His dislike
of the sophists extended to the subjects which they taught and
he is, on many occasions, as was seen at the beginning of this
chapter, careful to distinguish the vulgar logistic from the
philosophical arithmetic. But calculation cannot be discarded
by the philosopher any more than by the merchant: so Plato,
in his ideal constitution (Legg. 819 B), directs that free boys
shall be taught calculation, a “purely childish” art, by pleasant
sports, with apples, garlands ete. It makes men “more useful to
themselves and wide-awake.” Contemptuous language of this
sort, used by the most influential of Greek thinkers, set the
fashion to too many generations of mathematicians. Euclid is
said to have been a Platonist : he certainly never meddled with
logistic. His successors, with few exceptions, were affected by
the same prejudice. The contributions of Archimedes and
Apollonius to the art of calculation have -been already men-
tioned. Hipparchus calculated a table of sines (so to say)
and thus probably introduced the art of reckoning with sexa-
gesimal fractions for astronomical purposes. The brilliant and
above all things practical Heron of Alexandria seems, in his
Merpixa, to have offered some improvements in Greek calcu-
lation. A long era of Neo-Platonism and Neo-Pythagorism
followed, but to this time belonged probably the Apollodorus,
whom Diogenes Laertius (viil. 12) mentions, and Philo of
Gadara and the Magnus whom Eutocius praises. Nothing of
these writers now survives, and it is very unlikely, judging
from the calculations of Theon and Eutocius himself, that they
produced any stir in their own day. Logistic was practically
abandoned as hopeless after Apollonius’ time. ’Apifunriks}
became the hobby of the more ingenious spirits and to this
science belongs the last brilliant achievement of Greek mathe-
matics, the invention of algebra.



CHAPTER 1IV.

GREEK THEORY OF NUMBERS. Amrithmetica.

44, THE history of dpifuntuen, or the scientific study of
numbers in the abstract, begins in Greece with Pythagoras
(cer. B.C. 530), whose example determined for many centuries its
symbolism, its nomenclature and the limits of its subject-matter.
How Pythagoras came to be interested in such inquiries is not at
all clear. It cannot be doubted that he lived a considerable
time in Egypt': it is said also, though on far inferior authority,
that he visited Babylon. In the first country, he would at
least have found calculation brought to a very considerable
development, far superior to that which he can have known
among his own people : he would have also found a rudimentary
geometry, such as was entirely unknown to the Western Greeks.
At Babylon, if he ever went there, he might have learnt a
strange notation (the sexagesimal) in arithmetic and a great
number of astronomical observations, recorded with such numeri-

cal precision as was possible at that time®. But Pythagoras—-

1 1t is asserted by Isocrates, Laud.
Busir. ¢. 11. 28, p. 227, and Callimachus
ap. Diod. Ezcerpt. Vatic. vii—x. 35.
It is implied in Herod. m. 81, 128,
Aristotle Metaph. 1. 1. These are the
most ancient authorities, The Egyp-
tian origin of Greek geometry is at-
tested in many more passages, to be
cited below. The visit to Babylon is
first mentioned Strabo x1v. 1. 16.

2 Both these statements may be
illustrated by one example. One Baby-
lonian document contains a statement
of what portions of the moon’s face are
successively illuminated in the first
fifteen days of the month, These are
stated as 5, 10, 20, 40, 1. 20, 1. 36,
1. 52 ete. where 1. 20, 1. 86, 1. 52 eto.
stand for 80, 96, 112 etc. parts out of
240 into which the moon was divided.
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was not the firs . for
the Asiatic Greeks had certamly, before his time, acquired a
“good deal of Chaldaean astronomy and had even impraved upon
Egyptian gecometry’. Nor was the bent of his mind altogether
singular in his time. Among the Greeks everywhere, a new
speculatlve spirit was abroad and they were burning to discover
some principle of homogeneity i in the umverse Mnda—
mental upity wag surel he matter
or the structure of things. The.lonm_ph:.lomphem.chnse-xhe
i‘zn;::efeld Pztha,gora.s took th.e la.tt.e_r_} B_uj_m_(lLﬁicg_tx_ls
sophy of structure or vice 've'rsa.b The ev1dence seems to favour
the former view. The geomefry which he had learnt in Egypt
was merely practical. It dealt mainly with such problems
as how to ‘find the area of given plane figures, the volume
of given solids: its highest flight was to find roughly the ratio
between the diameter and the circumference of a circle. Its data
generally, its discoveries always, were numerical expressions.
Given the number: of a certain straight line, it could find the .
number of a certain curve: given the numbers of two or three
straight lines it could find the numbers of a superficies or a solid.
It was natural to nascent philosophy to draw, by false analogies
and the use of a brief and deceptive vocabulary®, enormous con-
clusions from a very few observed facts: and it is not surpris-
ing if Pythagoras, having learnt in Egypt that number was
essential to the exact description of forms and of the relations
of forms, concluded that number was the cause of form and

See Hincks in T'rans. Royal Irish Acad.
Polite Lit. xx11. 6, p. 406 sqq. Ca.ntor,
Vorles. pp. 72—76.

1 Thus Thales had invented some
propositions in scientific geometry. He
had also predicted an eclipse and is
said by many different authorities to
have had much astronomical know-
ledge. Herodotus (11, 109) says express-
ly that the knowledge of the polos and
gnomon (on these sundials see below,
p. 145 n.) came to the Greeks from
Babylon, Phny (Hist. Nat. 11, 76) attri-

butes the introduction of the gnomon
to Anaximenes: SmdastoAnanmander
(subd vac.).

$ Primitive men, on seeing & new
thing, look out especially for some
resemblance in it to a known thing, so
that they may call both by the same
name. This developes a habit of press-
ing small and partial analogies, It
also causes many meanings to be at-
tached to the same word. Hasty and
confused theories are the inevitable
result,

5—2
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so of every other quality. Number, he inferred, is quantity -

and quantity is form and form is quality®.

The genesis of the Pythagorean philosophy here suggested
has strong historical warrant. It is certain that the Egyptian
geometry was such as I have described it: ‘the empirical
knowledge of the land-surveyor, not the generalised deductions
of the mathematician. If not certain, it is at least undeniable
that Pythagoras lived in Egypt and there learnt such geometry
as was known. It is certain that Pythagoras considered number
to be the basis of creation®: that he looked to arithmetic for
his definitions of all abstract terms and his explaunation of all
natural laws : but that his arithmetical inquiries went hand in
hand with geometrical and that he tried always to find
arithmetical formulae for geometrical facts and wvice versa®.

45. But the details of his doctrines are now hopelessly lost.
Forah i 5 i ool in
Italy and when at last a i lished*,
it was Tar more elaborate than the teaching of its founder.

Even the tenets of this later school come to us only by hearsay.

Of Pythagoreans we know something from Plato and Aristotle

* 1 It was Pythagoras who discovered
that the 5th and the octave of a note
could be produced on the same string
by stopping at § and } of its length
respectively. Harmony therefore de-
pends on a numerical proportion. It
was this discovery, according to Han-
kel, which led Pythagoras to his phi-
losophy of number. It is-probable at
least that the name harmonical propor-
tion was due to it, since
1:3:(1-3):(8-3)-
Tamblichus says that this proportion
was called vrevavria originally and that
Archytas and Hippasus first called it
harmonic. Nicomachus gives another
reason for the name: viz. that a cube,
being of 3 equal dimensions, was the
pattern dppovia: and having 12 edges,
8 corners, 6 faces, it gave its name to
harmonic proportion, since
12:6::12-8:8-6.

Vide Cantor, Vorles. p. 152. Nessel-
mann, p. 214 n.. Hankel, p. 105 sqq.

2 Some such vague term must neces-
sarily be chosen. Aristotle (Metaph. 1.
5) says that the Pythagoreans held that
number was the dpxh xal ds UAy rois
ovot kal is wd0n Te kal &es. It is not
possible to extract from these words a
definite theory of the functions of num-
ber in the cosmogony: it seems to be
¢ everything by turns.’

3 See Diog. Laert. vimr. 12 and 14.

In the second passage Pythagoras is -

said, on the authority of Aristoxenus,
to have introduced weights and mea-
sures into Greece.

¢ By Philolaus. See Diog. Laert.
vir. 15, 85. The silence of Pythagoras
was proverbial. On this and the facts
stated in the text cf. Ritter and Preller,
Hist, Phil. §§ 96, 97, 102—128.
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and the historians of philosophy, but hardly anything remains
which is attributed, by any writer of respectable authority, to
Pythagoras himself’. He is probably responsible for some of the
fantastic metaphysics of his followers. Aristotle expressly says
that he referred the virtues to numbers and perhaps he agreed
with Philolaus that 5 is the cause of colour, 6 of cold, 7 of mind
and health and light, 8 of love and friendship and invention.
Plutarch says that he held that the earth was the product of
the cube, fire of the pyramid, air of the octahedron, water of the
eicosahedron, and the sphere of the univerée of the dodecahedron”®.
But doctrines of this kind, though they imply an interest in
mathematics, are not themselves contributions to mathematical
knowledge and do not require to be discussed in this place.
For our present purpose, it is sufficient only to consider what
advances in arithmefic_are due to Pythagoras or his scﬂbbl
WIthout speculating on the mode or ordg_r__lg_mhmh_i.hey.mre
ohtamed or their place in the Pythagosean-philesophy.

" The followmg discoveries, at any rate, with the accompanying
nomenclature; are as old as Plato’s time. All numbers were
classified ag gd_d or.gven (@pTiowor mepiaaod). . Of these the odd
numbers were gnomons (yvéuoves) and the sum of the series of
gnomons from 1 to 2n+1 was a square ('re-rpa'ywvoe)’ The
_rggt_gf_&gquam,mlmb_er wag called its side (mhevpa). Some com-
ud numbers haye no squareroots. These latter were oblongs
(érepoprixers or mpourixeis)’. Products of two numbers _were

plane (émimedou), of three solid (arepeoi)®. r mul

A number m,ulnphed

twice into itself was a cube (k7B0s)°%.

1 Porphyrius, a Syrian, late in the
3rd century after Christ, and Iambli-

chus both wrote a ‘life of Pythagoras.’ *

2 See Ritter and Preller, pp. 72, 79,
§§ 116, 117, 127.

3 Aristotle, Phys. 111. 4. The gnomon
is properly a carpenter’s instrument,
a T square with only one arm. The
name was afterwards used in other
senses.

4 See Plato Theaet. 147p—1483B. A
surd was probably at this early time
called inexpressible or irrational (dgsy-

Some more classifications

Tos or dAoyos), but this is not certain,
Plato calls it a Sovamus.

5 Cf. Aristotle on Plato in Pol. v.
12. 8.

6 Plato, Rep. vir. p.246. The same
passage invites one or two other little
remarks. dpifuds dwd in later Greek
writers means ‘the square of’: dpifuos
vrd means ‘the product of.’ dwéaracts
once in Plato (Timaeus 43 p) means the
‘interval’ between the terms of an
arithmetical progression. adnsts may
(like ad¢n, Rep. vir. 528 B) mean ‘mul-
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are given by authorities of less antiquity. Any number of
oo form 25502 s called tringudar (sobyes). Pefe
(Té\etor) numbers are t which are equal to the sum of all
their possible factors (e.g. 28 =1+24.4+Z414): for similar
reasons numbers. are ezcessive (SmepTéNeor) Qr_defective fve (EAAi-
wres)’. Amicable (péreoc) numbers are those of which.each is. t.he
sum of ¢ tEe factors of the other (e.g.220 =1 42 + 4 4 71 + 142

284 = 84 =1+2+4+5+10+11+20 + 22 + 44 + 5 +110)

Beside this work in classification of single numbers, numbers
were treated in groups comprised either in a series (éxBeats or
dvaloryia cruuean) or a proportion (dvaloyl/a). Each number

of such a series.or.- p:opomon—warwﬁed—a-m (opoe) The

mean terms of a proportion were called weodrpres®. 'I'Eree

kmﬁlon,ﬂ)_e_aﬂﬂmdngmMmduuml
,_,ﬁ__l_kmwere certainl n'. To these Jamblichus® adds a fourth,

on.
It is composed between two numbers and their arithmetical
arb . 2 b(eg.6:9:8:12)
Plato knew that there was onmly one expresmble geometrical
mean between two square numbers, two between two cubes®.
Itis a familiar fact that the geometrical proposition, Euclid 1. 47,
is ascribed to Pythagoras. It follows that a right-angled triangle
may be always constructed by taking sides which are to one an-

and harmonical means, thus a :

tiplication.” For other terms see Jour-
nal of Philology, xu. p. 92.

1 Theon Smyrnaeus (ed. Hiller) pp.
31, 45.

2 Iamblichus in Nicom. Ar. (ed, Teu-
nulius) pp. 47, 48.

3 It will have been observed that
much of our modern nomenclature (e.g.
‘square,’ ‘ cube,’ ‘surd,’ ‘term,’ ‘mean’)
is taken from the Latin translation of
the Greek expressions,

¢ Philolaus in Nicomachus Imtrod.
Ar. (ed. Hoche) p. 135, Archytas in
Porphyrius, ad Ptol. Harm. cited by
Gruppe, Die Fragm. des Archytas, etc.

p. 94. This quotation (with one or two
more) I take from Cantor, Vorl. p. 140
8qq. The statement in the text might
be easily confirmed from other sources.
See for instance Simplicius on Ar. de
Anima 409, b. 23. Dr Allman doubts
(Hermathena v. p. 204) whether these
proportions were first applied to num-
ber, but see Ar. An. Post. 1. 5. 74,
and Hankel p. 114.

8 In Nicom. Ar. (ed. Tennulius) pp.
141—2, 168.

8 Timaeus, 832 B. Nicomachus, Introd.
Ar. 11, c. 24,
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other in the ratios 8:4 :5, and to these numbers therefore
great importance was attached in Pythagorean philosophy’. To
Pythagoras himself is ascribed a mode of finding other numbers
which would serve the same purpose. He took as one side an
odd number (2n + 1) : half the square of this minus 1 is the other
side (2n®+2n): this last number plus 1 is the hypotenuse
(2n"+2n + 1). He began, it will be noticed, with an odd number.
Plato® invented another mode, beginning with an even number
(2n): the square of half this plus 1 is the hypotenuse (n*+ 1):
the same square minus 1 is the other side (n*—1).

46. A few more details expressly alleged by, or inferred from
hints of, later authors might be added to the foregoing but it is
impossible to frame with them a continuous history even of the
most meagre character. We_cannot say precisely what Pythagoras
knew or discovered, and what additions to his knowledge were
successively made by Philolaus or Archytas or Plato or other
inquirers who are known to have been interested in the
philosophy of numbers i’

* that th hagoreans were concerned only
with the questions ‘how many’ (70 moodv) and ‘how great’
(1o myhlkov) that is, w1th__m; ng a.n.d..magmtn.de. Mmher

1 This rule was known to the Egyp-
tians, the Chinese and perhaps the
Babylonians at & very remote antiquity,
v. Cantor, Vorles. pp. 56, 92,158—4. The
discovery is expressly attributed to Py-
thagoras (Vitruvius, 1x. 2). Oantor
(Vorles. p. 158 8qq.) is of opinion that
Pythagoras knew this empirical rule
for constructing right-angled triangles
before he discovered Eucl. 1. 47.

3 Proclus (ed. Friedlein), p. 428. It
will be noticed that both the Pythago-
rean and Platonic methods apply only
to cases in which the hypotenuse differs
from one side by 1 or 2. They would
not discover such an eligible group of
side-numbers as 29 : 21 : 20. See

Nesselmann, pp. 152—3. These are
provided for by the first lemma to
Euclid, x. 29. Infra, p. 81 n.

3 Plutarch, Quaest. Conv. vir. 9.
11—13, says that Xenocrates, the pupil
of Plato, discovered that the number of
possiblesyllables was1,002,000,000,000.
This looks like a problem in combina-
tions, but the theory of combinations
does not appear in any Greek mathe-
matician, and the number seems too
round to have been scientifically ob-
tained. (Cantor, Vorles. pp. 215, 220.)

4 Ed. Friedlein, pp. 35, 36. For
the distinction between number and
magnitude compare Aristotle, 4n. Post.
1. 7 and 10, and Cat. o. 6.
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Spheric or astronesms’. But they did not so strictly diss«#iate
discrete from continuous quantity. An arithmetical fact ' had
its analogue in-geometry and wvice versa; a musical fact had
its analogue in astronomy and wice versa. Pythagorean arith-
metic and geometry should therefore be treated together, but

there is so little known o_f_ either, that it scemed unadvisable,

for this purpose only, to alter the plan of this book. The his-
tory of Greek geometry is so much fuller and more important
and proceeds by so much-more regular stages than ‘that of
arithmetic, that it deserves to be kept distinct.

The facts above stated are sufficient to show that, from the
first, Greek apzﬂmrrmn was closely connected with geometry
and that it barrowed, from the latter science, its symbolism
and nomenclature. It had not yet wholly discarded the abacus®,
but,its aim was entirely different from that of the ordinary
calculator and it was natural that the philosopher who sought
in numbers to find the plan on which the Creator worked,
should begin to regard with contempt the merchant who wanted
only to know how many sardines, at 10 for an obol, he could
buy for a talent.

47. Whensoever and by whomsoever invented, most® of the
known propositions of apifuntikr were collected together, not
much later than 300 B.c. by Euclid in his Elements. Only
the seventh, eighth and ninth books are specially devoted to
numbers, but it cannot be doubted that the second and the
tenth, though they profess to be geometrical and to deal with

1 These four sciencesbecame, through
the Pythagorean influence of Alexan-
dria, the quadrivium of early mediae-
valism. The subjects of this fourfold
education are mentioned in the familiar
line *‘ Mus canit: 4r numerat: Ge pon-
derat: Ast colit astra.” To this, how-
ever, another trivium Rhetoric, Dialec-
tic and Grammar, were added (* Gram
loquitur: Dia vera docet: Rhet verba
colorat”) and these seven are the god-
desses of science and art who attend at
the nuptials of Philology and Mercury

celebrated by Martianus Capella (cir.
A.D. 400). The same seven branches of
education are discussed by Cassiodorus
(born about A.p.468), De Artibus ac
Disciplinis Liberalium Litterarum.

3 E.g. Plato, Legg. 737 E, 738 A says
that 5040 has 59 divisors including all
the numbers from 1 to 10. A fact of
this sort must have been discovered em-
pirically by means of the abacus.

3 Archimedes uses one or two propo-
sitions which are not in the Elements.

-y



GREEK THEORY OF NUMBERS. Arithmetica. 73

magnitudes, are intended also to be applicable to numbers.
The first 8 propositions of the second book, for instance, are for
geometrical purposes proved by inspection. No one can doubt
them who looks at the figures. But asarithmetical propositions
they are not self-evident if stated with any arithmetical symbol-
ism. Insuch a form, the first 10 propositions (the 9th and 10th
are not treated in the same way as the first 8) are as follows*:

(1) ab+ac+ad+...... =alb+ec+d+...... )
(2) (@+d)=(@+b)a+(a+d)d

8) (a+bd)a=ab+a

(4) (a+d)l=a"+b*+2abd

) (g)~=(a—b)b+(§—b).

© (a+b)b+(g)'=(g+b)’.

() (@+b)'+a*=2(a+b)a+b

(8) 4(a+b)a+b'=(2a+b).

@ @-br+b=2(3) +2(3-b).

(10) b'+(a+b)*=2(g)'+2(g+b)’.

The eleventh proposition?® is the geometrical way of solving
the quadratic cquation a(a—0b)=05" and the fourteenth solves
the quadratic o®=bc. From this statement, in algebraical
form, of the chief contents of the 2nd Book, it will at once
be seen what an advantage Greek mathematicians found in a
geometrical symbolism. These propositions are all true for ¢n-
commensurable, as well as commensurable, magnitudes, irrational.
as well as rational, numbers. But in numbers the Greeks had

no symbolism at all for surds.

1 It will be observed that Theon’s
method of finding a square root, cited
above, is founded on Eucl. 11. 4, 8o
also Diophautus (infra, p. 104) uses
Euclid 11. a8 an arithmetical book.

. 3 This is the famous problem of * the
golden section,’” which is used again in
Euclid 1v, 10 for the purpose of con-

They knew that surds existed,

structing a regular pentagon. Euclid’s
solution of the quadratic would be in
algebraical form,

=a/ar+( ‘e
b= a+(2) 3

(Cantor, Vorles. pp. 226, 227.)
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that there was no exact numerical equivalent, for instance, for
the root of 2: but they knew also that the diagonal of a
square: side :: 4/2 : 1. Hence lines, which were merely con-
venient symbols for other numbers®, became the indispensable
symbols for surds. Thus, Euclid's 10th book, which deals with
incommensurables, is in form purely geometrical, though its con-
tents are of purely arithmetical utility: and every arithmetical
proposition, in the proof or application of which a surd might
possibly occur, was necessarily exhibited in a geometrical form.
It is not, therefore, surprising that a linear symbolism became
habitual to the Greek mathematicians and that their attention
was wholly diverted from the customary arithmetical signs of

the unlearned.

48, It is in the 7th book of the Elements® that Euclid
first turns to the consideration of numbers only.
It begins with 21 definitions which serve for the 7th 8th and
9th books. The most important of these are the following :
(1) Unity (uovds) is that by virtue of which everything

is called ‘one’ (& Aéyerar)*.

(8) and (4) A less number, which is a measure of a

1 This fact, according to an old scho-
liast (said to be Proclus) on the 10th
book of Euclid, remained for a long
time the profoundest secret of the Py-
thagorean school. The man who di-
vulged it was drowned. See Cantor,
Vorles. pp. 165, 156, quoting Knoche,
Untersuch. ilber die Schol. des Proklus
etc., Herford, 1865, pp. 17—28, esp.
p. 23.

2 The use of lines of course avoided
the necessity of calculation. A rect-
angle represented a product: its side a
quotient, Thus, for instance, Euclid
(x. 21), wishing to show that a rational
number divided by a rational gave a
rational quotient, states that ¢if a ratio-
nal rectangle be constructed on a ra-
tional line, its side is also rational.’

3 In the 7th 8th and 9th books, no
geometrical figures are given, as indeed

none are necessary. In the 7th book
according to our MSS. numbers are
generally represented by dots (in Pey-
rard’s edition by lines), in the 8th book
particular numbers are given by way of
illustration: in the 9th book both dots
and particular numbers occur. Euclid
probably used lines only, except where
& namber was to be represented as odd
or even, in which case perhaps he used
dots. At any rate, he does not, any
more than in the geometrical books,
use division, and his treatment of the
propositions is purely synthetic; as
elsewhere,

The arithmetical books of Euclid are
included in Williamson’s translation,
Oxford 1781—1788.

4 In the 2nd definition uovds means
‘the unit.’ ‘Number’ is there defined
a8 ‘76 éx povddwy ovyxeluevov wh7jfos.’

—_ e
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greater, is a uépos (part) of it : but if not a measure, it is pépn
(parts) of the other’,

(6)and (7) ‘Odd’ and ‘even’ numbers (mepiaaol and dprioc).

(11) ‘Prime’numbers (mpdros 6 povddi povov perpovuevos).

(12) Numbers ‘prime to one another’ (mwpdros mpds
aA\jhovs).

(13) Composite numbers (avvferor).

(16) Products of two numbers are ‘ plane’ (émimedor) and
each factor is a ‘side’ (m\evpa).

(17) Products of three numbers (m\evpal) are solid’
(arepeol).

(18) ‘Square’ numbers (rerpdywros 6 iodxis loos).

(19) ‘Cubes’ (k0Bos 6 icdrus laos Ladris).

(20) Numbers are ‘proportional’ (dvd\oyov elo() when
the 1st is the same multiple, part or parts of the 2nd as the 8rd
of the 4th. '

(21) Plane and solid numbers are ‘similar’ when their
sides are proportional.

(22) A ‘perfect’ (Té\etos) number is that which is the
sum of all its factors (uépn).

It will be seen that this nomenclature is purely Pythagorean.
The class of ‘ prime’ (wpd7oc) numbers is not indeed mentioned
by any earlier writer now known, but it can hardly be doubted
that they were defined by the Pythagoreans, as a sub-class of
odd numbers. The book deals with the following matters :

Prop. 1. If of two given unequal numbers the less be
subtracted from the greater as often as possible and the
remainder from the less and the next remainder from the pre-
ceding remainder and so on, and no remainder is a measure of
the preceding remainder until 1 is reached, the two given
numbers are prime to one another. This (which is proved by
reductio ad absurdum) leads to

Propp. 11, 111.  To find the greatest common measure of two
or more numbers. (The procedure is identical with ours.)

Propp. 1v.—XXI1I. These deal with submultiples and fractions

1 uépos éotlv dpibuds dpifuol, 6 éxdo-  This word uépy is the plural of uépos,
owr Tob pelfovos, drav xaraperpp Tov  and is a very inconvenient expression.’
pelfova. pépn 8¢, 6Tav ph xaraperpp.
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and apply to numbers the doctrines of proportion which had been
previously proved for magnitudes in the 5th book*.

Propp. xx1ir.—xxX. Of numbers prime to one another.
E.g. xx1x. If two numbers are prime to one another, all their
powers are prime to one another.

Propp. xxx1.—XxxXx1v. Of prime numbers in composition.
E.g. xxx1v. Every number is prime or is divisible by a prime.

Propp. XXXV.—XLL. Miscellanea : e.g. XXxv. To find the
lowest numbers which are in the same ratio with any given
numbers, XXXVI. To find the L.c. M. of two, and XXXVIIL of
three, numbers. xL1. To find the lowest number which is
divisible into given parts.

49, The 8th book deals, in the first half, chiefly with
numbers in continued proportion (dpifuol éffs dvaroyov) e.g.
rur.  If any numbers are in a continued proportion and are the
least which have the same ratio to one another®, the extreme terms
will be prime to one another. vII If the 1st term is a divisor
of the last, so is it of the 2nd. But a few other propositions are
inserted, e.g. v. Plane numbers are to one another in the ratio
which is compounded of their sides. XI. There is one mean
proportional between two squares and XIL two between two
cubes. The last half of the book (Propp. XIV. to XXVIL) is
entirely devoted to the mutual relations of squares, cubes and
plane numbers, e.g. xx11. If three numbers are in continued
proportion and the first is a square, so is the third. Xxxmr If
four numbers are in continued proportion, and the first is a
cube so is the fourth.

50. The 9th book continues the same subject for a few
propositions: e.g. III. If a cube be multiplied by itself the
product is a cube. Then follow (ViIL—XV.) some more pro-
positions on numbers in continued proportion, or geometrical
series: e.g. IX. Ifin a series, commencing from unity, the 2nd
term is a square, so are the following terms. And if the 2nd

1 E.g. v. Every number is either and conversely.
a uépos or puépy of every higher number. 8 i.e. are the least which can forma
v.v1. If 4 is the same uépos (or uépn)of  continued proportion of the same num-
BasCofD, A+ Cisthesameof B+D. ber of terms, bearing the same ratio to
x1x. If 4:B::C:D, then AD=BC one another, as in the given case.
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term is acube, the following terms are cubes. A few propositions
on prime numbers (XVIL—XX.) are then given of which the
most important is XX. The number of primes is greater than-
any given number. The discussion of odd and even numbers
is then introduced (XXI.—XXXIYV.), the propositions being of such
a character as XXIv. If an even number be subtracted from
an even number, the remainder is even. Then suddenly,
appears the following proposition, XXXv. “If any numbers be
in continued proportion, and the first term be deducted from
the 2nd and also from the last, the remainder of the 2nd will be
to the 1st as the remainder of the last to the sum of all the
preceding terms.” Stated in another form, this proposition is:
If a, ar, ar’, ar’... ar”" be a geometrical series, then
ar—a:a: (@"—a):a+tar+ar.. +ar"
It is an easy step further to conclude that
a+ar+art..+art= a(ar"=a)
: ar—a

and thus to sum the series, but Euclid does not take this step.
The proposition, as it stands, is apparently introduced solely for
the purpose of proving the next (XXxvI1.), the last in the book.
This is, in effect, that in a geometrical series of the powers
of 2 from 1 onwards, the sum of the first n terms (if a prime
number) multiplied by the nth term is a perfect number®. In
the proof®, which is too long to be here inserted, the sum of n
terms is assumed to be known by simple addition.

1 Euclid takes only four numbers. His proof, put shortly, is as follows:
Let a :By::py:8::8:¢. Take yn={0=a, {x=By, {A=3.
Y ¢ Then §8: $x:: dx:$h:: ¢h: fe. Dividendo $0: 0k :: $k: ki §Ai e
and componendo {0:0k:: $0+ {x+ ¢\ 0k+ kA +he. By sub-
stitution (taking the terms backwards) ef:a+8y+8::87:a.
ji.e.ef~a:at+pPy+dupy-ata. Q. E D

(-]
a > a o

8 'Edp dwd povddos owocowoty dpifuol éffjs éxteOiow év Tf dumhaclore dvaloyle
KT\

3 A short proof is easy :

1424448+ ...+ 2M=2"F_1=p,
2%p is & perfect number if
2%p=1+4+2+4+...+2"+p(1+2+4+...+2%)

which is obviously the case.

From this also it is evident that the proposition is untrue unless p is & prime
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Such was the dptfunrikr of rational numbers known in
Euclid’s time. Not all of it was of Euclid’s invention, but
it contains much the importance of which the later Greek
arithmeticians did not perceive and which, neglected by them,
was only in modern times resumed into consideration and
made the elementary foundation of a scientific theory of
numbers.

51. The 10th book treats of wrrational magnitudes and
treats them geometrically through a symbolism of irrational lines.

Definitions occur at intervals throughout the book. It
starts with the following :

1,2. Magnitudes are commensurable (¢Juperpa) when they

are measurable by one and the same measure: contra, incom-
mensurable (zoduperpa).

3, 4. Straight lines are commensurable in square (Svvaues
ovUppetpor) when their squares may be measured by the same
unit of space (ywplov): contra, Svvdues dovpperpos'.

5. Hence, to any given straight line, there are an infinite

number. Nesselmann (4lg. Gr. p. 164 n.), after remarking that it is not

very easy to know whether a high number is prime or not, quotes from Fermat

(Varia Opp. Math. Toulouse 1679, p. 177) the following rule. Write down the

powers of 2 minus 1 each and above them the corresponding exponents of the

powers: thus

If the exponent is not prime, neither is the

i g ?, 145 :1 g’ 1;7 ::z' power minus 1. If the exponent n is prime, the

*  power minus 1 is divisible only by numbers of the

form 2mn+1. These can easily be tried. Fermat gives no proofs for his rule,
and his accuracy is not above suspicion, (Jevons, Elem. Logic, p. 222.)

1 As Euclid does not define the word to show how diwams acquired this
Stvaus (whence potentia, ‘power’) it mathematical sense, If the passage
may be desirable here to give some Eudemi Fragm. (ed. Spengel) pp. 128—
account of it. The word 3dvacfacmeans 129 is really quoted from Hippocrates
to be the square root of (Plato, Theaet. of Chios, this is the earliest which con-
148 4 is probably the earliest instance):  tains the technical dtvams. Alexander
hence diwaus, as a rule, means the Aphrodisiensis (ed. Bonitz, 1847, p.
square; but sometimes (Plato loc. cit.)  56) says that wauévy was the hypote-
means & square root or rather a surd, nuse,dwacrevépevar the sides of a right-
i.e. a square root which cannot be angled triangle. These words, in this
otherwise described. Adwasus is a more  connexion, probably mean ‘equalling’
general term than rerpdywvos, which and ‘equalled.’ If these names are
is used only when a square figure is  ancient, perhaps the technical use of
contemplated. There is no evidence  dvwawms grew out of them,
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number of straight lines commensurable or incommensurable,
some both in length and in their squares, some in square only.
Let this given straight line be called pn7sj, ‘rational’ Then

6, 7, pmral, rational straight lines, are commensurable with
it in length and square or in square only: lines incommen-
surable with it in length and square or in square, are called
d\oyou’.

8,9. The square of the pnr7 is also ‘rational’ and so is
every square which is commensurable with it.

10, 11. Squares incommensurable with that of the pyry
are d\oyou: so also are the sides of such squares. If a recti-
lineal figure be irrational, the sides of the square which is
of equal area with it are also irrational.

The book begins with 21 propositions on incommensurables
generally. Of these the most important are:

I If two unequal magnitudes be given and from the
greater more than half be subtracted and from the remainder
more than half and so on with successive remainders, the final
remainder will be less than the less of the two given magnitudes.
So also, if only halves be deducted. This proposition, that
a magnitude less than any given magnitude can be found, is the
basis of the method of Ezhaustion of which so much and so
brilliant use is made in Greek geometry*,

1. If of two given unequal magnitudes the less be deducted
from the greater as often as possible and the remainder from
the less and the next remainder from the preceding remainder
and so on, and no remainder is a measure of the preceding, the
two magnitudes are incommensurable. (Compare viII. 1.)

nL 1v. To find the G.¢. M. of commensurable magnitudes.

1 It will be observed that Euclid’s
nomenclature differs from the modern.
We call irrational all that he calls in-
commensurable: but with him a: \/b
is rational, because a®: b is rational.
On the other hand, aA/b or any other
multiple of an incommensurable, is
with Euclid irrational, because a\/b
and the rest are rectangles already and
cannot be squared. The pyr7of Euclid

serves the same purpose as what we
call ‘the standard unit’ of length or
space.

*® 3 It is curious that Euclid does not

add the further proposition that ‘if two
given magnitudes are incommensura-
ble, there can be found & third, com-
mensurable with one of the given and
differing as little as we please from the
other.” See Cantor, Vorles. p. 230.
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v.—IX. Commensurable magnitudes are to one another as
numbers to numbers: and their squares as square numbers.
Contra, of incommensurables and conversely.

x1. If four magnitudes' are in proportion and the lst is
commensurable (or incommensurable) with the 2nd so is the
3rd with the 4th. Here follow various propositions on com-
mensurables and incommensurables in proportion, on the sum of
two commensurables or incommensurables etc.

xxL If a rational rectangle be constructed on a rational
line, the side of the rectangle is also rational (i.e. a rational
number divided by a rational gives a rational quotient). To
this is appended a Lemma, proving that the line or number,
whose square is irrational, is also irrational (a fact which was
provided for in the definitions). This lemma, which introduces,

8o to say, the consideration of the expression /Vab, leads to the
discussion of the medial line (uéon) in the 2nd part of the book.

The definition of wéon®is given in Prop. XxXiL viz. The
rectangle contained by rational lines commensurable only in
square (i.e. ay/b or ¥/ay/b) isirrational and the side of the square
which is equal to this rectangle is also irrational and may be

called péon (i.e. V'avb, or else »/Vab, where, if numbers be con-
templated either @ or b must not be square). The following
propositions XXIIL.—XXXV. deal with uéosac or medials only.
They are of the following kind:

XX1v. Medials may be commensurable with one a.nother in
length and square or in square only.

XXV. Given two medials commensurable in length (e.g.
mlab and nJab), the rectangle contained by them (mni/ab)
is medial.

XxVI. Given two medials, commensurable only in square
(e.g. Jayb and Jc /b), the rectangle contained by them (vach)

! This proposition is numbered x. in  side of the square which is equal to
Gregory’s edition (Oxon. 1703) the 10th  this rectangle, is & mean proportional
and 11th exchanging places. (uéon dvdhoyov) to AB, BI'. The name

% The reason for the name is given ‘medial’ is used in the text, as more
in the same place. If AB, BT are the convenient.
sides of an irrational rectangle, the
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is either rational or medial (i.e. according as achb is square
or not).

Upon these two propositions follow several problems', to
find medials, commensurable in line or in square, whose rect-
angle or square is of a given character: e.g. Xxxmr To find
two medials commensurable only in square, such that their
rectangle is medial and that the square of the greater exceeds
the square of the less, by the square of a line either (a) com-
mensurable or () incommensurable with the former. Two
similar problems on lines incommensurable in square conclude
the second part. All these lines are intended ultimately to form
part of binomial expressions (cf. ¢nfra, p. 83, n. 2).

At the xxxvIIth proposition, some editor has introduced a
new heading, viz. ’Apyn Tév katd avvleow éfadwy and again at
Prop. LXXIV. 'Apxn Tév ket dpaipeoy éfadwv. These hexads
are six groups, of six propositions each, on irrational binomials.
There is thus a set of 36 propositions (XXXVIL—LXXIIL) on bi-
nomials “formed by addition” and another of 36 exactly corre-
sponding propositions (LXXIV.—CIX.) on those “formed by sub-
traction.” The enunciation of Prop. XXXvii. rums: ‘If two
rational lines, commensurable only in square, are added together,
the sum is irrational and may be called a biterminal’ (éx
8Yo ovoparwv). The difference of two such lines is, in Prop.
LXXIv., called apotomé. The biterminals are ia+ 4/b, and
a++b: the apotomae are Ja—./b, a—./b and Va—b: but
altogether, twelve kinds of irrational binomials are distinguished.
Of these twelve, six are formed by addition and are described
and named in the first hexad: the other six are the corres-
ponding binomials formed by subtraction and are described and
named in the seventh hexad. The third hexad describes six

1 To Prop. xxrx. two lemmas are
appended, the first of which is ¢To find
two square numbers, such that their
sum is a square number. This is
solved with the help of Eucl. m. 6.
By that proposition, in the line

A D c B

T T
AB .BC+CD*=BD% 4B ,BC will

G. G. M.

represent a square number, if 4B and
BC are both square or similar rect-
angular numbers, AC is assumed to
be even.

The numbers which follow are
those of Gregory’s edition. Nessel-
mann, who used the Basle edition,
(pub. 1537, 1546, 1558) cites xxx11. for
xxxm1. ete. , the 30th proposition in that

6
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kinds of biterminals, the ninth six kinds of apofomae, and these
are shown, in the following hexads, to be the squares of the
binomials of addition and subtraction first defined.

These few remarks being premised, to show the structure and
style of the remainder of the book, the effect of the whole may
best be given in the words of a most competent critic, as follows.
“Euclid investigates,” says Prof. De Morgan', “every possible
variety of lines which can be represented by +/(va + +/b), @ and
b representing two commensurable lines. He divides lines which
can be represented by this formula into 25 species and he
succeeds in detecting every possible species. He shows that
every individual of every species is incommensurable with all
the individuals of every other species®; and also that no line of
any species can belong to that species in two different ways or
for two different sets of values of a and b*. He shows how to
form other classes of incommensurables in number how many
soever, no one of which can contain an individual line which is
commensurable with an individual of any other class*, and (?) he
demonstrates the incommensurability of a square and its diago-
nal®. This book has a completeness which none of the others
(not even the fifth) can boast of: and we could almost suspect
that Euclid, having arranged his materials in his own mind, and
having completely elaborated the 10th book, wrote the preceding
books after it, and did not live to revise them thoroughly.”

edition being divided into two parts, the second hexads (Props. 43—48 and

which are treated by Gregory as two
separate propositions.

1 Article Eucleides in Smith’s Dict.
of Gr. and Rom. Biography.

2 This sentence gives the effect of
the sizth hexads (Props. 67—71 and
104—108) which, however, contain
only 5 propositions each, They are
devoted to proving, by separate cases,
that ‘‘every line, commensurable in
length with a binomial irrational line,
is an irrational line of the same
species,” Nesselmann, p. 179.

3 This sentence gives the effect of

80—85). They are devoted to proving,
by separate cases, that ‘“every binomial
irrational line can be divided into
its terms only in one point:” i.e. that
va++/beannot=4/z+./y, unlessa=z
and b=y. Nesselmann, p. 177.

4 This sentence gives the effect of
Prop. 116. Nesselmann, p. 182,

5 This refers to Prop. 117, which is
clearly not Euclid’s, as we have it.
The enunciation, for instance, begins
¢ Let it be proposed to prove” etc. and
two proofs are given.

[ S — —
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52. “The preceding enumeration,” says the same writer
in another place’, “points to one of the most remarkable
pages in the history of geometry. The question immediately
arises, had Euclid any substitute for algebra? If not, how
did he contrive to pick out, from among an infinite number
of orders of incommensurable lines, the whole, and no more
than the whole, of those which were necessary to a com-
plete discussion of all lines represented by 4/ (va + 4/b), with-
out one omission or one redundancy? He had the power of
selection, for he himself has shown how to construct an infinite
variety of other species, and an algebraist could easily point out
many more ways of adding to the subject, which could not have
been beyond Euclid. If it be said that a particular class
of geometrical questions, involving the preceding formula and
that one only, pointed out the various cases,it may be answered
that no such completeness appears in the 13th book, in which
Euclid applies his theory of incommensurables. It is there
proved that each of the segments of a line divided in extreme
and mean ratio is an apotomé—that the side of an equilateral
pentagon inscribed in a circle is, relatively to the radius,
the irrational line called a lesser line®, as is also the side of
an icosahedron inscribed in a sphere—and that the side of
a dodecahedron is an apotomé. The apotomé then and the lesser

1 In the English (also in the Penny)
Cyclopedia, Art. “Irrational Quantity.”
A most complete summary of the con-
tents of Euclid’s 10th book is here
given, followed by the remarks quoted
in the text. The book was evidently
a favourite with De Morgan., Nessel-
mann, p. 184, after remarking on the
unsuggestiveness of the linear sym-
bolism, says ‘‘Abstract thought alone
has extracted from these lines their
hidden secrets, which our formulae,
almost unasked, declare. Indeed I
think it is not too much to say that
this book, almost useless in its geo-
metrical form and therefore little
esteemed, is the very one which shows

us the old mathematician in his high-
est glory.”

3 See Prop. Lxxvir. compared with xr.,
If two lines, incommensurable insquare
and such thut the sum of their squares
is rational but their rectangle is me-
dial, are combined, their sum and their
difference are both irrational. The
former is called # pelfwy, the latter 3
drrwv. Two such lines are found
earlier in Prop. xxxiv. They are re-
presented algebraically by

Z+adb 2 _
J a___+2a vb and ‘-"—-2“5/3: or

\/Z__"'g@ and \/ a- 2~/_“7’ .
6—2
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line are the only ones applied......The most conspicuous pro-
positions of elementary geometry which are applied in the
10th book are the 27th, 28th and 29th of the 6th book,
of which it may be useful to give the algebraical significance *.
The first of these (the 27th) amounts to showing that 2z — a*
has its greatest value when #=1, and contains a limitation
necessary to the conditions of the two which follow. The 28th
is a solution of the equation az—2'=b, upon a condition
derived from the preceding proposition, namely, that } o' shall
exceed b. It might appear more correct to say that the solution
" of this equation is one particular case of the proposition, namely,
where the given parallelogram is a square: but nevertheless the
assertion applies equally to all cases. Euclid however did not
detect the two solutions of the question: though if the diagonal
of a parallelogram in his construction be produced to meet the
production of a line which it does not cut, the second solution
may be readily obtained. This is a strong presumption against
his having anything like algebra; since it is almost impossible
to imagine that the propositions of the 10th book, deduced
from any algebra, however imperfect, could have been put
together without the discovery of the second root. The re-

1 Cantor, Vorles. p. 228, gives practi-
cally the same algebraical equivalents,
which, he says, first appeared in Mat-
thiesen, Grundziige der antik. u. mod.
Algebra ete. 1878, He does not seem to
have heard of De Morgan. As these pro-
positions are not usually printed, the
enunciations may be here subjoined:

xxvir, Of all parallelograms applied
to the same straight line and defective
by parallelograms similar and similarly
situate to that which is described on
half the line, the greatest is that which
is applied to half the line, and is similar
to its defect.

xxviil, To a given straight line to
apply & parallelogram equal to a given
rectilineal figure and having its defect
similar to a given parallelogram : pro-
vided that the given rectilineal figure

be not greater than that which can be
applied to half the line, so that the
defects of the given rectilineal figure
and of that which is applied to half the
line be similar.

xx1x. To a given straight line to
apply a parallelogram equal to a given
rectilineal figure, and excessive by a
parallelogram which is similar to a
given parallelogram.

D E

e

4 B c

In the figure AD if applied to the
line AC is defective (éN\elwe). AE
if applied to the line 4B is ezcessive
(vwepBdANe). See also Simson’s note
on these Propositions.
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maining proposition (the 29th) is equivalent to a solution
of az +a'=b: but the case of 2* — ax =b is wanting, which is
another argument against Euclid having known any algebraical
reasoning.”

53. It must be added, before quitting this book, that
Euclid nowhere alludes to any familiar example of an incom-
mensurable. Some editor (whose language and style of proof
differ noticeably from Euclid’s) has added, at the end of the
book, Prop. CXVIIL proving that ‘the diagonal of a square is
incommensurable with the side’” Prof. De Morgan in one
place® suggests that Euclid’s interest in incommensurables
was perhaps due to a suspicion that the circumference of a
circle was incommensurable with the diameter. In another
place®, he suggests that Euclid had discussed some kncwn
examples of incommensurables in his lost work on Fallacies
(mwepi Yrevdaplwv), which, he thinks, was intended to be pre-
fatory to the Elements. Both suggestions, of course, are purely
conjectural. Hardly anything is known of the Greek theory
of incommensurables before Euclid’s time. Their discovery is
expressly attributed to Pythagoras®, but for a long time, the
sole known fact was that the diagonal of a square : the side ::
y/2 : 1. To this, according to Plato®, Theodorus of Cyrene
added the fact that sides of squares represented by /3, /5 etc.,
up to 4/17 were irrational. Theaetetus, a pupil of Theodorus,
made the generalization that the side of any square, represented
by a surd, was incommensurable with the linear unit. At alater
date, perhaps, he improved this into the form of Euclid x. 9:
Two magnitudes, whose squares are (or are not) to one another

1 The proof is as follows. ‘Suppose
the diagonal : side::p: g, p and q being
whole numbers prime to one another.
Then p2?=2¢%. p*and p are, therefore,
even numbers. It follows that ¢, which
is prime to p, must be odd. But p,
. being even, =2r. Therefore (2r)2=2¢%
and g must be even. Which is absurd.’
This proof is twice referred to by Aris-
totle (4n. Prior. 1. ¢. 23. 41, a 26, and
c. 44. 55, a 37). It may be very old,
yet the method of reductio ad absurdum

is attributed to Plato.

3 Art. Eucleides in Smith’s Dic. of
Biogr.

3 Art. ‘Irrational Quantity’ in Penny
Cyclop.

4 See supra p. 74 n.

5 Theaetetus, pp. 147p—1488. In
this passage, the young Theaetetus says
he made the same generalization for
cube roots as for square roots. Cube
roots are not mentioned anywhere in
Euclid. '
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as a square number to a square number, are commensurable (or
incommensurable) and conversely’. Democritus is said® to have
written a treatise wepl ypapudv d\oywv xal vacrdv, but no
trace of it remains nor does any clue exist to the meaning of
vact@y. It cannot be doubted that Euclid’s work contains at
least all that was known of the theory of incommensurables
before his time, and as Euclid left it, so it remained, untouched,
down to the 15th century, when Lucas Pacioli de Burgo
resumed the study®.

54. After the death of Euclld the astonishing successes of
geometry in the hands of Archimedes and Apollonius and the
growing interest of astronomy seem to have attracted all atten-
tion to those sciences®, and, so far as we know, no substantive
work on the theory of numbers was produced for nearly four
centuries. Some small additions, however, were made en
passant to the theory of rational numbers by various mathema-
ticians. Thus, some theory of combinations was perhaps in-
vented. The problem, attributed to Xenocrates by Plutarch,
has been mentioned above (p. 71 n.), and Plutarch in the same
passage® states, without more, that Chrysippus (B. . 282—209)
found that the number of possible combinations of 10 axioms
was over a million: but that Hipparchus showed that the
axioms, if affirmed, admitted of 101,049, and, if denied, of

1 The scholiast to Euclid x., said to
be Proclus (ed. Knoche, sup. cit. p. 74n.),
expressly attributes Euclid x. 9 and 10
to Theaetetus. See Hankel, pp. 100—
103,

2 Diog. Laertius 1x. 47.

8 Nesselmann, p, 183.

4 Nesselmann, p. 187, gives mauny
instances of the changes of fashion in
mathematics. From the time of Ni-
comachus (A.p. 100) the theory of num-
bers became the Greek fashion. When
Leonardo Bonacei (a.p. 1292) brought
the Arabian algebra into Europe, this
also became the fashion for 400 years.
When Diophantus became known (Xy-
lander 1571, Bachet 1621) indetermin-
ate equations became the favourite

study e.g. of Bachet, Fermat, Pell,
Freniele. The differential calculus
followed and occupied all attention till
Ealer brought back the Diophantic
analysis, which was in fashion with
Lagrange, Legendre, Gauss, Jacobi and
their contemporaries,

5 Quaest. Cony. viir, 9,11—13. Also
De Stoicorum Repugn. xx1x. 3 and 5,
(Reiske’s ed. Vol.. x. p. 330). Cantor
Vorles. pp. 215, 220. (The first num-
ber attributed to Hipparchus is quoted
a8 103,049 in De Stoic.- Rep. where also
he is said to' be ‘one of the arithme-
ticians’.) The Quaestiones Convivales
are also known as Symposiacon and
Disputationes: Convivales.

-
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310,952, combinations. Such results, however, may have been
obtained empirically, and certainly no theory of combinations
appears in any extant mathematical writer.

55. Eratosthenes the famous librarian of Alexandria (B.c.
275—194) invented a mode of distinguishing prime numbers,
which was called, after him, ‘the sieve’ (kdoxwov, cribrum) of
Eratosthenes. All composite numbers are ‘sifted ’ out in the fol-
lowing manner'. The odd numbers are set out in order from 3
to as high a number as possible. Then every 8rd number from 3
is a multiple of 3 and may be rejected : every 5th number from
5 is a multiple of 5 and may be rejected : every 7th number from
7 is a multiple of 7 and may be rejected, and so on. The
numbers ultimately retained are prime. Hypsicles (circa
B.C. 180), the author of the 14th and 15th books added to
Euclid’s elements, made some contributions to the theory of
arithmetical progression, which Euclid entirely neglects. The
first three propositions of his dvadopixés (a little work on the
‘risings of the stars’ dvagopal)® are to the following effect.
(1) In an arithmetical series of 2n terms, the sum of the last
n terms exceeds the sum of the first » by a multiple of #*:
(2) in such a series of 2n+ 1 terms, the sum of the series is the
number of terms multiplied by the middle term: (3) in such a
series of 2n terms, the sum is half the number of terms
multiplied by the two middle terms. Some more general
formula for the summation of arithmetical series perhaps led to
the following definitions, most of which are entirely unknown
to, or neglected by, Euclid®. “If as many numbers as you
please be set out at equal intervals from 1, and the interval is
1, their sum is a ¢riangular number: if the interval is 2, a
square: if 3, a pentagonal: and generally the number of
angles is greater by 2 than the interval” This statement is
quoted from ‘Hypsicles év 8pp’ by Diophantus*; but whether

1 Nicomachus, Introd. Ar.ed. Hoche, clid, is said to have written a work on
p. 29 8qq., and Iamblichus’ Commen- polygonal numbers. See Cantor Vorles.

tary (ed. Tennulius) pp. 41, 42. p. 143, quoting Westermann’s Bié-
2 Described by Delambre 4stron. Ane.  <ypagot, p. 446,
1. and Cantor Vorles. p. 812, 4 Prop. 8 of the treatise on Polygonal

3 Philippus Opuntius, a pupil of So-  Numbers, Nesselmann, p. 466. Cantor
crates and Plato, and earlier than Eu-  Vorl. p. 312,
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“Opos (‘ the term’) was the name of a book, or 3pos here means
only the ‘definition’ of polygonal numbers, cannot now be
ascertained. This extension of polygonal numbers (however
originated) became a very favourite subject of later arithme-
ticians, to be presently mentioned.

Hipparchus (cir. B.c. 150) is said, by Arabian autherities, to
have written on the solution of Quadratic Equations®’. Heron,
the ingenious mechanician and land-surveyor (B.c. 100), evi-
dently knew some algebraical processes which were strange to
Euclid, but he was not an arithmetician proper®, and the more
particular account of his work may be left for the history of
geometry. From this time dpifunticn may be said to dis-
appear at least from history for two centuries.

56. It was revived by Nicomachus, a native of Gerasa,
probably a town in Judaea. The date at which he lived may be
determined roughly by the two facts, that he himself quotes one
Thrasyllus®, who seems to have been the astrologer, friend of
the Emperor Tiberius, and: that his work was translated into
Latin by Apuleius of Madaura, in the time of the Antonines.
He may be taken, therefore, to have flourished about 100 A.D.
He is said to have been a Pythagorean and to have written a
work on arithmetical theosophy, but the curious jfarrago,
entitled feoloyovpeva Tis apibunmcis, is not his, for here
Anatolius is. cited, the Bishop of Laodicea (A.D. 270) who wrote
a commentary on Nicomachus!, Two treatises of Nicomachus
are extant, the Enchiridion Harmonices in two books, and the
Introductio Arithmetica (elaaywyy dpubunmxrn). also in two

1 Cantor Vorles. p. 313, quoting Cassiodorus de 4drithmet. p. 555.
Woepcke’s ed. of ‘L’4lgebre d’Omar 4 All the facts about Nicomachus are
Alkhayyémi.” Paris 1851, Pref. xr collected, and the errors corrected, by

¢ >

and Journal Asiat. v. (5th Series)
Pp. 2561—253..

? For a specimen of his skill, see
below, p. 106.

3 In the Enchiridion Harmonices 1.
p. 24 (ed. Meibomius, 1652). In the
same work, 11. p. 36, Ptolemy is cited,
but this is clearly an interpolation, for
it would be inconsistent with the trans-
lation by Apuleius, which is attested by

Nesselmann (pp. 188—191) who alleges
also that none of the mathematical
historians (including Montucla) can
have read Nicomachus at all. Nessel-
mann seems to have used an edition of
the Introductio. published by Ast in
1817. Quite recently an edition has
been published in the Teubner series
(ed. Hoche) with a good preface.
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books. It is with the latter only that we are here concerned.
It was an extremely famous book in its day, and earned for its
author a distinction similar to that so long enjoyed in England
by Mr Cocker. -Thus Lucian, wishing to compliment a calcu-
lator, says “You reckon like Nicomachus of Gerasa'” The
number of commentaries on the Introductio also sufficiently
attests its importance. Beside the translation of Apuleius and
the notes of Anatolius, mentioned above, we know of a com-
mentary by Iamblichus®, another (not extant) by Heronas®, a
translation (extant) by Boethius, commentaries (extant in MS.)
by Asclepius Trallianus and Johannes Philoponus and another
(not extant) by Proclus: extracts in Arabic by Thabit-ibn-
Corra (A.D. 836—901) and a commentary by Camerarius of the
16th century’. Nicomachus in fact inaugurates the final era of
Greek mathematics. From his time onwards, dpifunTecn is the
favourite study, and geometry is neglected in its turn.

57, After a philosophical introduction, the first book of
Nicomachus proceeds (c. 8—10) to the classification of numbers,
as even and odd (dprior and wepirToi)’. Even numbers are
aprigkis apriow (2*), dprioméperTor {2 (2m + 1)}, and wepiaadp-
Tioe {2*' (2m +1)} i.e. they are either powers of 2 or 2 multi-
plied by an odd number or 2 multiplied by an even number,
which is itself a multiple of an odd number®. Odd numbers (c.
11—13) as either ‘ prime and uncompounded’ (wp@Toi xai davv-
Oerou), ‘ compounded’ (Sevrepor kai ovvberor) or ‘compounded
but prime to one another” The habit of dividing numbers into

! Philopatris, 12.

2 Ed. Tennulius (very badly as
Nesselmann shows) at Arnheim, 1667.
The commentary of Iamblichus forms
the 4th part of his treatise on the Py-
thagorean philosophy.

3 Mentioned by Eutocius (ad Archi-
med. de Sphaera et Cyl. 1.).

4 See Nesselmann, pp. 220—223.

5 Nicomachus begins by saying that
every number is the half of the sum of
the preceding and succeeding numbers.
1, however, has no predecessor and is
balf of 2 only. From this it i3 evident

how far the Greeks still were from the
conception of 0 as a number,

6 Thigis an improvement on Euclid’s
definitions to Book vir. There dpruixs
dpriosis theproduct of two even numbers,
dpridkis wepioads of an even multiplied
by an odd number. Hence in 1x. 34 he
has to confess that ‘numbers which are
not powers of 2 and which, when
divided by 2, give an even quotient,
are both dpruixis dprioe and dpredxes
wepioool.’ Nicomachus, as usual, gives
a table for finding his three species.
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3 groups (eidn) has here led Nicomachus into great confusion of
thought. His second class contains all the third: his second
and third classes might very well contain even numbers, and
lastly his third class defines numbers by their relation to others,
whereas in c¢. 17 he says he has hitherto been considering
numbers in themselves. Chapters 14—16 contain the de-
finitions of perfect, excessive and defective numbers (Téeor,
vmepTéheos, éN\umets). Nicomachus then proceeds to the classi-
fication of the relations in which numbers stand to other
numbers. Of inequality between two numbers, 5 kinds may be
distinguished (c. 18—23). These are

: 1. When the greater divided by the less, gives a whole
number as quotient. The greater is then called oA amAdaios,
a ‘multiple,’ the less ¢momoAAamhaaios, ¢ a submultiple.’

2. When the greater : the less :: m+1 : m. The
greater is.émudpios (superparticularis), the less dmemipopios
(subsuperparticularis). Thus 4 is émwirpiros, } émirérapros ete.
§ i8 Umemltpitos, 4 Umemitérapros etc. But § is specially
named 7juiérios’,

3. Greater : less :: 2m+n : m+n. The greater is éme-
peprs (superpartiens), the less vmremiueprs (subsuperpartiens).
As a general rule, the fractions here contemplated are of the

form 77"_:—1—, and in the nomenclature the denominator is not

 mentioned. Thus

1+ % is émidipeprys, superbipartiens,

1+ § is émurpupeprys, supertripartiens, etc.
But Nicomachus himself does not always use this nomenclature
and was evidently equal to finding names for a fraction of the

m . ,
. 5 I : b} ’ . . oy, . 3 -
form i Thus ¥+3 is émdirpiros, 144 is émerpe

1 Here Nicomachus refers to a
table of 10 rows, divided into 10
columns. The first horizontal row con-
tains the numbers 1 to 10: the second
these numbers multiplied by 2: the
third, multiplied by 8, ete. up to 10
times. It is, in fact, the earliest known
multiplication table, Every number

in a lower row is moA\am\doios of the
corresponding number in the 1st row:
the numbers in successive rows (except
the 1st and 2nd) are related, so that
the lower rows are émudpeot of the next
higher, the higher are dmemyubpeoc of the
next lower. This taktle is referred to
also in the succeeding chapters.
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Térapros and in the same way, 1+3 etc. might have been

called émirpimeumros, ete. i
4. Greater : less = mn+1:n. The greater is moA\a-

mhagemipuopios, the less dmomorhamhacemipdpios.

2} is Sumhagiedpruiovs, duplex sesquialter.
2} is Surhagiemirpiros, duplex sesquitertius.
3} is TpumrhaciemiTérapros, triplex sesquiquartus, etc.

5. Greater : less :: p(m+ 1) +m : m + 1, where p is more
than 1. The nomenclature, so far as regards the whole
number, is the same as in class 4, and as regards the fraction,
the same as in class 3 (e.g. dvmhaciemidipepris = 2% etc.). An-
other table is here appended, showing how to find numbers
which shall be to one another in the foregoing ratios. There
is, in fact, little of mathematical value in the 1st book of
Nicomachus, but it is of some historical interest to observe how
complicated the Greek treatment of fractions still remained.
It should be remembered also that the nomenclature of Nico-
.machus was translated into Latin, and became habitual in
Western Europe down to the introduction of the Arabian
arithmetic.

58. The 2nd book begins with another table, showing how
to find series of émeudpioe, and various comments on this table’.
In c. 6, Nicomachus turns to the theory of polygonal numbers.
These he describes (c. 8—11) in precisely the same manner as
that which is attributed to Hypsicles by Diophantus (supra
p- 87), save that in Nicomachus the terms of the arithmetical

1 The table is thus constructed.
Write out a geometrical series begin-
ning from 1. Take the sum of each
pair of successive terms and set these
sums in a row below the 2nd and suc-
ceeding terms of the 1st, and continue
this process ad lib. E.g.

1 3 9 27 81 ete.

4 12 36 108 eto.

16 48 144 ete.

64 192 ete.
Here each column is a geometrical
series of which the radix is émirpiros.

The first numbers of the rows form a
geometrical series of which the radix
is 4 (chaps. 3 and 4). Legendre, in the
preface to his Théorie des Nombres, says
that this science becomes a sort of
passion with those who take it up:
whereupon De Morgan remarks that
this is probably because the curious cha-
racter of the conclusions is not lessened
by the demonstration. The explana-
tion is peculiarly appropriate to Nico-
machean dpifunrich, with its unsug-
gestive symbolism,
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series by which the polygonal numbers are found are all called
gnomons. This word therefore, which in Euclid means the
difference between one square and the next, means in Nico-
machus the difference between any polygonal number and the
next of the same order. Then follow (c. 12) some analogies
between arithmetical and geometrical facts: e.g. as every
square can be divided by a diagonal into two triangles, so every
square number is the sum of two triangular: every square
number plus a triangular makes a pentagonal etc. Then, as
. usual, a table is given of the polygonal numbers of each order,
with remarks thereon. Chaps. 13—17 deal with solid numbers.
The sum of a series of polygonal numbers from 1 upwards is a
pyramid, triangular or square etc. according to the order of the
polygonal numbers. The highest of such polygonal numbers is
the base, 1 is the apez, of each such pyramid. If 1 be omitted,
the pyramid is truncated (xéM\ovpos): if 1 and the next poly-
gonal number be omitted, the pyramid is 8ixéhovpos and so on.
" Besides pyramids, there are cubes, beams (Soxides), tiles (whiv-
0.8¢es), wedges (adpnviorod), spheres and parallelepipeds. Wedges
are numbers of the form (m x n X p), where all 3 dimensions are
different’ ; tiles are m* (m —n): beams (or columns, aTyAides in
Iamblichus) are m® (m +n). A number of the form m (m +1)
is érepoprikns: m(m+n) is oblong (wpounkns) if n>1: a
parallelepiped is of the form m* (m +1). The powers of 1, 5 and
6 always end in 1, 5 and 6: the squares of these numbers may
therefore be called circular, their cubes spherical. In c. 18—20
square numbers and éreporjres (2, 6, 12 etc.) are set out in
parallel rows and attention is drawn to a number of curious
coincidences, thus exhibited : e.g. the differences between suc-
cessive squares form the series of odd, those between successive
érepoprjrets the series of even, numbers: in the series of odd
numbers from 1, the first term is the first cube, the sum of the
2nd and 38rd terms is the 2nd cube, the sum of the 4th 5th and
6th terms is the 3rd cube and so on.

59. At this point (c. 21) Nicomachus turns to the dis-
t Also called ognrioxor ‘stakes’ or (c. 16). On the origin of this classifi-

Buwplokow ‘altars,” All solid numbers cation of numbers, see Dean Peacock in
of 3 unequal dimensions are scalene Ency. Metrop. 1. pp. 422, 423.
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cussion of proportion (dvaloylat, pecornres)’, which, he says, is
very necessary for “natural science, music,. spherical trigo-
nometry and planimetry and particularly for the study of the
ancient mathematicians.” He begins with a slovenly definition:
“ratio (Adyos) is the relation between two terms: proportion is
the composition of ratios®’” When the same term is “on both
sides,” consequent (Jmwéhoyos, comes) to the highest number,
antecedent (7pdroyos, duz) to the least, the proportion is called
‘continued’ (cuvnuuévy). When the middle terms are different
from one another, the proportion is ‘disjunct’ (Sielevyuévy)®.
He goes on to say that Pythagoras, Plato and Aristotle knew
only six kinds of proportion, viz. the arithmetical, geometrical
and harmonical, and “their three sub-contraries*, which have no
names.” Later writers added four more. He then describes
(c. 23—25) the first three kinds, with a few remarks on each.
In a continued arithmetical proportion (@ —b=>5—c), he has
" discovered a “most splendid rule, which has escaped most
mathematicians,” viz. that d’—ac=(a—b)'=(b—c)’. In a
continued geometrical proportion (@ : b :: b : ¢), he notices®
that a—b : b—c :: a : b, and that between 2 square numbers
there is one, between 2 cubes two geometrical means, In a
harmonic proportion (@ : ¢ :: a —b : b—c) he observes, among
other things, that (a+c)b=2ac. In c. 27, he states that
between any two numbers, even or odd, three mean terms may
always be found, one arithmetical, one geometrical and one

1 Properly (i.e. originally) avahoyla
means geometrical proportion : pesbrys
any other kind. But this distinction
was practically lost by Nicomachus’
time, See an excellent note in Nessel-
mann, pp. 210—212.

2 Euclid v. Deff. 3 and 8 is more
precise. Iamblichus himself corrects
Nicomachus on this point,

3 Euclid’s name for & continued pro-
portion is dpifuol ékns avahoyor: Theon’s
is guvexys dvaloyla. Theon’s name for
an ordinary proportion of 4 terms is
Sugpmuévn. 1t is also called diexzs.

4 Tamblichus (In Nicom. pp. 141—2)

says that the first three only were known
to Pythagoras, the second three were in-
vented by Eudoxus. The remaining
four he attributes (p. 163) to the Pytha-
goreans, Temnonides and Euphranor.
All ten are treated in the Euclidean
manner by Pappus, Math. Coll. 111. (ed.
Hultsch) pp. 85 sqq.

5 A similar rule is true of any geo-
metrical proportion, not necessarily
continued. Euclid v, 17 and 19. The
next proposition mentioned in the text
is the Platonic theorem proved in
Euelid vrir. 11, 12,
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harmonical'. He next (c. 28) states the remaining seven kinds
of proportion viz.

(1) @:c::b—c:a->b(eg 6,5, 3).
(2) b:c:ub-c:a—b(eg 54 2).
(3) a:bub-c:a-b(eg 6,41)
4) a:c::a—-c:b—c(eg 98 6)
B) a:c:a—c:a-b(eg.97,6).
6) b:c::a-c:b—c(eg76,4).
(7) b:c:a—c:a-b(eg 85 3).

We have previously been told (c. 22) that the number of
proportions was expressly raised to 10, because that was held
by the Pythagoreans to be the most perfect number. It is
rather surprising, therefore, to find that Nicomachus has yet
another in reserve, the musical, which he calls TeAeiorary, the
“most perfect, comprehending 8 dimensions and embracing all
the other proportions.” This, as was above stated (p. 70), is of
g_-;—b : 2:bb b, the 2nd term being the arith-
metical, and the 3rd the harmonical, mean between the two
extremes,

60. The foregoing summary is sufficient to show that, in
the interval of 400 years or so between Euclid and Nicomachus,
something had been done, though we know not by whom, for
the theory of numbers. In plane numbers, Euclid knows, or at
least uses, only the square and the gnomon: in solids, only the
cube : in proportions, only the geometrical. Almost the whole
learning of polygonal numbers and solids and proportions was :
elaborated after his time, and before that of Nicomachus, for it
is evident that the Introductio contains little that is original.
In the meanwhile, again, mathematics had passed from the
study of the philosopher to the lecture-room of the under-
graduate. We have no more the grave and orderly proposition,
with its deductive proof. Nicomachus writes a continuous

the form a :

1 He omits to mention that the two in geometrical proportion, viz.
given numbers multiplied must produce
a square, else the geometrical mean
will be irrational. He also fails to a+b’
notice that the three means will be  Nesselmann, p. 215.

a+b \/—. 2ab
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narrative, with some attempt at rhetoric, with many inter-
spersed allusions to philosophy and history. But more im-
portant than any other change is this, that the @pifuntirr of
Nicomachus is tnductive, not deductive. It retains from the old
geometrical style only its nomenclature. Its sole business is
classification, and all its classes are derived from, and are
exhibited in, actual numbers, But since arithmetical inductions
are necessarily incomplete, a general proposition, though prima
Jacte true, cannot be strictly proved save by means of an
universal symbolism. Now though geometry was competent to
provide this to a certain extent, yet it was useless for precisely
those propositions in which Nicomachus takes most interest.
The Euclidean symbolism would not show, for instance, that all
the powers of 5 end in 5 or that the square numbers are the
sums of the series of odd numbers. What was wanted, was a
symbolism similar to the ordinary numerical kind, and thus
inductive dptfunTicr led the way to algebra.

61. Contemporary with, or not much later than Nico-
machus, was Theon of Smyrna, author of a treatise on “the
mathematical rules necessary for the study of Plato'.” The date
of this author may be roughly determined by the fact that,
in citing all the writers on music since Pythagoras, he stops at
Thrasyllus (the friend of Tiberius) and does not quote the
dppovikrjp of Ptolemy. Ptolemy himself also quotes from a
certain Theon four observations of Mercury and Venus taken in
the years A.D. 139—142. There seems no reason to doubt that
this was Theon Smyrnaeus, whose Expositio is largely devoted
to astronomy. The book itself® contains almost exactly the same
matter as Nicomachus (without the chapters on proportion),
but is very ill-arranged, so that rules are anticipated, one class
of numbers is treated in two or three widely separate chapters,

1 Cited as ‘Expositio rerum mathe-
maticarum ad legendum Platonem uti-
lium.” Ed. Hiller, Leipzig, 1878.

2 The Expositio, a8 we have it, was
formerly thought to be only a fragment.
‘We have it in two books, one on arith-
metic, the other on astronomy. It was
supposed that three more were missing,

on geometry, stereometry and the
music of the spheres. Cantor and the
most recent editor, Hiller, are of opin-
ion, however, that we have the entire
work. See Cantor Vorles. p. 367.
Nesselmann p. 231 (quoting Bouil-
laud).
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the same facts are many times repeated’. It contains, however,
two novelties, which may be thus stated. (1) Every square®, or
every square minus 1, is divisible by 3 or 4 or both: if the
square is divisible only by 3, then minus 1, it is divisible by 4:
and if it is divisible only by 4, then minus 1, it is divisible by
3: if it is not divisible by 3 or 4, then minus 1 it is divisible by
both 3 and 4. (2) Theon introduces a new kind of numbers, called
diameters (Siaperpixol c. 31). These are numbers whose squares-
are of the form 2n* + 1. They are obtained in the following way.
If 1 and 1 be the side and diameter of a square, then 1 + 1 is the
side of the next, and 3 or 2 41 is its diameter: 2 4- 8 is the next
side, 4+ 3 is its diameter : 5 + 7 is the next side, 1047 is its
diameter etc., each successive side being the sum of the last
side + last diameter, and each successive diameter being twice
the last side+last diameter. Each diameter is the whole
number nearest to the root of twice the square of the corre-
sponding side®. It is curious that the ratios between these
diameters and the corresponding sides are represented by the
successive convergents of the continued fraction

1 1 1.1
1+s7e3a72+°
which represents the approximate value of /2. Theon, how-
ever, says nothing either of 4/2 or of continued fractions*.
62. At some unknown date, certainly before Iamblichus,
(i.e. before A.D. 300) lived one Thymaridas, the inventor of
a certain proposition, known as his émrdvfnpua or ¢ after-blossom.’

A brief and obscure account of this is preserved by Iamblichus®,

te.

1 See Nesselmann, pp. 226—227.

3 C.20. The same rule is given by
Iamblichus, In Nicom. p. 126.

3 These diameters are the pyral 8ud-
perpot, ‘rational diameters’ to which
Plato seems to allude in the famous
passage about the ‘nuptial number’.
Rep. vii. 246.

¢ See Cantor Vorles. pp. 229, 272—
274, 369—370. Nesselmann, pp. 229,
230 observes that Theon has here stated
a mode of finding all the solutions, in

rational numbers, to two indeterminate
quadratic equations, viz. 213+1=u?
and 2z3-1=y3% He does not, indeed,
suppose that Theon knew this, but the

_ fact is interesting as bearing on the

work of Diophantus.

5 In Nicom. p. 88. Cantor, in his
Math. Beitrige, pp. 97 and 380, iden-
tified this Thymaridas with him of
Tarentum, who is said by Iamblichus
to have been a pupil of Pythagoras.
In the Vorles. (Pref. vir.) he abandons
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and has been brilliantly explained by Nesselmann (pp. 232—
236). The proposition, which is curiously worded, is as follows:
“When any defined or undefined (dpiouévor 4 adpiotor) quantities
amount to a given sum and the sum of one of them plus every
other (in pairs) is given, the sum of these pairs minus the
first-given sum is (if there be 3 quantities) equal to the quantity
which was added to all the rest (in the pairs): or (if there be 4
quantities) to 4 of it: (if 5) to 4: (if 6) to $” etc. That is,
if # +a,+x,=8, be given, and z,+2,=s, and 2, +2,=s,
then # =s +s,—8. If four quantities z, + #, + #, + 2, =S be
given, and z +z,=s, 2 +x,=s, @ +x,=8, be given, then
8,+8 +s8—8 .
g =ty And generally, if =, + 2, + 2, +... + 2, =8,

and z, + 2, =8, @, + ¥, =5,...7,+ @, =s, _,, then

What is chiefly of importance in this proposition® is the use
of the word adpioros for an “ unknown quantity.” It does not,
indeed, appear whether Thymaridas had or had not a corre-
sponding symbol, but at least he has here stated an algebraical
theorem and used an algebraical expression. He has gone
beyond Nicomachus and nearly approached Diophantus.

63. The cvvaywys}, or Mathematical Collections, of Pappus
the Alexandrian must have been written about A.D. 300.
Probably the first two books were arithmetical, since a fragment
of the 2nd Book contains an account of the tetrads of Apol-
lonius already described (supra, p. 62) and the remaining eight
deal almost entirely with geometry and mechanics. Iamblichus,
who has been so often quoted in these pages, is a little later.
He was born at Chalcis in Coele-Syria and may have been alive

this supposition, Two other facts
about Thymaridas are mentioned by
Iamblichus, (1) that he called unity
the ‘terminating quantity’ (repafvovoa
wxoobrys), and (2) that he called prime
numbers edfvypaumcol, because they
cannot form plane figures.

1 A very similar proposition appears

G. G. M.

in Strophe 29 of the Algebra of Aryab-
hatta (ed. L. Rodet, pp. 14, 15, 38, 39
in Journal Asiatique for 1879). Cantor
(Vorles. pp. 529—530) maintains that
the Indian (who was born a.p. 476)
has purposely disguised the epanthem,
in order to conceal his plagiarism.

7
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as late as A.p. 360". It has been already stated (supra, p. 89)
that his commentary on Nicomachus forms the 4th Book of his
treatise on Pythagorean philosophy, the greater part of which
is still extant. In this commentary Iamblichus includes some
new matter, most of which is unimportant and need not be here
quoted®. One very singular statement, however, should not be
omitted. Jamblichus says that the Pythagoreans called 10 ‘the
unit of the second course,’ 100 ‘the unit of the third course,
1000 of the fourth and so on®. Upon this he founds the
following proposition : “If the units of any three consecutive
numbers, whereof the highest is divisible by 3, be added to-
gether and the units (i.e. digits) of their sum be added together
again and so on, the final sum will be 6.” E.g. 7+8+9=24
and 2+ 4 =06 :997+998+999 =2994 : 24+ 9+ 9 + 4=24,
2+ 4=6. It will at once be seen that this was, for a Greek, a
very difficult and remarkable discovery, and it tends very much
to confirm the suspicion that the octads and tetrads of Archi-
medes and Apollonius were in fact accompanied by a symbolism
which, if applied to tens, hundreds etc.,, would closely have
resembled the Arabic numeral system.

64. The extracts given, in previous pages, from Nicomachus
and Thymaridas will have led the reader to expect that algebra
is not far distant. This expectation becomes the more lively,
when we find that about this time problems leading to
equations were a common form of puzzle. Between 50 and 60
riddles of this kind are preserved in the Palatine Codex of Greek
epigrams (usually called the Palatine Anthology) and else-
where. At least 30 of these are attributed to one Metrodorus,
of the time of the Emperor Constantine (A.D. 306—337)%

1 The Emperor Julian (a.p. 361—363)
is supposed to have corresponded with
Iamblichus, but the extant letters are
of doubtful authenticity.

3 SeeNesselmann, pp. 237-242, Can-

(Jorhnt, “start’) 1.2, 3, 4
(véooa, ‘goal’)

The next course begins at 10 and goes
on to 100 and back and so on, Iambli-
chus makes great use of this figure.

tor Vorles. 390—3892.

8 povds devrepwdovuévn, Tpiwdovpéyy,
&c. The name was suggested by a
singular fancy of arranging numbers
in a kind of race-course ; thus:

. 5.6.7.8.9 ,
1.2.38.4.5.6.7.8. 910 kawrrip)

4 Jacobs, Comm. in Gr. Anthol. Pt.
xr. p. 917.
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A few of them are older, though perhaps their metrical form is
of this date: many, no doubt, are much later, for the anthology
was not collected till the 10th century'. One of them, at-
tributed to Euclid? is to this effect. A mule and a donkey
were walking along laden with corn. The mule says to the
donkey, “If you gave me one measure I should carry twice
as much as you : if I gave you one, we should both carry equal
burdens. Tell me their burdens, O most learned master of
geometry.” It will be allowed that this problem, if authentic,
was not beyond Euclid, and the appeal to geometry smacks
of antiquity. Another and a far more difficult puzzle is the
famous ‘ cattle-problem ’ (mpéBAnua Boeixdév) which Archimedes
is said to have propounded to the Alexandrian mathematicians®,
It is to the following effect. The sun had a herd of bulls and
cows, of different colours. (1) Of Bulls, the white (W) were,
in number, (4 +}) of the blue (B) and yellow (Y): the B were
(1 + %) of the Y and piebald (P): the P were (4 +4) of W and
Y. (2) Of Cows, which had the same colours, (w, b, y, p),
w=G+1) (B+d): b=E+HP+p): p=G+d (F+y):
y=@¢+4%) (W+w). Find the number of bulls and cows*
This is a very difficult problem, leading to excessively high
numbers, and may very well have been invented by Archi-
medes. The problems of Metrodorus are shorter. One of them
is of a kind still very familiar to schoolboys. It runs (Jacobs,
X1V. no. 130): “ Of four pipes, one fills the cistern in one day,
the next in two days, the third in three days, the fourth in four
days: if all run together, how soon will they fill the cistern ?”
There are several more of the same pattern. Another (Jacobs

1 See art. Planudes in Smith’s Dic.
of Biogr. Most of the algebraical epi-
grams are in Pt. x1v. of Jacobs’ Antho-
logy, but a few more are in the Appen-
dix (e.g. Nos. 19, 25, 26). Those
attributed to Metrodorus are in xiv.
116—146. See Nesselmann, pp. 477
8qq. Cantor Vorles. pp. 393—4.

2 Jacobs’ Appendix, No. 26.

3 Discovered and printed by Lessing,
Zur Gesch, der Lit. 1. pp. 421—446.

Nesselmann, who gives a translation
and discusses it exhaustively (pp. 481—
491), stoutly denies its authenticity.
Heiberg (Quaest. Archim. p. 26) is
inclined to admit it. It is not in
Jacobs.

4 Solution in Nesselmann, pp. 484—
485. Some later hand has added some
further difficulties: W+ B is a square-
number, P+Y is a triangular. On
this, see also Nesselmann’s comments.

7—2
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x1v. 127) is: “Demochares has lived ith of his life as a boy:
$th as a young man ; §rd as a man, and 13 years as an old man.
How old is he?” and there are more of this sort’. Another,
not by Metrodorus (Jacobs, X1v. 49) is: ‘ Make me a crown of
gold and copper and tin and iron, weighing 60 minae. Copper
and gold shall be grds of it: gold and tin $ths: gold and iron
gths. How much gold, copper, tin and iron are in the 60 minae ?’
This is a problem on the epanthem of Thymaridas. None of
these problems, of course, lead to more than simple equations,
in which a line would be as good a symbol for the unknown
quantity as any other. But they are all arithmetical pro-
blems requiring analytical treatment, and they all involve the
consideration of an unknown quantity, for which some quasi-
arithmetical symbol would be most convenient. They became
especially popular just about the time of Diophantus®, and they
are therefore, as will be seen presently, of some historical
importance.

65. Contemporary with Iamblichus, or perhaps rather
earlier, lived Diophantus of Alexandria, the last and one of the
most fruitful of the great Greek mathematicians. His date
indeed can hardly be determined exactly. An arithmetical
epigram on his age is attributed to Metrodorus. From this, it
would appear that he died at the age of 84 years, some time

1 One of this kind is on the life of
Diophantus (Jacobs =xiv. 126.) On
these problems, Dean Peacock (art.
Arithmetic in Ency. Metrop. Pure Sci.
1. §§ 244—248) remarks that many of
them may have been solved (as similar
problems were by the Indians, Arabians
and early Italians) by the rule of ‘falsa
positio’ or ‘regula duorum falsorum’:
which dispensed with any algebraical
symbol. The simple ‘falsa positio’ was
the assigning of an assumed value to
the unknown quantity: which value, if
wrong, could be corrected, in effect, by
a ‘rule of three’ sum (as in the modern
rules for Interest, Discount or Present
Worth). This was used by the Egyptian
Ahmesandby theIndian Bhéskara(born

A.D. 1114, author of the Lildvatt, form-
ing part of the larger work Siddhdnta-
giromani). By the ‘regula duorum fal-
sorum’ (Arabic el Cataym, i.e. ‘the two
errors’) two false assumptions were
taken and z was found from their
difference. The simple ‘falsa positio’
is called in the Lildvati ‘Ishta carman’,
or ‘operation withan assumed number’.
Both are continually used by Luca
Pacioli and Tartaglia. See Dean Pea-
cock’s art. supra cit.: Hankel. p. 259,
Cantor Vorles. pp. 524, 628—9. Also
below p. 116 n.

2 An epigram is actually included in
Dioph. 4rithm. (v. 33) and the problem
solved. The epigram is printed in
Jacobs, 4pp. no. 19.
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before A.D. 330 or thereabouts. But he is not quoted by any
writer before the younger Theon', who was working A.D. 365—
372 and later. Theon’s daughter, the famous Hypatia (died
A.D. 415) is said by Suidas (s. ».) to have written a commentary
on Diophantus. Abulpharagius, a Syrian historian of the 13th
century, says positively that Diophantus was a contemporary of
Julian the Apostate, who was emperor A.D. 361—363. If the
date of Metrodorus were certain, and the epigrams ascribed
to him were undoubtedly authentic, the epigram above cited
would be conclusive. But it is not so, and Abulpharagius may be
right®. It would suit either testimony if we assign Diophantus
to the first half of the 4th century, a time at which algebra cer-
tainly ought to have appeared, but he may have been much
earlier. Doubts were at one time felt whether his name might
not be Diophantes, for the passages in which he is mentioned,
generally have the genitive Awoparrov, which would suit either
nominative®, but Theon and Abulpharagius both call him Dio-
phantos, and this may be taken to be his real name.

Only.one work by Diophantus is cited, viz. the ’Ap.6-
punrica. Two, however, are extant, viz. an ’Apifunticd and a
pamphlet on polygonal numbers, both mutilated. Diophantus
. himself, in the opening words of his *ApifunTikd, announces it
as a work in 13 books: yet all the existing copies (save one)
have it in 6 books, and the one exception (Vatican MSS. no.
200) has it in 7% Yet it is evident that these 6 or 7 books are

1 Comm. on the Almagest. Ed.
Halma. 1. 111, The 6th definition

8 One MS. of Suidas, (s.v. Hypatia)
has Awgavryy, but others have Adj-

of Diophantus is there quoted verbatim. .

3 On the question of Diophantus’
date, see an exhaustive discussion in
Nesselmann, pp. 243 —256, Here, how-
ever, Hypsicles, whom Diophantus
quotes, is assigned to far too late a
date, and Diophantus is (probably
wrongly) identified with him who, ac-
cording to Suidas, was teacher of Li-
banius the sophist (cir. A.p. 314—400).
Cantor Vorles. Pref. p. vir cites Tan-
nery, in Bulletin de Sci. Math. et
Astron., but I cannot find the article.

¢gavrov. Nesselmann, indeed (pp. 244,
247—249), thinks all are wrong and
that the true reading of the passage
(Kiister’s) is vmouriua els Awopdrrov
dorpovopuxdy xavéva. This would be
the name of a commentary by Hypatia
on the astronomical tables of some other
Diophantus,

¢ The known MSS. of Diophantus
are enumerated by Nesselmann, p. 256
n. They are three Vatican (nos. 191,
200 and 304) one at Paris, one in the
Palatine library (at Heidelberg). The
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not a reasonable, and therefore probably not the original,
division. Some propositions contained in the 2nd Book (1—5
and 18, 19) clearly belong to the 1st, others, as clearly ought to
belong to the 3rd (especially the last two, 35 and 86). Similar
suspicions are aroused in other books. Evidence of mutilation
is afforded also by many propositions (e.g. 11. 19 and several of
the 5th Book) which are not proved at all’. Two subjects,
which Diophantus must have treated, are entirely omitted, viz.
the solutions of determinate quadratic and of indeterminate
simple equations, On the other hand, the last books of our
copies are pretty clearly the limit of Diophantus’ learning. For
all these reasons, Nesselmann® comes to the conclusion that the
6 or 7 books of the ’Apifunricd, as we have them, do sub-
stantially represent the original, minus the two omitted subjects:
that the omitted subjects were treated between the 1st and 2nd
Books of our editions, and that the mutilation took place bef-re
the date of the earliest MS. (i.e. before the 13th century).
A further question arises, whether the fragment on polygonal
numbers ever formed part of the 'Apifuntika or not. Nessel-
mann thinks it did : Hankel and Cantor hold that it did not.
It can hardly be doubted that the latter are right. The *Apié-
pnrica is purely algebraical and analytic (with the single
exception of v. 13): the fragment on polygonal numbers is
purely geometrical and synthetic. A similar question arises as
to a work called Tlopiouara (? < Corollaries’) which Diophantus
quotes in at least three places (v. 3, 5 and 19) : but as this is lost,
it is not worth while in the present place to consider what it may

extant works of Diophantus were pub-
lished with & commentary by Bachet
de Meziriac (Paris, 1621) : further notes
were aftcrwards added by Fermat
(Toulouse, 1670). A German transla-
tion was published by O. Schulz (Berlin,
1822). A Latin paraphrase by Xylan-
der (Holzmann)Basle,1571,first brought
Diophantus into general notice, though
many scholars knew of his existence
before.

1 A very striking instance occurs in
v. 22, where the solution has nothing to

do with the problem to which it is
attached. Nesselmann (pp. 410—418)
suggests that here the problem properly
follows on v. 21: its solution is lost:
the two next problems with their solu-
tions are lost: the next problem is lost,
but its solution remains,

2 Bee esp. pp. 265 sqq. Cantor
Vorles. pp. 397—398. Hankel, pp.
157—158. Nesselmann quotes, in sup-
port of his views (p. 272) Colebrooke’s
Alyebra of the Hindus, note M, p. LXI.
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have contained, and how it would have fitted into the extant
works®,

66. Of these latter, the fragment of Polygonal numbers
may be first dismissed, both because it is very short and
because, also, it is in the antique geometrical style. The only
difference, here, between Diophantus and his predecessors is
that he treats of polygonal numbers generally, without specially
handling the different classes of them. The book, as we have
it, is divided into 10 propositions, which is an excessive number
for the actual matter contained®. It begins by stating (as well-
known) that ‘all numbers above 3 are polygons, containing as
many angles as units: and that the side of each such polygon is
2. Then follows a statement of the purpose of the work to this
effect: “ As a square number is known to be the product of a
number multiplied by itself, so every polygonal number, multi-
plied by one number and added to another, both of which
depend upon the number of its angles, produces a square
number. I shall prove this, and shall show also how from a
given side to find its polygon and conversely. Some auxiliary
propositions must first be proved.” Then follow some pro-
positions on arithmetical progression, proved geometrically.
Their result may be stated algebraically thus: Prop. 11*. If a,
a+b, a+2b be three terms of an A.P. then 8 (a+2b) (@ +b)
+a*=[(a+2b)+2(a+b)]" Prop. uL If a,a +b,a+2b ete.
be an A.P. the difference between the 1st term and the nth is
(n—1)b. Props. 1v. V. Summation of an A.P. of n terms,
proved first where n is even, secondly where n is odd. The
following propositions introduce the more familiar progressions,
in which the first term is 1. Thus vL.* if S be the sum of »
terms of the series 1, 145, 1+2b etc. then 8bS + (b — 2)"
=[b(2n—1)+2]". Prop. VII contains the geometrical proof
that b*(2n—1)*=[b(2n—1)]>. The most important is VIIL:
in the series 1, 145, 1+ 2b etc. the sum of n terms is a

1 The curious may consult Nessel- mary of Props. vi. and 1x. in Cantor
mann, pp. 269—270, and his 10th  Vorles. p. 414,
Chapter, pp. 437 sqq. 3 Proof given in full by Nesselmann,
2 Bee a very full abstract in Nessel- pp. 471—472.
mann, ch. x1. pp. 462—476. A sum- 4 Proof in Nesselmann, pp. 4783—4.
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polygon, containing b + 2 angles, and its side is the sum of the
preceding (n — 1) terms (compare Hypsicles, whom Diophantus
here quotes)'. ;Thence follows a “definition” of a polygonal
number to this effect: “ Every polygonal number of n angles,
multiplied by 8 (n—2) and added to (»n—4)", is a square
number”?, This with the 1xth Prop., in fact, completes the
promise of the introduction, but a Xth proposition is added
“To find in how many orders a given number is polygonal®.”
Only a fragment of this remains, from which it is impossible to
discern how Diophantus intended to complete his proof. All
these propositions are given in the Euclidean manner, with an
enunciation, a linear symbolism, and a synthetic proof ending
bmrep &Bev detfar (Q. E.D.). But it is to be remembered that
lines, with Diophantus, are symbols for numbers only (as in
Euclid vir—iIx), and not for magnitudes (as in Euclid 11. or
X.) Nevertheless, he adopts for arithmetical purposes pro-
positions proved for geometrical by Euclid (e.g. II. 3, 4 and 8)
and from this it is evident that the arithmetical uses of Euclid
were known to the later Greek mathematicians®,

! The proof is given in full by runs thus:
Nesselmann, pp. 474—476. T I |
2 If P be the polygonal number, E 4 B b G

8(n-2) P+ (n-4)*=a square number. - ‘‘Three numbers, 4B, BG, BD have a

This proposition was known of tri-
angular numbers as early as Plutarch
(Plat. Quaest. v. 2, 4). and is so repeated
by Iamblichus. The general proof is
probably Diophantus’ own. Bachet
remarks that the converse is not ne-
cessarily true. If 8 (n—2) P+ (n-4)?
is a square, it does not follow that P
is a polygon of the nth order, unless
nis 3or4 E.g. If n=5 24P+1
is a square, if P=2: but 2 is not a
pentagonal number. See Nesselmann,
p. 467,

3 E.g. 36 has 8, 4, 13 or 36 angles:
225 has 4, 8, 24, 76 or 225 angles, etc.
Nesselmann, pp. 468—470.

4 The proof of the 1st proposition is
short enough to be inserted here. It

constant difference (=GD). It is to
be proved that 8 AB.BG+BD=sa
square of which the side is 4B +2BG.
SinceAB=BG+ GD,84B.BG=8BG*
+8BG.GD, and 44B.BG=4BG?
+4BG.GD. But(Eucl.11.8)4BG.GD
+BD?*=A4B2 The inquiry therefore is
how AB%+44B.BG +4BG? give a sum
which is a& square number. Take
AE=BG. Then (Euclidir.3)4B4.4E
+44E*=4BE .E4Aand 4BE .E4 + BA?
=(BE+EA). But (BE+EA)=AB
+24E=A4B +2BG, q.E.0p.” It will
be seen that this proof is wholly Eucli-
dean, but omits many steps which
Euclid would certainly have inserted,
and that it uses Euclid 11. 8 and 8 for
arithmetical purposes.
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67. The Arithmetica is a work of infinitely greater im-
portance. It is a treatise on algebra, and, if not the first that
ever was written, is by far the earliest now extant. It is devoted
to the solution of equations, which Diophantus expresses with
algebraical symbols and treats always analytically. But as Dio-
phantus does not claim for himself the credit of inventing either
the symbols which he uses or his method of proof, a short
recapitulation should be here inserted to account, as far as
possible, for both inventions.

The ancient geometers knew two modes of proof, which
they called synthetic and analytic'. With the former, a pro-
position is proved directly by steps advancing from the known
to the unknown. With the latter (of which the reductio ad
absurdum is a particular kind), a proposition to be proved is
assumed to be true or untrue, and the assumption is shown
to be consistent or inconsistent with some simpler facts already
known, or is shown to be so upon certain conditions. Algebraic
proof is of this latter, the analytical, kind. The invention of
this kind of proof is expressly attributed to Plato®. We have
already seen (supra, p.18), that calculation with an unknown
quantity (called Hau or ‘heap’) was practised by the Egyptians
in very remote antiquity, and that some conventional signs
at least for addition and subtraction were then used. So useful
an art can hardly have disappeared entirely from the later
Egyptian civilization. Aristotle first, so far as we know,
employed letters of the alphabet to indicate unknown magni-
tudes, though not for purposes of calculation®. But this

1 Euclid xmr. 1, (Schol.) Pappus, Bk.
vir. Preface. Ed. Hultsch, p. 634.
Proclus, ed. Friedlein, pp. 211—212,
Todhunter’s Euclid, Notes, pp. 309
8qq.

3 Proclus, loc. cit. and Diog. Laert.
I, 24,

3 See, for example, Physics, VL, VIIL
passim: but esp. vi1. 5 (pp. 249—250
of the Berlin ed.), where it is stated:
“If A be the mover, B the moved
thing, I' the distance and A the time

of the motion, then A will move g

twice the distance I" in the time A or
the whole distance I’ in half the time
A,” ete. Poggendorf, Gesch. der Phy-
sik. p. 242, sees in this the germ of
the principle of virtual velocity. It
is evident also that Aristotle understood
the advantage of these alphabetic sym-
bols, for he explains (4nal. Post. 1. 5,
P- 74 & 17) how much time and trouble
is saved by a general symbolism.
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suggestion could hardly be followed up because the alphabet,
soon after Aristotle’s time, came to be used for ordinary arith-
metical purposes. Euclid uses lines as symbols for magni-
tudes, including numbers, and though he solves quadratic
equations and performs other operations of universal arithmetic,
he uses always the synthetic mode of proof, and confines himself
strictly to geometrical conditions. He will not add a line to a
square, or divide a line by another line or name a particular
number. The limitations imposed upon universal arithmetic by
the linear symbolism were too great. Algebra could come only
from the practical calculator who was not hampered by such
difficulties. The first step seems to have been taken, not by a
Greek, but by the Egyptian Heron. Thus, in a proposition
now included in the Geometria (p. 101 in Hultsch’s edition)
but originally part of “another book ” unknown, Heron does not
scruple to add an area to a circumference’. In modern symbols,
the proposition runs: ‘If S be the sum of the area (4), the
circumference (C), and the diameter (D) of a circle, find the
d=,,/154-S -;184'1-29 )
The proof, which he does not give, is obviously as follows:

Aisgor:ms wd : wis 3. Then S=%d‘+(7r+1)d=

Hd'+2°d. Multiply each term by 154 (=11 x 14). Then
121d°+ 638 d + 841 = 1548 + 841 or (11 d + 29)* =154 S + 841,
from which Heron’s answer immediately follows. It cannot be
doubted that Heron could solve an impure quadratic equation
in a way which, but for the want of a symbolism, would be
simply algebraical®. Two centuries or more afterwards, we find,

diameter. The answer which he gives is

1 Compare Diophantus, who, in his
5th Book, means by a ‘‘right-angled
triangle” three numbers such that
ab
2
treats its side upon occasion as a cube,
etc. Hankel, p. 159. Of the great
Greek mathematicians, Archimedes
alone (in his Circuli Dimensio) ven-
tures to introduce actual numbers into

a3+ b?=c? adds its area — to its side,

a geometrical discussion, and to divide
a line by another line. He finds the
value of = and some other similar ratios
but does not himself pursue such inves«
tigations further and is not followed by
any other writer. Trigonometry was
used only for astronomical purposes
and did not form part of geometry at
all
3 Cantor Vorles. pp. 341—2.
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in the Semite Nicomachus, that the practical calculator has taken
to proving, by induction from numbers themselves, the theories
which hitherto had been proved deductively by the geo-
metrician. In the 2nd Book of Pappus, the Aristotelian use of
the alphabet appears again, but whether this was due to
Apollonius or his predecessor Archimedes cannot be discovered.
Pappus, at any rate, uses A for 20, B for 3, I" for 4, Z for 2 and
T for an unknown number', Thymaridas calls an unknown
number dopioros, and proves an algebraical theorem. Problems
leading to simple equations become a common form of amuse-
ment; and finally, in Diophantus, the method of forming and
handling equations appears almost complete, accompanied by
an algebraical symbolism which was probably not new but
of which no trace has been found in previous writers, The
foregoing statement is sufficient to raise a very strong suspicion
that there are large gaps in the history of Greek dpifunTixr,
and that the later Greek mathematicians were not by any
means so futile as they are sometimes represented to be?
Nevertheless hardly any writers are quoted save those of whose
works large portions are still extant. It is therefore not an
improbable supposition that there were in Alexandria and
Pergamum and elsewhere, as in the English universities at the
present day, many mathematicians of great ability and in-
ventiveness, who did not write books at all but were content to
allow their knowledge to ooze out in lectures and private com-
munications®, What little evidence there is, and the absence of
more, alike suggest that these mathematicians were of Semitic
or Egyptian origin. On the other hand, it is still possible that

1 See Hultsch’s Ed. pp. 8 and 18.
Cantor Vorles. pp. 298, 387.

2 Thus Hankel (p. 1567) says, ¢ Of the
performances of the Greeks in arith-
metic our judgment may be stated
shortly thus: they are, in form and
contents, animportant, childish even :
and yet they are not the first steps
which science takes, as yet ignorant
of her aim, tottering upon shaky
ground: they are the work of a people
which had once produced an Euclid,

an Archimedes, an Apollonius, It is
dotage without a future which wearies
us in these writings, In the midst of
this dreary waste appears suddenly a
man with youthful energy, Diophan-
tus.”

3 What, for instance, was the Logistic
of Magnus, and how did it assist Porus
and Philo of Gadara in those researches
which Eutocius (ad Arch. Cir. Dim.)
mentions, but which he could not
understand ?
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Diophantus actually invented the symbolism, and the rules which
first appear in his book but for which he claims no credit.
In any case, Diophantus must always be esteemed one of the
most brilliant of Greek mathematicians.

68. The Arithmetica begins with a prefatory letter to one
Dionysius, to whom Diophantus says, “ Knowing that you are
anxious to learn the solution of arithmetical problems, I have
tried to systematise (or ‘state in a handy form’, dpyavdcac) the
method, beginning from the foundations of the matter. You
will think it hard before you get thoroughly acquainted with
it” etc. He then proceeds to definitions (11 altogether), in
which h¢ does not (as an inventor would) use the imperatives,
éorw, kalelcbw, ‘let it be’, ‘let it be called’, ete. but the in-
dicatives, éoti, kalelTas, ‘it is’, ‘it is called’, etc. With such
expressions he states the symbolism and the rules of algebraical
multiplication. He gives as a fact, without explanation, that ‘a
negative term multiplied by a negative produces a positive '?,
and (after recommending continual practice in the use of the
previous rules) he states shortly how to reduce an equation to
its simplest form. This is the evidence from which it is con-
cluded that Diophantus was not the inventor of the method
which he employs. The method itself may be shortly described
as follows. .

Diophantus uses only one unknown, which he calls 6 dpifuds
or 6 dépiaros dpibuss®. Its symbol is ¢" or s* in the plural s¢
or ss%, and, as in this last case, all inflexions may be appended
to the symbol as %%, 5 etc®. The square of the unknown «*

1 Def. 9, Netyrs éxl Aetyw woAAamAa-
alacleioa worel Umaptiw Netyus 8¢ émlimap-
£w wotet Aetyww. This should properly be
translated, “A difference multiplied by
a difference makes an addition” ete.
For it is to be remembered that Dio-
phantus has no motion of a megative
term standing by itself or of subtracting
a greater term from a less. 8z —20 is
to him an absurdity unless z=2} at
the least.

2 Inthe definition described asa\7fos
povddwy @hoyov.

3 This symbol s, as it appears in our
MSS. is always assumed to be the final
sigma, adopted here because it was the
final letter of dpifuds, and because also
it was the only Greek letter which had
not a numerical value. It must, how-
ever, be remembered (1) that it is only
cursive Greek which has a final sigma
and that the cursive form did not come
into use till the 8th or 9th century:
(2) that inflexions are appended to
Diophantus’ symbol ¢ (e.g. soi, sso
ete.) and that his other symbols (except
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is called &vvapuss, its symbol is &: 2® is called xYBos (symbol
«%): a* is called Svvapodiwauis, (symbol 8&): a* is called
SuvaudrvBos (symbol 8«%) : a° is called xvBéxvBos (symbol xx?):
but beyond this sizth power of the unknown Diophantus does
not go. These terms and symbols are not applied to the powers
of any number except the unknown. All known numbers are
called povddes, (symbol x®) and unity itself is always written
ud aor p® pla. The coefficients are written after the symbols
(e.g. ss% & =20x : p® ' =20). The sign of subtraction is the
word Aelyres (minus), its symbol is vn, a truncated and inverted
(Def. 9). The symbol of equality is ¢, the initial of lgos, lgos’.
In a composite expression, the negative terms are placed after
all the positive, but there is no sign of addition save mere
juxtaposition. Thus 88°9 &5 uéa 4 £%85548 means
92* + 62" + 1 — 4o — 122 (IV. 29).
(2) for ‘sum-total’, tmt.

) are initial letters or syllables. The The hieratic

objection (1) might be disposed of by
the fact that the Greeks had two uncial
sigmas C and 3, one of which might
have been used by Diophantus, but I
do not see my way to dismissing objec-
tion (2). It would be of great historical
importance if we could discover what
symbol Diophantus used, and of what
word the inflexions appended to the
symbol were supposed to form part.
Both word and symbol may be Egyp-
tian or Indian or Babylonian, and may
reveal an entirely unknown chapter in
the history of mathematics. Since,
however, the only distinct anticipa-
tions of Diophantus’ art are found in
Egypt in Ahmes and Heron (who also
is believed to have been an Egyptian)
I am inclined to look for the origin of
Diophantus’ symbols in some hieratic
characters. The Greek sign ¢ is in
form practically identical with two
hieratic signs (1) for a papyrus-roll, ¢'a,
a determinative of unknown force,
which, as it happens, is the last charac-
ter of the four with which Ahmes wrote
his hau (Eisenlohr 1. p. 60, 1. pl. xi):

" gigns differ slightly in form, and are

said to be derived from different hiero-
glyphio pictures (see Levi, Raccolta dei
Segni Ieratici, 1875, Plates 37 and 52):
but Dr Birch tells me that he thinks
the sign for a ‘sum-total’ is identical
with the papyrus-roll. So also Ishould
expect to find 4 in some hieratic cha-
racter. If I could prove these points,
I would recast this chapter.

1 Luca Pacioli (1491) uses p and m
for plus and minus: Tartaglia (1556)
uses ¢ for plus: Vieta has + and -,
also = (later v») for the sign of differ-
ence (4w B): Oughtred first has x:
Harriot (1634) writes factors consecu-
tively without any sign of multiplica-
tion. Descartes uses x for equal.
Wallis turned this into =. See Nessel-
mann, p.305. Hallam,however, (Europ.
Lit. Pt. 1. Ch. ix. s, 6) rightly ascribes
+ and — to Stifel (1544): and says
also that Xylander in his Diophantus
used || for =. As to + and - see
De Morgan’s Arithmetical Books—A
Bibliography—1847, pp.19—20,and his
art. in Trans. Cambd. Philos. Soc. Vol. 1x.
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Fractions, of which the denominator is some power of the

1 1 1

unknown, e.g. O etc. are described as dpifuooTov,

SuvapoaTov, kvBoctov etc: in the symbolism generally the
denominator is written above and after the numerator, Ssova

mea.nsg, ¥*¢ means %: but if the numerator itself contains

a fraction, then the whole word dp.fuoorov ete. is written
, , - = 1

before the numerator (as dp.fuocTov a a3=$ etc.). If]

however, the numerator and denominator are composite ex-
Ppressions (also if they are very high numbers) Diophantus writes
the numerator first, then év wopip or popiov, then the denomi-

L,SS" B, ex év

nator: e.g. w7 wopiov & a . s°° @ means
g ¥ 1 pop s a:'+a;

popie pkfB, axe means Some further details might be

added but they are not necessary for the present purpose.
Suffice it to say that Diophantus often writes a name in full
where a symbol would have served, that his symbols are only
abbreviations of the words (except 4\), that inflexions are
appended to symbols (not to &% «° u®) as if they were words,
and that he states, in grammatical sentences, the nature and
the result of each step in an operation’. The following brief

1 Nesselmann (p. 302) divides alge-
braical styles into 3 classes:

(a) the Rhetorical, where no symbols
are used and every term and operation
is described in full. This is the style
of Thymaridas, Iamblichus, all the Ara-
bian and Persian algebraists, and the
early Italians (e.g. Leon. Bonacci, of
the 13th, Regiomontanus and Luca
Pacioli of the 15th century.)

(b) the Syncopated, where abbrevia-
tions are used for the most common
words and operations, but in other
respects syntactical rules are observed.
This is the style of Diophantus and of

the later Europeans down to the middle
of the 17th century.

(c) the Symbolical, the modern style,
where no words are used at all. Vieta
(15640—1603), who in time belongs
rather to the early Italians, uses a style
which is very nearly symbolical and
which was not generally adopted till
more than a century later. Before his
time, the Italians used R (res or radiz),
Z (zensus), C (cubus), ete. for z, 2, 23,
eto.: and Bachet and Fermat long after-
wards have N (numerus), Q (quadratus),
eto. in the style of Diophantus. Vieta,
however, wrote 4, Aq, de, Aqq ete.
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examples will illustrate all these points.

Suvdpeat § ¢ k. ub NS kal ylverar 6 pf ass etc. ie. The
square 42’ + 36 — 24« is equal to 44"+ 28z + 34 and z is 2i6 .
In 1v. 42 we read Nouwov 8¢ Td vmd Tod WpwTov kal Tplrov
ovvauporépors &gTar mwevrakis. dAN' 6 Vmo Tod mWpdTOV Kal
Tplrov éarl 8 B v pople & a pfiB Nelyrevss ¢': ie. It remains
that the ‘product of the first and third shall be 5 times their
sum. But their product is 19— +11 ; 7’ etc.

69. It might have been expected that Diophantus, in
introducing a new method of inquiry, which consists mainly in
applying to a number, pro tem. unknown, the ordinary rules of
calculation, would have called his work Aoyiorika. But it has
been already pointed out that the distinction between dpefuntuer
and AoyioTirn, though originally perhaps ouly one of method,
soon became one of purpose. Logistic seeks only to find an -
answer to a question about some particular numbers, while
apBuntuc) endeavours to define classes of numbers or to find
rules which are applicable to all numbers. Ostensibly, the
problems which Diophantus sets himself are generally of this
latter kind: e.g. 1. 33. To find three numbers such that the
square of each plus the next number is a square: 1L 7. To
find three numbers such that their. sum, and also the sum of
any two of them, shall be a square: 1v. 22. ‘To find three

thus admitting of more than one un-
known (as Bg, Cqq etc.) and he also
introduced general coefficients as (m4
eto.) Harriot (1631) and Wallis (1685)
used to write aaa, ete. for a3, ete.
Descartes is sometimes said to have
introduced the numeral exponents
(which Wallis also uses) but Hallam
(loc. cit.) ascribes this to Michael Stifel
(1544). Bee Nesselmann, pp. 58, 296,
302 sqq. See also preceding note and
the preface to Wallis’s 4lgebra, 1685.
The word zensus, from which the sym-

bol Z was derived, is a mis-spelling of
census, which is a bad Latin translation
of mil (i.e. ‘wealth’, or ‘possession’),
the Arabic name for the square of the
unknown. The Arabs called the un-
known shai, ‘thing’, translated in
Latin res, in Italian cosa, whence
algebra used to be called the Cossic
art. See Colebrooke Algebra of the
Hindus, p. xiii. The same writer (p.
x. n) says that Robt. Recorde (a.p. 1540)
first used thesign=. The history of such
signs seems to require investigation.
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numbers in continued proportion, such that the difference be-
tween any two of them is a square:’ v. 17. ‘To divide a given
number into four parts, such that the sum of any three parts is
a square:’ VL 14. ‘To find a right-angled triangle such that
its area minus either of the sides is a square.’ Problems of
this sort should be capable of general solutions: they are in-
tended to discover classes of numbers having a common pro-
perty, and are therefore rightly ascribed to dpifunricy. But
Diophantus does not, in fact, treat them generally. He is
satisfied with a solution which gives only one case or a few
cases. Usually he arrives at an equation to which he finds
only one particular solution. Even where the problem leads to
a quadratic equation, which may be solved for two positive
roots, he never gives more than one'. With a symbolism which
admitted of only one unknown quantity, he could not have
been expected to find a perfectly general solution, but he might
have done much more than he does®. It must be added also
that he will not accept a result which is either a negative or an
irrational quantity’. Equations which lead to such are ‘im-
possible’ or ‘absurd’ (d8vvarov 1v. 28, dromoy, V. 2). On the
other hand, he does not by any means object to a fractional
result, and he is the first of the Greeks to whom a fraction was
a number and not a ratio.

70, Of the 6 Books of the *Apifunricd now extant, the
first, as has been said already, is mainly devoted to determinate
equations of the first degree, the remainder to indeterminate
equations of the second. The problems, however, which Dio-
phantus sets before the reader, do not as a rule lead immediately

1 In such a case, says Nesselmann,
(p. 320) the Arabs and the earliest
Italians always gave both roots.

2 Hankel (p. 162) suggests that Dio-
phantus’ habit of only giving one solu-
tion, was a relic of the old geometrical
practice. It seems to me more probable
that algebra was originally the inven-
tion of practical men, who only wanted
one solution.

3 Hence, for instance to v. 30, ‘To

find two numbers such that their sum
and product shall = given numbers’
he adds (as & wposdiopioubs or ‘deter-
mination’) ‘If the square of their
sum be subtracted from twice the sum
of their squares, the remainder must
be a square’ }i.e. 2z3+2y%— (22+ 32y
+%7%) must = & square number with a
rational root.} Similarly v. 33, Nes-
selmann, p. 326,
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and easily to equations with only onme unkmown. His art
therefore distinguishes itself in two separate departments, the
construction of equations and their solution. The second of
these may be treated here first.

In Def. x1. Diophantus gives a rule for the solution of pure
equations in the following manner: “If a problem leads to an
equation containing the same powers of the unknown (efdy Ta
avrd) on both sides but not with the same coefficients (u7
opomA}fn)’, you must deduct like from like till only two equal
terms remain. But when on one side or both some terms are
negative (éveM\eimer), you must add the negative terms to both
sides till all the terms are positive (évumrdpyer) and then deduct
as before stated®.” He then promises to give the method of
solving mixed or adfected quadratic equations®, but this rule

does mnot appear in our texts, and unfortunately Diophantus,
though he often arrives at such equations, never goes through
the process of solving them. He merely states a root or says
that the equation is soluble (e.g. V1. 6 “84a" + Tz =T whence = s
found =}": or V1. 8 “6304*+73z=6, whence the root 1s rational®’).
But it is evident that he did not solve them empirically, for
where a root is irrational, he sometimes gives approximations to
it (eg. v.33). His method of solution seems to have differed
from ours only in this, that in an equation ma® + pz =g, he first
multiplied the terms by m instead of dividing them®. Three
forms of adfected quadratics occur in Diophantus viz. (1)

1 x\ffos is the ordinary Diophantic
expression for ‘coefficient’.

2 The addition of the negative terms
was called by the Arabs al-jebr (or ‘res-
titution’): the deduction was called al-
muké&balah (‘comparison’). These two
nwmes were used together for Algebra
until the end of the 16th century, when
the second was discarded. Nesselmann,
pp. 47 8qq. and 315, Comp. the 1st
chap. of Wallis’s 4lgebra.

3 Uorepov 8¢ coe deltouev xal xds, Svo
eldSv lowy évl karakewpOévrwy, Td TowolTov
Nerat.

4 Cf. Nesselmann, p. 318,

G. G. M.

5 Nesselmann, p. 319. On p. 324
8qq. Nesselmann discusses from what
source Diophantus obtained his method
of solution. The ancients, from Eu-
c'id’s time or earlier, could solve the
equations 2?+pzr=¢q and pr-zt=gq,
geometrically considered. Thus z(z+p)
=g would be in geometrical language:
To produce a given straight line p to a
length p+z, so that the rectangle be-
tween the whole line so produced and
the part produced i.e. z (p + ) shall be
equal to a given figure g. The other
cases are equally easy to put geometri-
cally. All three are solved in Euclid

8
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ma*+ pr=gq (eg VL 6), (2) ma'=pz+q (eg 1v. 45) and
(8) ma*+ q=px (e.g. VI. 24). One cubic equation (reducible
at once to 2’+ & =4x'+4) occurs, VI. 19, No example of
indeterminate simple equations occurs in the present text of
Diophantus. Some problems, leading to such, are contained in
the 1st Book (Nos. 14. 25—28), but Diophantus takes a short
way with these by assuming one of the required numbers and
so converts the equations into a determinate form. Indeter-
minate quadratics are confined to the case “that one or two
(never more) functions of the unknown, of the form 4a*+ Bz+ C,
must be a rational square (loov TeTpaydvw). Hence we have to
do only with the equation 42’ + Bz + C=y* or with two equa-
tions of the same form.” Let the single equation be considered
first. It assumes many forms according as one or another term
is wanting or is eliminated. These need not here be considered,
but it should be mentioned that the complete expression
Aaz*+ Bz+C=y"' is deemed by Diophantus ta be soluble’
only (1) when A is a positive square number: in which case
o' &'+ Bz + C=y": he then takes y=az+m: (2) when Cis a
positive square number: in which case he takes y =ma+4/C:

vL 28, 29 stated above (p. 84 n.). In Nesselmann quotes other suggestions
the figures by Cossali and Bachet, but does not
decide for any. It should be stated
that Diophantus nowhere appeals to a
geometrical figure, whereas modern
algebraists (acc. to Hankel, p. 162)
down to the end of the 17th century
always added one as an illustration to
the solution of a quadratic equation.
I do not, however, find this in Harriot
or Wallis.

1 It must be remembered that Dio-
phantus does not avoid fractional solu-

D F E

To the line 4B, a rectangle AE is to be
applied so that A4E=q and BE is
similar to me? (or BC:CE=m:1). If
AD=z, then BC=mz. AC=p+mzx:
and AE =z (p+mz), so that the proof
of the geometrical proposition involves
the solution of the quadratic equa-
tions. This fact was first pointed out
by Montucla Hist. Math. 1. p. 413,

tionsfor indeterminate equations, hence
the problems which in modern text-
books are called Diophantic (viz. to
find a solution in positive integers for
az + by =c) are wrongly named, since
Diophantus does not treat such equa-
tions nor does he solve for integers
those which he does treat. (Hankel,
p- 163.)

a -
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(83) when %‘ — AC is a positive square number, a condition

which he uses only covertly. In such a case (e.g. 1v. 33) he
takes y=ma. If beside 44"+ Bz + C =y’ another function of #
Ax*+ Bz + C, is to be made equal to another square number
9,® Diophantus calls the problem a “double equation” (8:m\oi-
oTns, Sim\g lodtys, S} lowass). He seems unable to solve
these simultaneous equations unless 4 and 4, are the same
square number, but if 2®is wanting in both expressions, he can
solve them either if B and B, are to one another as two squares or
C and C, are both squares. Several examples of indeterminate
equations of degrees higher than the second also occur. The
opinion of Nesselmann on the methods of Diophantus is
shortly as follows: (1) Indeterminate equations of the 2nd
degree are treated completely only when the quadratic or the
absolute term is wanting: his solution of the equations
Az’ +C =y" and A2*+ Bz + C=y* is in many respects cramped.
(2) For the ‘double equation’ of the 2nd degree he has a
definite rule only when the quadratic term is wanting in both
expressions: even then his solution is not general. More
complicated expressions occur only under specially favourable
circamstances, (3) The solution of the higher indeterminates
depends almost entirely on very favourable numerical con-
ditions and his methods are defeetive’. v

71. But the extraordinary ability of Diophantus appears
rather in the other department of his art, namely the ingenuity
with which he reduces every problem to an equation which he
is competent to solve. To exhibit completely his cleverness in
this respect would be, as Nesselmann says: “to transcribe his
book®” The same critic, however, has selected a number of

1 Thefollowing remarks by an accom_
plished critic will sufficiently excuse me
for saying so little on the Diophantio
equations and their solutions. “In 130
indeterminate equations, which Dio-
phantus treats, there are more than 50
different classes...Almost more various
than the problems are their solutions...

Each calls for a quite distinct method,
which is often useless for the most
closely-related problems. I$ is there-
fore difficult for a modern, after study-
ing 100 Diophantic equations, to solve
the 101st.” Hankel, pp. 164—165.

2 Nesselmann, ch. 9, pp. 355 sqq.

8—2
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typical specimens, exhibiting the most striking characteristics
of Diophantus’ style. Some of these may be here given.
(1) Diophantus shows great Adroitness in selecting the unknown,
especially with a view to avoiding an adfected quadratic. Thus
1v. 38 is a problem ‘to find 3 numbers, so that the product of
any two + the sum of the same two shall be given numbers®’
Here ab+a+b=8:bc+b+c=15:ac+a+c=24. Here he
takes b+ 1 =z, whence b =2 — 1. Then from the first equation

= g —1: from the second ¢ = }‘-:-;— 1: from the third @ = 12.

In 1. 16 ‘To find 3 numbers such that the sum of each pair is
a given number,’ the three given sums being a, b, ¢ he takes the
sum of all three numbers together = 2. The numbers therefore

are £—a, £ —b, —c. Whence 3z—(a+b+c)=2: and
T = Z-'%H. (2) The most common and characteristic of

Diophantus’ methods is his use of tentative assumptions® which
is applied in nearly every problem of the later books. It con-
sists in assigning to the unknown a preliminary value which
satisfies one or two only of the necessary conditions, in order
that, from its failure to satisfy the remaining conditions, the
operator may perceive what exactly is required for that purpose.

1 Cf. also 1. 16, 18, 28, 1. 83, 111, 5,
6, 7, 16, 1v. 14, 16, 38 ete. Diophan-
‘tus, of course, does not, in the selected
specimen or elsewhere, use a, b, ¢, or
other symbols. He says ‘the first,
second, third numbers, the product of
the first and second’ etc. describing
in full every expression which does not
contain the unknown s. I have oec-
casionally, for shortness, also altered
the wording of & problem, by intro-
ducing the given number or given ratio
eto. into the enunciation.

3 Nesselmann quotes too many speci-
mens to be here cited. He calls this
procedure ¢ Falscher Ansatz’, but says
that it is to be distinguished from the
later ¢so beriihmt gewordene regula
falsi oder falsa positio” (mentioned

above p. 100 n.), with which it has
nothing in common. Both processes
seem to me to go pari passu up to a
certain point, Here is an Italian speci-
men of the simple ‘falsa positio® given
by Dean Peacock. ‘I buy a jewel and
sell it for 50 lire (1 lira=100 soldi): 1
make 3} soldi on each lira of the origi-
nal price. What did I give for the
jewel?” The operator says: ‘Assume
that I gave 30 lire: then I should have
sold it for 81. But, in reality, I sold
it for 50. Therefore the original price

80 50.’ In Diophantus, however,

was —g,

the original assumption is completely
dismissed, when its falsity, and the
reason of this, are discovered, and no
further use is made of it.
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A good example is 1v. 9: ‘To find a cube and its root such
that if the same number be added to each, the sums shall also
be a cube and its root” Here let  be the number added, 2z
the root, 82° the cube. Then 8z°+ x = (3z)®=272° whence
192°=1. Asz is to have a rational value, 192* = 1 will not suit.
‘Now this 19 arises’ says Diophantus in effect ‘from the differ-
ence of 272° and 82°, or the cubes of 3z and 2z. There is a
difference of 1 between these last coefficients. Let me now
find two numbers # and # + 1 such that the difference between
their cubes is a square number, That difference will be
32'+3z+ 1. If I assume this tobe =(2z—1)*, I shall find
=17, and my two numbers are 7 and 8. Now I return to my
original problem. Let z again be the number to be added, 7z
the root and 343z® the cube. Then 3432* + 2= (T + z)'=5124",
whence 1692°=1 and #=4.” This example will serve also to
illustrate a third characteristic of Diophantus, viz. (3) the
use of the symbol for the unknown in different senses’. The
following is a more complicated instance of both methods. In
.IV: 17 the problem is ‘to find 3 numbers, such that their sum
is a square and that the square of any one of them + the
following number is a square,” The 3 numbers are first taken
asx—1, 4z and 82 + 1, where (z-— 1)*+ 42 and (4«)'+8z+1
are both square numbers. Two conditions are thus satisfied. But
the sum of all 3 numbers, viz. 13z, must be a square. ‘Take
13z equal to 2® with some square coefficient, e.g. 1692°. Then
2=1324"" A new use of z is thus introduced and 132* is sub-
stituted for the original #, the numbers now being 132* -1,
524 and 104z*+1. A fourth condition remains, viz. that
(1042* + 1)* + (132® — 1) shall be a square number. Diophantus,
then, takes this expression equal to &* (104« + 1) findsz =§§,
and substitutes this value in the expression. The use of
‘tentative assumptions’ leads, again, to another device which
may be called (4) the method of limits’. This may best be
illustrated by a particular example. If Diophantus wishes to
find a square lying between 10 and 11, he multiplies these

1 If in any particular case, confusion by mame. Nesselmann cites 1. 22, m,
is likely, Diophantus alludes to the 18, 1v. 17, 18, v1. 13, 14, 15 etc.
first symbol as & ddpiaros, 5 dvwams ete. 2 Compare 1v. 45, v. 33, v1. 2, 23 etc.
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numbers by successive squares till a square lies between the
products. Thus between 40 and 44, 90 and 99 no square lies,
but between 160 and 176 there lies the square 169. Hence
«* =189 will lie between the proposed limits. The method is
very neatly used in the following instance. In 1v. 34 the
problem is ‘to divide 1 into two parts, such that if 3 be added
to the one part and 5 to the other, the product of the two sums
shall be a square’ If one part be = —8, the other is 4 — .
Then 2 (9 — z) must be a square. Suppose it =4x": then z=3§.
But this will not suit the original assumption, since  must be
.greater than 8 (and less than 4). Now 5is 4+ 1 hence what

is wanted is to find a number 3* + 1 such that -— y’ 1 is >3 and

<4. For such a purpose y* must be <2 and >1}. “I resolve
these expressions into square fractions” says Diophantus and
selects 12# and §% between which lies the square 47 or 3. He

then takes z (9 —z)= _Ra,: instead of 4x*. Sometimes, indeed,

Diophantus solves a problem wholly or in part by (5) synthesis'.
Thus 1v. 31 is ‘To find 4 squares, such that their sum added to
the sum of their roots is a given number.’ The solution is as
follows, “Let the given number be 12. Since a square + its
root + } is & square, the root of which minus } is the root of the
first-mentioned square, and since the four numbers added
together =12, which plus the four quarters (12+4%) is 13, it
follows that the problem is to divide 13 into four squares. The
roots of these minus § each will be the roots of the four squares
sought for. Now 13 is composed of two squares 4 and 9: each
of which is composed of two squares, viz. §§, 3%, A4 and §}.
The roots of these, viz. §, §, i and §, minus } each, are the
roots of the four squares sought for, viz. 1}, &, 1§, 1§: and the
four squares themselves are 133, %, $84 and 143.” Although
it has been said above, and has been sufficiently shown by the
foregoing examples, that Diophantus does not treat his problems
generally and is usually content with finding any particular
numbers which happen to satisfy the conditions of his problems,

1 Compare also 1. 16, 1v, 32, v. 17, 23 ete.
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yet it should be added that he does occasionally attempt (6)
‘such general solutions' as were possible to him. But these
solutions are not often exhaustive because he had no symbol for
a general coefficient. Thus in v. 21 ‘to find 3 numbers, such
that each of them shall be a square minus 1 and their sum
shall be a biquadrate (Svvapodvvauis)’ he finds the 3 numbers
in the form a* — 22%, 2* 4+ 22 and " — 2, and adds ‘the problem
has been solved in general (doploross) terms,” and at the end of
1v. 87 (comp. also 1v. 20) where a similar solution is given he
remarks “A solution in general terms is such that the unknown
in the expressions for the numbers sought may have any value
you please.” The problems 1v. 20, 37, 39 and 41 are expressly
problems for finding general expressions. He solves them by a
‘tentative assumption.’” For instance 1v. 39 is ‘To find two
general expressions for numbers such that their product minus
their sum is a given number.” The solution runs as follows:
‘The given number is 8. The first number may be taken as a,
the second as 8. Then 22—3 =8,and z=>5}. Now 5} is Y,
11 is the given number plus the second: and 2 is the second
minus 1. Hence at whatever value the second number be
taken, if I add it to the given number and divide the sum by
the second number minus 1, I get the first number. Suppose

z+9

.the second number to be &+ 1: then is the first.’ These

general solutions for fwo numbers are immediately afterwards
(1v. 21, 38, 40, 42) used in problems of a similar character for
three numbers, of which two are first found in general terms
and then the third by a determination of « in the usual manner.
Sometimes, however (e.g. 1v. 26 and frequently in the 6th
book?), a problem after being solved by particular numbers
(as 40, 27, 25) is solved generally (by 40z, 27z, 25 in 1V, 26).
But though the defects in Diophantus’ proofs are in general
due to the limitation of his symbolism, it is not so always.
Very frequently indeed Diophantus introduces into a solution
(7) arbitrary conditions and determinations which are not in the

1v1.3,4,6,7,8,9,10,11, 13, 15,17.  entirely with ‘right-angled triangles’,

See Nesselmann, pp. 418—421. The i.e. with sets of three numbers, such
problems of the vith Book deal almost  that 22 +y?=22
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problem. Of such “fudged ” solutions, as a schoolboy would call
them, two particular kinds are very frequent. Sometimes an
unknown is assumed at a determinate value': as in 1. 14 ‘To
find two numbers whose product is three times their sum,’
where Diophantus, without a word of apology, takes the first
number as z, the second as 12. Sometimes a new condition is
introduced, as in V1. 19, where, two numbers being sought such
that the cube of one is greater by 2 than the square of the
other, Diophantus takes the numbers as #—1 and z+1, thus
introducing a condition that the difference between the two
numbers shall be 2. A very remarkable case of the latter kind
occurs in Iv. 7 where the problem would be, in our symbolism,
to find three numbers, a’, b, ¢’, so that a® + ¢* shall be a square,
b +c* a cube. Diophantus begins his solution by taking
0*+c*=a’. Arbitrariness of this kind is of course different
from the cases in which Diophantus merely takes a particular
number, where any other would. evidently do as well. In the
latter, he is urged by the defects of his symbolism: .in the
former he is urged only by the want of a solution to a particular
problem : the difference is one of kind and not of degree.

72. From the very brief survey of the Arithmetica, it will
be obvious to the reader that it is a work of the utmost
ingenuity but that it is deficient, sometimes pardonably, some-
times without excuse, in generalization. The book of Pords-
mata, to which Diophantus sometimes refers, seems on the other
hand to have been entirely devoted to the discussion of general
properties of numbers, It is three times expressly quoted in
the Arithmetica. These quotations, when expressed in modern
symbols, are to the following effect. In'v. 3 the porism® iscited :
‘f z+a=m",y+a=n" and zy + a=p’ then m=n+1": in
V. 5: ‘If three numbers &% (z + 1), 42’ + 4z + 4, be taken, the

1 Other examples in 1. 25, 26, 27, 28,
1 19, v. 7, 30, 31,

2 Nesselmann, pp. 441—443, shews
that the conditions may be satisfied by
numbers of other forms. Of the 2nd
porism he says (p. 445) that more
general expressions might be found for

the numbers but he will not trust him-
self to find them. Of the 3rd he says
(pp. 445—446, after Fermat) that Vieta
uses it in the last propositions of the
4th Book of his Zetetica. The 3rd
porism is mutilated in the quotation.
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product of any two + their sum, or + the remaining number, is
a square: in V. 19 ‘the difference between two cubes may be
resolved into the sum of two cubes.” Of all these propositions he
says éyopev év Tols moplopacw, *we find itin the Porisms’; but
he cites also a great many similar propositions without expressly
referring to the Porisms. These latter citations fall into two
classes, the first of which contains mere tdentities, such as the
_ algebraical equivalents of the theorems in Euclid 1. For
instance in Diophantus 11. 31, 32, and 1v. 17 it is stated, in
effect, that 2®+ 3 + 2zy is always a square (Eucl 1L 4): in
IL 35, 36, 111. 12, 14 and many more places it is stated that
2

(a_;_lg) + ab is always a square (Eucl. 1L 5) etc'. The other
class contains general propositions concerning the resolution of
numbers into the sum of two, three or four® squares. For
instance, in 1L 8, 9 it is stated ‘Every square number’ (in I1. 10
‘every number which is the sum of two squares’) ‘may be re-
solved into the sum of two squares in an infinite number of
ways’: in V. 12 ‘A number of the form (4n + 3) can never be
resolved into two squares,” but ‘every prime number of the
form (4n + 1) may be resolved into two squares’: in v. 14 ‘A
number of the form (8n+ 7) can never be resolved into three
squares.” It will be seen that all these propositions are of the
- general form which ought to have been but is not adopted in
the Arithmetica. We are therefore led to the conclusion
that the Porismata, like the pamphlet on Polygonal Numbers,
was a synthetic and not an analytic treatise. It is open,
however, to anyone to maintain the contrary, since no proof
of any porism is now extant.

With Diophantus the history of Greek arithmetic comes
to an end. No original work, that we .know of, was done

afterwards.

1 Nesselmann, pp. 446—450, cites 10
such identities, most of which are used
more than once by Diophantus.

2In 1v. 31, 82, v. 17 Fermat
thought that Diophantus was using a
proposition ‘Every number whatever

A few scholiasts appear, such as Kutocius of

can be resolved into four squares,’ but
Nesselmann (p. 460—1) inclines to the
opinion that Diophantus did not know
this proposition generally but was rely-
ing on the known properties of certain
determinate numbers.,
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Askalon (cir. A.D. 550) who wrote on Archimedes, Asclepius
of Tralles and his pupil Jokn Philoponus (cir. A.D. 650) who
wrote on Nicomachus, and the unknown commentators who
have added lemmas to the arithmetical books of Euclid; but
though there is evidence that the old mathematicians were still
studied in Athens and Alexandria and elsewhere, no writer of
genius appears and the history of arithmetic and algebra is
continued henceforth by the Indians and Arabs.




PART III. GEOMETRY.

CHAPTER V.
PRE-HISTORIC AND EGYPTIAN GEOMETRY.

73. THE earliest history of Geometry cannot be treated in '
the same way as that of Arithmetic. There is not for the
former, as there is for the latter, a nomenclature common to
many nations and languages; and the analysis of a geometrical
name in any one language leads only to the discovery of a root-
syllable which is common to many very different words and to
which only the vaguest possible meaning may be assigned.
Nor is any assistance, so far as I know, furnished by travellers
among savage and primitive races. Arithmetical operations are
matters of such daily necessity that every general arithmetical
proposition, of which a man is capable, is pretty certain to be
applied in his practice and to attract attention: but a man may
well know a hundred geometrical propositions which he never
once has occasion to use, and which therefore escape notice. I
have sought, in vain, through many books which purport to
describe the habits and psychology of the lower races, for some
allusion to their geometrical knowledge or for an account of
some operations which seem to imply geometrical notions.
One would be glad, for instance, to learn whether savages
anywhere distinguish a right angle from an acute. Have they
any mode of ascertaining whether a line is exactly straight or
exactly circular? Do they by name distinguish a square from
any other rectilineal figure? Do they attach any mysterious
properties to perpendicularity, angular symmetry, etc.? We
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have, at present, no answer to these and similar questions and
there is consequently a gap in the history of geometry which
no writer, since Herodotus, has attempted to fill up. Where
this gap occurs will be seen from the following remarks®.

74, Geometry is the science of space and investigates the
relations existing between parts of space, whether linear, super-
ficial or solid. Some of these relations are obviously capable
of arithmetical expression, so soon as units of length, area
and solid contents are selected. For the first of these, some
measurement of the human body has universally served: the
finger-breadth, palm, span, foot, ell, cubit, fathom have been
and are, all the world over, the units of length. Distances
too great to be exactly ascertained have also generally been
measured by some reference to human capacity, such as ‘a
stone’s throw, ‘within shouting distance’ (dcoov Te wéywve
Bornaas as Homer has it) ‘a day’s journey’ etc. But the human
body does not furnish any convenient unit of area or solid
contents, Large areas and volumes, like long distances, seem in
primitive times to have been described roughly by reference to
labour; a field, for instance, is a ‘morning’s work’ (Ger. morgen)
or a'day’s work for a yoke of oxen (Lat. jugerum): a barn
contains so many loads: but we do not know how small areas
and volumes were described®. Now the oldest exact geometry,
of which we know anything, is concerned almost entirely with
the measurement of various areas or solids by reference to a
square or a cubical standard unit. The selection of these par-
ticular shapes, out of several which prima facie would serve

1 The modern writers on the history
of Greek geometry, whom I have
chiefly consulted, are the following:
Bretschneider, Die Geometrie und die
Geometer vor Eukleides (Leipzig,
+1870): Hankel, Zur Geschichte der
Mathematik (Leipzig, 1875): Dr G.
J. Allman, Greek Geometry from Thales
to Euclid in Hermathena (Dublin) Nos.
v. and vir. (Vols. 1. and 1v. 1877 and
1881), Cantor, Vorlesungen iiber Ge-
schichte der Mathematik (Leipzig 1880),
Prof. M, Chasles, Aperqu Historique

sur Vorigine etc. de Géométrie (Paris,
1837 and 1875. Both editions
are identical). Bretschneider and the
rest convict Montucla (Hist. des
Mathém. 1758) of so many mistakes
in his history of Greek mathematics,
that I have seldom referred to him.
All these authors will in future be
cited generally by name only.

2 Small volumes were perhaps de-
scribed by weight, as conversely Gr.
dpaxun, properly a ‘handful,’ came to
be a standard of weight.
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just as well, implies a long period of observation and considera-
tion. How did this observation begin? It must be assumed,
of course, that mankind, like birds and bees, were from the first
familiar with, and able to distinguish, the many symmetrical
figures which occur in nature and that they knew generally that
suspended strings all hang alike and that all posts, to be stable,
must be stuck in the ground in a particular manner’. But the
question is, how they were induced to examine the properties
of these figures, to investigate the peculiarities of this par-
ticular angle. Herodotus says (11. 109) that Sesostris (Ramses
II. abt. 1400 B.c.). divided the land of Egypt into equal
rectangular (or square) plots for the purpose of more convenient
taxation; that the annual floods, caused by the rising of the
Nile, often swept away portions of a plot, and that surveyors
were in such cases appointed to assess the necessary reduction
in the tax. ‘Hence in my opinion’ (Soxéer 8¢ poc) he goes on
‘arose geometry, and so came into Greece.” The same account
is elsewhere® repeated as legendary, without reference to
Herodotus, and it is not unlikely to be an Egyptian tradition
which Herodotus appropriated. This history of geometry is
generally scouted®, but I think it perhaps contains a germ of
truth. Suppose that lands were originally measured roughly by
their produce or by the labour which they demanded. Then,
I imagine, the first attempt at exact numerical calculation of
areas was merely the measurement of the periphery, a method
which was useful enough so long as the areas were of approxi-
mately the same shape. But in process of time areas of one

1 It may be supposed that attention
would be called to the right angle be-
cause it is, as Aristotle calls it, the
‘angle of stability.’ But men might
well recognise a right angle in the
vertical plane without recognising it in
the horizontal. Compare the remarks
of (Enopides, an early Greek geometer,
quoted below p. 147.

3 Heron Aléx. Rell. ed. Hultsch, p.
138. Diodorus Sic. 1. 69, and 81.
gtrabo, xvir. o. 3 (Meineke's ed. p.

1098). The quotations are printed
in full in Bretschneider, Geometrie etc.
vor Eukleides, pp. T—9.

3 Prof. de Morgan quotes (Art.
Geometry in Penny Cyclop.) from ‘“an
obsolete course of mathematics” the
following lines:

‘To teach weak mortals property to
© soan
Down came geometry and formed &
plan.’
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shape were exchanged for areas of another shape, and it was
then for the first time discovered that figures of equal periphery
are not necessarily of the same area'. A man who had had a
square field, for instance, exchanged it for a rhombus of equal
periphery, but found that he got less produce than before. A
discovery of this kind would at once call attention to angles
and suggest the propriety of establishing a unit of area. The
utility of the square unit might have been established by long
experience or have been suggested by the aspect of stone or
brick-buildings subsequent to the Cyclopean era of archi-
tecture.

75. But it is needless to dwell longer on a theory which
must, at present, remain purely conjectural. Whatever opinion
be ultimately adopted concerning the first steps in geometry, it
will always remain true that the word ‘geometry’ (vewuerpia)
means ‘land-measurement® that the Egyptians gave this science
to the world and that among the Egyptians, from first to last, it
answered to its name and was confined almost entirely to the
practical requirements of the surveyor.

The work of Ahmes, which was so frequently cited in the
earlier pages of this book, contains, beside sums in arithmetic,
a great many geometrical examples which deserve to be cited®.

Immediately after the examples of Tunnu- or difference-
calculation cited above (p. 19), Ahmes proceeds to calculate the
contents of barns and other similar receptacles, of which un-

_fortunately we do not know the shape, so that the necessary

1 The erroneous assumption that
figures of equal periphery are of the
same area appearsin classical authors.
Thucydides (v1. 1) estimates the area
of Bicily by the time spent in circum-
navigating it. Polybius (rx. 21) men-
tions that there are some people who
cannot understand that eamps of the
same periphery may not be the same
size. Quintilian (1. 10, 89 sqq.) points
out the fallacy as one that easily
deceives the vulgar. So also Proclus
(ed. Friedlein, p. 237). 8ee Cantor,
pp. 146—7.

2 8o in Egyptian hunu=*‘land
measurer,” ‘geometer,” v. Brugsch's
Hierogl. Demot. Worterbuch, p. 967.

3 It is curious that all the geo-
metrical matter oecurs in the middle
of the arithmetical and that the cal-
culation of solid contents precedes the
calculation of areas. From this it
may perhaps be inferred that the geo-
metrical propositions known to Ahmes
were empirically obtained and that
he was really interested only in the
arithmetical problems which they sug-
gested.
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clue to the interpretation of the examples is wanting®. For the
examples in plane geometry (Nos. 49—55), however, the figures
given by Ahmes are sufficient, save in a few cases® where
solutions and figures are given which have no connection what-
ever with the problems to which they are appended. The
rectilineal figures of which Ahmes calculates the areas are the
square, oblong, isosceles triangle and isosceles parallel-trapezium
(regarded as part of an isosceles triangle cut by a line parallel to
the base). As to the last two, the areas which he finds are
incorrect. Thus in Ex. 51 he draws an isosceles triangle of
which the sides measure 10 ruths, the base 4 ruths. He mul-
tiplies the side by half the base and finds the area at 20 square
ruths. The real area is 19'6. Similarly in no. 52 the area of
an isosceles parallel-trapezium is taken to be 100 square ruths,
instead of 99'875°% The errors in these cases are small but are
not on that account the less suggestive. The area of a circle is
found (in no. 50) by deducting from the diameter }th of its
length and squaring the remainder. Here = is taken = (1)’ =
31604......, a very fair approximation,

76. Lastly, the papyrus contains (nos. 56 to 60)* some
examples which seem to imply a rudimentary trigonometry.
In these (except the last) the problem is to find the uchatebt,

1Eisenlohr pp. 93—117,Nos. 41—48. If in an isosceles parallel trapezium
The contents of all the barns are ob- d,
tained in this way. Of three given
linear measurements two ara multi-
plied together and the product is
maultiplied by one-and-a-half of the b,

third. But it does not appear whether
the first product is the area of the top
or the bottom or the side of the barn
or of what line the third given number
is the measure.

2 E.g. nos. 53, 54. Eisenlohr pp.
118—133.

8 Eisenlohr, pp. 125, 127—129. If
in an isosceles triangle the equal sides
. be a, a, the base b, the area is
o

the equal sides be a, a, the pamllel
sides b,, by, the ares is

Ahmes makes the areas
ab a (b, + by)
g and —g

respectively, neglecting the difficult
square roots.

4 Eisenlohr, pp. 134—149. On the
use of these segt calculations, see be-
low p. 142, In Ahmes, of course, they
are only exercises in arithmetic.
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piremus or-seqt of a pyramid or obelisk. Uchatebt apparently
means ‘search for the base’ and is clearly a line which has
something to do with the base: piremus apparently means
‘result (or issue) of the saw’ and is a line which can be obtained
only by section of the pyramid: segt apparently means ‘relation’
or ‘like-making, and is a number. For the purposes of these
problems, the uchatebt is always halved. By means of these
clues, Eisenlohr and Cantor have very ingeniously explained
the purport of Ahmes’ examples. In the pyramid figured the
uchatebt may be either 2DE (i.e. A :
DL) or 2BE (i.e. BH): the pr-
remus may be either AD or AB,
according as the pyramid is cut
parallel with the base-line or
along the diagonal of the base-
square’. The problems which
Ahmes proposes are always of
the form ‘Given any two of the B G
uchatebt, piremus and segt, to find the third, and the solution
is always obtained from the fact that the seqt is half the uchatebt
divided by the piremus. In the figure above given, therefore,

the seqt is % or ﬁ—g , i.g.' cos ADE or cos ABE. The actual

seqt given by Ahmes is, in one case, 0°72, in three more 075.
These are the cosines of the angles 43° 56" 44” and 41° 24’ 34"
respectively. The angle ABE in most existing pyramids is
nearly of these measurements. Further, these cosines of 4BE
correspond to angles of 53° 44’ 7" and 51° 16’ 40" respectively
at ADE and these again are nearly the slopes of most existing

pyramids®. This explanation

1 It cannot be that the uchatebt is
the visible base-line, the piremus the
sloping edge; for it is a property of
pyramids upon square bases, such as
Ahmes seems to be considering, that
half the square of the base-line can
never be greater than the square of
the sloping edge. But in Ahmes’ first
example the uchatedbt is 860 ells, the

being premised, the problems

piremus 250. Eisenlohr, p. 135.

2 According to Piazzi Smith the
slopes of the largest pyramid at Gizeh
are between 51° 49’ and 51° 51'. If
the face of a pyramid on a square
base were equal to the square of the
height, the slope would be 51° 50'.
If the base were equal to a circle of
which the height is the radius, the
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themselves may here be given. In no. 56 it is required to find
the seqt (S) of a pyramid, whereof the uchatebt (U) is 360 ells,
the piremus (P) is 250'. The answer is §83. Reducing ells to
palms, (1 ell =7 palms) S is 544 palms, that is, there are 54
palms in g to every ell in P. In no. 57 U is 140 ells: seqt is
5} palms., Find P. The answer is 93} ells. In no. 58 the
dimensions of U and P are as in no. 57. Find S. In no. 59
new dimensions of U and P are given, but S is again found at
5} palms. No. 60 does not relate to a pyramid at all. It
applies to an obelisk of which the height (¢a@s) is 30 ells: the
base-line (senti) 15. The seqt here is determined at 4, which is
the tangent of the angle included between the side and the
base-line of a triangular face. The figures appended are very
ill-drawn to scale and are all furnished with a pedestal : e.g. the
figure to no. 58 is like

031

1

77. One or two glimpses of Egyptian geometry are ob-
tained also at a far later time. The most interesting is fur-
nished by the etymology of a Greek word. The philosopher
Democritus (cir. B.c. 460—370) is quoted by Clement of
Alexandria® as saying, “In the construction of plane figures
(lit. composition of lines) with proof no one has yet surpassed
me, not even the so-called Harpedonaptae of Egypt.” It was
evident, of course, that these Harpedonaptae were famous geo-
meters, but Prof. Cantor has first pointed out that their
name is compounded of two Greek words and means simply

slope would =51° 51’4 Mr Petrie’s Lepsius, is 0= 525. Eisenlohr p, 94.
measurements (Pyramids and Temples 3 Strom. 1, p. 357 (Potter’s ed.) ypau-
of Gizeh, 1883, pp. 42, 97, 112) do  wéww ovwlealos perd dwodelios ovdeis k&
not differ substantially from Piazzi  pue wapiMiater, o0 ol Alyvrrlwy xakes-
Smith’s. pevoe ' Apwedovarrac.

The Egyptian ell, according to

G G M. 9
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‘rope-fasteners’ or ‘rope-stretchers.’. He explains their functions
in the following way'. There is no doubt that the Egyptians
were very careful about the exact orientation of their temples

and other public buildings. But inscriptions seem to shew that
only the N. and S. line was drawn by actual observation of the
stats. The E. and W. line, therefore, was drawn at right-
angles to the other. Now it appears, from the practice of
Heron of Alexandria.and of the ancient Indian and probably
also the Chinese geometers, that a common method of securing
a right angle between two very long lines was to stretch round
three: pegs a rope measured into three portions, which were to
" one another as 3 : 4 : 5. . The triangle thus formed is, of course,
right-angled. Further, the operation of ‘rope-stretching’ is
mentioned in Egypt, without explanation, at an extremely early
time (Amenemhat 1) If this be the correct explanation of it,
then the Egyptians were acquainted, 2000 years B.C., with the
geometrical propositions familiar to us as Euclid 1. 47, 48, or
with one particular case of them.

78. It will readily be supposed that the Egyptians, who
had so early invented so many rules of practical geometry,
could not fail in process of time to make many more discoveries
of the same kind, and thus be led to geometrical science. But
it appears that in Egypt land- surveying, along with writing,
medicine and other useful arts, was in the monopoly of the
priestly caste®; that the priests were the slaves of tradition,
and that, in their obstinate conservatism, they were afraid to’
alter the rules or extend the knowledge of their craft. Of their
medicine, Diodorus (1. 82) expressly relates that, even in his
day, the Egyptian doctors used only the recipes contained in the
ancient sacred books, lest they should be accused of manslaughter
in case the patient died. Geometry seems to have been
treated with similar timidity. The temple of Horus at Edfu,

1 Vorles. 1. pp.. 56—57 (Egyptian 2 Compare Plutarch, De Is. et Osir.
Temple inscriptions etc.) pp. 324-5 ¢ 56.
(Heron): pp. 540—542 (the Qulva- 3 Isocrates, Busiris, ¢.9. Aristotle,
siitras): pp. 5680—581 (Chinese ‘Figur  Metaph. 1. 1. Diodor. Sie. 1. cc. 69,
des Seiles’). Compare also Hankel, p. 81, 82, With c. 82 comp. Arist. Pol.
83. . 15.
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in Upper Egypt, bears some inscriptions describing the lands
which formed the endowment of the priestly college attached
to the temple. These lands were given by King Ptolemy XI.
(Alexander I.) who reigned B.c. 107—88, but the geometrical
description of them, made 200 years since Euclid died, is un-
worthy of Ahmes himself. It will be remembered (supra, p. 127
‘-12-6 and 2212 (b’2+ b)
for the areas of an isosceles triangle and an isosceles parallel-
trapezium. The Edfu inscriptions retain both these, but they
apply the second for finding the areas of trapezia of every
kind, no matter how irregular’. The dulness, or laziness, of
this proceeding is monumental in more senses than one. It
is obvious that the Greek mathematicians had by this time no
~more to learn from the native Egyptians, and we may therefore
leave Egyptian geometry with a quiet conscience.

79. It temains only to cite the universal testimony of
Greek writers, that Greek geometry was, in the first instance,
derived from Egypt, and that the latter country remained for
many years afterwards the chief source of mathematical teaching.
The statement of Herodotus on this subject has already been
cited. So also in Plato’s Phaedrus Socrates is made to say
that the Egyptian god Theuth first invented arithmetic and
geometry and astronomy. Aristotle also (Metaph. 1. 1) admits
that geometry was originally invented in Egypt, and Eudemus
(see post pp. 134, 135) expressly declares that Thales studied
there. Much later Diodorus (B.c. 70) reports an Egyptian
tradition that geometry and astronomy were the inventions
of Egypt, and says that the Egyptian priests claimed Solon,
Pythagoras, Plato, Democritus, (Enopides of Chios and Eudoxus
as their pupils® Strabo gives further details about the
visits of Plato and Eudoxus. He relates that they came to
Egypt together, studied there thirteen ycars, and that the

n. 3) that Ahmes uses the incorrect formulae

1 Hankel, pp. 86, 87. Cantor, pp. scriptions use this also for triangles,

60, 61. In the case of a trapezium the dimensions here being given e.g.

with 4 unequal sides (a, b, ¢, d) the as ‘‘nothing by 5, and 17 by 17.”
a+bd c+d 2 Diodorus 1. cc. 69, 96.

formula is T N T . The Edfu in-

9—2
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houses where they lived were still shown in Heliopolis®. Later
writers, of course, have the same tale, and it is needless to
collect further evidence. Beyond question, Egyptian geometry,
such as it was, was eagerly studied by the early Greek philo-
sophers, and was the germ from which in their hands grew that
magnificent science to which every Englishman is indebted for
his first lessons in right seeing and thinking®.

80. A word or two should be added also in this place con-
cerning Babylonian mathematics®. The Chaldees, at a time
almost contemporaneous with Ahmes, but whether independently
or not cannot now be ascertained, had made advances, similar to
the Egyptian, in arithmetic and geometry, and were especially
busy with astronomical observations. It seems that they had
divided the circle into 360 degrees, and that they had obtained
a fairly correct determination of the ratio of the circumference
of a circle to its diameter. They used, also, in arithmetic, as
has been stated above, a sexagesimal notation, which the Greeks
afterwards adopted for astronomical purposes. Herodotus* ex-
pressly states that the polos and gnomon (two kinds of sundials)
and the twelve parts of the day were made known to the Greeks
from Babylon. Much of the trigonometry and spherical geometry
of the later Greeks may also have been directly derived from
Babylonian sources.

Finally, it should be remembered that however scanty
geometrical theories may have been both in Egypt and Chaldea,
a very great variety of geometrical figures was used in both

1 Strabo, xvir. 1, Meineke's ed.
p. 1124. Bretschneider (pp. 33, 34),
however, thinks that, before Plato’s
time, Greek geometry had so far out-
stripped the Egyptian that no Greek,
after about 450 B.c., would have visit-
ed Egypt for the purpose of learning
geometry. He supposes therefore that
Plato and Eudoxus went to Egypt
to learn astronomy, as in fact the
passage of Strabo, above quoted, sug-
gests,

2 Diodorus 1. 98 says also that
Telecles and Theodorus, the most

famous of the ancient Greek sculptors,
studied in Egypt, as did their father
Rhoecus, who designed the labyrinth
in Lemnos. (Bretschneider, p. 24.)

3 See Cantor chap. 1. pp. 67—94.

4 11. 109. Pliny (H. N. 11 76) attri-
butes the introduction of the gnomon
to Anaximenes, Suidas to Anaximan-
der (s. v.). Diogenes L. (m. 1) and
Suidas both attribute a dpockomweiov,
probably the polos, to the latter. On
the gnomon and polos see below p.
145 n.
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countries for mural decoration and other ornamental purposes’.
To a Greek, therefore, who had once acquired a taste for
geometry, a visit to Egypt or Babylon would reveal a hundred
geometrical constructions which, on inspection, suggested new
theorems and invited scientific inquiry.

1 See Cantor, pp. 58, 59, 89, 90.



CHAPTER VI

GREEK GEOMETRY TO EUCLID. (a) Preliminary.

81. AN elaborate history of Greek geometry before Euclid
was written by Eudemus’, the pupil of Aristotle, who lived
about 330 B.c. The book itself is lost but is very frequently
cited by later historians and scholiasts, and it may be suspected
also that many notices, not directly ascribed to it, were taken
from its pages. Proclus, the scholiast to Euclid, who knew the
work of Eudemus well, gives a short sketch of the early history
of geometry, which seems unquestionably to be founded on the
older book. The whole passage, which proceeds from a com-
petent critic, and which determines approximately many dates
of which we should otherwise be quite ignorant, may be here
inserted verbatim by way of prologue. It will be cited here-
after as “ the Eudemian summary.” It runs as follows®:

“Geometry is said by many to have been invented among
the Egyptians, its origin being due to the measurement of plots
of land. This was necessary there because of the rising of the

! Diog. Laert. v. ¢. 2, n. 13 (ed.
Huebner, 1. pp. 347, 348), attributes to
Theophrastus, another pupil of Aris-
totle, contemporary with Eudemus, a
history of geometry in 4 books, of
astronomy in 6, and of arithmetic in 1
book. Bretschneider (p. 27) is not in-
clined to the general opinion that
Diogenes has here confused Theo-
phrastus with Eudemus.

2 Procli Diadochi Comm. in primum
Eucl. Elem. librum, cd. Friedlein

(Leipzig, 1873) pp. 64 sqq. This work
will be cited in future simply as ¢Pro-
clus’ Of the Eudemian summary,
the original Greek is printed also by
Bretschneider (pp. 27—31), with a
(not very exact) German translation.
A pretty close paraphrase is given by
Prof._de Morgan in art. Eucleides -of
Smith’s Dic. of G. and R. Biography,
and another by Dr Allman in Her-
mathena (Dublin), no. v. for 1877, p.
160 sqq.

P,
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Nile, which obliterated the boundaries appertaining to separate
owners. Nor is it marvellous that the discovery of this and
the other sciences should have arisen from such an occasion,
since everything which movesin development will advance from
the imperfect to the perfect. From mere sense-perception to
calculation, and from this to reasoning, is a natural transition’.
Just as among the Pheenicians, through commerce and ex-
change, an accurate knowledge of numbers was originated, so
also among the Egyptians geometry was invented for the reason
above stated.

Thales first went to Egypt, and thence introduced this study
into Greece. He discovered much himself, and suggésted to his
successors the sources of much more: some questions he at-
tacked in their general form, others empirically®. After him
Mainercus®, the brother of the poet Stesichorus, is mentioned as
having taken up the prevalent zeal for geometry: and Hippias
of Elis relates that: he obtained ‘some fame as a geometer.
But next Pythagoras changed the study of geometry into the
form of a liberal education, for he examined its principles to
the bottom and investigated its theorems in an immaterial and
intellectual manner. It was he who discovered the subject of
irrational quantities and the composition of the cosmical
figures'. After him Anaxagoras of Clazomenae touched upon

1 The text (ed. Friedlein) is éwedy
xdv 70 év yevéoet pepbuevor amd Tod
drehobs els 7o Té\ewor wpdetow. dwdala 01-
cewsolw els Noyiopudv kal dwd TolTov éml
voiv 1) peraBaais yévoro dv elkérws. Both
sentences are extremely obscure. The
second, I should think, represents a
chapter of Eudemus, in which the
history of geometry was exhibited near-
ly as I have shown it in preceding
pages. A pupil of Aristotle might well
have adopted the evolutionary hypo-
thesis here suggested. On the other
hand, Moywuds does not necessarily
mean ‘arithmetical calculation’ and
vols ought not to mean ‘reasoning.’
Dr Allman translates the first by
‘reflection,” the second Dby ‘know-

ledge,’ which is even less permissible.
Proclus, it should be remembered, was
a neo-Platonist and addicted to hazy
phraseology.

2 Prof. de Morgan translates ‘‘at-
tempting some in a general manner
(xaBohckdTepor), and some in a percep-
tive or sensible manner (aloOyrixa-
Tepev).”  Dr Allman gives ““in a more
intuitional or sensible manner’ for
the last word.

3 So Friedlein, other edd. have Ame-
ristus or Mamertinus. :

4 That is, the five regular solids, the
tetrahedron, cube, octahedren, eicosa-
hedron, and dodecahedron, which were
supposed by the Pythagoreans to be
the primary forms of the matter of
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many departments of geometry, as did (Enopides of Chios, who
was a little younger than Anaxagoras. Plato mentions them
both in his ‘Rivals, as having won fame in mathematics’.
Hippocrates of Chios, next, who discovered the quadrature of
the lune, and Theodorus of Cyrene became distinguished
geometers, indeed Hippocrates was the first who is recorded
to have written ¢ Elements’ Plato, who followed him, caused
mathematics in general, and geometry in particular, to make
great advances, by reason of his well-known zeal for the study,
for he filled his writings with mathematical discourses, and on
every occasion exhibited the remarkable comnexion between
mathematics and philosophy. To this time belong also. Leodamas
the Thasian and Archytas of Tarentum and Theaetetus of
Athens, by whom mathematical inquiries were greatly extended,
and improved into a more scientific system. Younger than
Leodamas were. Neocleides and his pupil Leon, who added
much to the work of their predecessors: for Leen wrote am
‘Elements’ more carefully designed, both in the number and the
utility of its proofs, and he invented also a diorismus (or test
for determining) when the proposed problem is possible and when
impossible. Eudozus of Cnidus, a little later than Leon and a
student of the. Platonic school, first increased the number of
general theorems, added to the three proportions three more,
and raised to a considerable quantity the learning, begun by
Plato, on the subject of the (golden) section®, to which he
applied the amalytical method. Amyclas of Heraglea, ome of
Plato’s companions, and Menaechmus, a pupil of Eudoxus and
a contemporary of Plato, and also. Deinostratus, the brother of
Menaechmus, made the whole of geometry yet more perfect.
Theudius of Magnesia made himself distinguished as well in
other branches of philosophy as also in mathematics; composed
a very good book of ‘Elements,’ and made more general pro-
positions which were confined to particular cases®. Cyzicenus

which the universe ismade. Timaeus 1 Amatores, c. 1, 132 A,

(in Plato Tim. 53 c) says that fire con- 2 The cutting of a line in extreme
sists of tetrahedrons, air of octahe- and mean ratio.

drons, earth of cubes, water of eicosa- 3 woA\& 7Ov Opikw  KaBohwkuwrepa

hedrons, and the dodecahedron is the éwolnoer.
shape of the universe,
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of Athens also about the same time became famous in other
branches of mathematics, but especially in geometry. All these
consorted together in the Academy and conducted their investi-
gations in common. Hermotimus of Colophon pursued further
the lines opened up by Eudoxus and Theaetetus, and discovered
many propositiens of the ‘Elements’ and composed some on
Loci. Philippus of Mende, a pupil of Plato and incited by him
to mathematics, carried on his inquiries according to Plato’s
suggestions and proposed to himself such problems as, he
thought, bore upon the Platonic philosophy.”

“Those who have written the history of geometry,” Proclus
continues, “have thus far carried the development of this
science. Not much later than these is Euclid, who wrote the
‘ Elements,’ arranged much of Eudoxus’ work, completed much
of Theaetetus’s, and brought to irrefragable proof propositions
which had been less strictly proved by his predecessors.”

82. To this extract should be added another, which supplies
a very valuable criticism on the style of the early Greek
geometers. Eutocius, at the beginning of his commentary on
the Conics of Apollonius (p. 9, Halley’s edn.), quotes from
Geminus, an excellent mathematician of the first century B.C,,
the following remarks*:

“The ancients, defining a cone as the revolution of a right-
angled triangle about one of the sides containing the right
angle, naturally supposed also that all cones are right and there
is only one kind of section in each—in the right-angled cone
the section which we now call a parabola, in the obtuse-angled
a hyperbola, and in the acufe-angled an ellipse. You will find
the sections so named among the ancients. Hence just as they
considered the theorem of the two right angles for each kind of
triangle, the equilateral first, then the isosceles, and lastly
the scalene, whereas the later writers stated the theorem in a
general form as follows, ‘In every triangle the three interior
angles are equal to two right angles®’ so also with the conic

1 The Greek is given also by Bret- ¢ The proposition that the terms of a
schneider, pp. 13, 14, proportion may be taken alternando,
3 Compare with this Aristotle, who  was formerly proved separatcly for
says (dnal. Post. 1. 5, p. 74, Ao. 17) numbers, lines, volumes, times, though
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sections, they regarded the so-called ‘section of a right-angled
cone’ in the right-angled cone only, supposed to be cut by a plane
perpendicular to one side of the cone: and similarly the sections of
the obtuse-angled and acute-angled cones they exhibited only in
such cones respectively, applying to all cones cutting planes per-
pendicular to one side of the cone......But afterwards Apollonius
of Perga discovered the general theorem that in every cone,
whether right or scalene, all the sections may be obtained
according to the different directions in which the cutting plane
meets the cone.” “This,” adds Eutocius, “is what Geminus
says in the 6th Book of his General View of Mathematics
(nabnuatwv Gewpla).” The two extracts here quoted are our
main clues to the history of geometry before Euclid. The first
gives us the names of the leading geometers, the order of their
appearance and a brief statement of their services. The second
is valuable in enabling us to guess at the style in which a
particular proposition would probably be treated at a given
date, The sources from which further details may be obtained
are generally very late in date and very meagre in information.
They often ascribe the same proposition to different persons or
different modes of proving the same proposition to the same
person, or are silent altogetker about modes of proof. The early
history of Greek geometry must, therefore, be reconstructed
largely by inference, and it is obvious that to this process the
Eudemian summary and the authoritative statement of Geminus
are of the greatest assistance.

(b) Thales and the Ionic School.

83. Thales, the acknowledged founder of Greek mathe-
matics and philosopby, was born about B.c. 640 at Miletus,
the chief city of the Ionian coast, and died at the same place

it might have been proved for all of Hankel, pp. 114, 115. This is the
them atonce : but because these things passage oited above (p. 105 n.) as
are not called by one name and differ  evidence that Aristotle knew the mathe-
in kind, they were treated separately. matical value of the alphabetical sym-
But now it is proved gencrally” ete.  bols which he introduced.

- ___
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about B.c. 542'. He was apparently of Pheenician descent® but
probably not, as Diogenes relates, of Pheenician parentage, for
the names of his parents, Examius and Cleobuline, are good
enough Greek. Many authorities concur in stating that he
was, in early life at least, engaged in commerce, for which he
seems to have had great aptitude®. Aristotle illustrates this by
a tale that one winter, when the stars promised an abundant
crop of olives, Thales at once secured by contract all the oil-
presses, and made, in the following autumn, a large profit by
lending these necessary implements. It may be that he went to
Egypt for mercantile purposes, and there learnt in his leisure
the mathematical and other knowledge which he subsequently
introduced among the Greeks. According to Plutarch, he was
somewhat advanced in years (mpeoBvrepos) when he returned
to Miletus. According to other authorities* he was old, or had
given up an active share in political life, when he took to those
philosophical inquiries for which he is now remembered. At
any rate the striking achievement which made bis fame in his
own day did not occur till his later years. He announced
beforehand a solar eclipse, which in fact took place at least in
the year predicted. It happened on May 28th, 585 B.c. during
a great pitched battle between the Medes and the Lydians®.

1 The main facts of his life are given
by Diogenes Laertius (1. 1. nn. 1, 3, 6,
10, Huebner's ed. pp. 14, 16, 17, 24),
who cites Apollodorus, as authority for
the birth of Thales in the 35th Olym-
piad, and Socrates, for his death in
the 58th.

2 Herod. 1. c. 170.

3 Plutarch, Vita Solonis, 0. 2, Aris-
totle, Pol. 1. c. 11, p. 1259 a, Plutarch
(De Soll. Animal. p. 45 of Reiske'’s
edition) says that Thales used mules
to carry his salt to market; one of
them, having slipped in fording a
stream, found its load considerably
lightened by the melting of the salt
and afterwards scveral times fell in
the water purposely. To cure it of

this trick, Thales loaded it one time
with rags and sponges.

4 Plut. De plac. philos. 1. c. 8.
Themistius, Orat. xxvit. p. 317. Diog.
L. 1, ¢. 1, n, 2. Huebner’s ed. p.
14,

5 Herod. 1.c. 74. Clem. Alex. Strom.
1. ¢. 14 (ed. Potter, p. 354). The"
latter quotes Eudemus as his author-
ity. The fact that Thales predicted
the eclipse is well attested, but we do
not know with what exactitude he
specified the time of its occurrence.
He may have learnt, from Egyptian
or Chaldean registers, that a solar
eclipse occurs at intervals of 18 years
11 days. See Bretschneider, pp. 51,
52

g
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The circumstance gave additional éclat to the prophecy, and it
was no doubt owing to this that, in the archonship of Damasias
(B.c. 585—583 B.C.), Thales was added to the list of Wise Men".
“Thales apparently,” says Plutarch®, “ was the only one of these
whose wisdom stepped, in speculation, beyond the limits of
practical utility: the rest acquired the name of wisdom in
politics.” It appears, nevertheless, that Thales possessed quite
as much political shrewdness and knowledge of the world and
had the same gift of epigrammatic counsel as his compeers
among the famous Seven”®.

84. The well-known theory of Thales on the structure of
the universe and the astronomical observations, to which he
seems to have been chiefly devoted, do not fall within the
scope of this history. For the present purpose, it is necessary
only to record that five geometrical theorems are expressly
attributed to Thales and also two practical applications of

geometry. The theorems are as follows®:
(1) The cirele is bisected by its diameter.
(2) The angles at the base of an isosceles triangle are

equal. (Euc. I 5, part 1) -

1 Diog. L. 1. 1, n. 1, quoting Deme-
trius Phalereus.

2 Vit. Solonis, o. 3.

3 See, for instance, Herod. 1. c. 170,
and Diog. Laert. '

4 On the astronomy of Thales, see
the authorities collected by Bretschn.
pp. 47—49. The most copious of these
is Plutarch, De plac. philos. 11, cc. 12,
24, 28, 1. ce. 10, 11. The chief ex-
tracts from Thales’ astronomical teach-
ing are: (1) that the year is 865 days :
(2) that the intervals between the equi-
noxes are not equal: (3) that Ursa
Minor was a better guide for mariners
than Ursa major: (4) that the moon is
illuminated by the sun: (5) that the
earth is spherical.

5 Of these (1) (2) (3) and (5) rest on
the authority of Proclus (Comm. in
Eucl. 1. ed. Friedlein, pp. 157, 250,
299, 65), who cites Eudemus for (3)

and (5). The theorem (4) is attributed
to Thales by inference from a passage
of Diogenes Laertius (1. c. 1, n. 3) who
says that Pamphila (temp, Nero) re-
lates that Thales was the first person
““ to inscribe a right-angled trianglein a
circle,” and that he sacrificed an ox on
performing this “problem.” The same
achievement was attributed by others
to Pythagoras. Dr Allman (v. p. 170)
has the excellent note: “It may be
noticed that this remarkable property
of the circle, with which, in fact, ab-
stract geometry was inaugurated,
struck the imagination of Dante :

‘0 se del mezzo cerchio far si puote

Triangol s, ch’ un retto non avesse'.”
The lines (Paradiso, ¢. xui. 101—2)
are part of a description of the know-
ledge which Solomon did not choose
from God.
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(3) If two straight lines cut one another, the opposite
angles are equal. (Euc. 1. 15.)

(4) The angle in a semicircle is a right angle. (Eue. 111.
31, part 1)

(5) A triangle is determined if its base and base-angles be
given (practically Euc. 1. 26).

Of these the first and third are probably cases in which
Thales relied on intuition, or as the Eudemian summary has it,
attacked the question empirically (alo@nticwrepov), for, accord- -
ing to Proclus (p. 299), Euclid first thought (3) “worthy of
proof,” and he does not think (1) worthy of it at all, but leaves
it to be inferred from definitions 17 and 18 to Book I. The
language of Proclus also (p. 250) seems to hint that Thales
proved the proposition (2), our old friend, the Pons Asinorum,
by taking two equal isosceles triangles and applying them to one
another as in Euc. I. 4, another case of experiment. But the
two remaining theorems are obviously incapable of such treat-
ment, and must have been supported either by deduction or at
least by very wide induction. The last of them (Euc. 1. 26) is
attributed to Thales by Eudemus (Proclus, p. 65), apparently on
the ground that Thales invented a mode of discovering the
distance of a ship at sea, in which the proposition was used.
In the application of this process, probably the given base was
a tower of known altitude, and one of the given base-angles was
the right angle which the tower forms with the shore. The
other given angle was obtained by the observer who looked at
the ship from the top of the tower'. It is hardly credible that,
in order to ascertain the distance of the ship, the observer should

. have thought it necessary to reproduce and measure on land, in
the horizontal plane, the enormous triangle which he constructed
in imagination in a perpendicular plane over the sea. Such an
undertaking would have been so inconvenient and wearisome
as to deprive Thales’ discovery of its practical value. It is
therefore probable that Thales knew another geometrical pro-
position: viz. ‘that the sides of equiangular triangles arc
proportional’ (Euc. V1. 4) And here no doubt we have the

1 Cantor, p. 122.
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real import of those Egyptian calculations of segt, which Ahmes
introduces as exercises in arithmetic. The segt, or ratio, be-
tween the distance of the ship and the height of the watch-
tower is the same as that between the corresponding sides of
any small but similar triangle. The discovery, therefore, attri-
buted to Thales is probably of Egyptian origin, for it is difficult
to see what other use the Egyptians could have made of their
seqt, when found. It may nevertheless be true that the pro-
position, Eue. V1. 4, was not known, as now stated, either to
the Egyptians or to Thales. It would have been sufficient for
their purposes to know, inductively, that the segts of equi-
angular triangles were the same.| The other practical application
of geometry, attributed to Thales, depends upon the same
proposition, but is described in two forms, the one very simple,
the other more difficult. According to Pliny and Diogenes
Laertius' (who quotes Hieronymus of Rhodes, a pupil of
Aristotle, as his authority), Thales ascertained the height of
pyramids and similar edifices by measuring their shadows at
that hour of the day when a man’s shadow is of the same length
ashimself. Plutarch® however, putsinto the mouth of Niloxenus
a different account of the process. “Placing your staff at the
extremity of the shadow of the pyramid,” says he to Thales,
“you made, by the impact of the sun’s rays, two triangles, and
so showed that the pyramid was to the staff as its shadow to the
staff’s shadow.” This is obviously only another calculation of
seqt, though the proportion, as stated by Piutarch, is probably
not exactly in its original form. There is no reason, now that
Ahmes’s book is well-known, to deny that Thales was acquainted
with the simple process here attributed to him. It was, however,
justifiable in Bretschneider, who knew Ahmes only from a brief
abstract®, which contained no mention of the seqt calculations, to
question Plutarch’s accuracy and to suppose that he was attri-
buting to Thales the improved methods of his own day.

85, To infer from the knowledge which is expressly

1 Pliny, H. N. xxxv1. 17. Diog. L. 3 Dr Birch in Lepsius’ Zeitschrift,
1.c.1,n. 3. referred to supra, p. 16 n.
2 Sept. Sap. Conv. 2.
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attributed to Thales what other "geometrical knowledge he
must have had is a peculiarly fascinating inquiry. It has been
already suggested that he knew, in some form, the theorem
Eucl. vi. 4. To this Dr Allman adds also two other inferences.
If, he argues, Thales knew that the angle in a semicircle is a
right angle, he must have known also that ‘the interior angles
of a triangle are equal to two right angles’ (Euclid 1. 32, pt. 2).
He infers this, not from the fact that Euclid uses the proposition
I. 32, in the proof of 1L 31, pt. 1, but in another way.
Thales knew that the angle in a semicircle isaright angle: if he
had then joined the apex of- the triangle containing that right
angle with the centre of the circle, he would have obtained two
isosceles triangles, in which, as he also knew, the angles at the
base are equal. Hence, he could not have failed to see that the
interior angles of a right-angled triangle were equal to two
right angles, and since any-‘triangle may be divided into two
right angled triangles, the same proposition is true of
every triangle, It is justifiable, no doubt, to ascribe so much
ntelligence to Thales, but it is another matter to attribute to
him a particular piece of knowledge and a particular method of
proof : on the same plan, Thales might be held to have known
the first six books of Euclid. It will be remembered that
Geminus, in the extract quoted above, attributes to “the
ancients” (oi malacoi) the knowledge of the proposition that
the interior angles of a triangle are equal to two right angles. It
may be conceded that he alludes here to Thales among others,
but it is also to be borne in mind that he says that this proposi-
tion was separately proved for the different classes of triangles.
Hence Dr Allman suggests, as an alternative, that the theorem
was arrived at from inspection of Egyptian floors paved with
tiles of the form of equilateral triangles, or squares, or hexagons®.

1 There would be two objections at
least to such an inference, viz. that
Euclid 1. 32 contains two propositions,
of which only the first, which is not
the prop. in question, is used in mr.
81: and also that Euclid 1. 32 is said
by Proclus (p. 379) to have been
proved almost as it stands by the Py-

thagoreans, Cantor, however (p. 120),
is inclined to attribute to Thales
Euclid’s proof (or something very like
it) of m. 31.

2 Proclus, p. 305, attributes to the
Pythagoreans the theorem that only
three regular polygons, the equilateral
triangle, the square and the hexagon,
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If, for instance, Thales observed that six equilateral triangles
could be placed round a common vertex, he would also notice
that six equal angles make up four right angles,”and therefore
the angles of each equilateral triangle are equal to two right-
angles. Hankel (pp. 95, 96) suggests a similar theory, which
is adopted also by Cantor (pp. 120—121), with the addition
that the scalene triangle was divided into two right-angled
triangles, each of which was considered as half a rectangle. It
seems needless to dwell further on this proposition.

86, Dr Allman, however, makes a second inference of a far
bolder character. He converts the theorem that the angle in a
semicircle is a right angle into a theorem that, if on a given
straight line as base, there be described any number of triangles
each having a right angle at the vertex, then the locus of their
vertices is the circumference of a circle described .on the given
base as diameter, and attributes to Thales, therefore, the

" conception of geometrical loci. If Thales proved the first
theorem empirically, by constructing a great number of right-
angled triangles on the same base, no doubt the notion of a
locus may have occurred to him: but what becomes then of
that deductive, that essentially Greek character which Thales is

, always said to have imparted to Egyptian geometry?' There
*will not be left a single theorem, attributed to Thales, which
be is not likely to have discovered by inspection or.inductively.
He may, no doubt, have arrived at any theorem in two ways, at
first inductively or by inspection, and later also by a formal
deductive process, but there is no available evidence on this

v'matter. If he used deduction only for this particular theorem,
he would probably not have conceived a'locus. If he used
induction only, he might have conceived a locus, but there
would have been no great merit in the conception.

Of speculation in this style there is no end, and there is
hardly a single Greek geometer who is not the subject of it. A

can be placed about & point so as to fill 1 The Eudemian summary expressly
a space, but Dr Allman (p. 169 note) says that Thales ‘“attacked some
supposes, no doubt rightly, that the questions in their general form” (xafo-
Egyptians habitually used these figures  Awwrepov).

for tiles.
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mathematician, writing for mathematicians, is perhaps entitled,
and may even be required, to fill up with his own opinions the
gaps in his evidence. But his theories, however ingenious, are
necessarily of such a kind that even a non-mathematical reader
can see that they are, for the most part, imaginary, and a
mathematician will think he can make better for himself. A
history, like this, of which the utility will no doubt vary as
the brevity, had best omit long and inconclusive discussions.
Suffice it then to say, of Thales, that he certainly introduced geo-
metry to the Greeks, that he probably improved upon Egyptian
geometry by teaching more particularly of lines than of areas,
and by giving deductive instead of inductive proofs, and
that at any rate he formed a school which derived from him its
subjects and methods of inquiry, its belief in the stability of
natural laws, its tradition of the beauty and utility of the
intellectual life’.

87. The Eudemian summary names, immediately after
Thales, Mamercus, the brother of the poet Stesichorus, as
one of the founders of Greek geometry. Nothing more is known
of this person, and hLis name itself is exceedingly doubtful
Stesichorus lived in Sicily, and died about 560 B.c. Mamercus
nevertheless may have been a pupil of Thales, for it is difficult
to imagine how he could have learnt any geometry in Sicily
at that time. However this may be, Thales undoubtedly
had some pupils (e.g. Mandryatus of Priene’) whom the
Eudemian summary does not mention. Another pupil of
Thales, Anaximander of Miletus, became very famous. He
was born about 611 B.c.,, and died about 545 B.C.®. He also,
like Thales, devoted himself mainly to physical speculations
and to astronomy. It has been already mentioned that he first
introduced the gnomon and the polos or sundial into Greece®.

1 Thales apparently composed some
astronomical treatise in verse, but the
authorities on his writings are con-
flicting. See Bretschneider § 39, pp.
54, 55.

2 Apuleius, Flarida, 1v. n. 18, ed.
Hildebr. p. 88, ed. Delphin. p. 817.
Bretschneider, pp. 53, 56.

G. G. M.

3 Diog. Laert. 1. c. 1.

¢ The gnomon was an upright staff
placed in the centre of three concentric
circles, so that at the summer solstice
itsshadowat noon justreached theinner
circle, at the equinoxes the middle, at
the winter solstice the outer. After-
wards in places, of which the meridisx.

A\
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Simplicius also relates (in Ar. de Coelo, ed. Brandis, p. 497 a),
on the authority of Eudemus, that Anaximander ascertained
the relative sizes and distances of the planets: and Diogenes
states that he first constructed terrestrial and celestial globes®.
These facts favour a presumption that Anaximander also was
greatly interested in geometry, and Suidas, in particular, attri-
butes to him a work entitled dmorimwois T yewuerpuds,
which would seem to mean ‘a collection of figures illustrative of
geometry.” Pliny (H. N. 1L c. 76) as was mentioned above
(p. 67 n.), attributes the introduction of the gnomon to the
younger philosopher, Anaximenes, who lived B.c. 570—499, and
there may be some confusion between him and Anaximander.
Nothing is known of any geometrical work by Anaximenes, and
the same might be said of the more famous Anaxagoras of
Clazomenae®, (B.c. 500—428) were it not that the Eudemian
summary expressly mentions him as a geometer; that Plutarch
(de exilio, c. 17), relates that when in prison he wrote a treatise
on quadrature of the circle, and that Vitruvius (vil. praef.),
ascribes to him a work on perspective.

88, We may add finally to th/_]'_o.nmehool with whlch he

contemporary perhaps ofx

him Diodorus, as quoted
above (p. 131), relates that he stud1 din le

devoted chiefty To_astronamy ; ist. X. 7),

sa.ys ‘that he mvented a “gre 89 years, that is, a

was known, the circles were gmitted
and three spots, marked on the me-
ridian line, were substltuted The
polos can hardly have been similar
to our sundials, but was probably a
staff placed in the centre of six con-
centric circles, such that every two
hours the shadow of the staff passed
from one circle to the next. Bret-
schneider, p. 60. Cantor, p. 92.

1 His fellow-townsman, Hecataeus,

made about the same time the first
map.

2 Anaxagoras lived, in his later years,
with Pericles at Athens.

3 Censorinus c¢. 18, says that a
¢« great year” of this length was attri-
buted also to Philolaus, the Pythago-
rean, See the note to Alian in Gro-
noviusg’ ed. 1. p. 655.

4 Ed. Friedlein, pp. 283 and 333.
Eudemus is cited in the latter passage.
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_solution of two problems, ‘To draw a straight line perpendicular
to a given straight line of unlimited length, from a given point

without it’ (Eueclid 1. 12.) and ‘At a given point in a given
straight line to make a rectilineal angle equal to a given
rectilineal angle’ (Euclid 1. 23). On the first of these, Proclus’
note is curious and worth quotmg He says, “ (Enopides first
invented this problem, thinking it useful for astronomy. He
calls the perpendicular (xaﬁe'ros) in the antique manner a
‘gnomon,” because the gnomon is at nght angles (mpos dpfas)
to the horizon, and the line drawn is at right angles to the
given line, differing in plane only (r7 oxéoey), but not in
principle (kata To Vmworeipevov).”

It is plain_eno e_scanty facts and from their
scantiness, that the Ionlc school did not, in nea.rlz two hundred
years do anythln& like' what might have been expected for
the - advancement of geomet It introduced the sweptT
ahve, and waorkm at_asthonomy, opened up a vast field of

j rew,h_ geo e ,.sseni.ml.__The
ress..of geometry--itself, to the
hagoreans in Italy.

(c) The Pythagoreans.

89. Pythagoras, the son of Mnesarchus, was born in Samos,
probably about 580 B.c. The date of his birth, however, and
the other facts of his biography are the subject of disputes,
which, owing to the nature of the evidence, can never be satis-
factorily settled.) The following summary statement perhaps
excludes most of the very doubtful matter. Pythagoras was

W Syros, but afterwards visited
ales®, and was by him ingifed to study in Egypt, particularly
at Memphis or Diospolis (Thebes). In pursuance of this

1 Pherecydes is 5 (Suidas, s. ». dopted. See Ritter and Preller, Hist.
Pliny H. N. vir. 56) to have been the  Pkilos. c. 1. § 92.
first writer of prose, He is also said 2 Jamblichus (Vita Pyth. c. 2) is the
to have introduced the doctrine of authority for this statement, which is
metempsychosis, which Pythagoras a-  not intrinsically improbable.
10—2
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advice, Pythagoras went to Egypt and staye, ed’ there a long time,

perhaps 22 years. He may subsequently Jave visited Babylon®.
He returned tlmatel to_Samos and/attempted to found a

he _gmiorated to Croton in 94

Italy The colomes in Magna aecla, of which Sybaris was

the chief, were at this time moxyjealthy and important than

the mother country, and a very éqnsulera.ble cominerce _was_
carried on between them the Ionian coast. Pythagoras,

therefore, did-not-asrive-at Croton amang a. strange and uncouth
people, and was able soon to gain. a..leading..pop.tmn.among his

fellow townsmen. Among the noblest an est_of he
formed,_a bro 1 ited by

/\\

common philosophical beliefs and pursuits. They were, however,
bound by oath not to. divulge the tene;ts and discoveries of

their school_ and it is due to this fact that the historian .of
philosopby is now obliged to spgak of ‘the Pythagoreans’ as g
body and is unable to identify.the author of any particular
portxon of their creed. [ This Masonic society®, so to say, spon
e agna Graecia, and as it was capable
of taking united action on political questions, especially on the
side of the aristocrats, from whom its members were chiefly
drawn, it became the object of popular suspicion and hatred*.
Ultimately, the Pythagoreans of Croton, their leader with
them, were attacked by the plebeian party: Pythagoras fled
first o Tarentum and then to Metapontum, and was there
mu in-another popular outbreak about-500-B.c. )
90. (It has been already étated that, by writers of other
schools, Pythagorean doctrines are generally attributed to “the
Pythagoreans” and not to Pythagoras himself. On the other
hand, the Pythagoreans were wont to attribute all their tenets
to their master.”. AvTds &pa, ipse dixit, was the formula which
secured acceptance for any doctrine however remote it may

1 Strabo, xIv. i. 16. . searchers’ or ‘mathematicians’ and the
2 Diog. Laert. vir, 3. Cicero, De  ‘listeners.” The former apparently
Rep. 11. 15, were communists. Iamblich, V. P,

3 It contained two orders, the uafn- 81; Porph. V. P, 37.
uaricol and the drovouarikol, the ‘re- 4 Polybius, Hist. 11. 29, °
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have been from the teaching of Pythagoras himsel urther, V-'P’
Mhsﬂwm__ ’

founded on_no_text-books, until the wide dispersion of its
members made it deslrable tha.t some record should be secured/ ? «y

’mu' nerally credited wit ooy
first Bubhcatlon Qi a detailed Pythagorean philosophy®. His 4,

work is lost, save_a few very brief fragments (not undoubted),
preserved by Stobaeus and _similar compllers. In default of
this, we are compelled ta rely on incidental remarks or mere
allusions of the earlier Greek writers, or else on histories
obviously uncritical of a very late date. Now these are pre- -
cisely the kind of authorities who would naturally omit to
mention discoveries of Pythagoras and his school in geometry.
Aristotle, for instance, had no occasion to discuss geometrical
details to which he did not, though the Pythagoreans did,
attach any profound significance. T_la.mblmhus,_on_the_other
band, geometry was not_in itself interesting, or, if it was, the
geometry of his day had so far outstripped the Pytha.oorean
that the latter would - have seemed childish by comparison.
Hence .it is_that, though _the evidence is abundant that
Pythg.ooras rea,lly made geometry the Greek science par ex-
cellence, yet very few particular inventions can be attributed to
‘him or his immediate followers. Ve

91, It has been already stated (see above pp. 67—72) how
it was that Pythagoras came to attach so much importance to
geometry, and how closely he connected it with arithmetic. It
will be remembered also that the geometry of Ahmes is ex-
hibited only as leading to arithmetical problems and we- may

Volumes, and 18" not largely céncerned thh those relations of
—
lines which do not admit of; or do not readily sugest, t, arith-

¢ L]

1 Lucian, Pro Lapsu in Salut. ¢. 5, abrod). Diog. Laert. vim. 15, says
mentions that Pythagoras had not “before Philolaus it was impossible
thought fit to leave any authoritative to learn any Pythagorean dogma.”
writings (undév ooy karahewely TGV
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metical expression. This being premised, it remains only to
set out in order such doctrines, of geometrical interest, and such
special discoveries in geometry as are attributed to Pythagoras
or the Pythagoreans.

(. _A__er.dmg.m.An&mLh “theP haoreans first 3 ’hed them-

“the specialised meaning of mathemati ¥ (uablnpara) was first
“used by the Pythagoreans. The Eudgfnian summary says that
Pythagoras changed the study of g€ometry into the form of a
liberal education, for he exawmined/ts principles to the bottom,
and investigated its theorems in/an immaterial and intellectual
manner (i ws Kai voepws-) iogenes Laertius® states, on.the
authonty of Favorinus, that’ Pythaooras “used definitions, on
account of the mathematical matter of -his subject.” This
perhaps was the first step towards that systematization .of
geometry ‘which Eudemus ascribes to him. The following
details are also preserved*:

(1) The Pythagorea.ns define a pomt\ (onpeiov) as “unity
having position.” (Proclus, ed. Friedlein, p. 95.)

(2) They considered a point as analogous\o the monad, a
line to the duad, a superficies to the triad, and a body to the
tetrad. (Zb. p. 97.)

(8) They showed that the plane about a point is completely
filled by six equilateral triangles, four squares or three regular
hexagons. (Ib. p. 305.)

(4), They first, according to Eudemus, proved generally
that the interior angles of a triangle are equal to two right-
angles. (Ib. p. 879.)°

1 Metaph. 1. 5, 985, parallel to BC. Then the alternate

? Friedlein’s ed. p. 45.

3 v, 25.

¢ All the following quotations are in
Bretschneider, pp. 67—91. They are
more neatly arranged by Dr Allman.

5 The Pythagorean proof, according

to Eudemus, is as follows. Let 4ABC 3
be a triangle. Through 4 draw DE  angles (al évaAAdt) are equal, DAB to
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(3) They also, accord:;\q Eudemus, invented the problems
concerning the application of areas, including the cases of defect
(éANeiyris) and excess (JmepBorij)-as in Euel. vI. 28, 29. (Zb.

p. 419, Comm. on Eucl. 1. 44*. Seeabove p. 84 n.)
(6) Pythagoras sacrificed an ox 6n solving the problem
how to construct a figure equal te one and similar to another

given figure.

™

(Euclid 11. 14, V1. 25)°%
Pythagoras, according to Eudemus, discovered the con-

struction of the regular solids®. (Proclus, p. 65).

(8)

The triple interwoven triangle, the

pentagram-star, (16 Tpemhodyv Tplywvov, o &
dA\MAwY, TO mevTdypauuov) was used as a
badge or symbol of recognition by the Pythago-
reans, and was called by them Health (Jyleia).
(Lucian, Pro Lapsu, c. 5, Schol. in Ar. Nub. 611)*.

©)
Euclid 1. 47.

ABC, EAC to ACB. Add the angle
BAC. Then the three angles DAB,
BAC, CAE, that is, DAB, BAE, that
is, two right angles are equal to the
three angles of the triangle. The re-
dundant explanation in the last sen-
tence is curious. The text is given by
Bretschneider, p. 78. ’

1 This passage will, for the sake of
some other matter contained in it, be
quoted later on. The statement is con-
firmed by Plutarch (Non posse suav.
vivi sec. Epicur. c. 11), who says, *‘ Py-
thagoras, according to Apollodorus,
sacrificed an. ox on completing the
figure...either for the proposition con-
cerning the hypotenuse, that its square
is equal to those of the sides contain-
ing the right angle, or else the pro-
blem about application of an area.”
The texts have repl 7o xwplov 77s wapa-
Bo\7s, for which Bretachneider (p. 79,
n.) proposes, evidently rightly, wepl
795 Tob xwplov wapaBoris. The text is

Pythagoras discovered the theorem of the three squares,
(Proclus, p. 426)°.

sometimes translated ‘“on the area of
the parabola,” which involves a gross
anachronism.

3 Plutarch, Quaest. Conv. vim. 2,
c. 4.
8 According to Iamblichus (Vita
Pyth, c. 18, s, 88) Hippasus was
drowned for divulging the knowledge
of ‘““the sphere with the twelve penta-
gons” (i.e. the inscribed ordinate dode-
cahedron) *for he took the glory as
discoverer, whereas everything belong-
ed to Him (elvac 3¢ wdvra éxelvov) for so
they call Pythagoras.”

¢ See Chasles, p. 477, sqq. This
Pythagorae figura was used through the
middle ages, and was regarded even by
Paracelsus as a symbol of health, It is
the drudenfuss of Goethe’s Faust, gc. iii.

5 The oldest authority for this is
Vitruvius, 1z, pref. 5, 6, 7. It is
attested also by Plutarch (supra, n. 1).
Diog. L. vim, 11.
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(10) Pythagoras used to say that of all solids the sphere
was the most beautiful ; of all plane figures, the circle. (Diog.
Laert. viir. 19.)

(11) The Pythagoreans are said to have, solved the quadra-
ture of the circle. (Iamblichus quoted by Simplicius in Ar. Phys.
185, a, 16. Ed. Brandis, p. 827,5.) |

(12) The Pythagoreans, as-has been already stated (supra
p. 70) were largely occupied with the study of proportion,
doubtless not in arithmetic only-but ih“ngmetry‘

(13) From the Pythagofean use of ‘gnomon’ as a desig-
nation of those numbers, which, when added to a square
number, make a square total, it is evident that the Pgthagoreans
were accustomed to consider and use the gnomon in géo;qew

92. It will be seen at once that all this knowledge cé.b\b)t'\
no means be attributed to Pythagoras himself or to his earlies
successors. There must have been, notwithstanding the en-
thusiasm and ability of the school, a slow progress from em-
pirical to reasoned solutions, from the diffuse treatment of
special cases to the concise treatment of one general case. But
we are hopelessly in the dark as to when and how this progress
was effected. It is probable, indeed, that much of it was not
cffected inside the Pythagorean school at all, but that later writers
ascribe to the Pythagoreans theorems which they first proved for
one special case but which some Academic geometer afterwards
proved generally. A Pythagorean, for instance, may very well
have solved Eucl. 11. 14, without going so far as VI 25. Some
statements also,in themselves beyond doubt,maylead tovery plau-

sible but erroneous inferences.

1 Proclus (ed. Friedlein, p, 43) says
that Eratosthenes regarded proportion
as ‘the bond of mathematics,’ and says
elsewhere that the 5th Book of Euclid
is common to geometry, arithmetic,
music and, in a word, to all mathe-
matics. See Knoche, Untersuch. iiber
die Schol. des Proklus zu Eucl. Elem.
Herford, 1865, p. 10.

2 1t should be mentioned before
leaving this enumeration, that Bret-

For instance, if Pythagoras was

schneider p. 89, § 71, conclusively
shews that Montucla (1. p. 117) is
wrong in attributing to the Pythagor-
eans any investigations in isoperi-
metry. What Diogenes Laertius (virr.
c. 1. n. 19) says is stated above (10).
He does not say that Pythagoras taught
that the circle is the greatest among
figures of equal periphery, and the
sphere among solids of equal super-
ficies.

-‘a.)
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acquainted (as no doubt he was) with the regular solids, he was
acquainted also with the regular pentagon. This fact, together
with the form of the pentagram and together with the directions
as to dividing figures into triangles which Plato puts into
the mouth of the Pythagorean Timaeus', suggests that Pytha-
goras constructed the regular pentagon in the manner of
Euclid 1v. 11. But Euclid 1v. 11 is founded on 1v. 10, which
is founded on 1r. 11, and the Eudemian summary, the most
authoritative of all our historical accounts of ancient geometry,
says that Plato invented the learning on the subject of cutting
a line in extreme and mean ratio. It can hardly, therefore,
serve any useful purpose to criticise minutely a whole body of
geometrical teaching much of which is not properly authen-
ticated, and which, 1f it be correctly ascribed to the Pythagorean
school, must belong to very different dates® to
say, gener AHy,.t.ha.t the Pythagoreans seem at a very early time

t0 have been masters of .most of the geometry contained in the
first two books of Euclid, and that they knew some propositions
of the 5 t.h_b_QQ_ks To them alsg is probably due the
mtroducﬁion of definitions of same kind.and-the use of orderly
deductlve _proofs in_geometry. Further, just as Aristoxenus
“tells us that they raised arithmetic above the needs of mer-
chants, so the Endemian summary tells us that they made
, geo{netrx a hbera,l educatlon ' and other writers record as ope

i “A_figure and a stride: pot a figure
and sixpence gained®”.

93. There are, however, two portions of the Pythagorean
geometry which have provoked interesting comments. One
is the construction of the five regular solids, the other is the
Pythagorean theorem, Euclid 1. 47.

Timaeus, in the dialogue of Plato above cited, explains that
every rectilineal figure is made up of triangles, and that every

8"

1 Tim. c. 20, 107. See next par.

2 A very curious instance of the
‘distracting nature of the evidence a-
bout the Pythagoreans is furnished by
Diogenes Laertius (virr. 83), who says
that Archytas, one of the last of the

school, “‘first found the cube’!

8 gxdpa xal Baua, dAN' ob oxdua kal
TpuwBoov.  Proclus, ed Friedlein, p.
84. Iamblichus, Adhort. ad Philos.
Symb. xxxvi. e. 21, quoted by Dr
Allman, v. p. 206.
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triangle may be divided into two right-angled triangles, either
isosceles or scalene. “Of such scalene triangles the most
beautiful is that out of the doubling of which an equilateral
arises, or in which the square of the greater perpendicular is
three times that of the less, or in which the less is half the
hypotenuse. But two or four right-angled isosceles triangles,
properly put together, form the square: two or six of the most
beautiful scalene right-angled triangles form the equilateral
triangle, and out of these two figures arise the solids which
correspond with the four elements of the real world, the tetra-
hedron, octahedron, icosahedron and the cube’” Of these solids,
the tetrahedron, octahedron and cube must have been familiar to
a traveller who had lived in Egypt; on the construction of the
other two, Dr Allman has the following remarks: “In the
formation of the tetrahedron, three, and in that of the octa-
hedron, four, equal equilateral triangles had been placed with a
common vertex and adjacent sides coincident, and it was known
too that if six such triangles were placed round a common
vertex with their adjacent sides coincident, they would lie in a
plane, and that, therefore, no solid could be formed in that
manner from them. It remained then to try whether five such
equilateral triangles could be placed at a common vertex in like
manner: on trial it would be found that they could be so
placed and that their bases would form a regular pentagon.
The existence of a regular pentagon would thus be known (sic).
It was also known from the formation of the cube that three
squares could be placed in a similar way with a common vertex;
and that, further, if three equal and regular hexagons were
placed round a point as common vertex with adjacent sides
coincident, they would form a plane. It remained then only to
try whether three equal regular pentagons could be placed with
a common vertex and in a similar way: this on trial would be
found possible and would lead to the construction of the regular
dodecahedron which was the regular solid last arrived at.” It
should be added that there is no reason to suppose that the
Pythagoreans knew that there are, in fact, no other regular
solids save these.
1 The dodecahedron represented the universe itself.
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) /'/1-4 . B

94, G‘he famous proposition, Befelid 147, has always been
known as the theorem of Pythagoras, It will be remembered
that the converse of this (Eucl L 48) was ¥nown to the
Egyptians and to other nations, at a very early date, in the case
in which the sides of the triangle are to one another as 3:4: 5,
and that Pythagoras extended it to cases in which the sides are
to one another as 2n+1:2n'+ 2n : 2n° + 20+ 1",  The first
proposition also may have been known to the Egyptians in the
particular case where the right-angled triangle is isosceles. It
would of course be at once suggested by a floor payed with
tiles in the form of isosceles right-angled Aot
triangles. But the gengral proof is at-
tributed to Pythagoras/asd Practirseyd —
espfosslyr, (p. 426) that the form of g

Euclid 1. 47 (as well as Euclid v1. 31) —

is due to Euclid himself. Hence Bret- ) \
schneider (p.82),after Camerer®, proposes /4

as a possible restoration of the original

c/proof, the following. If a straight line
be divided into any two parts a and b, then the square on the
< whole line is equal to a’+3* with the two complementary

A I" rectangles ab.” Draw the diagonals ¢ of these rectangles, and
V) dispose the four triangles so formed about the square in the
: A
v A
,/\ . /;
) A
2
and.

manner shown in the gegond figure. There is thus left, in the
middle of the square, a figure ¢* which is obviously equal to
a'+ 5. TUpon this W(p. 98) remarks that “it has no
specifically, Greek colouring, and reminds us rather of the

1 See above p. 71. ? Euclidis Elem. 1. p. 444, and reff. there given.

i

M-

sV
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19

Indian style.
Indian proof of the same theorem, taken from 7
(Fptecalculasionl); of Bhiskara, wHd ey Ifpk 4. DAT1I4"
Here a square is constructed on the
hypotenuse and the original triangle
repeated four times, is disposed round t
it as in Bretschneider’s proof. The
square left in the middle is that of the
difference between the two perpendicu-
lars. Bhéskara merely draws the figure
and adds ‘Look!’ without thinking it

This criticism will serve to introduce an

3 1.
[}

necessary to add that if A* =4 (9‘20’),{ (¢, —c), then A*=c’+0.

A proof of preci;ely the same kind is given, two hundred years
earlier, by the Arab Abti’l Wafd (A.D. 940—998), who trans-
lated Diophantus®. It would seem also that the Chinese had
a similar proof The passage on which this presumption is
founded occyirs in a book called the Pgkedu/ppavds ‘signal in a
circle; of which the first part, containing the passage, is
attributed to 1100 B.c. It may not be so early as this, but
it certainly existed and was the subject of a commentary in the
2nd century after Christ.wﬁere, apparently, the same figure
as Bhéskara’s is drawn and is named ‘the Rope figure,’ as
though it were intended to ex-
plain the practice of some Chinese
Harpedonaptes. Another proof

Co /y

- cl
given by Bhéskara, in the same
place, is also worth quoting. A :
perpendicular is drawn from the hy hy

vertex to the hypotenuse, dividing the triangle into two

1 Dr Allman (p. 193) adopts this
criticism, but accepts Bretschneider’s
proof and attributes it to the Egyptians,
See, however, the passage from the
Meno, cited below p. 174.

2 Colebrooke, Algebra etc. of Brah-
megupta and Bhdskara, 1817, p. 220—
222, § 146. Hankel, p. 209. Cantor
p. 357 '

3 See Cantor, pp. 637, 639, quoting
Woepcke in Journal Asiat. 1855, pp.
346, 350—351 (Feb. and March).

4 Cantor, pp. 579—581, quoting E.
Biot in Journ. 4siat. pp. 593—639, for
June 1841. Cantor’s restoration of
the figure is founded, conjecturally, on
Biot’s deseription of it, which is by no
means clear.
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others similar to it. Then in the figure (if 2 be the original
h

hypotenuse) ’c: = (—:‘ and = (}:-’ , whence it follows that
2

B

h(h;+h)=k=c’+c} Hankel remarks that this proof was
revived in the West by Wallis’/ . ,

- 95, _Itis not to be supposed. that. when the.Pythagorean
brother-hood was for political reasons broken up, th gorean
philosophy disappeared also, On the contrary, the school con-
tmued to flourish for at least. two_centuries mare. Ta&_um
seems to have been its head-quarters, but it seems also to bav
sent out occasional mlssi%lﬂ_gxpﬂdmmm-ﬁrme Its
habit of secrecy prevents the possibility of naming its earliest
leaders. The most celebrated of its earliest, d disciples was
Epicharmus, the founder in Sicily of Greek cggggdy_(nm&aiﬂﬂ).@
Considerably later Philolaus wrote his book, and thus the
Pythagorean doctrines became. accessible 6" the public. Two
othwgles.ﬂdnppu&uugsw also reported _to_have:
written text-books.of their philosophy, and by the time of
Pla.to the Pythagorean teaching.seems to Tave been well
known Simmias of Thebes, the companion of Socrates, says
“In Plato’s Phaedo (61 D) that he had himself heard Philolaus in
Tliebes.” Most of the Sophists also, who_introduced geometry
into Athens, came from Sicily and it is said of some of them
and may be presumed of _others that. they acquired their
knowIeage of the science from Pythagorean sources. So also,
na_doubt, did Plato himself, who bought & copy of Philolaus,
and who, in Slcll& studied with Archytas and Timaeus of
Tocri®. " This’ Archyjas was a mathematician of great celebrity. @
The Eudemian summary mentions him without attributing to
him any partlcular dlscovery, but a good deal is known of him
from other sources®. _He.was-a—lead.mg-pohhma.n_a.ﬁ_chd of

the Pythagorean school in Tarentum. According to Diogenes

1 De Sect. Ang.c. vi. in Wallis Op.  note in Todhunter’s Euclid.
Math. (1693), Vol. 1. Hankel, p.-209. 2 Cic. De Rep. 1. 10, 16.
Cantor, p. 557. A collection of proofs 3 See the authorities collected in
of Euclid 1. 47 was made by J. J. Ritter and Preller, Hist. Philos. c. 11,
Hofmann. Der Pythagorische Lehr- sec. 100, n. d. Cantor, p. 203.
satz. Mainz (2nd ed.) 1821. See the
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Laertius (vir. 83) he first

‘handled the latter subject methodically, and used mechanical
contrivances ipn the construction of geometrical figures. A very
ingenious solution of the problem ‘to double a cube’ is attribu-
ted to him* and will be cited below (pp. 181 ,182). He also is said
to have defined the three chief k_g_lda_nf_pmpaﬂmn Horacein a
well-known ode (1. 28) describes him as maris ac terrae nu-
meroque carentis arenae mensor, from which it might be inferred
that he attempted some of the problems which Archimedes
treats in his Arenarius. Qellius (X. 12) ascribes to Archytas
also the mventmn of a mechanical dove®,

worthily maintg
from their ma.ster But in the meantimefhe P 83

m_a_dg_ét_hgm__by_fa:_thuaalﬂne&an.w@t bnlla.nt c1tx of
Greece. To_her resorted, from all pastertirose—rmem—who-had

something to teach and were not too_proud te make a living by

teang it. Among such there were no Pythago reans, and thus

it is that the histo t leave I

WMM
Two schools of Greek philosophy, founded early in the

5th century B.C. remain yet to be mentioned. In Sicily
Xenophanes of Colophon had formed a school which after-
wards made its head-quarters at Elea in Italy. Here Parme-
nides, his pupil Zeno and Melissus of Samos instituted their
famous inquiries into the inconceivable. They denied the in-
finite divisibility of time and space and illustrated their position
by such paradoxes as that concerning Achilles and the tortoise®,

1 Eutocius, Comm. in Archim. de
Sph. et Cyl. and Diog. L. loc. cit.
The method of Archytas contains the
first example of a curve of double cur-
vature.

2 Poggendorff, Gesch. der Physik, p.
12, compares this with the automatic
eagle made by Regiomontanus in 1489
to greet the Emperor Maximilian I. on
his entry into Nuremberg. Young, in
his lectures (xx. p. 182) ascribes to

Archytas the invention of the pulley
and screw, but I have seen no authority
for this statement.

3 It will be remembered that Zeno
maintained that Achilles could never
overtake a tortoise, if the tortoise had
any start. For, supposing the tortoise
to take 100 yards start and Achilles to
run 10 times as fast as the tortoise,
when the former has covered the 100
yards, the tortoise has run 10 yards,
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the heap of corn etc. The doubt and difficulty into which their
arguments led the early mathematicians were, no doubt, the
cause of the banishment of infinity from Greek mathematical
terms and conceptions’. Both Parmenides and Zeno came to
Athens at a Panathenaic festival about 450 B.c. and” were
heard by the youthful Socrates.

Somewhat later Leucippus of Miletus, a dlsclple of Zeno,
founded the Atomistic school, of which, before Epicurus,
Democritus, who lived at Abdera in Thrace, became the most
famous professor. Democritus at least was a very ardent and
successful geometer. His boast that he was the equal of the
Egyptian harpedonaptae has been already cited from Clemens
Alexandrinus. Diogenes Laertius® says that he was a pupil of
Anaxagoras as well as of Leucippus, that he was an admirer of
the Pythagoreans and intimate with Philolaus, and that he
wrote mathematical works on geometry, on numbers, on per-
spective (dxtwoypadin)®, another in two books on incommen-
surable lines and (?) solids (wepl d\oywv ypapudy kal vacrov 8'),
and another ‘on the difference of the gnomon or the contact of
the circle and sphere’ (mepi Siadopijs yvwpovos 7 wepl Yraioios
kvKhov kal adalpns). It is impossible to say what these titles
mean. It appears also from Plutarch®, that Democritus was
interested in the cone and raised a question, of the Eleatic kmd
as to the infinitesimal gradations in its slope. The life of
Democritus is generally said to fall between 460 and 370 B.c.

Now though the history of geometry, after about 450 B.C.,
can be traced with any definiteness only at Athens, yet it is
plain that the progress of the science was due to contributions
from many other places. Throughout Hellas, in Ionia, in
Sicily, Italy, at Athens, at Abdera far away in Thrace, there
-were men who were working earnestly at the formation of rules
for exact thinking or at the exemplification of such rules in
and when Achilles has covered this, 8 Comp. Vitruvius Arch. vir. praef.
the tortoise is a yard ahead and so on. 4 De Comm. Not. adv. Stoic. 39, § 3.

Coleridge’s answer tothisparadoxisdis- Allman in Hermathena. vir. p. 208.
cussed by Mr 8. Hodgson in Mind, x1x, The question was whether, if a cone

(July, 188). be cut by a plane parallel and infinitely
1 See esp. Hankel, p. 115 sqq. near to its base, the conic section so
2 Diog. L. 1x. 7, 47. exposed was equal to the base or not.

——
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geometry. It is sufficient only to remark the birthplaces of the
philosophers and teachers of this time to see how close an
intellectnal communion was maintained between the most
widely separated cities.

(d.) The Sophasts.

97. It was in the Second Persian War, and at the battle
of Salamis in particular (B.c. 480), that Athens discovered her
vocation to be a maritime power, and that Hellas perceived that
a strong fleet was the best protection against any future in-
vasion. For this reason, a joint fleet was during many years
kept up by Athens and the islands and cities of the Archipelago,
but as Persia showed no sign of moving and the islands found
the fleet a serious burden on their resources, a league was
formed on the terms that the islands should pay tribute to
Athens and Athens should find the ships. It soon followed
that the tribute was rigorously exacted but the fleet was not
maintained. Immense sums were poured yearly into the
Athenian treasury and were spent by Pericles in the adornment
of Athens. In the meantime also Athens was become a great
commercial city with a large carrying trade, and petty wars in
various parts of the Levant filled her streets and markets with
captive slaves. Thus she became the richest and most beautiful
city in the world. Her citizens were, for the most part, well-
to-do and enjoyed an unexampled amount of leisure. The
constitution of Athens, moreover, compelled every man to be
more or less a politician, and opened a splendid career to any
citizen who could but once make a successful speech in the
ecclesta. Litigation was rife and actions were conducted always
by the parties in person. Hence there arose, among the
wealthy and ambitious youth, a strong desire to cultivate
rhetoric and any other branches of knowledge which could
conduce to correct reasoning or successful disputation. The
demand was met by the necessary supply. Corax and Tisias

in Sicily, had laid the foundations of the rhetorical art and -

from Sicily and elsewhere there came to Athens a multitude of



GREEK GEOMETRY TO EUCLID. 161

téachers, calling themselves and called by others, “Sophists.”
Their business was to teach, for pay, rhetoric principally, but
some of them added also geometry, astronomy, philosophy as
necessary ingredients of a liberal education. The most famous
of them were Protagoras of Abdera, Hippias of Elis, Polus of
Agrigentum, Gorgias of Leontini, Prodicus of Ceos, Licymnius
of Sicily, Alcidamas of Elaea in Aeolis, Theodorus of Byzantium,
Thrasymachus of Chalcedon, Hippocrates of Chios. Physicists
of the old school, Anaxagoras, Diogenes of Apollonia in Crete,
Diagoras of Melos, came also but were persecuted by charges of
impiety and driven away. Of the whole army of Sophists, two
only seem to have been Athenians born, namely Antiphon and
Meton, the astronomer® who introduced the Metonic cycle which
the Church still uses. The dates of these teachers cannot be
more precisely determi::ed than this, that they were all teaching
in Athens between 440 and 400 B.c. A few of them, as
has been said, were geometers, but the merits of these (as of
the rest) have been greatly obscured by Plato’s well-known
hostility to their class. Hence perhaps it is that Proclus, an
ardent Platonist, in his Eudemian summary, names only
Hippocrates as a good geometer.

98. By the Pythagoreans, it will be remembered, the
geometry of the circle was practically neglected. This part of
the science was revived in the Athenian schools, which occupied
themselves chiefly with three famous problems (1) Quadrature
of the circle (2) Trisection of an angle (3) Duplication of the
Cube. It was mainly through a thousand attempts to solve
these problems that new propositions and new processes were
discovered and geometry made daily progress. It is not sur-
prising that the first two of the three should have invited
attention. Quadrature of the circle was a problem almost as
old as geometry itself, and the Pythagoreans, who were so busy
with symmetrical divisions of all kinds, would have been led

1 T add him here because Aris-
tophanes (Birds, 992—1020) seems to
treat him as a sophist. He is there
introduced carrying a machine for
squaring the circle. The Metonic

G. G. M.

cycle is said to have been adopted
from B.c. 432. The year, according
to it, is stated by Ptolemy to have
been 365} days + 4th of & day. This
is more than half an hour too long.

11
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naturally enough to trisection. But the duplication-problem is
not so easily accounted for. Eratosthenes, in a letter’ de-
scribing the solutions of this problem, addressed to Ptolemy 111,
(Euergetes), says that an old tragic poet had represented King
Minos as wishing to erect a tomb for his son Glaucus: but
being dissatisfied with the dimensions (100 feet each way)
proposed by his architect, the King exclaims: “The enclosure is
too small for a royal tomb : double it, but fail not in the cubical
form®” A little further on, Eratosthenes says that the
Delians, who were suffering under a pestilence, were ordered by
the oracle to double a certain cubical altar and, being in
a difficulty, consulted Plato on the matter., Both these
statements, perhaps, contain a minute portion of truth.
The problem was certainly called ‘the Delian,’ and it may bhave
originated in an architectural difficulty. But for this evidence,
one would have been inclined to say, with Bretschneider, that
the problem was suggested in the investigation of incommen-
surables. It was at least well known in Athens before Plato’s
time®,

99. Hippias of Elis is mentioned inthe Eudemian summary
as authority for the geometrical performances of the brother of
Stesichorus, but is not named as the author of any original
work himself. A certain Hippias, however, who can hardly be

1 Quoted by Eutocius in Archimed.
De Sph. et Cyl. Torelli's ed. p. 144,
Bretschneider, p. 97, suggests that the
duplication-problem is due merely to
this: the Pythagoreans had found that
the diagonal of a square is the side of
a square twice as large as that of

which it is the diagonal, and they -

wished to find a similar law for the
cube.

2 Valckenaer (Diatribe de fragm.
Eurip. p. 203), suggests that the lines
are from the Polyidus of Euripides
and ran
pxpby ¥ Enetas Baoihikol onxov Tdpov
Suxhdotos EoTw, Tob kUBov 8¢ ui) apakys,

3 On the Greek circle-squarers the
chief authority is Simplicius in Ar.

Phys. printed, from the Aldine edition
(1626), with many corrections, by Bret-
schneider, pp. 100 sqg. On the dupli-
cation-problem, Eutocius in Archimed.
De Sph. et Cyl. Bk 11. is most copious,
but very little is said by any ancient
writer about trisection. The modern
commentators (Bretschneider, pp. 94
—134. Hankel, pp. 1156—127, 150—
156, Allman in Hermathena vir. pp.
180—228. Cantor, Vorles. pp. 172—
176, 180—182, 194—201, etc.) present
an embarras de richesses. I shall in
the main follow Cantor, whose arrange-
ment, though it does not offer the
same opportunities for brilliant and
comprehensive ecriticism as Allman’s
or Hankel’s, is better suited to my plan.
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anybody else than Hippias of Elis’, is mentioned elsewhere by
Proclus and the mathematical learning of this sophist is directly
attested by Plato himself®. It is true that he is mentioned by
Plato with a certain sarcasm. Protagoras, for instance, in his
long and eloquent plea for his own teaching, is made to say
“The others injure the young: for they drag them back against
their will into arts which they would fain avoid, teaching them
arithmetic and astronomy and geometry and music (and here -
he glanced at Hippias), but he who comes to me shall learn only
that for which he comes.” Hippias evidently was the polymath
of his time and had high notions of a liberal curriculum.
Proclus mentions him twice®. In the first passage, he says that
Nicomedes had solved the #risection problem by means of the
conchoid curve, which he himself invented: that others had
used for the same purpose the mixed curve called the quadratriz
of Hippias and Nicomedes and that others divided an angle
in any given proportion by using the spirals of Archimedes.
In the second passage, he says that mathematicians have
described the properties of various curves, Apollonius of the
conic sections, Nicomedes of the conchoids, Hippias of the
quadratriz (terpaywvifovoa) and Perseus of the spirals.
Pappus*, however, says that the quadrature of the circle was
effected by Dinostratus, Nicomedes and other later geometers
by means of a line which, from this use, was called the quad-
ratriz. Here Hippias is ignored. Now Dinostratus belongs to
the end of the 4th century B.C. and Nicomedes seems to be a
century later. Cantor, therefore, proposes® to reconcile the
statements of Proclus and Pappus by supposing that Hippias,
ie. Hippias of Elis, invented a curve which was found useful
for both the quadrature- and the trisection-problems, and that
this curve was, by Dinostratus or Nicomedes or later, called

1 Allman (vir. p. 220) and Hankel
(p. 151) deny this. Bretschneider
(p. 94) and Cantor (p. 165) affirm it.
The latter shows, by many instances,
that Proclus was always careful to dis-
tinguish writers of the same name.

* Hippias Maqj. 286, cp. Hippias
Minor, 367, 368. Protagoras, 318 E.

3 Ed. Friedlein, pp. 272, 856.

4 1v, ¢, xxx. ed Hultsch, p. 251.
So also Simplicius loc. cit. quoting
Iamblichus, names Nicomedes only in
connexion with the quadratiz. Bret-
schieider, p. 108.

5 p. 167,

11—2
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the quadratriz, rerpayovifovsa. Originally, it may have been
intended only for the trisection.

The construction of the quadratriz is thus described by
Pappus (loc. cit.). “In the square ty
aByd, from a as centre with a8 as
radius, describe a quarter of a circle
Bed. The straight line a8 moves ¢
evenly about its end a so that the
other end B moves in a given time
along the whole arc Bed. The line
By moves evenly in the same time, o 1 o
remaining always parallel to itself from the position By to the
position a8 The locus of intersection of this straight line
with the moving radius a8 in the curve B¢n, which is the
quadratriz.” The property of this curve consists in this, that
any straight line afe drawn to the circumference of the circle,
makes the ratio of the quadrant to the arc d equal to the ratio
of the straight lines Ba: (. And since the straight line Sa
can be divided into any number of parts, in any given ratio to
one another, so also can the quadrant or the arc ¢, and the
trisection or any other section of an angle is performed. The
quadrature of the circle is given by this curve, since the straight
line which is equal to the quadrant Bed is a third proportional
to an, n&*.

100. Theodorus of Cyrene, whom the Eudemian summary
names with praise, is known to us only as the mathematical
teacher of Plato®. Iamblichus says he was a Pythagorean and
Plato introduces, in the Theaetetus, his discovery in effect that the
square roots of numbers between 3 and 17 (except 4, 9, 16)
are irrational. He does not seem to have visited Athens.

101, Hippocrates of Chios, who is mentioned with
Theodorus in the summary, was one of the greatest geometers
of antiquity. Like Thales, he began life as a merchant but lost
his property either by piracy or through the chicanery of the

1 Pappus, 1v. 26. Bretschneider, p. * Diog. Laert. . 104, Iamblichus

96. Hankel, p. 1561, Cantor, p. 168, Vita Pyth. 267. Plato, Theaet. 147 p-
213, (sud Dinostratus).
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Byzantine custom house’. He came to Athens to prosecute the
offenders, employed his leisure in attending lectures® and ulti-
mately himself became a teacher of geometry. Aristotle says he
had a talent for the science but was in other respects slow and
stupid (BAaf kal dppwv). The Greeks, however, would natur-
ally call any man a fool who was cheated of his property and
Aristotle seems to have no other evidence for his criticism of
Hippocrates. He may, of course, have been right. There are
still extant mathematicians who are singularly deficient in
ability for any studies but their own.

The most celebrated achievement of Hippocrates was
that ‘squaring of the lune’ which the Eudemian summary
attributes to him. He was, however, ardently engaged on both
the quadrature and the duplication-problems and added enor-
mously, in the course of his researches, to the geometry of the
circlee. He wrote also the first textbook of ‘Elements,’ a
sufficient service in itself to the cause of the science. ,

The first step® in Hippocrates’ attempts at quadrature was
the squaring of a particular lune as follows. On a given straight
line AB, he described a semi-circle, and inscribed in this an
isosceles triangle AI'B. On the
equal sides of this triangle he de-
scribed two other semicircles. Now
in the right-angled triangle AI'B,

AB*=AI"+T'B? and (since circles X A y ]
or semicircles are to one another as the squares of their
diameters)* the semicircle AI'B is equal to both the smaller

1 Aristotle, Eth. Eudem. vir. 14.
Joh. Philoponus in Ar. Phys. ed.
Brandis, p. 327.

3 Iamblichus (De Philos. Pyth. lib.

man, Herm. vi1. pp. 188, 189,

8 Simplicius in Bretschneider, pp.
102—103. Vieta (Opera, p. 386), quotes
these two proofs of Hippoerates from

1., Villoison, Anecdeta Gr. 1. p. 216)
says that Hippocrates and Theodorus
divalged the Pythagorean geometry.
Fabricius, Bibl. Gr. 1. p. 505 (Ham-
burg. 1718), referring to this passage of
Tamblichus, says wrongly that Hippo-
crates and Theodorus were expelled
from the Pythagoreanschool for making
money by teaching geometry. See All-

Simplicius,and Montucla follows Vieta
(Bretschn. pp. 122, 123).

4 This proposition (Buclid xm. 2)
is expressly attributed to Hippocrates
by Eudemus *in the second book of his
History of Geometry,” as quoted by
Simplicius shortly afterwards (Bret-
schn. p. 110 top). The proposition as
stated by Hippocrates seems to have
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semicircles on AT, I'B or is double of either of them. Buyt the
semicircle AI'B is also double of the quadrant AT'A, which,
therefore, is equal to the semicircle on AI'. Take away from
both the common part and it is seen that the triangle ATA
is equal to the lune (unvioros) which lies outside the semicircle
ATB.

The next step’ was as follows. In a semicircle he inscribed
half of a regular hexagon, and on , e
the three sides of this as diameters
he described the semicircles THE, Z
E®Z, ZKA. Then, since the [(H
sides TE, EZ, ZA are equal to
the radius T'A of the large semi- T
circle and the semicircle on a radius is a quarter of that on a
diameter of the same circle, it follows that each of the three
smaller semicircles is a quarter of the large one. It follows that
the three smaller semicircles together with that on the radius
TA is equal to the larger semicircle. Deduct the common
parts. Then the external lunes, together with the semi-circle
on T'A, are equal to the trapezium I'EZA. But the lune
has been shown, in the first step, to. be equal to a rectilineal
figure. Deduct therefore from T'EZA the three rectilineal
figures equal to the three external lunes, and the remainder is
a rectilineal figure equa.l to the semicircle on T'A, and twice
this rectilineal figure is equal to the circle on I'A and thus the
circle is squared.

The fallacy® here lies, as Simplicius rightly points out, in
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been (see Bretschneider, p. 120, n, 1),
that ¢“similar circles are to one an-
other as the squares of their djameters,”
from which it would appear that he
was not quite sure that all circles are
similar to one another,

1 Simplje. in Bretschn, pp, 103, 104.

? Yeudoypignua in Simplicius, i, e, a
false delineation, a fallacy founded on
a faulty diagram, The errors of Hip,
pocrates, Antiphon and Bryson, in
their attempts to square the circle are
referred to and contragted with one an-

other by Aristotle, Soph. Elench. pp, 171
b. 172: Phys. 185, a. and also (as well
as by Simplicius) by the commenta-
tors Themistius and Joh, Philoponus
(Schol. in Ar, ed. Brandis, p. 827 b.
33, 211 b. 19, 80, 41, 212 a. 16),
Bretschneider (p, 122) thinks that Hip-
pocrates was too good a geometer
to make the mistake here attributed to
him and supposes that, in his second
step, he merely said “If the lune on
the side of a hexagon can be squared,
sa can the circle.”




'GREEK GEOMETRY TO EUCLID. 167

assuming that the lunes in the second step are the same as
those in the first step, which they are not. The first step
squares the lune formed on the side of an inscribed sguare in a
circle: the second step deals with lunes formed on the sides of
an inscribed heragon. Hippocrates seems  to have felt this
difficulty, for he proceeded to examine other lunes which might
lead to a quadrature of the circle. Simplicius quotes from
Eudemus, with some additions of his own, these further
attempts. It appears that Hippocrates made some important
additions to his proposition that circles are to one another as
the squares of their diameters. He proved' that similar seg-
ments of a circle are to one another as the squares of their
chords (Bdoeis); that similar segments contain equal angles,
and that in a segment less than a semicircle the angle is
obtuse, in a segment greater than a semicircle the angle is
acute®. Using these propositions he squared a lune of which
the exterior arc is greater than a semicircle® and again a lune
of which the exterior arc is less than a semicircle’. Lastly, he
squared a lune and a circle together in the following manner®.
Describe two circles about a common centre K, and let the
square on the diameter of the exterior circle be six times the
square on that of the interior. Inscribe in the inner circle
a hexagon ABI'AEZ and draw the radii KA, KB, KI' and

1 Bretschneider, p. 110. Allman, on its greater side he deseribed a seg-

Herm. vir. p. 197. Hippocrates de-
fined similar segments as those which
contained the same quotum of their
respective circles, e.g. & semicircle is
similar to a semicircle, 8 quadrant to
a quadrant,

2 He uses also the props. Euclid 11.
12 and 13, but it does not appear that
he invented these.

3 Bretschneider, pp. 111, 112, fig. 8.
Allman, vir. pp. 198, 199. This lune is
obtained by the following construction.
Hippocrates draws a trapezium baving
three equal sides and the fourth such
that the square on it is three times the
square on any other side. About this
trapezium he described a circle, and

ment of a circle similar to those of
which the three equal sides are the
chords. The exterior arc of the lune so
obtained is greater than a semicircle.

4 Bretschneider, pp. 114—119, fig.
9. Allman, vir. pp. 199—201 (with
additions and corrections to Bret-
schneider). The proof and even the
construction are too long and compli-
cated to be given here. The propo-
sition is remarkable as involving the
consideration of a pentagon with a re-
entrant angle, This is described how-
ever a8 ‘‘a reoctilineal figare composed
of three triangles.”

5 Bretschneider, pp. 119—121, fig.
10. Allman, vir. pp. 201, 202.
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produce them to meet the circumference of the outer circle in
H, ©, I and join H®, @I, HI
Then it is evident that H®, GBI
are sides of a hexagon inscribed
in the outer circle. On HI de-
scribe a segment similar to that
cut off by H®. Then since the
square on HI is three times the
square on H@®, the side of the
hexagon', and the square on
H® is six times the square
on AB, it is evident that the
segment on HI must be equal to the sum of the segments of
the outer circle on H®, @I, together with those cut off in the
inner circle by all the sides of the hexagon. If we add to both
equals the part of the triangle H®I lying over the segment HI,
then the triangle H®I is equal to the lune H®I together with
the segments of the inner circle cut off by the sides of the
hexagon: and if we add to both equals the hexagon itself, the
triangle together with the hexagon is equal to the lune H®I
together with the interior circle.

These demonstrations, though they do not lead to quadrature
of the circle, must have greatly stimulated the study of that
problem, since they indisputably prove that some curvilinear
figures are capable of quadrature®. They are given here almost
verbally as they are reported by Simplicius who found them
in Eudemus who must have had them from Hippocrates’ own
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1 The proof of this is inserted by
Simplicius. Join IM. Then the square
of the diameter HM is equal to the
squares of HI, IM, and is also equal to
four times the square of IM or any
other side of the hexagon.

2 These performances of Hippocrates
are very neatly described by Hankel,
(p. 127) after Bretschneider. He says
that Hippocrates squared *lunes which
are contained by two arcs standing on .
the same chord, the central angles of
the arcs being to one another as1:2

or1:30r2:3. To these surprising
discoveries he attached great hopes
and shewed that if in the same way
certain other lunes could be squared,
the quadrature of the circle would also
be solved.” He adds in a note from
Clausen (Crelle’s Journ. xx1. p. 3876):
“It is interesting that the lunes squared
by Hippocrates are in fact the only
ones whose area can be constructed in
the elementary manner, with the aid
only of ruler and compasses.”



GREEK GEOMETRY TO EUCLID. 169

work. They are interesting, apart from their intrinsic ability,
as being the oldest specimens of reasoned geometrical proofs in
existence. They appear to be in part taken verbally from
Hippocrates, for the matter is rather confused and full of
repetitions and the diction is in places archaic, witness such ex-
pressions as “the line on which AB is marked,” “the point on
which K stands” (1 é¢’ o9 AB, 76 é¢’ o0 K). From this it seems
that letters, for the purpose of describing a geometrical figure,
were of recent introduction'. It is to be observed also that
Hippocrates does not, like Euclid, omit I from the geometrical
alphabet. Another fact of great interest, if Simplicius is really
citing Hippocrates, is this, that we have here the first use of
the word &vvauis in the sense of ‘square, from which the
Latin translation potentia and the English ‘power’ have passed
into algebraical nomenclature®.

102. Beside the quadrature of the circle, Hippocrates was
busy also with the duplication-problem. He observed that in
the proportion a:z =« :y:: y: 2a, since 2’ =ay and y'=2azx
and z*=a'y’, then z'=2a"2 and 2°=2a’. Consequently, the
problem of doubling a cube may be reduced to finding two
mean proportionals between one straight line and another twice
as long. The problem thus ceases to be one of solid and
becomes one of plane geometry®. The same ill-luck however
attended Hippocrates with this problem as with the other. He
merely, as Eratosthenes in his letter above-quoted remarks,
exchanged one difficulty for another. Nevertheless the dupli-
cation-problem was afterwards treated always in the form in
which Hippocrates stated it and thus stereometry, as Plato
complains®, went entirely out of fashion.

103. In connexion with this recasting of the duplication-
problem, Proclus (loc. cit.) ascribes to Hippocrates the invention
of dmaywyn, or geometrical reduction, which he defines as a

1 Cantor, p. 177, surmising that cf. Aristotle, 4n. Priora, p. 69 a.
letters were used with diagrams in the 3 See supra, p. 78 n.
Pythagoreanschools, points outthat the 3 Proclus, ed. Friedlein, p. 212. E-
letters ¥ylea (Health) seem to have ratosthenes in Eutocius uti sup. (ed.

" been placed on the vertices of the Torelli, p. 144).

pentagram. For the Greek expressions 4 See, for instance, Rep. vi1. 528 p.
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transition from one problem or theorem to another, which being
solved or proved, the thing proposed necessarily follows’, The
reductio ad absurdum?® is a particular and the commonest kind
of dmwaywyn, in which the substituted contrary theorem is
disproved by analysis. The introduction of the analytical
method of proof is attributed to Plato but it must have been
constantly resorted to before®. The proposition Euclid xi11. 2,
which is attributed to Hippocrates by Eudemus may therefore
have been proved as it stands by Hippocrates. This style of
proof was regularly used by the Greek geometers in their
“method of exhaustion,” ie. the method of exhausting, by
means of inscribed and circumscribed polygons, the area of a
curvilinear figure. -

104. The process of exhaustion was introduced, for the pur-
poses of the quadrature-problem, about the time of Hippocrates,
by Antiphon and Bryson. Antiphon, a sophist who is said to
bave often had disputes with Socrates*, inscribed in a circle a
square: on the sides of this he constructed in the segments
isosceles triangles, on the sides of these other isosceles triangles
and so on, exhausting the circle: or, according to Themistius,
he began with an equilateral triangle, on the sides of which he
constructed isosceles triangles and so on. Bryson of Heraclea,
a Pythagorean of the same time, attacked the quadrature of
the circle by inscribing a polygon and circumscribing another®,
He then assumed that the circle was an arithmetical mean
between the inscribed and the circumscribed polygons. Of
these two methods, the latter was more consonant with the

1 In Aristotle, Anal. Prior. 11. p. 69a. crates, See Bretschneider, § 89, p.

c. 26 (27) draywyr is a syllogistic proof
which involves a probable assumption.
The example chosen is as follows;
A i8 capabdle of quadrature: E a recti-
lineal figure: Z a circle. All E is A,but
that Z is E is one step short of cer-
tainty, since we know only that a circle
with & lune is equal to a rectilineal
figure.

3 draywy els ddlvarov.

3 There are signs of it in Hippo-

114, n. Hankel, p. 149.

4 Diog. Laert. 11. 46. Bretschneider,
p. 101 (quoting Simplicius uti supra),
and p. 125 (quoting Themistius in
Ar. Physica, ed. Brandis, p. 827).

5 Bretschneider. p. 126 (quoting Joh.
Philoponus in Ar. Anal. Post. ed.
Brandis, p. 211), and p. 127 (quoting
Alex. Aphrod. in A7. Soph. Elench. ed.
Brandis, 306 b).
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ancient, the former with modern notions. Upon Antiphon,
Simplicius remarks, and quotes Eudemus to the same effect,
that the inscribed polygon will never coincide with the circum-
ference of the circle, else a geometrical principle would be set
aside which lays down that magnitudes are divisible ad in-
Jfinitum®. Antiphon, indeed, would seem to be the sole ex-
ception. to the rule that the ancients never considered a circle
as a polygon with an infinite number of sides. “This principle”
says Chasles’, not adverting to Antiphon “has never appeared
in their writings: it would not have suited the rigour of their
demonstrations. It was the moderns® who introduced it into
geometry and simplified thereby the ancient demonstrations.
This happy idea was the passage from the method of exhaustion
to the infinitesimal method.”

105. It being admitted that Antiphon and Bryson in-
troduced the practice of exhaustion and that Hippocrates shows
signs of using analysis in geometry, the question arises whether
he did in fact prove Euclid Xi1. 2. as it stands. If he did, then
he invented that rigorous mode of proof, called “the method of
exhaustion,” which is generally attributed to Eudoxus. This
method may be considered as contained in two propositions,
as follows.

(1) If A and B be two magnitudes of the same kind, of
which A is the greater, and there be taken from 4 more than
its half (or any other fraction) and from the remainder more
than its balf (or any other fraction) and so on, the ultimate
remainder will be less than B. (This is the prop. Eucl. X. 1.
now prefixed as a Lemma to the 12th Book.)

(2) Let there be two magnitudes P and @, both of the
same kind and let a succession of magnitudes X, X,, X, etc.

1 Bretschneider, p. 102. This is the 3 Kepler (in his Nova Stereometria
proposition which Zeno denied and  Doliorum) and Descartes. Cf. Hallam,
which Aristotle is always supporting.  Hist. of Lit. Pt. 1. c. 8, secs. 9, 14.
See especially his treatise wepl dréuwr 4 See De Morgan’s article ¢ Geometry
ypapudv, shewing that there are no in-  of the Greeks’ in the Penny Cyclop.
divisible lines, and compare Hankel, Cantor, pp. 233, 234, Hankel, pp.
pp. 117—120. 122—124.

3 Apergu, p. 16,
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be each nearer and nearer to P, so that any one X, shall differ
from P less than half as much as its predecessor differed. Let
Y, Y, Y, etc. be a succession of magnitudes similarly related
to @, and let the ratios X : Y, X : Y, etc. be all the same
with each other and the sameas 4 : B. Then P: Q: 4 : B.
(Suppose X|, X, etc. all less than Pand Y, Y, etc. less than Q.)
Now if 4 : Bisnot P : @, then 4 is to B as P is to some other
quantity S, greater or less than . Take S less than . Then
by the hypothesis and prop. 1. we can find one of the series
Y, Y, (say Y,) which is nearer to @ than S is, and is therefore
greater than S. Then, since X, : Y, = 4: B: P: 8, it follows
that X, : P Y, : 8. But X, is less than P, therefore Y, is
less than S. But Y, is also greater than S, which is absurd.
In like manner, it may be proved that, if S be taken greater
than @, then the proportion 4 :B: P : § is an absurdity.
Therefore 4 : B:: P: Q. (Vide Euclid x1r1. 2.)

106. The discussion of the question whether Hippocrates
or Eudoxus was the author of this method proceeds on
the following lines. The opening lemma was the mathe-
maticians’ evasion of the difficulty which Zeno had found in
infinite division. They avoided the expression “infinitely small
magnitudes” by substituting for it “magnitudes as small as we
please.” Now Archimedes' says that this lemma (in a different
form) was used by “former geometers” for the theorem Eucl.
xi. 2. Eudemus attributes this theorem to Hippocrates and
there is in fact no other way of proving it save by the method
of exhaustion, which Euclid adopts. Dr Allman® replies that
Archimedes mentions this theorem not with particular emphasis
but along with three others, two of which were beyond question
proved by Eudoxus®, who is said also to be the author of the
theory of proportion contained in Euclid v. He does not,
however, suggest any proof of the theorem which Hippocrateg
might possibly have arrived at without using the lemma.
Here Cantor* is more satisfactory, for he points out that the
Egyptians had long ago adopted a fixed arithmetical ratio

1 Pref. to Quadr. Parab. (Torelli's 3 Archim. Pref. to Sph. et Cyl.

ed. p. 18). Hankel, p. 120 sqq. Torelli’s ed. p. 64.
2 Hermathena vir. pp. 222—223. 4 p. 178,
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between a circle and the square of its diameter and Hippocrates
may have known this through the Pythagoreans. It is probable,
moreover, as will be seen presently, that Plato first raised ana-
lysis to the dignity of a legitimate geometrical method. The
evidence; therefore, inclines to the opinion that the method of
exhaustion is to be ascribed not to Hippocrates, but to Eudoxus,
who lived nearly a century later, but we know, in truth, so little
about the Greek geometry of the period that no man is entitled
to hold this opinion very confidently.

(e) The Academy.

107. Plato was born of wealthy and distinguished paren-
tage, at Athens in 429 B.C. the year of the great plague. He
was a pupil of Socrates, who was executed 399 B.c., but he did
not derive from this teacher his enthusiasm for mathematics,
since Socrates was of opinion that it was no use learning more
geometry or astronomy than would suffice for daily wants, such
as to measure a field or tell the time of day'. But Plato, after
the death of Socrates, went away from Athens and consorted in
many places with Pythagoreans who no doubt indoctrinated him
with a passion for their favourite science. He went certainly
to Egypt, also to Cyrene where he studied with Theodorus, and
lastly to Magna Graecia and Sicily (in B.c. 389) where he became
a close friend of Archytas and Timaeus of Locri. He returned
to Athens and formed about himself a school of students who
heard his discourses in the grove of the Academia, a suburban
gymnasium. He died, at the age of 81, in 348 B.C.

The physical philosophy of Plato, being partly founded on
the Pythagorean, is partly, like the latter, an attempt to find in
arithmetic and geometry the key to the universe. He held
that God was a great geometer® and therefore made a know-
ledge of geometry an indispensable preliminary to the study of
philosophy. It is said that he inscribed over his porch “Let

1 Xenophon, Memorabd, 1v. 7. Diog. does not occur in any extant work of
Laert. 1. 33, Plato’s, but he does say (Rep. 527 B)
3 According to Plutarch, Quaest. that geometry, rightly treated, is the
Cony. vim. 2, Ilos I\drwy ENeye 7ov  knowledge of the-eternal. '
Ocov del vyewperpetv; The expression
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none that is ignorant of geometry enter my doors”’ and Xeno-

crates also, who after Speusippus succeeded to the professorial
chair, so to say, of the Academy, is reported to have turned
away an applicant for admission who knew no geometry, saying
“Depart, for thou hast not the grip of philosophy.”® But
it was not really with a view to physical speculation that Plato
thus glorified geometry. He was interested, no doubt, in the
inanimate world but he was interested far more in man. The
nature and laws of thought and the rules of conduct were his
especial subject, and he valued geometry mainly as a means of
education in right seeing and thinking and in the conception of
imaginary processes. Hence it was that, as the Eudemian
summary says, “he filled his writings with mathematical dis-
courses, and exhibited on every occasion the remarkable con-
nexion between mathematics and philosophy.” This statement
may be illustrated by two interesting passages in the Meno, a
dialogue on Virtue which Socrates is supposed to hold with
Meno, a pupil of the sophist Gorgias. In the first of these
passages®, Socrates has just suggested that the knowledge
which we seem to have by intuition, is really recollected from
a former state of existence, that in fact “our birth is but a
sleep and a forgetting.” In illus-
tration of this"theory, he calls up
one of Meno’s slaves and draws
before him, by several steps, the
accompanying figure, a square of
4 feet. The boy apprehends the
steps perfectly well and correctly
answers Socrates’ questions®, until
at length Socrates, having induced
him to say that the square obliquely
placed is double of the square of 2 feet with which the diagram

! undels dyewpérpyros eloirw wov v Socr. *Tell me, boy, do you recognise

oréynv. Tzetzes, Chil. vimr. 972, this for a square?’ Boy, ‘Yes,” Socr.
2 wopebov, NaBas vdp oix Exes 7hs  *Is not it a square that has all these
p\ogogias. Diog. Laert, 1v. 10, four lines equals?’ Boy, ‘Of course.’
3 Meno, 82 B—85 B, Socr. ‘And these cross-lines equal too.’

4 The conversation begins as follows.  Boy, ‘Yes,’ ete. ete,
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was commenced, elicits the incorrect answer that the side of the
oblique square is twice 2 feet. Upon this Socrates retraces his
steps and, by judicious questions, leads the boy on to say that the
side of the oblique square is more than 2 and less than 4 and
yet is not 3 feet. Here it is obvious that Plato is interested
not in the Pythagorean theorem or incommensurable lines, but
in the chain of reasoning. Similarly, a little later in the
dialogue® Meno asks Socrates whether virtue may be imparted
by teaching. To this Socrates replies “Let me argue this upon
hypothesis. A geometer, if he were asked ‘Can this area (i.e.
the square of 2 feet) be inscribed in this circle*? might say ‘I
don’t know, but I think I can suggest a useful hypothesis. If
this area is such that, when applied to the given diameter, it is
deficient (éAAeimer) by an area equal to itself, then one con-
sequence follows, but if this be impossible, then another®’ So
in the case of virtue, we must assume virtue to be or not to be
(ex hypothest) one of some class of goods etc.” Here also it is
the logical procedure and not the problem which is intended to
be observed. The reader therefore is prepared to find, as the
fact is, that Plato was rather a maker of mathematicians than
himself distinguished for original discoveries and that his con-
tributions to geometry are rather improvements in its method
than additions to its matter. It was he who turned the
instinctive logic of the earlier geometers into a method to be
used consciously and without misgiving‘. With him, apparently,
begin those careful definitions of geometrical terms, that distinct

1 Meno, 86 D—87 A, A square of 2 ft. applied to a line of

2 Socrates may, early in the dialogue
(73 ), have drawn a circle on the
ground.

3 The text of this passage (which is
absurdly translated by Jowett) is ex-
tremely obscure, but it seems certainly
to refer to the previous figure. A
square of 2 ft. is there shown to be
equal to an isosceles right-angled tri-
angle of which the base is 4 ft. If the
diameter of the given circle is 4 ff,
a triangle equal to the given square of
2 feet can certainly be inscribed in it.

4 ft. is deficient by a square of 2 ft.
(See supra p. 84 n,) This explanation
seems to be Benecke's (Ueber die Geom.
Hypoth. in Plato’s Menon, 1867). Han-
kel (p. 184 n.) says that the text is
unnecessarily difficult for describing
so simple & fact, but I am inclined to
think that Plato was fond of ‘showing
off’ his mathematics. The famous
‘Nuptial number’ in Rep. 546 B.c. is
an instance in point,

4 See a brilliant chapter of Hankel,
pp. 127—150.
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statement of postulates and axioms, which Euclid has adopted.
The Pythagorean so-called definitions, such as “A point is
unity in position,” are not explanations of terms but statements
of a philosophical theory. But the Academics, as became the
pupils of Socrates, desired explicit determination of the mean-
ings of words. - Thus Aristotle’ says that Plato objected to
calling a point a ‘geometrical fiction’ (8dyua), and defined it
as ‘the beginning of a straight line’ or ‘an indivisible line.
Aristotle gives also as definitions customary in his time the
following : ‘the point, the line, the surface are respectively the
boundaries of the line, the surface and the solid:’ ‘a line is
length without breadth:’ ‘a straight line is one of which the
middle point covers both ends’ (the eye being placed at either
end of the line): the surface arises from ‘the broad and the
narrow:’ ‘a solid is that which has three dimensions®’ So
also Aristotle refers to ‘mathematical axioms’ and often quotes
one of them, viz. ‘If equals be taken from equals the remain-
ders are equal’’ Although probably not all of these definitions
and axioms are due to Plato himself, yet one great invention in
geometrical methods is expressly attributed to him. Both
Proclus (ed. Friedlein p. 211) and Diogenes Laertius (111 24)
state that Plato invented the method of proof by analysis*. It
is not, indeed, to be supposed from this that analysis was new
to Greek geometers for Hippocrates uses it, as was above-stated,
and most of the early geometers probably were led, by the
contemplation of constructions, to the invention of theorems,
and were thus using analysis without knowing it. But Plato
may very well have introduced analysis as a legitimate method

1 Metaphys. 1. 9. 992, a. 20.

2 The passages here quoted are in
order Aristotle, Top. vi. 141 b. 19,
143 b. 12, 148 b. 29, Metaphys. 1. 9,
932 a. 12: Top. v1. 5, 142 b, 24, obs.
Aristotle calls a point o7riyu, the later
word being onueiov: and a surface éxl-
wxedov, later émpdveta, the former word
being later appropriated to ‘plane.’

3 Metaphys. 1v. 3, 1005 a. 20, x1. 4,
1061 b. 17: An. Post. 1. 11, 77 a. 31

(with the addition % 7&v TowodTwy dAAa
‘or any such axioms’). Haukel, p.
136 nn.

4 Both state also that he ‘““gave it
to Leodamas of Thasos, which pro-
bably means that Plato orally described
the method to Leodamas and thelatter
wrote or lectured upon it, describing it
as Plato’s but giving his own geo-
metrical illustrations.
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in geometry to be consciously employed, may have given rules
for its conduct and pointed out under what conditions it was
satisfactory or not so.

108. The oldest definition of Analysis as opposed to
Synthests is that appended to Euclid xm1. 5. It was possibly
framed by Eudoxus . It states that “ Analysis is the obtaining
of the thing sought by assuming it and so reasoning up to an
admitted truth: synthesis is the obtaining of the thing sought
by reasoning up to the inference and proof of it.” In other
words, the synthetic proof proceeds by shewing that certain
admitted truths involve the proposed new truth: the analytic
proof proceeds by shewing that the proposed new truth involves
certain admitted truths. An analytic proof begins by an
assumption, upon which a synthetic reasoning is founded. The
Greeks distinguished theoretic from problematic analysis. A
theoretic analysis is of the following kind. To prove that 4 is
B, assume first that 4 is B. If so, then, since Bis C and C is
D and D is E, therefore 4 is E. If this be a known falsity®, 4
is not B. But if this be a known truth and all the inter-
mediate propositions be convertible, then the reverse process,
Ais E, E is D,D is C, C is B, therefore 4 is B, constitutes a

.synthetic proof of the original theorem. Problematic-analysis
is applied in cases where it is proposed to construct a figure
which shall satisfy a given condition. Hence the process con-
sists in constructing a figure which is assumed to satisfy the
given condition. The problem is then converted into some
theorem which is involved in the condition and which is proved
synthetically, and the steps of this synthetie proof taken

1 Bretschneider, p. 168. Pappus
(Math. Coll. v11. ed. Hultsch, p. 635) has
Euclid’s definition. Chasles (p. 5),
takes a definition from Vieta, Isagoge
in Artem Analyticen, ad init. “Il est en
mathématiques une méthode pour la
recherche de la vérité que Platon passe
pouravoirinventée,queThéonanommée
analyse et qu’il définit ainsi: Regarder
1a chose cherchée comme si elle était
donnée et marcher de conséquences en

G. G. M.

conséquences jusqu’a ce quel’on recon-
naisse comme vraie la chose cherchée.
Au contraire la synthése se définit:
Partir d’'une chose donnée pour arriver
de conséquences en conséquences &

trouver une chose cherchée.” See also
a note in Todhunter's Euclid. App.
§§ 35 sqq.

3 Thus the reductio ad absurdum is a
kind of theoretic analysis, This isthe
only analysis which Euclid admits, -

12
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backwards are a synthetic solution of the problem. Suppose
there is only one condition : e.g. To describe a triangle having
each of the angles at the base double of the third angle. Draw
an isosceles triangle ABC and assume that A

the base angles are each double of the ver-

tical angle. An addition must be made to the

figure. Bisect the angle 4 CB by the straight

line CD. There thus arises a theorem that

AB is cut, at D, in extreme and mean ratio, D,

and that BC=A4D, from which a synthesis

(Eucl. 1v. 10) is obtained. (It will be seen

that the whole aim of problematic analysis is B

to find a synthetic solution of the problem, and therefore the
ancient geometers never omitted to add the synthetic solution
so found.) If there are more conditions than one, the procedure
is just the same. A figure is drawn which is assumed to
satisfy all the conditions, but the subsequent analysis is directed
to shewing what each condition, in turn, involves.

A very good authentic example of this more complicated
analysis is given by Hankel (p. 143) from Pappus’. The pro-
blem is: “Given the position of a circle ABC amd of two
points D, E, outside it, it is required to draw from D, E the

straight lines DB, EB cutting the circle in B and produced to -

A, C, so that AC shall be parallel to DE.” The analysis is
as follows. “Let the figure be drawn
and also the tangent FA. Then,

since AC is parallel to DE, the angle A ¢
at C is equal to the angle CDE. It
is also equal to the angle FA E (Euclid

F D E

1. 32). Therefore the angle FAE
is equal to the angle CDE, and the
points ABDF lie on the circum-
ference of a circle, and the rectangle 4E, EB is equal to
the rectangle FE, ED. But the rectangle AE, EB is given®,
because it is equal to the square of the tangent; therefore

1 Coll. Math. vi1. prop. 105. theorems stated in an abridged form,
9 3edopévov, datum, in Euclid’s sense.  e.g. Prop. 92 (95 in Simson’s ed.) is
Euclid’s Data are a collection of “If a straight line be drawn from a
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the rectangle F'E, ED is given, and since ED is given, so also
is FE, both in length and in position. And since FA is a
tangent to the given circle and F is given, so also 4 is given.
And since A4 is given, so also is AE and the point B.” Then
follows the synthesis. “Join £D and produce it to F, so that the
rectangle ED, EF is equal to the square of the tangent. From
F draw the tangent FA and join AE,” etc. The reader will
see that here the analysis is directed to two facts involved in
‘the conditions, the condition that AZ cuts the circle in B,
involves the fact that the rectangle AE. EB, wherever 4 may
be, is equal to a certain square which can be found. The con-
dition that AC must be parallel to ED, involves the further
fact that the rectangle AE . EB is equal to the rectangle under
ED and EF, where F is that point in which ED produced
meets the tangent at 4. The addition of a synthetic solution
is made ex majors cautela, lest a condition should not have been
examined in the analysis or lest a proposition reached in the
analysis should not be convertible (e.g. all 4 may be B, but not
all B need be A). Further, the problem may be under some
conditions impossible, and this fact is likely to be overlooked in
the analysis. Hence, to the synthetic solution, the Greeks
appended, if necessary, a diorismus (determinatio) or statement
of the conditions in which the given problem is or is not
soluble. The Eudemian summary ascribes the invention of the
diortsmus to Leon the Platonist, but it is observable that the .
passage above quoted from the Meno (p. 175) contains a partial
diorismus which is undoubtedly Plato’s. It is probable therefore
that the whole systematization of analysis is due to Plato.
“The conjunction of philosophical and mathematical pro-
ductivity” says Hankel, “such as we find, beside Plato, only
in Pythagoras, Descartes and Leibnitz, has always borne the
finest fruits for mathematics. To the first we owe scientific
mathematics in general. Plato discovered the analytic method,

given point without a circle given in  sense of the word “given” is deter-
position, the rectangle contained by mined by Def. 1. *Spaces, lines, and
the segments betwixt the point and the angles are said to be given in magni-
circumference of the circle is given.” tude when equals to them can be
This is an abridgement of n1. 36. One found.”

12—2
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through which mathematics were raised above the standpoint
of the Elements; Descartes created analytical geometry; our own
celebrated countryman (Leibnitz) the infinitesimal calculus—
and these are the four greatest steps in the development of
mathematics.”” It must be admitted, however, that the intro-
duction of analysis is just the sort of service which might be
ascribed, by a vague exaggeration, to a philosopher who certainly
had a great influence on mathematics but left no mathematical
work.

109. The one respectable solution which is attributed to
Plato seems to have been obtained through analysis in the first
instance. It will be remembered that Hippocrates had recast
the duplication-problem into one of plane geometry, to. find
two mean proportionals to two straight lines. Let a, b be the
given straight lines, # and y the mean proportionals, so that
a:zxux2:y:y:b TakeCA=a: CX=2:CY=y: CB=b

A

Y

and place these lines in a right-angled cross about the common
extremity C. Then the triangles ACX, XCY and YCB are
similar, and the angles AXY, XYB are both right-angles
(Euclid vi. 8 and Cor.). Hence a synthetic solution would
be obtained if a straight line XY could be so placed between
two arms of the cross that the perpendiculars to it at the points
X and Y would pass through 4 and B respectively. For this
purpose Plato’ is said to have invented a little apparatus con-
sisting of a rectangular frame, one side of which would slide up

1 Eutocius in Torelli, p. 135. Han- 141—143. Cantor, p. 195,
kel, pp. 154, 155. Bretschneider, pp.
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and down so as to diminish or enlarge the rectangle at pleasure.
On the other hand, Plutarch relates® that Plato blamed Archytas
and Eudoxus and Menaechmus for using such instruments for
the purpose of solving the duplication-problem, and said that
the good of geometry was spoilt and destroyed thereby, for it
was reduced again to the world of sense and prevented from
soaring among the unseen and incorporeal figures. Elsewhere®
Plutarch repeats the same story, and adds that, owing to this
remonstrance of Plato, mechanics were wholly dissociated from
geometry and reduced to a mere department of strategy. These
statements of Plutarch are much more likely to be true than
the other, which rests on the authority of Eutocius, and it may
be said therefore that to Plato we owe the strict limitation
of geometrical instruments to the ruler and compasses. It
will be remembered also that Plato deplored the decay of
stereometry, and we shall find this department of geometry
reopened with great zeal by Plato’s immediate pupils. In
short, however we discount the evidence, it is plain that Plato
was almost as important as Pythagoras himself to the advance
of Greek geometry.

110, It is desirable for two or three reasons to insert here
the solution of the duplication-problem which is attributed to
the Pythagorean Archytas. It could hardly be given before,
" because it solves the problem in that form in which Hippocrates
recast it. Further, it is the kind of solution which Plato blames
and it involves some stereometrical considerations, which Plato
is thought to have revived. It will serve also to remind us
that, side by side with the Athenian mathematical school, there
was still the older Pythagorean at Tarentum, to which Plato
was probably under very great obligations. The solution of
Archytas is reported by Eutocius® from Eudemus. It is as

1 Quaest, Conv. vi1. 9, 2, c. 1. Bret-
schneider, p. 143.

3 Vita Marcelli, c. 14, § 5.

3 In Torelli, p. 148, The form given
in the text is Cantor’s (p. 196), but is
only very slightly abridged from the
original. The latter gives the synthe-
sis only. Bretschneider, p. 152, sug-

gests an analysis by which Archytas
may have been led to his solution. The
figure on the next page is awkward
and defective, for MI and KA should
be joined, but it serves its purpose
sufficiently well and is a little better

than Cantor’s.
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follows. Let AA, AB be the two straight lines, between which
two mean proportionals are required, and of these let AA be
the greater. Describe a semicircle on AA as diameter, and let
AB be a chord of this semicircle. Describe on A4, in the per-
pendicular plane, another semicircle which can be moved round

from A towards B, the extremity of the diameter A remaining
fixed. This revolving semicircle will describe a curve on a
half-cylinder supposed to stand on ABA. Draw the tangent at
A and produce AB to meet it in II. The triangle AAII turning
about AA as axis, produces a cone, which penetrates the half-
cylinder and cuts the curve thereon in the point K. This point
K being on the half-cylinder, the line KI drawn from it perpen-
dicular to the plane of the semicircle ABA meets the circum-
ference of that semicircle in I. While ATI is describing this
cone, the point B moves through a circle, BMZ, which is per-
pendicular to the circle ABAZ of which ABA is half. Since AKA’
is perpendicular to the same plane, the line M® (which is the
line of section of BMZ and AKA) is also perpendicular to it,
and is likewise perpendicular to the line BZ, which is the line of
section of the plane BMZ with the plane ABAZ. Then since
BMZ is a semicircle and BZ its diameter, M®*=B® . ®Z. But
BO .0OZ =A@ . OI (BZ and AI being two chords cutting one
another in ®). Therefore M@*=A® . ®1. Therefore the angle
AMI is a right angle and is equal to AKA’ (which is an angle in
a semicircle), and therefore MI is parallel to KA'. Therefore the
triangles A'AK, IAM, KAI are similar to one another, and
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AM:AI:AI:AK:: AK:A'A. Take AM=AB=q, and A'A
= AA =}, and we then get two middle proportionals between a
and b. It will be seen that this solution uses Euclid 111. 18 and
35, and x1. 19, and discloses also very clear notions on the origin
of cylinders and cones, the section of a surface by a surface and
the curves thence arising. It must be remembered however that
Archytas probably used a mechanical apparatus in the solution
(supra, pp. 158, 181).

111, It was said above that Plato made many mathema-
ticians, and the observation is fully borne out by the discoveries
which are attributed to his immediate pupils. Of Leodamas
of Thasos, for whom Plato invented the method of analysis,
nothing more is known, save what the Eudemian summary says
of him, viz. that he and Archytas and Theaetetus greatly
extended mathematical inquiries, and improved them into a
more scientificsystem. This Theaetetus is the same who gives
a name to one of Plato’s dialogues and who was chiefly occupied
with the study of incommensurables. Suidas (s. ».) attributes
to-him a treatise on the five regular solids, but to what effect
this treatise was is not known. Of Neocleides and his pupil
Leon also, we know no more than the Eudemian summary tells
us, in which the only important fact is that Leon wrote an
improved ¢ Elements ’ and treated particularly of diorismus.

112. But BEudoxus, who is mentioned next, was one of
‘the most brilliant mathematicians of antiquity. He was born
about B.C. 408 in Cnidus, was a pupil of Archytas, and sub-
sequently, for a few months, of Plato. He then went to Egypt
(with Plato, according to Strabo), thence to Cyzicus, where
he founded a school, and came from Cyzicus with his pupils
to Athens, where he met Plato again not on very friendly
terms. He returned finally to Cnidus and died there at the
age of 53 (B.c. 355).! He is described by Diogenes Laertius
as astronomer, physician and legislator, as well as geometer.
In the first capacity he is said by Aristotle® to have made
a kind of orrery, and various discoveries are attributed to

! Diogenes Laert. vir1. 86—90. Bret- 3 Metaphys. vii. c. 8. See Schia-
schneider, pp. 163—164. Cantor, pp. parelli (trans. Horn) in Suppl. to
205, 206. Zeitschr. Math. Phys. vol, xx11,
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him. He wrote also a work on practical astronomy, ®awdueva,
on which the extant poem of Aratus is founded’. The
Eudemian summary states that he added three kinds of
proportion to those introduced by Pythagoras, and increased
by the analytical method the learning, begun by Plato, on the
subject of the section. This must mean the so-called ‘ Golden
Section,’ the cutting of a line in extreme and mean ratio®,
and the Eudemian summary is very well explained by supposing
that Eudoxus was in fact the author of the first five propositions
of Euclid X111, which deals with the regular solids (see below
p- 197n). A scholiast on Euclid, thought to be Proclus®, says
further that Eudoxus invented practically the whole of
Euclid's Fifth Book. Beside this work in proportion,
Archimedes expressly says (in the passages above cited upon
which the method of exhaustion is attributed to Hippocrates)
that Eudoxus proved by means of the Lemma, Euclid x. (x11),
1, the propositions that every pyramid is a third of a prism on
the same base and with the same altitude (Euclid x11. 7. Cor. 1),
and that every cone is the third part of a cylinder on the same
base and with the same altitude (Eucl. X1 10). It is on the
strength of this perfectly clear evidence that Eudoxus is
supposed to have invented the method of exhaustion. Lastly,
Eudoxus is reported* to have invented a curve which he
called immomédn, or ‘horse-fetter, and which resembled those
hobbles which Xenophon describes as used in the riding-school.

They were of the form

Proclus calls this curve a ‘spiral, and has some interesting
remarks on its origin®. The word omelpa means a so-called

1 Aratus is criticised by Hipparchus, 3 Knoche, Untersuch. iiber Schol. des

who preserves some of the original Proclus, pp. 10—13.
statements of Eudoxus. These are 4 Simplicius, in Ar. De Coelo, ed.

criticised, as usual, with the utmost
contempt by Delambre. Astron. An-
cienne, Vol. 1. p. 107.

3 The possible meanings are dis-
cussed by Bretschneider, pp. 167—168.
Cantor, p. 208.

Brandis, p. 500, 10.

5 Cantor pp. 209, 210, quoting Schia-.

parelli, uti sup. section v. Proclus, ed
Friedlein, pp. 112, 119, 127, 128, He-
ron Alexandrinus, ed. Hultsch, p. 27,
def. 98.
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‘tore, a ring-shaped solid of revolution which is produced
by the revolution of a circle about a straight line which lies
in the same plane with but does not cut the circle’. If this
solid be cut by a plane, there arises a “spiral” line, which
may assume three forms, according as the cutting plane is
more or less near the axis. If it is further from the axis than
tLo centre of the circle, we get an oval®: if nearer, we get a
curve “narrower in the middle and broader at the ends; but if
the plane is still nearer to the axis, so that it

touches the tore at an inner point, which is in O
fact the double-point of the curve, we get the

imrmomédy.” Eudoxus somehow used this curve C:D

in his description of planetary motions, but

nothing more is known of his treatment of it.

Eutocius, however, in the passage so often quoted QO
on the duplication-problem, says that Eudoxus used certain
curves (kaumvhal ypapuai) for his solution of this problem, but
he disdains to give this solution, because it had nothing to do
with these curves after all and contained an absurd mistake in
proportion. Eratosthenes, however, whose letter on the subject
Eutocius has himself previously quoted, mentions Eudoxus in
the same breath with Archytas, and calls him, in an epigram
appended to the letter, “ godlike.” The probability, therefore,
is that Eutocius was himself mistaken.

113. Amyclas of Heraclea, a Platonist, is unknown save
from the Eudemian summary, but Menaechmus, “a pupil of
Eudoxus and a contemporary of Plato,” is well known to fame.
It was he who invented the geometry of the conic sections®,
which, after him, were sometimes called “the Menaechmian
triads.” Democritus, indeed, had cut a cone by a plane parallel to
the base (supra, p. 159n.) but it was Menaechmus who took three
kinds of right cones, the ‘“right-angled,” “acute-angled” and
“obtuse-angled ” (as Geminus describes them in the passage

1 An anchor ring is the common ex- 3 See the often-quoted letter of Era-
. ample of this solid, tosthenes in Eutocius, ed. Torelli, p.

3 Proclus (p. 112) describes this as 146, and Proclus, ed. Friedlein, p, 111,
a ‘“‘xapaunkyis, broad in the middle (citing Geminus as well as Erato-
and narrow at the ends.” sthenes).
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quoted above, p. 137) and cutting these by planes at right-angles
to one of their sides, exposed the parabola, ellipse and
hyperbola’, which he called the section of the right-angled,
acute-angled and obtuse-angled cone respectively. He seems,
however, not to have regarded these curves always in the cone
itself, but to have used some mechanical apparatus for drawing
them®. How far he proceeded in the geometry of conics can be
guessed only from two very neat solutions of the duplication
problem, which are attributed to him by Eutocius®. Menaech-

A

mus observed thatif a : & = @ y =y : bthenay=2"y' =ba
If through the point C' there be described two parabolas, one

1 These names were invented not by
Menaechmus but by Apollonius of
Perga, a century later. That Menaech-
mus used the names * section of right-
angled cone” etc. is attested by Pappus,
vir. (ed. Hultsch), p. 672.

3 Compare Eratosthenes again in
Eutocius, ed. Torelli, p. 144, and the
reproach of Plato against Menaechmus.
Eutocius (a little earlier) says that his
own master, Isodorus of Miletus, had
invented & compass (3caB77ys) for draw-
ing parabolas. Bretschneider (p. 170),
says that & modern geometer would
suppose that the notion of loci pre-
ceded the conic sections, but that in
fact the ancients always regarded
conics in the cone itself: the foci of
the ellipse and hyperbola are only just
mentioned by Apollonius and charac-

terised by two of their simplest pro-
perties: the focus of the parabola is
not mentioned at all. But Mr Taylor
(Ancient and Modern Conics, pp. XXx1
—xxxmr. and xumr.) suggests that the
conic sections thay have been discover-
ed as plane loci in investigations of the
duplicatiori problem. In support of
this he urges that Menaechmus used a
machine for drawing conics, that in
his solutions of the duplication pro-
blem he uses only -the parabola and
hyperbola, and that the ellipse, the
most obvious of the sections, is treated
last by Apollonius. He admits, how-
ever, that the conception of a conic as
a plane locus was immediately lost.

3 Archimed. ed. Torelli, p. 141. Bret-
schneider, pp. 159—161. Cantor, pp.
198, 199. Hankel, p. 155. Eutocius
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with parameter a and axis AC, the other with parameter b and
axis BC, they will cut one another in a point P of which the
co-ordinates CX, C'Y are the desired mean proportionals, z and .
Secondly, since zy=ab, the same point P may be found as
the point of section between one of these parabolas and a
hyperbola, of which CX and CY are asymptotes, subject to the
condition that the rectangle contained by the straight lines
drawn from any point on the hyperbola parallel to one
asymptote and meeting the other, shall be equal to ab. The
learning of Menaechmus, indicated by these solutions, is very
considerable, and it is not surprising to find that before
the century was out Aristaeus “the elder”' (about B.c. 320)
wrote an “ Elements of Conic Sections” in five books, which,
according to Pappus, Euclid highly approved’. Menaechmus is
said to have been the teacher of Alexander the Great, who
asked him whether he could not make his instructions some-
what shorter. To this Menaechmus replied in the famous
words, “There is no royal road to geometry®” The brother of
Menaechmus, Dinostratus, was also a great geometer. It was
he who as stated above (p. 163) used the quadratriz of Hippias
for the solution both of the trisection and the duplication
problems. Nothing more than this, however, is known of him,

gives both analysis and synthesis. The xawwof). Hankel, p. 1562. Cantor, p.

form in the text is Hankel’s, and con-
tains of course (as indeed does that
of Eutocius) technical terms which
Menaechmus knew nothing of. It
gives the solutions also in a different
order from Eutocius.

1 Pappus vir. Praef. (ed. Hultsch),
pp. 672, 676. This Aristaeus wrote
also on the regular solids. Cantor, p.
212, Curves of all kinds were at this
time called réwoc detodixol Or ‘‘running
loci.” The straight line and circle
were called ‘“plane loci” (réwor éwi-
wedor) the conic sections *solid loci”
(orepeol) and all other curves- beside
these were oalled “linear loci” (ypau-
muxol) or, from the manner of their
construction, * mechanical loci’ (un-

214, quoting Pappus uti sup. pp. 662,
672. Pappus seems to say that Aris-
taeus wrote two books, one on Conics,
the other on Solid Loci. Cantor (loc.
cit.) suggests that the second was a
series of solutions in which the conic
sections were used. Viviani restored it
conjecturally (pub. 1701). Chasles, p.
7n. Cantor (p. 197) says that the word
rémos first occurs, in its geometrical
sense, in Eutocius’ report of Archytas
on duplication, but this is erroneous.
The word 7éwos there means only
“pla,ee.”

2 Bretschneider, pp. 162—163. Sto-
baeus Florileg. ed. Meineke, 1v. p.
205. The same story, however, is told
of Euclid and King Pfolemy.
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save what the Eudemian summary relates, viz. that be and
Menaechmus and Amyclas “made the whole of geometry yet
more perfect.”” After these names the same catalogue gives
others, for which also it is the sole authority. ‘Theudius of
Magnesia wrote yet another and further improved ‘Elements’:
he and Cyzicenus of Athens were Platonists, like Amyclas.
Hermotimus of Colophon added yet more to the Elements and
wrote on Loct. Philippus of Mende, another Platonist, tried to
find in geometry illustrations of the Academic philosophy.
This name finally brings the history of geometry down to the
time of Eudemus® himself, and with it the Eudemian summary
closes. The. next great name in Greek geometry is Euclid
but with him the scene is shifted and mathematics desert
Athens for Alexandria.

114, The Athenian school, however, should not be left,
without a word on that great philosopher who, for nearly 2000
years, was in all subjects “the master of those who know.”
Aristotle (B.c. 384—322) was not, any more than Plato, a
professed mathematician, but, like Plato, he was learned in the
mathematics of his day and was above all things interested in
correct reasoning on every subject. The man who systematized
deductive logic must be admitted to have performed a great
service to geometry. But Aristotle’s benefits are not confined
to this. He is the author or the improver of many of the most
difficult geometrical definitions (vide supra, p. 176nn.). One of
these, which has not yet been quoted, may be here given. He
defined continuity as follows. “ A thing is continuous (cvvexés)
when of any two successive parts the limits, at which they
touch, are one and the same, and are, as the word implies, held
together®.” Hence, he said in answer to Zeno, motion is not, like
counting, a discrete operation, a series of jerks: the moved
thing does not stop at the stages which the calculator chooses to
make. The interest which Aristotle took in these inquiries
accounts for the fact that the sole extant Greek work in which,

1 Eudemus was a native of Rhodes, petent historian of geometry.
but a pupil of Aristotle. Proclus says 2 Phys. m. c. 3. 227, a. 10. Insec.
‘he wrote wepl ywrlas, ‘on the angle,’ so  Lin. 969, a. 30. .
it may be inferred that he was a com-
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before Archimedes, geometry is applied to mechanics is at-
tributed to him. The passage in the Physics which contains
a hint of the principle of virtual velocity has been cited above
(p. 105n)'. The Mechanica, which is perhaps not Aristotle’s,
though certainly of his time, is a series of 35 questions, mostly
on the performances of various levers®. The explanation here
given of the lever is founded on the observation that, in a
revolving circle, the circumference moves faster than the parts
near the centre: the power, therefore, at the end of a lever
overcomes the weight by its superior velocity. This explan-
ation leads to the correct inference (Qu. 3) that if two weights
keep a lever in equilibrium, they are to one another in the
inverse proportion of the arms of the lever. Nearly all the
questions are answered by reference to one or other of these facts.
The book contains many errors but is worth noticing as evidence
that, about this time, questions were asked which ultimately
lead to a correct theory of mechanics.

115. There remains still to be mentioned another writer,
who lived about 330 B.c. and whose works, still unpublished,
are the oldest of extant Greek mathematical treatises. This is
Autolycus of Pitane in Zolis, an astronomer of whom nothing
is known save that he wrote two elementary works on the
apparent motion of the sun and stars®. The first (in 12

1 Too much stress should not be laid
on this passage, for Aristotle goes on
immediately to say that if 4 moves B
a distance I' in time A, it does not

follow that %wﬂl move B a distance

Fg‘ in the same time, for f;- may not be
able to move B at all. A hundred men
may drag a ship a hundred yards, but
it does not follow that one man can
drag it one yard.

2 The questions are of great variety,
both in subject and in merit: e.g.
‘Why are carriages with large wheels
easier to move than those with small?’
(Q. 11). “Why are pebbles on the sea-
shore round?’ (Q. 15) ¢‘Why is it

easier to extract teeth with the forceps
than with the fingers?’ (Q. 21). ‘Why
in rising from a seat do we lean the
body forward at an acute angle with the
thigh?’ (Q. 80). ‘Why does a missile,
once thrown, everstop?’ (Q.33). ‘Why
do objects in & whirlpool move towards
the centre?’ (Q. 36).

3 An atcount of both is given by
Delambre. Hist. Astron. 1. c. 1. pp.
19—48. They exist in 3 mss. at Ox-
ford, but are published only in a Latin
translation by Auria (Rome, 1587.
1588). Delambre used Dasypodius’
Sphaericae  Doctrinae Propositiones
(Strasburg, 1572), which contains only
the enunciations of Autolycus.
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propositions) is called “on the moving sphere” (mepi xwovuévns
apalpas). The sphere is supposed to revolve uniformly and to
be divided by a great circle (not called the “ horizon ” but drawn
obliquely to the axis) so that half of the sphere is always invisible.
The propositions which are of an excessively simple character,
relate to the appearance, disappearance and reappearance, of
various points on the sphere. The same subject is dealt with
more particularly in the other work, “On Risings and Settings”
(mepi émerondy xal Yaewy), which is in two books, the first of
18, the second of 18 props. Here Autolycus premises that
the rising or setting of any star is invisible unless the sun be at
least 15° (measured on the ecliptic) below the horizon'. The
propositions, which are very obscurely worded, consist mostly of
deductions from this fact as to the time both of the night and
of the year at which or during which a particular star will be
visible. The results are of the most general character, to the
effect that after a given phenomenon certain others will happen
at certain times or in a certain order”.

116. A brief summary may here be added of the progress
of Greek geometry up to 300 B.c., the date at which the
Alexandrian school may be taken to arise, and which begins the
most brilliant century in the history of Greek mathematics.

It will be remembered that Thales about 580 B.c. introduced
the Egyptian geometry into Ionia: Pythagoras about 530 B.c.
introduced it into Magna Graecia. In these places, the extreme
Eastern and Western limits of Hellas, mathematical schools
survived for nearly 200 years, but the Ionian was by far the
less meritorious of the two. This school seems to have been
concerned chiefly with the geometry of angles, the Pythagorean
chiefly with the geometry of areas and the theory of proportion,
To the former we owe much of Euclid’s 1st Book, to the latter,
no doubt, the 2nd, and the foundations of the 4th, 5th, and 6th,

1 Autolycus divides the ecliptic not  supposed to be observed from Thebes in
into degrees but into 12 parts (Swdexa- 360 B.c. He also, in his usual scorn-
yubpac) of 30° each. ful manner, reduces the whole book

3 Delambre proves many of the pro- to a few trigonometrical formulae.
positions for Arcturus and Aldebaran
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Books. Before these schools were extinct, the Sophists about
450 B.C. introduced geometry to Athens; and here, under the
stimulus of three insoluble problems, arises the geometry of the
circle and other curves (with Hippias and Hippocrates); still
later the geometry of conics in particular, and of loct, stereometry,
mechanics and astronomy. But it is not to be supposed that
during this time any department of geometry was the peculiar
study of any place. Intercommunication was so frequent and
rapid that the Pythagoreans of Italy and Sicily and the
Atomists of Abdera, no doubt, were acquainted soon with the
last geometrical discovery of Athens, and vice versa. The syste-
matization of geometrical methods and the orderly arrangement
of elementary text-books, since Hippocrates wrote the first, had
specially occupied the attention of the Platonic school. Thus it
was that the substance of nearly all the geometry of Euclid’s
elements was known before Euclid’s time, the forms of geo-
metrical proof were settled, and the arrangement of at least large
fragments of geometry was practically determined. To collect
these fragments and connect them where necessary, and to
embellish the proofs, was the chief work which was left for ¢
orovyeiwtr)s, the writer of the Elements par excellence.



CHAPTER VII.
EvucLID, ARCRIMEDES AND APOLLONIUS.

117, It has been already pointed out that the conditions of
life in Athens were unfavourable to the growth of any “natural”
science. Her practical men were absorbed in politics, her
philosophers in metaphysical speculation. Neither of these
classes objected to deductive science, for deduction is the chief
instrument of rhetoric and is also the most interesting part
of logic: but the patient and unrewarded industry, which leads
to inductive science, was not to the Athenian taste. The
practical men thought it profane, the philosophers vulgar. The
schools of inductive science remained therefore far away from
the turmoil of Athens: the observatories of the astronomers
were at Cyzicus on the Hellespont or at Cnidus on the south
coast of Asia Minor: the school of medicine was maintained by
one illustrious family in the island of Cos. If it be objected
that Aristotle lived in Athens, the answer is that Aristotle was
the son of a physician, was not born or bred in Athens, never
became an Athenian citizen, disliked Athens and left it, and
was not able to command in Athens an audience for anything
but metaphysics. The Peripatetic school was as unscientific as
the Platonic. There was not yet a “university,” to which all
the world might come and learn all the knowledge that was in
existence. Alexandria was the first city to deserve that name.
Athens might have won it, but when Athenian politics were no
more and the field was free for other pursuits, Alexandria had
forestalled her.
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118. The political supremacy of Athens was first broken by
the Peloponnesian War (B.c. 431—404). During the next 50
years she was slowly recovering, but in the meantime a more
powerful enemy was growing in the North and the Macedonian
phalanx was in training for the subjugation of Greece. It came
down at last (352 B.c.) under the command of Philip, the father
of Alexander the Great. In the struggle that followed, Athens
once more took the lead; but she was beaten at Chaeronea
(338 B.c.) and never held up her head again. Alexander
succeeded his father in 336 B.c. and, after securing his power
over Greece, started on his unparalleled career of conquest. In
thirteen years he scoured the earth from Macedonia to the
Indus, from the Caspian to the cataracts of the Nile, and left
behind him, wherever he went, a monument of his visit in the .
shape of a new city, founded on some aptly chosen position, to
be at once a fortress and a centre of commerce’. In this way
Alexandria was founded in B.c. 832, when Alexander turned
from Palestine into Egypt. The site was chosen, the ground-plan
drawn and the mode of colonization directed, by Alexander himself,
but the building of the city, which was entrusted to Dinocrates,
the architect of the temple of Diana at Ephesus, was not com-
pleted till many years afterwards. The structure, when finished,
was worthy of the site and Alexandria seemed to Ammianus
Marcellinus still, in the 4th century after Christ, “vertex
omnium civitatum,” the noblest of all cities. It was divided
into three districts, Greek, Jewish and Egyptian, for Alexander
was above all things cosmopolitan and deliberately attempted,
on many occasions, to break down the barriers of race and

1 Besides Alexandria in Egypt, he
founded at least 17 other Alexandrias
(not to mention other cities) in dif-
ferent parts of central Asia. Herat,
Candahar and probably also Merv,
attest the excellence of his judgment.
The abundance of Greek coins which
are still current in the bazaars of
Afghanistan and the signs of the in-
fluence of Greek sculpture and archi-
tecturec which everywhere abound in

G G. M.

those regions, show how successfully
they were opened up to Greek com-
merce and civilization. Alexander’s
example in this respect was followed by
his successors. Ten cities of Antiochia,
six of Seleucia, six of Apamea, and six
of Laodicea were built in & short time
by the kings of Syria: and similarly
in Egypt the Ptolemies studded the
coasts with cities of Ptolemais, Arsinoe,
Berenice.

13
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creed’. It became at once the meeting-place of all the most
important trade-routes; Greek, Egyptian, Arabian and Indian
produce passed through it and brought with them a motley host
of new settlers. The travels of Alexander had excited through-
out the civilized races a new and burning curiosity to see and
know more of one another and of the world, and the place
where of all others this curiosity could best be satisfied, was

Alexandria.

To the sovereignty of this magnificent city Ptolemy, the son
of Lagus, succeeded on the partition of Alexander’s empire
after his death in 322 B.c. Ptolemy was a man who had
caught much of Alexander’s own enthusiasm, and it was he who
created the university of Alexandria. The university buildings
stood near the palace and were provided with lecture-rooms,
Jaboratories, museums, a zoological garden, promenades and other
accommodations, all clustered near the great Library. This
contained in the time of Ptolemy Philadelphus (about B.c. 260)
400,000 rolls, representing about 90,000 distinct works, and
there was another library in the Egyptian quarter, containing
about 40,000 works. The collections were afterwards greatly
increased and were always under the care of some distinguished
scholar. So equipped for the pursuit of learning, Alexandria
had yet another advantage, in that she enjoyed under the
~ Ptolemies for nearly 200 years a profound peace both internal
and external. A short period of conflict followed and then
again the ‘majestas Romanae pacis’ settled upon her and she
was free to pursue her old callings, of commerce on the one
side, of learning on the other. Itisno wonder that to this haven
every student resorted and that to Alexandria we owe whatever
is best in the science of antiquity. Criticism, mathematics,
astronomy, geography, medicine, natural history, jurisprudence

1 E.g. at Susa, in B.c. 325, he him-
self married Statira, daughter of Darius,
and compelled 100 of his generals and
10,000 of his soldiers to marry Persian
wives. At Babylon, in B.c. 823, he

corporated 20,000 Persians in his
army and mixed them with Mace-

donians in the same phalanx. To the
cities which he founded he imported
colonists of all nations, and after his-
death there was found, in his written
orders to Craterus, a plan for the
wholesale transportation of inhabitants
from Asia to Europe and vice versa.
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were for nearly a thousand years taught in her schools. Other
schools arose elsewhere (notably at Pergamum) on the model of
these, but none were so complete or so long-lived. Almost all
the mathematicians who remain to be mentioned in this history
were professors or had been students in the University of
Alexandria.

119, A distinguished Athenian, Demetrius Phalereus, was
invited to take charge of the Alexandrian Library and it
is probable that Euclld was invited, with him, to open the
mathematical school. That Euclid lived and taught in Alexan-
dria is certain’, but in fact nothing more is known of him save
what Proclus has added to the Eudemian summary, viz. that he
lived in the time of Ptolemy I. and was junior to Plato, senior
to Archimedes and Eratosthenes. The first Ptolemy reigned
B.C. 306—283, and these dates must be taken to determine the
period of Euclid’s greatest activity. Proclus® says he was a
Platonist but adds immediately the obviously untrue state-
ment that the whole aim of the Elements was to show the
construction of the five regular solids, “the Platonic figures.” It
is true that the Xmth Boek concludes with the construction of
these solids, but it is not true that the whole of the preceding
books are designed purely for this purpose. It may, neverthe-
less, be that Euclid was a Platonist, for most of the geometers
who could have taught him, were of that school. All the
other historical notices of Euclid are either trivial or un-
trustworthy or false. Pappus® says that he was gentle and
amiable to all those who could in the least degree advance
mathematical science, but the context shows that Pappus here
refers not to Euclid’s personal conduct but to his criticism
of his predecessors. A little story related by Stobaeus® is
perhaps authentic and is at least ben trovato. “A youth who
had begun to read geometry with Euclid, when he had learnt
the first proposition, inquired ‘What do I get by learning these

1 Pappus, vir. 35, p. 678 (Hultsch’s is not genuine., It is given a propos
ed.). of some disparaging remarks on Euclid
2 Ed. Friedlein, p. 68. by Apollonius of Perga. See the pre-
3 Ed. Hultsch, vir. 34, pp. 676—678.  face to his Conics, quoted infra, p. 248.
Hultsch, however, thinks the passage 4 Floril. 1v. p. 250.
’ 13—2
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things ? So Euclid called his slave and said ‘Give him three-
pence, since he must make gain out of what he learns’” These
are almost the only personal details which Greek writers have
preserved, for in truth ‘Euclid’ soon became with them, as it is
with us, synonymous with ‘Elementary Geometry'’ Syrian and
Arabian writers however know a great deal more. They tell us
that Euclid’s father was Naucrates, his grandfather Zenarchus:
that he was a Greek who was born in Tyre and lived in
Damascus: that he was much later than Apollonius, whose
Elements he edited: that the name Euclides is derived from two
Greek words, ucli a ‘key,’ and dis ¢ geometry,’ so that Euclides
means ‘key to geometry®?’ Much of this information is pure
invention®, the rest is founded on the preface to the X1vth Book
of the Elements, which was written not by Euclid but by
Hypsicles. In the middle ages some new statements appear, for
Euclid was then always confused with Euclides of Megara!,
a pupil of Socrates who founded a small philosophical school
which Plato greatly disliked. Dismissing these errors, we can
retain only the meagre biography that Euclid was a Greek who
lived and taught at Alexandria about 300 B.C.

120. The fame of Euclid, both in antiquity and in modern
times, has always rested mainly on his Elements (crocyeia).
From this work he acquired among Greeks the special title of

1 So Aelian, Hist. Anim. v1, 57, says
that spiders can draw a circle and
‘need not Euclid” (Edx\elSov déovrar
ovdév). So an Arabian, Ibn Abbad,
quoted by Hadji Kalfa, maintained
that Euclid was the name of a book,

2 Casiri, Biblioth. Arab. 1. 389,
Abulpharagius, Hist. Dynast. p. 41,
Hadji Kalfa, Zexic. Bibliogr. 1. p. 380
8qq. ete. The Arabian authorities on
Euclid’s life and writings are most care-
fully collected, discussed and rejected
by Heiberg, Litterar. geschichtliche
Studien iiber Euklid. Leipzig, 1882,
pp. 1—21. This work will hereafter
be referred to as ‘Heiberg.” Compare
also Cantor, p. 224, Hankel, p. 383.

3 The Arabs tried to claim Orien-
tal origin or education for all the
great Greek mathematicians. So Nasir
Eddin, who was born at Tus in Kho-
rassan, says that Euclid was born there
also.

4 E.g. Campano’s translation is de-
scribed in the colophon Opus Elemen-
torum Euclidis Megarensis (Venice,
1482). Many more examples of this
error are collected by Heiberg, pp. 23,
24. Diog. Laertius (11. 106) says that
Euclides Megarensis was sometimes
said to have been a Sicilian from Gela.
Hence arose the very frequent state-
ment, that Euclid the geometer was a
Sicilian.
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o arouyetwTrs, ‘the author of the Elements’; for he so completely
superseded his predecessors Hippocrates, Leon and Theudius, that
not a trace of their works survives, and so completely satisfied
posterity that, until recent times, no attempt seems ever to
have been made to supersede the Elements as Euclid left them.
His success, moreover, was evidently immediate, for Archimedes
and Apollonius and “all the rest,” as Proclus says®, “treat the
Elements as perfectly well known and start from them.”

It is needless, in England, to describe this book with
any detail®, or to criticise it. Every schoolboy possesses the
greater part of it and every one, who is likely to read these
pages, is able to recognise both its merits and some at least

of its defects*,

The space which is saved by omitting matter

which is so well known, may be better utilised by remarks
which do not find a place in English editions of Euclid.
It should be said then, what the preceding chapter has

1 See for instance, the beginning of
Heron’s Definitions, Hultsch’s ed. p. 7,
8. 1, and the last section of Marinus’
Pref. to Euclid’s Data, printed in
Gregory’s ed. of Euclid, pp. 4563—459.
More reff. in Heiberg, pp. 29, 30.

3 Ed. Friedlein, p. 71, 16.

3 It may be useful, perhaps, to add
a short statement of the contents of
the xrrth Book, which is now seldom
seen. Itis composed of 18 propositions.
The first five (attributed to Eudoxus)
relate to lines cut in extreme and mean
ratio. Suppose the whole line a, the
segments b, ¢, of which b is the greater.

a\? a\2
Then, prop. 1, (b + 5) =5 (5) and

conversely, (prop. 2) if this equation
is assumed, b is the greater segment.
3 3
Prop. 3,(c + ;) =5 (g) . Prop. 4,
a?4c?=38b%. Prop. 5, If b be added to
a, the line (a +b) is divided in extreme
and mean ratio: b (a+b)=a?. Prop.
6, If a rational line be cut in extreme
and mean ratio, each segment is the

irrational line called dworous (supra,
p. 81). These props. are then applied
in an investigation chiefly of the re-
lations between the sides of a pentagon,
hexagon and decagon imscribed in the
same circle with one another and with
the diameter (props. 7—11). Prop. 12,
The square of the side of an equi-
lateral triangle insoribed in & circle is
three times the square of the radius.
Then follow five problems, to insecribe
in the same sphere (13) a pyramid, (14)
an octahedron, (15) a cube, (16) an
eicosahedron, (17) & dodecahedron and
to show the relations of their sides o
the diameter. In prop. 18 the sides of
these inscribed figures are compared
together. The reader will here see for
what purpose Book x. is inserted in
the Elements. Book xiv. was added
by Hypsicles, xv. probably by Damas-
cius of Damascus about A.p. 510,

4 A very neat and comprehensive
criticism is given by Prof. de Morgan
in the article Eucléides in Smith’s
Dict. of Gk. and Rom. Biogr.
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abundantly proved, that Euclid is certainly not the author of
all the propositions which are contained in the Elements. In
the whole collection there is only one proof (I. 47) which is
directly ascribed to him. Many more, no doubt, are his or
partly his’, but his merit, as Proclus (p. 69 of Friedlein’s ed.)
expressly says, lies chiefly in the selection and arrangement of
the propositions. The word ‘selection’ (éxhoy7) implies that
some matter is omitted and Proclus again (pp. 72—74) ex-
pressly says that much which was not in itself generally useful,
or followed very easily from inserted propositions, was discarded:
e.g. (p. 72, 13) the prop. that the perpendiculars drawn from
the angular points of a triangle to the opposite sides meet in a
"point: (p. 74, 18) the construction of an isosceles or scalene
triangle, or propositions on unclassed irrational lines. Hence
not only Archimedes and Apollonius, but Euclid himself, refer
to and use, as well-known truths, propositions which are not
included in the Elements at all. Thus, to take only an in-
stance or two, in the Sectio Canonis, prop. 2, Euclid says
“I have learnt that if any series of numbers be in continued
proportion, and the first is a measure of the last, it is also
a measure of all the rest,” which is not stated in the Elements.
In the de Divisionibus, prop. 23° he cites the fact that if
a:b>c:d, then a—b:b>c~d:d In the Data, prop. 67,
(76 of Simson’s ed.) Euclid uses a proposition that, if in an
isosceles triangle a straight line be drawn from the vertex
to the base, then the square of one of the equal sides is equal to
the square of the straight line so drawn + the rectangle under
the segments of the base®. (Simson adds a lemma to prove this.)
Evidence of this kind, which shows that Euclid used bis dis-
cretion in rejecting available matter, which was unquestionably
useful for some purposes, shows also that he had a definite

! Proclus, at the end of the Eu- 4. <¢:d, which Archimedes also
demian summary, says that Euclid wuses. Sph. et Cyl. m.9, ed. Torelli, p.
brought to irrefragable proof prapo- 186. 12.

sitions which had been less strictly 3 For many other examples see
proved by his predecessors (r& waha- Heiberg, pp. 15, 31, 32, 53, n. and rcff.
k&Tepoy dewkvipeva, Tots Eumpocbev). there given.

? 8o in prop. 22 if ad <'bc, then
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design in the composition of the Elements. We may therefore,
perhaps, attribute to his deliberate choice all the characteristics
of the book. With Euclid the word orocyeia’ no longer means
“easiest” or “preliminary” propositions in geometry, but means
the whole of geometry, exclusive of certain subjects (the
geometry of conics and other higher curves), treated by one
method (that of synthesis) only. To him also perhaps may be
attributed that orderly method of proof by the regular stages of
general enunciation (wpéracis), particular statement (€xfeaus),
construction (katackevn), proof (amwodeifis), conclusion (cvumré-
pacpua) and the addition of the final Q. E. D. (Omrep &8er Seifar)
or Q. E F. (§wep &8er morjoar)®. At any rate, Autolycus, just
before Euclid, knows only mpéracis and dmdédeifis, Archimedes,
just after, often dispenses with wpdrages or ébeais® The
design of the whole book, viz. to proceed from a few definitions
and axioms, by sure steps which are always of precisely the same
kind, to the furthest limits of the subject, is certainly Euclid’s,
and the pattern of each particular proof is of a piece with
the pattern of the whole book*.

121. Secondly, some remarks will not be out of place
on the text of Euclid as we have it. Theon of Alexandria, the

1 Etymologically, orouxelor means any
one of a series (orotxos), one thing of a
number of similar things placed ina row.
Hence it comes to mean the elements
of which composite things are com-
pounded, e.g. the single sounds which
go to make & word or the parts of
speech (Arist. Poet. 20, 1 & 2), or
the four elements of which the uni-
verse was supposed to be made. With
Euclid the etymological meaning seems
to be uppermost. He calls his buok
78 groixela because it is & connected
whole and each proposition leads to
another.

# Proclus, pp. 203, 210.

3 Bretschneider (p. 21), Cantor (pp.
236, 237) and Heiberg (pp. 35, 36)
deny that Euclid invented this form
of proof, on the ground that Proclus
does not expressly attribute it to him,

and that large portions of Euclid (e.g.
Book v.) are attributed to Eudoxus
and other predecessors.

4 A few of Euclid’s Greek terms may
be here added from the definitions
(6poe). onuetov=a point: evbeia ypappun
=straight line: éxpdreia =superficies:
ériwedos=plane: ywrla=angle: evfv-
ypaupos =rectilineal: ép06s =right: xdg-
eros=perpendicular: duB\Vs=obtuse:
dtis=acute: oxfua="figure: wepipépea
=circumference. There is no word
for radius, which is called 7 éx Tol
xévrpov (ypapur). TerTpdywvov=square:
érepounxrjs=oblong: éxBdA\ecbfaui=to
be produced : éyypdpesfar=to be in-
scribed : wepiypagesfar=to be circum-
seribed : duota oxrjnara =similarfigures:
dvrirerovf@éra=reciprocals: dkpor xal
péoov Noyov Terunofac=to be cut in
extreme and mean ratio.
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father of Hypatia, says, in his commentary on the Almagest
(ed. Halma, 1. p. 201), “ that the sectors of equal circles are to
one another as the angles which they span (é¢’ &v BeBrnra-
aw) has been proved by me (5uiv) in my edition of the Elements
at the end of Book vL” (VL. 33, pt. 2). From this it is evident
that Theon edited the Elements, and in fact all the MSS. which
first came to light are entitled after Theon’s edition’ or ‘after
Theon’s lectures’ (¢mo cvvoveidv Tév Oéwvos)'. For this reason,
on the one hand most commentators of the 16th century
supposed that Euclid had left only the enunciations but Theon
added the proofs® and, at a still later time, when this notion
was exploded, other commentators, especially Robert Simson®,
attributed to Theon all the defects which they could not fail to
perceive in the Elements as they knew them. But at the
beginning of this century, among various other MSS. which
Napoleon sent to Paris from the Vatican library and which were
restored after the peace in 1815, there was found one (Vat. 190)
of the 10th century, in which the second part of Euclid vI. 33
was written not with the text but in the margin. Many other
variations from the received text were also perceived in it
(e.g. the useless definition of compound ratio, Vi def 5,
was omitted‘), and from these facts F. Peyrard, who printed
it (Paris, 1814—1818), concluded that he had here a copy
of Euclid anterior to Theon’s recension. Nevertheless the
variations between this MS. and the others, which give Theon’s

1 E.g. for the first title Cod. Flor. 3 See the conclusion of his notes.

Laur. xxvirr. 3 of the 10th or 1lth
century, for the second Laur. xxvir. 1
of the 13th century. More in Heiberg,
p. 174.

2 Heiberg, p. 175, gives a great many
instances: e.g. Xylander (Holtzmann)
in his German translation (Basil, 1562)
warns the reader that the demonstra-
tions were added ‘nit von jme dem
Euclid selbs’ but by other learned men,
Theon, Hypsicles, Campano ete. For
the contrary opinion see the quotations
from Sir Henry Savile in the Preface
to Gregory’s Euclid (1703).

“From the preceding notes, it is suf-
ficiently evident how much the Ele-
ments of Euclid, who was a most
accurate geometer, have been vitiated
and mutilated by ignorant editors,” ete.

4 Simson had, on his own authority,
rejected it. See his note to vi. 23. It
does not occur, nor does vr. 33, pt. 2,
in Campano’s translation (Venice, 1482)
from the Arabie, but though Campano’s
Arabic original was not the Theonio
text, it is not a close enough version of
Euclid to be useful for critical pur.
poses. Heiberg, p. 178.



e

EUCLID, ARCHIMEDES AND APOLLONIUS. 201

text, are not at all important and show that Theon, in the
main, confined himself to trifling verbal alterations.

It appears, however, from the citations contained in Proclus’
commentary on Eucl. 1. that Proclus, though he did not use the
Theonic text, did not use the Vatican either or, if he did, was
sometimes dissatisfied with it: and it appears also, from
quotations in other authors, that the text of Euclid had for
many centuries been subject to criticism'. This criticism, it is
true, was, for the most part, of a verbal kind, but some real dis-
cussion seems to have taken place over the definitions (8por),
postulates (alripara), and axioms (xowai &vwoiar, ‘common
notions’”) to ‘Book I. Thus in our MSS. the definition now
printed as III. def. 6 (segment of a circle) is appended to the def. 1.
18, but Proclus did not have it in that place®. This is not an
important matter, and, in fact, Heron, who lived about 100 B.c.,
quotes in his ‘Definitions’ all the definitions of Euclid, save the
arithmetical, in practically the same form, though not in
the same order, as that in which we now have them‘. But the
postulates and axioms were the subject of more serious contro-
versy. Our editions have three postulates and twelve axioms,
of which the last three are 10, Two straight lines cannot
enclose a space: 11, All right angles are equal: 12, If a
straight line meet two straight lines, so as to make the two
interior angles on the same side of it together less than two
right angles, these straight lines will meet if produced on that
side. Of these three, the first (4. 10) appears in many
ancient MSS. as Az. 12, but in the Vatican as Postulate 6°.
Proclus (p. 184, 8), however, who omits it altogether, says that
Geminus (cir. 60 B.c.) would reject it from the Azioms, as
a proposition requiring proof, and himself (p. 239) gives a

1 Alexander Aphrod. in A4rist. Anal.
Prior. (Venice, 1530) 87. a, quotes as
Euclid x. 4, the proposition which is
now Euclid x. 5: and Eutociusin 4pol-
lonii Conic. p. 44, quotes as Eucl. rx. 15
the prop. which is now Eucl. m1. 16.
Both these cases may be mere slips.

3 Euclid does not use the name
‘axioms,’ dtuduara, which Proclus has

(e.g. p. 193).

3 See Proclus, p. 158. The definition
is quoted in Heron (ed. Hultsch), Deff.
no. 33, but, curiously enough, Heron’s
no. 31 is Eucl. 1. 18 and his no. 34 is
Euecl. 11, 8, so that no inference can
be founded on this arrangement.

4 Heiberg, pp. 186—192.

8 Heiberg, p. 182, nn.
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proof in his commentary on 1. 4. The last two (dz=. 11, 12)
are given by Proclus as Postulates 4, 5, and so also in the
Vatican MS. and the older MSS. of the Theonic recension.
But as to Post. 4 (dAz. 11), Proclus says (p. 188, 2) that
Geminus wished to take it from the postulates and add it
to the axioms, and as to Post. 5 (Az. 12), he says (p. 191, 21)
that it ought to be struck out of the postulates and proved as a
theorem, like its converse, and for this opinion he again cites
Geminus as an authority”. With regard to Axioms 1—9,
Proclus says (p. 196, 15) that Heron wanted to admit only the
first three, and in fact Martianus Capella in the 4th century
(Vupt. V1. 723) quotes only these three as ‘communes animi
conceptiones.” Proclus himself quotes only five (viz. 1, 2, 3, 9,8,
in this order), says (p. 197, 6) that Pappus added Azx. 4, 5,
though not in their present form, and himself expressly rejects
Azz. 6 and 7 (p. 196, 25), which stand in the Vatican and are
therefore older than Theon. The evidence, therefore, on the
whole, shows that Euclid originally wrote five postulates, of
which the fourth and fifth were those which are now printed as
Azz. 11 and 12, and perhaps four axioms, of which the first
three were the present Azz. 1—3, and the fourth was the
present Aa. 10. The number of the postulates is clearly
attested by Geminus, Proclus and the oldest MSS.: but of the
axioms we can only say, with certainty, that Nos. 4 and 5 are
due to Pappus and 11 and 12 are transferred from the postulates.

But though some reasonable doubt remains as to the
axioms, there is none at all as to the proofs of the propositions.
These are very seldom mentioned by ancient writers with
an exact reference to the number of the proposition nor are
whole proofs ever quoted, but there is no trace of any contro-
versy as to any Euclidean proof: the extracts of Proclus show
that he had Book I. almost word for word as it stands now, and
the Vatican MS. agrees, in all but trifling details, with the

1 Nevertheless, p. 193, 22 he rejects  UA»s).
it from the axioms as unnecessary, on 3 Ptolemy (in Proclus, pp. 362—368)
the ground that it merely describes ‘a  attempted to prove it as theorem. See
characteristic of the subject-matter of  post.
geometry’ (t0ud éore T9s ~yewperpicns
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copies of Theon’s recension. From this it is evident that the
defects of Euclid are of his own making and not, as Simson
would have it, the fault of bungling editors.

122. Lastly, it will perhaps be interesting to show what
have been the fortunes of Euclid’s Elements and how they have
come into the possession of English schoolboys and been made
the staple of our mathematical education’. In Alexandria this
book occupied the same place as with us, and Theon’s edition of
it was made, nearly 700 years after Euclid, for the benefit of
the students who attended the editor’s lectures. It does not,
however, seem to have been at all known in Italy, for Boethius,
who (about A.D. 500) wrote a Latin geometry, contents himself
with giving merely the enunciations of Book L and of some
propositions in Books 111. and 1v. of Euclid and adding at the
end, as a stimulus to the mind, the whole proofs of the first
three propositions of Book 1. He then proceeds (in Book 11.) to
the calculation of areas etc. of given dimensions, the practical
geometry for which alone the Romans had any desire. Euclid
was the Greek text-book and was confined to Greek schools, or
to those which were founded on the model of Alexandria, such
as the Syrian schools of Antisch and Emesa and Damascus, and
in particular, the school of Nestorian Christians at Edessa.
These latter, after the terrible sack and ruin of Alexandria
in 640, became the chief repositories in the East of all Greek
learning. To them belonged the chief physicians of that
time, who were invited to Bagdad to attend upon the
Abbasid Caliphs®. The Arabs did not fail to remark that
these Jewish and Christian doctors relied upon the writings

1 Most of the facts given in this
section are taken from various chapters
of Hankel, pp. 231—237 (on Arabic
translations): pp. 307—317 (Gerbert
and his predecessors): pp. 334—348
(translations from the Arabic, etc.):
pp. 354—359 (Mathematics in foreign
Universities). I have added some tri-
fling details from Cantor, whose Vor-
lesungen Vol. 1. only go as far as the
year 1200. Hankel's account of the
Arabs is taken chiefly from Wenrich,

De Auctorum Graec. Versionitbus Arab.
Syr. et Pers. Leipzig, 1842. Cantor
has a more recent authority, Kremer,
Kulturgesch. des Orients unter den
Chalifen (Vienna, 1877). English lite-
rature is ridiculously deficient in such
monographs,

2 It is said that the Arabs, when
they gave up the nomad life and settled
in Bagdad, became subject to various
disorders, which their native physicians
were unable to cure,
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of Hippocrates, Aristotle and Galen, and the medical books
of these three Greeks were therefore translated into Arabic from
the Syriac in the time of Harun al Raschid (786—809). An
intense interest in Greek science of every kind was thus aroused,
and in a few years translations of all the principal mathematical
books of Alexandria were secured. The Caliph Al Mamun®
(813—833) was especially zealous in this cause. He obtained
from the Byzantine empire, through his ambassadors, copies of
the Greek MSS. and established in Bagdad a college of Syrian
Christians who were nominally his physicians but were chiefly
engaged in translating the Greek books into Arabic. A little
earlier than this, in the time of Al Mansur (754—775), the
Arabian commerce with India had brought to the knowledge of
. Bagdad the Siddhanta or ‘System’ of Brahmagupta® This also
was translated and thus the Arabs acquired the Indian numeri-
cal symbols. The interest of Al Mamun in foreign science
was more than rivalled by his successors. The most famous of
the translators was one Honein ibn Ishak, a Syrian physician,
who was acquainted with both Greek and Arabic. He was
appointed, by the Caliph Mutawakkil (847—861), president of
the college of translators some of ‘whom were busy in rendering
Greek books into Syriac, the rest in rendering the Syriac
into Arabic. Honein and his son, Ishak ibn Honein, revised
the final Arabic translations, but as they were both ill-versed in
mathematics, Tabit ibn Korra (836—901), another Syrian,
edited their texts with the knowledge of a competent mathe-
matician. It was in this way that the works of Euclid, Archi-
medes, Apollonius, Theodosius, Ptolemy and other Greeks re-
ceived a new lease of life among a strange people®. Ptolemy -
seems to have been the first of these to be translated. A
portion of the Elements of Euclid was translated in the time of

1 See Gibbon’s Chapter L.

3 Cantor, pp. 597, 598.

3 Diophantus was not translated till
the end of the 10th century (by Abul
Wefa). Arabian algebra however be-
gins in 820 with the 41 gebr v’ al Muka-
bala of Mohammed ibn Musa Alchwar-
izmi, who cites no authorities but has

an advanced knowledge of his subject.
Hankel (p. 263) suggests that the Dio-
phantine analysis had become tradi-
tional in the Syrian schools, Cantor
(pp. 619, 620) leaves it an open ques-
tion whence Mohammed obtained his

Algebra.
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Harun al Raschid: Al Mamun ordered another and a complete
translation, Honein or his son Ishak prepared a third, Tabit ibn
Korra published the final redaction.

But Euclid did not come into Europe from Bagdad. Some
fifty years before the Abbasid Caliphs settled in that city, the
Arabs had penetrated into Spain and taken possession of the
ancient city of Cordova. Here, in 747, the Emir Abdarrahman
founded a separate kingdom and the Arabs of Spain were
thenceforth wholly dissociated from their kinsmen in the East.
Both nations had the same intellectual tastes: each was as
enthusiastic as the other for medicine, mathematics and astro-
nomy, but each pursued its studies in its own way and with
some considerable jealousy of the other. Nevertheless, by some
means which has not been explained!, the Arabs of Spain
acquired the same books which were used in Bagdad and had
also their Indian numerals, their Ptolemy, Euclid and Aristotle.
In the meantime, among the Christians of the West, learning
was at its lowest ebb. Their mathematical interest was con-
fined almost entirely to arithmetic and, as to geometry, “we
find in the whole literature of that time hardly the slightest
sign that any one had gone further in this department of the
Quadrivium than the definitions of a triangle, square, circle or of
a pyramid or cone, as Martianus Capella and Isidor (Hispalensis,
bishop of Seville in 636) left them®” The study was revived
by the great Gerbert, a native of Auvergne, born in the first
half of the 10th century. He, after a visit to Barcelona, where
perhaps he acquired somehow an inkling of the Arabic sciences®,
became the teacher of the Cathedral school at Rheims and
acquired the greatest renown by his mathematical ability. He
‘was, after many other promotions, elected Pope in 1003, under
the name of Sylvester II. Gerbert, while abbot of Bobbio on
the Trebbia (about 980), came across the Codex Arcerius con-

1 Pogsibly Jewish pedlars of books and the common statement that he
had something to do with it, went to Cordova is for many reasons
3 Hankel, pp. 807, 311, 312. Com- incredible. Nevertheless, it was he
pare Hallam, Middle Ages, 1. chap. who introduced the Arabic numerals
ix. pt. 2, p. 420 (12th ed.). (as apices) into the Western schools.
3 Gerbert certainly knew no Arabic, Hankel, pp. 327, 328, supra, pp. 37—39.
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taining the works of the old Roman surveyors (gromatici)’. He
studied them with avidity and founded on them his own
Geometry. A little later, he found at Mantua a copy of the
Geometry of Boethius. In this way the study of practical
geometry was renewed and some small portions of Euelid
became the common property of the Christian schools. But it
was not for 100 years yet that men began to seek the Arabic
text-books. The Moorish Universities of Cordova and Seville
and Granada were dangerous resorts for Christians and, though
it was known that all manner of learning was to be had there,
no student ventured to steal it. An Englishman was the first,
or one of the first two, to undertake the enterprise. In 1120,
Adelhard of Bath obtained in Spain a copy of Euclid’s Elements
and translated them into Latin. Translations from the Arabic
of other Greek works, especially those of Aristotle, soon followed®.
About 1186 Gherardo of Cremona made another translation
of the Elements and, again in 1260, Giovanni Campano repro-
duced Adelhard’s translation under his own name® and ob-
tained with it a wide celebrity. The fruit of these translations
soon followed. In 1220, Leonardo of Pisa, a mathematician of
great power and originality, published his Practica Geometriae,
“which though it deals with the calculation of areas and numeri-
cal ratios of spaces, is founded on Euclid and Archimedes and
Ptolemy*, and contains some trigonometry and conics. A little
later Roger Bacon (1214—1294) was urging the claims of
experimental science as taught by Aristotle. But the greatest
result of the inflow of Arabian learning was the organisation of
study in Universities. At Paris® indeed, the study of geometry

1 See Cantor, pp. 467, 734, 738 —743.

3 The Jews, who_ were tolerated by
both Arabs and Christians, assisted
largely in this movement. See Jour-
dain, Rech. sur les Trad. Lat. d’Aris-
tote.

8 Prof. de Morgan first suspected
this. For a full bibliography of Euclid
see his art. Eucleides in Smith’s Dic.
of Gr. and Rom. Biogr.

4 Hankel, pp. 344—346.

5 Unofficial lectures of some kind

seem to have been given in Paris all
through the 11th century and even
earlier. But it was Abelard (1079—
1142) who made the University of
Paris famous, Similarly, all the other
Universities seem to have been at an
early time centres of instruction. But
it is in the 13th and 14th centuries
that they first reccive charters of in-
corporation, Paris received its charter
in 1200. See Hallam supra cit. pp.
420—427,
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was neglected and Aristotle’s logic was the favourite subject.
But at the reformation of the University in 1336 a rule was in-
troduced that no student should take a degree without attend-
ing lectures in mathematics and from the preface to a commen-
tary on the first six Books of Euclid, dated 1536, it appears that
a candidate for the degree of M.A. was then required to take
an oath that he had attended lectures on the said books, In
Leipzig (founded 1389), the daughter of Prague, a similar rule
was made, but it is doubted whether the rule was enforced,
since in the lists of lectures for the years 1437, 1438, none
on Euclid are mentioned’. But in Prague itself (founded 1350)
mathematics were more regarded. Candidates for the Baccalau-
reat were required to take up the treatise of the Globe by
Johannes de Sacrobosco (i.e. of Holywood in Yorkshire) and, for
the Master’s degree, the first six Books of Euclid and many
subjects of applied mathematics were required. At Oxford, in
the middle of the 15th century, the first two books of Euclid
were read” and no doubt the Cambridge curriculum was similar.
It will be seen, however, that though the study of geometry was
maintained (indeed it was part of the ancient Quadrivium) it was
maintained only in a half-hearted manner and did not produce
a tithe of the results which might have been expected from the
brilliant commencement of Leonardo of Pisa. It was, in fact,
driven out of the field by Aristotelian logic and the stupid
subtleties on which that logic was employed by the schoolmen.
Another Renavssance was still wanted. This came after
Constantinople was taken by the Turks in 1453 and a crowd of
Greeks fled into Italy bringing with them precious manuscripts
of Greek literature. About this time also printing was invented
and books became comparatively cheap and common. Cam-
pano’s (stolen) translation of Euclid was printed in 1482 by

EUCLID, ARCHIMEDES AND APOLLONIUS,

1 Cologne, founded 1389, was equally
behindhand and so were the Italian
Universities of Bologna, Padua and
Pisa, where astrology was the favourite
subject. As late as 1598, the professor
of mathematics in Pisa was required to
lecture, not on the Almagest, but on the

Quadripartitum, an astrological work
attributed to Ptolemy. Hankel, p. 357.

2 Churton’s Life of Smyth, p. 151,
quoted by Hallam Lit. of Eur. Pt. 1.
ch. 2, s. 34, n. 1have been unable to
find any statement of the Cambridge
course.
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Ernest Ratdolt at Venice, and many times afterwards. The
Greek text was printed in 1533 by Simon Grynzus at Basle.
Even still it cannot be pretended that Euclid or any other
mathematician occupied anything like the same amount of
attention as the writers of belles lettres. Nevertheless a con-
siderable number of commentaries were produced in the 16th
century and in 1570 an English translation from the Latin
was published (by Henry Billingsley). About the same time
Sir Henry Savile began to give unpaid lectures on the Greek
geometers at Oxford. In 1619, the Savilian professorships were
founded in that University, but it was not till 1663 that
a professorship of mathematics (the Lowndean) was given to
Cambridge’. The 70 years or so, from 1660 to 1730, when
Wallis and Halley were professors at Oxford, Barrow and
Newton at Cambridge, were the period during which the study
of Greek geometry was at its height in England. After
Newton’s time the whole field of mathematics and natural philo-
sophy was so rapidly enlarged that the Greeks, all except Euclid,
fell into neglect. But as modern learning advanced, so also
it became necessary that boys leaving school for the Universities
should take with them some preliminary knowledge of mathe-
matics and should stay at school longer to acquire this®. For
this purpose Euclid’s Elements was especially suited, but it may
be safely guessed that its place among our schoolbooks dates
only from the middle of the last century at the earliest. To

1 Sir Thomas Gresham founded a
professorship of geometry in London
in 1596. Briggs, a Cambridge man,
was the first professor but afterwards
became the first Savilian professor of
geometry at Oxford. At the latter
place, he began lecturing on Eucl. 1.
prop. 9, at which Savile had himself
left off. The mathematicians of this

time were more interested in algebra .

than geometry. Lord Herbert of Cher-
bury (1581—1648), in his Autobiogra-
phy, says that he sees little use in
geometry for gentlemey, though it may
perhaps help them to understand for-
tification.

2 This statement and the next are
made without much authority. I have
looked through all manner of biogra-
phies and “ memorials” without finding
any useful information on the curricu-
lum of a public school before 1750. The
evidence is abundant that, during the
last century, the average age of fresh-
men was gradually increasing. It may -
be gathered (e.g. from Wordsworth’s
Scholae Academ. ch. vii. and app. iii.)
that, during the same time, Euclid was
gradually passing from the Universities
to the schools. There is obviously
some connexion between the two facts.
When boys stayed longer at school,
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this time belong also all the famous editions of Euclid in
England, from Gregory’s Greek text (pub. 1708) to Simson’s
translation and commentary (pub. 1756) upon which all sub-
sequent editions have been more or less founded. Attempts
have recently been made to depose Euclid from his place in
the English educational system, but they are not likely to be
successful. No modern text-book can acquire an equal prestige
and the advantage to teachers, in knowing that all their pupils
possess and have studied the same rudimentary treatise, is not
lightly to be foregone.

123, The extant works of Euclid comprise, beside the
Elements, books of Data (Aedouéva), Pawoueva (‘appearances of
the heavens’), 'Onrikd, Katomwrpica (‘Reflections’), Kararoun
Kavovos (‘Division of the Scale’), a probably spurious Eicaywyn
‘Appovien (‘ Introduction to Harmony’), and a work De Divisioni-
bus, known only in the Arabic and in a Latin translation from
another Arabic edition.

The Data, the authenticity of which is attested by Pappus’,
consists of 95 propositions (Pappus knew only 90), preceded
now by an explanatory introduction written by Marinus of
Neapolis, a pupil of Proclus, at the end of the 5th century.
The book, which is printed in Simson’s Euclid with many
alterations, begins with some definitions declaring the meaning
of the word SeSouévov in various cases®: e.g. 1. Spaces, lines
and angles, are said to be given in magnitude when equals
to them can be found: 4. Points, lines and spaces are said
to be given in position, which have always the same situation
[and which are either actually exhibited or can be found,
Simson]: 6. A circle is said to be given tn position and in
magnitude when the centre is given in position, the radius
in magnitude. The propositions which follow deal with magni-

they would necessarily begin to learn 3 Marinus says that Euclid ought to
higher subjects. But why did theystay have started with a general definition
longer at school? The answer sug- of ‘‘given” and, after discussing many
gested in the text isinadequate butisno  suchhimself, concludes withthe opinion
doubt correct. Classical studies at the that the best definition is ¢‘knowable
Universities are not, and never were, and obtainable” (yvdpipov xal wépipov).
much different from those of schools. Gregory, pp. 457, 458.
1 vi1. ed. Hultsch, pp. 638—640,

G. G. M. 14



- 210 EUCLID, ARCHIMEDES AND APOLLONIUS.

tudes, lines, rectilineal figures and circles, in this order. The
following specimens will sufficiently show their character. Prop.
VIIL (Simson, 9): Magnitudes which have a given ratio to the
same magnitude have also a given ratio to one another. Prop.
XXXIL (35): If a straight line be drawn between two parallel
straight lines given in position, and make given angles with them,
the straight line is given in magnitude. Prop. xxxIxX. (42):
If each of the sides of a triangle be given in magnitude,
the triangle is given in species. Prop. Lif. (56): If a recti-
lineal figure, given in species, be described on a straight line
given in magnitude, the figure is given in magnitude. Prop.
LXXXIX. (92): If a straight line, given in magnitude, be drawn
within a circle given in magnitude, it shall cut off a segment
containing a given angle. The word given, it will be seen, is
employed in two significations. It means first ‘actually given’
and secondly, ‘given by implication, and the propositions are
all to this effect, that a certain partial description of a certain
magnitude, or of a certain geometrical figure, involves a more
complete description, just as the description of a triangle as
equilateral involves its description as equiangular. The book,
in fact, is a series of easy riders on the Elements. The proof
of the prop. LXXXIX. stated above, will serve well enough as a
specimen, By def. 1 the angle is ‘ given,’ if equals to it can be
found. Now let the straight line A C,given in magnitude, be drawn
within the circle ABC given in magnitude. It shall cut off a
segment containing a given angle. Draw
. AE, passing through the centre, and join
EC. Then because each of the straight
lines AC, AE is given, their ratio is
given: and the angle ACE is a right
angle, therefore the triangle ACE is
given in species and consequently the
angle AEC is given (i.e. can always be
reproduced). But the Data had a special use in Greek
geometry. They are described by Pappus and Marinus® as
forming part of the rémos dvavouevos. This was the name of
a special department of geometry, “matter prepared for those

1 Marinus in Gregory’s Euclid, p. 458.




EUCLID, ARCHIMEDES AND APOLLONIUS. 211

who, after going through the Elements, wish to acquire the
power of . solving problems proposed to them and useful for this
purpose only',” a course of practice in analysis. The way in which
the Data were found serviceable in analysis will be seen at once
by reference to the specimen of analysis given above (p. 178)
from Pappus. Analysis begins with a construction which is
assumed to satisfy the proposed conditions. These conditions
being thus converted into given elements of the figure, involve
others which are given by tmplication in the Euclidean sense,
and these again involve more, until by steps, every one of which
is legitimate, we reach a construction from which a synthesis
is obtainable. The Data are hints upon the most usual steps
in analysis.

The Phaenomena is a book of 18 propositions with a preface.
The authenticity of this also is attested by Pappus®, who gives
some lemmas, or explanatory propositions to it. The preface is
a statement of the considerations which show that the universe
is a sphere, followed by some definitions of technical terms.
Among these 6pllwv, as a substantive, and peonuBpiwds xvkos,
meridian circle, occur for the first time. The book consists of
geometrical proofs of propositions which are established by
observation, to the effect chiefly that stars situate in given
positions rise or set together or one after another in a certain
order. It is beyond question founded on the Moving Sphere of

1 Pappus, vir. ed. Hultsch, p. 634.
In the same place it is said that the
Téwos dvalvbuevos was written entirely
by Euclid, Apollonius and Aristaeus
the elder. The word 7éros here does
not mean locus, but has its Aristotelian
meaning of ‘store-house.’ So, at the be-

ginning of Book vi. of Pappus 7éxos do-

TpovopoUpevos means ‘the astronomical
treasury,” consisting of books which
he afterwards discusses. Téwos dvalus-
pevos means ¢ the treasury of analysis,”
just as in Aristotle’s rhetoric rdwo, or
kowol Témoe are collections of “common-
places,”remarksand criticisms towhich
the rhetorician may always resort. The

translation of 7émwos dvakvduevos as
‘locus resolutus,’ ‘liew résolu’ or ‘auf-
gelister Ort’ is therefore misleading
and has led, I believe, to some mis-
conception. See the translation in
Chasles, Les Porismes etc. p. 16.

3 vL (Hultsch), pp. 594—632. The
text which Pappus used was not quite
the same as that of Gregory’s edition,
which has a great many evident inter-
polations. These are discussed by
Heiberg (pp. 47—52), who has found at
Vienna a better MS. On the Phae-
nomena see also Delambre, 4str. Anc.
1. ch. 3, pp. 48—60.

14—2



212 EUCLID, ARCHIMEDES AND APOLLONIUS.

Autolycus, which is several times referred to, though not by
name', But it is evident also that Euclid is here quoting some
work on Spherical Geometry, by an unknown author. In
the preface, for instance, he cites casually the fact that if on
a sphere two circles bisect one another, they are both great
circles, and in the proofs he very frequently assumes in his reader
a knowledge of other such theorems’. A comparison of these
with the later Sphaerica of Theodosius shows that both Euclid
and his successor had recourse to the same original work, which
perhaps was written by Eudoxus.

The Optics, as commonly printed ®, consists of 61 propositions
preceded by a preface and a list of assumptions (féaess). The book
has often been suspected because these assumptions are absurdly
wrong and some of the proofs are, in the present text, slovenly

_or defective*. There seems, however, no fair reason for denying
its authenticity, which is attested by Theon in many passages of
his commentary on the Almagest. Pappus, though he does
not name the book, cites some propositions from it just before
he passes to Euclid's Phaenomena®. The preface, which is
obviously not by Euclid, is part of a report of a discourse
on Optics. It begins, for instance, with the words “After
proving the theorems concerning sight, ke proceeded to advance
some suggestions, arguing that light is carried in straight lines”
etc. A scholiast has added at the beginning of a Paris MS.®

1 E.g. Prop. 1 of Autolyeus is cited
in Eueclid’s 5th, Prop. 2 in Eueclid’s
4th and 6th, Prop. 10 in Euclid’s 2nd.
See Gregory’s ed. pp. 564, 567—569.
Heiberg, pp. 41, 42.

2 A full collection in Heiberg, pp.
43—46. The instances are difficult to
cite because Euclid does not actually
statethe theorems,but says,for instance,
in the course of a proof, ‘“since in a
sphere the circles 4BC, DEF touch
one another and the great circle GHK
passes through the poles of one circle
and the point of contact of both, there-
fore GHK passes through the poles of
DEF and is perpendicular to it.”
(Prop. 1. p. 564.)

-Savile,

3 In Gregory’s edition with notes by
Gregory suspects the book,
Peyrard rejects it altogether. Heiberg
(pp. 93—129) prints an improved text
in 62 props. from a Vienna M8., which
he thinks is genuine.

4 Such suspicion is protested against
by Kepler (Epp. ad L. Kepler cLir.)quoted
by Heiberg, p. 90, from E, Wilde, Optik
der Griechen, p. 9n. On the Optics,
see also Delambre, loc. cit.

5 Pappus vi. p. 568. The proposi-
tions cited are Nos. 85, 36, 37 of Gre-
gory’s ed. See Gregory’s preface and
Heiberg, pp. 130, 131,

6 Heiberg, p. 139.
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the words “the preface is taken from the commentary of Theon,”
and this may well be true, for the preface is quoted by Neme-
sius' who lived as early as the year 400. It is merely a
number of notes on the Euclidean hypothesis that light pro-
ceeds from the eye and not from the object seen. The contrary
is shown to be absurd by such arguments as these, that, if light
proceeded from the object, then we should not, as we often
do, fail to observe a needle on the floor, and a circle seen edge-
ways would not appear to be a straight line. The assumptions
(Géoers, posttiones, 12 in number) are such as 1. Rays emitted
from the eye are carried in straight lines, distant by an interval
from one another: 2. The figure contained by such rays is
a cone, having its vertex in the eye, its base on the object
seen’: 5. Things seen under a greater angle seem greater:
8. Things seen by the higher rays seem higher, etc. The
propositions, which are proved from these assumptions with
the aid of the Elements and Data, are of the following kind.
1. No object is seen ¢n toto at one time: VI. Parallel intervals
seen from a distance seem of unequal width: xvii—xx1. To
measure a given altitude, depth or longitude (proved by similar
triangles in the manner attributed above, p. 141, to Thales): XL.
The wheels of chariots appear now circular, now elliptical (7ape-
amacpévor) ete. Prop. XxXIL is ‘If a circle be described in the
same plane as the eye, it will seem to be a straight line.’
The proof is as follows®. Suppose the eye
at A: the circle BZI' in the same plane.
The rays AB, AZ, AT proceed from the
eye. Since (by prop. 1.) no object is seen
2n toto at once, the circumference BZ will
not be seen, but only its extreme points B
and Z, wherefore the circumference BZ will
appear to be astraight line. And similarly

1 epl pvoews dvOpdmov, ed. Matthaei depends on the assumption that the
vir. p. 179. line MB, being seen under a greater
2 So also Arist. Probl. xv. 5. angle than MA, appears longer etec.
3 Another proof attributed to Pappus  Aristotle Problem. xv. 5 gives a similar
in Gregory’s ed. p. 617, but given as  explanation.
Euclid’s in Heiberg’s text xy’, p. 102,
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the circumference ZI'. Therefore the whole circumference BI'
will appear a straight line.

The Catoptrica is a book of 31 propositions on reflections in
plane, convex and concave mirrors. It begins with assumptions
of the same character as those in the Optics, to which are
added four admitted phaenomena®, the last of which is that a
ring placed in a vase so as to be invisible from a certain
position, may be made visible from the same position by filling
the vase with water. The propositions start with proving that
the angle of incidence is equal to the angle of reflection and go
on to give reasons for such familiar facts as that in a convex
mirror objects seem smaller and, in a concave, are seen upside
down. But though Euclid certainly wrote a Catoptrica, which he
mentions in the Optics (Prop. Xx. of Heiberg’s text, p. 101, 1
25), it is in the highest degree improbable that he wrote this
one. The book is not cited by any ancient author. Heron’s
Catoptrica is cited for propositions which occur in Euclid and
the explanation of the phenomenon, above mentioned, is ex-
pressly attributed to Archimedes, who suggested that the water
acted as a mirror®. Probably Euclid’s original work was super-
seded entirely by Archimedes and the extant Catoptrica is the
work of a later compiler®.

The Sectio Canonis is a work on musical intervals, which is
probably Euclid’s, who, according to Proclus (p. 69) and other
commentators wrote an Elements of Music, but the Introductio
Harmonica is mainly a collection of musical terms, not agreeing
with the Sectio Canonis, and is generally rejected. It remains
only to mention the book mepl Siatpéaewr, which is ascribed to
Euclid by Proclus (pp. 69, 144). We have this in a Latin
translation (De Divisiontbus) made by John Dee, about 1563,
from an incomplete Arabic copy attributed to Mohammed
Bagdadinus. Woepcke subsequently found another and pro-

1 The first three are false. 8o also 2 Olympiodorus in Arist. Meteorol.
are a great many propositions. The 1. p. 94 (ed. Ideler). Euclid gives no
most curious slip is that Prop. 5 proves  explanation at all and does not allude
the contrary of Prop. 6. For along further to the phenomenon.
list of errors and inconsistencies see 3 Heiberg, pp. 148—152.

Gregory’s Prefatio, ¢ Heiberg, pp. 52—55.
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bably complete Arabic text!, containing some propositions

- on the division of the circle, which, Proclus says, Euclid’s book
contained but which are missing from Dee’s translation. The
work is a collection of problems on the division of plane figures
into parts which have to one another a given ratio: e.g. Dee’s
7th prop. is ‘By a line drawn from an angle of a given tra-
pezium, to divide the trapezium in a given ratio’: Woepcke’s
28th is ¢ To divide into two equal parts a given figure bounded
by an arc of a circle and by two straight lines containing
a given angle’ This, like the Data, may be regarded as a
collection of riders on the Elements®.

124, Beside these extant works, Euclid wrote others which
are lost. One of these bore the title wepl Yrevdapiwv, on
Fallacies, but nothing is known of it save from a notice of
Proclus®, who, in his usual wordy manner, explains that it con-
sisted of exercises (apparently geometrical) in the detection
of fallacies. The fact that Euclid wrote such. a book renders it
more than ever probable that his Elements was composed solely
for educational purposes and that Euclid is responsible for the
whole style and arrangement of the latter work. Beside the
Fallacies, we hear also of a treatise by Euclid on Témoc mpos
émipaveig or Loct on a Surfuce in two books. The meaning
of this title has occasioned some controversy. Prof. de Morgan
says frankly that he does not understand it and it is evident

1 Journ. Asiatique, 1851, p. 233 sqq.
See Ofterdinger, Beitrige zur Wieder-
herstellung etc. iiber die Theilung der
Figuren, Ulm, 1853. Heiberg, pp. 13—
16, 36—38. Cantor, pp. 247, 248.

2 There is appended to Gregory’s
Euclid a Latin fragment of one page
only entitled De levi et ponderoso, of
the origin of which nothing is known.
It was printed in the Basle translation
of 1537, but the publisher Hervagius
says only that somebody brought it to
him during the progress of the work.
It consists of nine definitions and five
propositions. The 4th definition is
“Bodies are equal in power (potentia)
which, in the same time and in the

same medium (air or water), move the
same distance.” The 7th is ‘‘Bodies
are of the same kind which are equal
in magnitude and in power.” The
book, if complete, would evidently far-
nish some interesting ideas on specific
gravity, but the language, especially
the use of potentia (dvvams), is not
Euclid’s or of Euclid’s time, and is
indeed hardly in the Greek style.
Heiberg, pp. 9—11.

3 p. 70 (ed. Friedlein). Heiberg, p.
38 n. suggests that there may be a
ref. to this book in the Schol. to Theaet.
191 B (vi. p. 248 of Hermann’s ed.)
and in Alex. Aphr. in drist. Soph. El.
fol. 25 b (Venet. 1520).
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that Eutocius was in the same predicament, for he says, after
describing other loct well enough, that the Témoc wpos émi¢avela
derived their name from the peculiarity of them’ (dwé T7js mepl
avrovs idiotiTos) and so leaves them'. Prof. Chasles supposes
that the book contained propositions on “surfaces of the second
degree, of revolution, and sections therein made by a plane”:
and he refers to the facts that Archimedes, at the end of Prop.
X1I. of his Conoids and Spheroids, says that certain propositions
on sections of conoids ¢avepal évre (i.e. “are clear,” not “are
well known” as Chasles takes it) and that the four lemmas
which Pappus gives on this book of Euclid® relate to conic
sections. Heiberg, however, by a very elaborate analysis of all
the passages in which 7émor of various kinds are described?’,
comes to the conclusion that Tomor mpds émidpavela means
simply “loct which are surfaces,” and that Euclid’s treatise dealt
chiefly with the curved surfaces of the cylinder and the conme.
That such surfaces were regarded as loci before Euclid’s time is
evident from Archytas’ solution of the duplication problem
cited above p. 182+

Pappus® attributes to Euclid also a treatise on Conic
Sections (kwwixd) in four books, which formed the foundation of
the first four books of Apollonius’ work on the same subject.
The former will more properly be considered when we come to
speak of the latter, but it may be mentioned here that the
names ellipse, parabola and hyperbola or the mode of producing
the conic sections which these names imply- cannot have been
Euclid’s, for not only are they expressly attributed to Apollonius,
but Euclid, in the preface to the Phaenomena®, uses the old

1 Prof. de Morgan in Smith’s Dic.
Eutocius in Apollon. Conic. Halley’s
ed. pp. 10—12.

2Pappus, vir. prop. 235 sqq. (Hultsch,
Pp. 1004 8qq.). Chasles, Apergu, Note,
1. pp. 278, 274. Montucla (1. p. 172)
says that téwo. wpds émipavelg were
surfaces, and subsequently (p. 215)
that they were lines of double curva-
ture described on curved surfaces, such
as 8 helix on a cylinder.

3 pp. 79—88.

4 Heiberg refers also to Pappus, pp.
258. 23, 260. 13, 262. 14.

5 vir p. 672 (Hultsch).

8 Gregory’s ed. p. 561. Here Euclid
says that ‘‘any cone or cylinder, cut
by & plane which is not parallel to its
base, exhibits that section of an acute-
angled cone, which is like a shield”
(Qupeds).
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expression ‘section of an acute-angled cone’ for the ellipse.
The work of Euclid, therefore, must have been recast by
Apollonius.

Lastly, a treatise on Porisms (mwoplopara) in three books
is attributed to Euclid by Pappus’, and this has for more
than two centuries provoked a lively controversy®, partly
because the definitions of ¢Porisms’ given by Pappus are very
obscure and partly also because Pappus treats so largely of
Euclid’s book and gives so many lemmas to it that it has
seemed possible, to many modern geometers, to restore the
entire work. Of these the most recent, as well as the most
successful, is the late Professor M. Chasles. The reconstruction
of the book depends entirely upon a long passage of Pappus and
a short one of Proclus, the effect of which is as follows. Proclus®
says that mdpiopa is used, in geometry, in two senses, viz. a
‘corollary,’ for which it is the ordinary word, and also as the
name of a proposition which is neither a theorem nor a problem,
but partakes of the nature of both. Its aim is not, like a
theorem, to describe a new characteristic nor, like a problem,
to effect a construction or alter a given construction, but to
find and bring to view (b7’ oYuv dyayetv) a thing which
necessarily coexists with given numbers or a given construction,
as, to find the centre of a given circle or to find the G.c.M. of
two given numbers‘. With this definition agrees also the
ordinary use of the words 7rop{{ea@ac (which means ‘to find’
but not ¢ to construct,” e.g. in Heron to find the length of a line)
and mdpepov (which is synonymous with 8eSouévov, and means
“discoverable’)®. But the aim of the porism is not quite the
same as that of a proposition in the Data. The latter is to
the former as a theorem to a problem. A datum alleges, for

1 vi1. p. 648 (Hultsch).

2 A very full bibliography is given
by Heiberg, pp. 66, 57. It is necessary
only to mention Fermat, 1655. Sim-
son (posthumously published) 1776.
Chasles, Les trois livres de Porismes,
Paris, 1860. This also contains a
bibliography pp. 8 and 9. See also
Chasles, dpergu, pp. 12—14, and Note

1. pp. 274 8qq.

3 pp. 301-—2 of Friedlein’s ed.; of.
p. 212.

4 The props. of the Elements 1.
25, vi. 11, 12, 13, are ‘porisms’ in this
sense. These ought to conclude with
omep Edet evpetv, quod erat inveniendum.,

5 See Heiberg, pp. 59, 60 and the
note from Marinus supra, p. 209 n.
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instance, that with a segment of a circle the angle in it is
given, a corresponding porism is to find the ratio of the angle
to a right angle. But though porisms occur in the Elements,
they were used chiefly in higher geometry and Pappus says that
Euclid’s Porismata formed part of the collection Témos avarvo-
pevos, like the Data. He proceeds then' to discuss the nature
of porisms, which he first defines, like Proclus, as intermediate
between a problem and theorem, subsequently as “a proposition
for the purpose of finding the thing proposed,” afterwards again
(but this, he asserts, is only a partial definition) as “that which
is inferior by hypothesis to a local theorem” (76 Aeirov vmroféaec
Tomikod Bewprpatos)® of which of Témor are the commonest
examples. He then describes with some fulness two types of
porisms contained in Euclid’s book, but gives 28 more types
with horrible brevity, e.g. in the first book, ¢ This line is given
in position,” in the third book, ‘The sum of these two straight
lines has a given ratio to a straight line drawn from this point
to a given point®’ No figures are appended. The whole work
contained, in three books, 171 propositions, to which Pappus sup-
plies 38 lemmas. Upon these statements of Pappus, which Halley
and Prof. de Morgan found unintelligible, Simson framed a defini-
tion of a porism as “a proposition in which it is to be proved
that one or several things is or are given which (like any one of
an infinite number of things not given but having the same rela-
tion to the things which are given) has or have a certain property,
described in the proposition®” Chasles, who approves of this

1 vi1. p. 648. 18 8qq. their number, were collected in a sepa-

2 The translation in the text is from
Chasles. It seems, on authority, to be
right. Heiberg explains it as “a local
theorem with incomplete hypothesis.”
‘Whatever it may mean, it clearlyis only
intended to describe a special class of
porisms, used by writers later than
Euclid who, without attempting to find
the thing proposed, merely declared
that it was possible to do so (e.g.
Archimedes, De Spir. propp. 5—9,
cited by Heiberg, pp. 68, 69). Pappus
then adds that ol réwoc belonged to
this class of porisms but, owing to

rate work (xexwpiouévor TGV woploud-
Twy f0poioTa).

8 See Nos. v. and xx. The whole
list is given in Hultsch, pp. 654 sqq.
Heiberg, pp. 78—177. The Greek of xx,
is 87¢ Aéyos svvaugorépov wpds Twa dwd
Tovd¢e &ws do0évros. Halley, Simson and
Heiberg interpret this dark saying as
above: Chasles and Hultsch translate
*‘the sum of these two rectangles has a
given ratio to the segment lying between
this point and a given point.” i

4 De Porismatibus, p. 347, quoted by
Chasles, Le Livre de Porismes, p. 27.
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definition, then proceeds to show the similarity between porisms
and the propositions called Témot, for a Tomos “is a proposition
in which it is declared that certain points subject to the same
known law are on a line of which the nature is enunciated
and of which it remains to find the magnitude and the position.
Example: two points being given, as also a ratio, the locus of a
point, the distances of which from the two given points are in
the given ratio, is the circumference of a circle given both in
magnitude and in position’.” Hence, also, a connexion exists
between the two meanings of ‘porisma,’ for every porism may
be put as the corollary of a local theorem® and the close
connexion between the porism and the datum is equally
obvious®. Further, Chasles suggests a new definition of porism,
which shall combine all the older definitions. Porisms, according
to him, are incomplete theorems, “expressing certain relations
between things variable according to a common law: relations
indicated in the enunciation of the porism but requiring to be
completed by the determination of the magnitude and the
position of certain things which are the consequence of the
hypothesis and which would be determined in the enunciation
of a theorem properly so-called” In order to exhibit the
similarity of porisms with the most usual propositions of modern
geometry, Chasles gives the following example (among others):
“If in the diameter of a circle there be taken two points which
divide it harmonically, the ratio of the distances between these
two points and any point on the circumference will be constant.”
Substitute here ““ given” for “ constant” and this proposition is
a porism. Find the ratio and include it in the enunciation,
and you have a complete theorem.

Upon the preliminary discourse of Chasles, from which these
remarks are taken, Heiberg (pp. 56—79) has many criticisms,
supported ‘by much learning, to offer, but his observations are
Playfair (in Trans. of R. S. of Edin- Chasles, pp. 81, 82, objects to this.
burgh, 1792), improving on Simson, 1 Chasles, Porismes, pp. 33—386.
suggested a def. of a porism as “a pro- 3 Ibid. pp. 36—38.
position affirming the possibility of 3 Ibid. pp. 42, 48. The porisms
finding such conditions as will render  cited by Diophantus (supra, p. 121)

a certain problem indeterminate, or are closely similar to data.
capable of innumerable solutions.”
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relevant mainly to the form of the enunciation of a porism and
its relations, by virtue of its enunciation and hypothesis, to the
Tomos and the local theorem®. The passage of Pappus, on which
Chasles and Heiberg, and every other would-be restorer of
Euclid’s work must necessarily rely, is so obscure and is suspected
of so many interpolations and mutilations®, that I could not, save
at inconvenient length, give the details of the controversy, which,
after all, is of no practical importance. I have therefore preferred
to accept Chasles’s theories, which are founded on adequate learn-
ing and are followed by a restoration of Euclid’s Porisms with
which, at present, no serious fault has been found®.

One of the types of porisms which Pappus describes at any
length, is as follows: “If from two given points, two straight
lines be drawn, which cut one another on a straight line given
in position, and one of which intercepts on a straight line, given
in position, a segment extending to a given point on it, the other
will intercept on another straight line a segment which has a
given ratio.” This type was treated in one or more propositions
carly in the First Book, and this statement, together with the 38
lemmas of Pappus, gave Chasles his clue. The Porisms of the
First Book, in his view, deal with propositions suggested by a
hypothesis in which we suppose two straight lines to turn about
two fixed points, to cut one another on a straight line given in
position, and to make on two other fixed straight lines (or on
one only) two segments which have to one another a certain
constant relation. In the Second Book, the segments are, as a
rule, formed on one line only. In the Third Book, the two fixed
points are on the circumference of a circle and the two revolving
straight lines cut one another on this circumference. “Almost, if
not quite, all the relations of segments in the first two Books are

1 E.g. according to Heiberg, a porism
proper has nothing whatever to do
with a corollary. A Témos was, as
Simson defined it, a proposition *to
find a locus,’ and therefore réroi were
a kind of porisms. The propositions,
which Chasles calls ‘local problems’
and distinguishes from ‘loci’ and ‘local
theorems,” are really identical with
‘loci’ and are porisms, ete.

2 See Hultsch’s edition. Heiberg
accepts the whole of the text.

8 Heiberg himself has very few criti-
cisms to make, even on the enuncia-
tions, which, he admits, are generally
of the true porismatic form. The one
obvious error in Chasles’ book is that
his restored Porism xvir. (p. 119)is iden-
tical with the 8th Lemma of Pappus,
which is only ancillary to & porism.
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such as express that two variable points on two straight lines, or
on one only, form two homographic divisions.” Itshould be added
that Chasles has had the good fortune to produce 201 porisms, or
30 more than Euclid himself composed’. The original porisms
were used, as their place in the Tdmos dvalvouevos indicates,
in the analysis, or in the synthesis, of a problem which was
solved analytically. No doubt, a porism of the form ‘it is
possible to find’ would be used in analysis, like the Data; a
porism of the form * to find’ would be used in the synthesis.
125. The immediate successors of Euclid, as heads of the
Alexandrian mathematical school, seem to have been Conon of
Samos, who added “ Berenice’s hair” to the constellations? and
Dositheus of Colonus. Perhaps also a certain Zeuxippus and
Nicoteles of Cyrene were at Alexandria during this period. But
nothing is known of these persons, save that Conon, Dositheus
and Zeuxippus corresponded with Archimedes, who had a high
opinion of their abilities (especially of Conon’s®) and that
Apollonius acknowledges some obligation to discoveries in conic

sections by Conon and Nicoteles®,
But Archimedes, the greatest mathematician of antiquity,
lived not at Alexandria but at Syracuse. He is said by Tzetzes®

1 A summary of the more interest-
ing portion of Chasles’ book is given
in Taylor’s Ancient and Modern Conics,
pp. to—rrv. Chasles himself says,
p. 14, “8i ce livre de Porismes nous
fat parvenu, il efit donné lieu depuis
longtemps & la conception et au dé-
veloppement des théories élémentaires
du rapport anharmonique, des divisions
homographiques et de I'involution.”

2 Catullus 1xvi. 7, 8, translating
Callimachus. Delambre (1. p. 215)
suggests that Callimachus invented the
name of the constellation himself and
attributed it to Conon, The Berenice
in question was wife of Ptolemy IIIL
(Euergetes). Ptolemy, the astronomer,
cites some observations of Conon.

3 See the prefaces to Sph. et Cyl.
and Arenarius, ed. Torelli, pp. 63, 64,
819.

4 Conica, Pref. to Bk. 1v. Halley’s
ed. pp. 217, 218. A very important
astronomer, Aristarchus of Samos,
belongs to this interval. His extant
work on the Sizes and Distances of the
Sun and Moon is printed in the 3rd
Vol. of Wallis’s works. His proofs of
course are geometrical (e.g. Prop. 2 is
*“If a greater sphere illuminate a less,
more than half the latter is illumina-
ted”’) but add nothing to geometry.

5 Chiliad. 11. 35, 105. Proclus, p. 68,
cites Eratosthenes as witnessing that
he was a contemporary of Archimedes.
The chief authority on the life of
Archimedes is Plutarch, Vita Marcelli,
ce. 14—19. A biography, which was
used by Eutocius, was written by one
Heracleides who perhaps was the friend
whom Archimedes mentions pp. 217,
318 (Torelli).
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(an authority as late as the 12th century) to have died at the
age of 75, and, as it is well attested that he was killed in the
sack of Syracuse B. c. 212, he was probably born about 287 B.c.
Diodorus* says that he visited Egypt and it is certain that he
was a friend of Conon and Eratosthenes, who lived in Alexan-
dria. His writings also show a most thorough acquaintance
with all the work previously done in mathematics, and it may
therefore be inferred that he was a disciple-eftheAlexandrian
school. He returned, however, to Syracuse and lived there on
intimate terms with King Hieron and his son Gelon, to whom
possibly he was related by blood®. He made himself useful to
his patrons by his extraordinary ingenuity of mechanical
invention,—a gift by which he himself set little store®. He is
said, by various contrivances, to have inflicted much loss on the
Romans during the siege by Marcellus, but the city was
ultimately taken and Archimedes perished in the indiscriminate
slaughter. Marcellus wished to preserve his life but he was
slain by accident®. The story is that he was contemplating a
geometrical figure drawn on the ground when a Roman soldier
entered. Archimedes bade him stand off and not spoil the
diagram, but the soldier, insulted at this behaviour, fell upon
him and killed him® Marcellus raised in his honour a tomb
bearing the figure of a sphere inscribed in a cylinder.  Cicero
had the honour of restoring this during his quaestorship in
Sicily B.c. 75°

1 Diod. v. 87.

2 Plutarch, Marcell. 14,

3 Ibid. 17, magav oAws Téxrny xpelas
epamropuévny dyevvy xal Bdvavooy iryn-
aauevos, “thinking that every kind of
art, which was connected with daily
needs, was ignoble and vulgar.”

4 Cie. Verr. 1v. 131, Livy xxv. 31,
Plut. Mare. 19, Pliny, Hist. Nat. vi1.
125.

5 This tale is told in many slightly
different forms. Plutarch loc. cit.
Valerius Maximus v, 7, 7, Tzetzes 1.
85. 135, Zonaras 1x. 5.

8 Cic. Tusc. Disp. v. 64, 65. The

authorities for Archimedes’ life are col-
lected and generally quoted in Torelli’s
Preface, pp. 11 and 12, and Heiberg's
Quaestiones Archimedeae, Copenhagen,
1879, pp. 1—9. This little monograph
deals chiefly with the text, but con-
tains much very minute information
on the arithmetic of Archimedes.
Heiberg has since edited the text
(Leipzig, 1880), but I have quoted
always from Torelli, whose edition I
happen to have. The errors and mis-
prints which Heiberg points out in
Torelli, are not such as to seriously
affect his value for the present purpose.
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" 126. The extant works of Archimedes seem to comprise
almost all his more important contributions to mathematics.
Internal evidence, derived from references in some books to
proofs contained in others and from allusions in the prefatory
letters which accompany many of the books, shows that the
works are to be arranged in the following approximately chrono-
logical order!: viz. .

(1) Book 1. of ‘ Equiponderance of Planes or Centres of
Plane Gravities’ (Ilepl émimédwv looppomidy % kévrpa Bapdy
émumédwv), in 15 props. preceded by 8 (or 9) postulates®.

(2) “The Quadrature of the Parabola,’ in 24 props. (sent to
Dositheus).

(3) Book 11. of ‘ Equiponderance of Planes,’ etc., in 10
props.

(4) “On the Sphere and the Cylinder, in two books, the
first of 50 props., preceded by 5 postulates, the second of 10
props. (both sent to Dositheus).

(5) ‘The Measurement of the Circle’ (kbxhov pérpnots), in
3 props.

(6) “On Spirals’ (mwepl é\ikwv), in 28 props.
(7) ‘On Conoids and Spheroids’ in 40 props. (sent to
Dositheus).

(8) “The Sand-Counter’ (Yrapperijs), an essay addressed to
Gelon.

(9) ‘On Floating Bodies’ (mepl oxovuévwv or mepl Tov
U8ate épiaTapévar), in two books, the first of 9, the second of
10 props. (extant only in Latin)®

We have also, in a Latin translation from the Arabic, a
collection of 15 Lemmas, which have certainly been tampered

1 See Torelli’s Pref. p. xiii. Heiberg, from a Greek codex which has not since

Q. 4. pp. 10—13.

2 Archimedes himself (Quadr. Parab.
props. 6 and 10) refers to this book as
T4 pyxavicd. Proclus (p. 181) calls it
al dnoopporiac. Simplicius (ad Arist.
De Caelo, 1v. p. 508 a.) calls it Kevrpo-
Bapixd.

3 The Latin translation was made
by Tartaglia (Venice, 1543 and 1565)

been discovered. The title wepl Tav
dxovuévwy is cited by Strabo 1. p. 54:
7& éxolueva in Math. Vett. p. 151,
Pappus vin. p. 1024. A fragment re-
cently discovered has the other title,
and Tzetzes evidently alludes to this
book by the name éweoracidia (Chil. x1,
974). Torelli, Pref. xviii. Heiberg,
Quaest., Arch. pp. 13, 22,
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with (e.g. Archimedes is mentioned in the 4th and 14th) and
may not be authentic at all’. Those works, also, which are
extant in Greek, are evidently not now in precisely the same
form as when first written. Some of the titles for instance,
especially ‘Quadrature of the Parabola,’ are added by later
" hands, and again, most of the books are written in inferior
Greek of the Attic dialect, whereas Archimedes wrote in Doric?,
the dialect proper to Syracuse. Eutocius of Ascalon, a scholiast
of the 6th century, wrote commentaries still extant on the
books of the Sphere and Cylinder, Measurement of the Circle
and Equiponderants. These are valuable for the great number
of historical notices which they contain and of which very
frequent use has been made in these pages.

Beside the extant works, Archimedes is known to have
written several others and yet more are attributed_to him. He
wrote a treatise on the half-regular polyhedra, i.e. the solids,
thirteen in number, which are bounded by regular but dissimilar
polygons of two or three kimds®. He ‘Zﬁ'ﬁﬁelf refers (in the
Arenarius) to his arithmetical treatise called ’Apyai, ‘First
Principles,’ addressed to Zeuxippus. Pappus* quotes his work
IIepl Guydv, ‘on Levers” Theon quotes his Catoptrica®. Pappus®
quotes Carpus as an authority for the fact that Archimedes
wrote a mechanical treatise on the method of comstructing a
globe or planetary (mepi odatporoilas). The Arabs ascribe to
him works on ‘the heptagon in a circle,’ on ‘circles touching
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1 The translation in Borelli’s edition
(Florence, 1661) is said to have been
made by Abraham Ecchellensis from
the Arabic of Tabit ibn Korra, with
notes by Almochtas Abulhasan. Torelli
reprints this (see his Pref. p. xix), but
there was another version by J. Gravius
(Foster's Miscellan. London, 1659).
Heiberg (p. 24) and Cantor (pp. 256,
257) are inclined to think that the book
contains some authentic propositions,
esp. the 4th and 14th, perhaps also
the 8th and 11th,

3 Torelli’s Pref. p. xv, Heiberg, Q.
Archim. ch. v., De Dialecto Arch. pp.

69 sqq.

3 Pappus v. 19. Heron (Deff. 101)
says wrongly that Archimedes added
13 to the 5 Platonic regular solids.
Kepler resumed the study of such poly-
hedra in his Harmonice Mundi. Cantor,
p. 264.

4 vim. 24, p. 1068.

5 Comm. in Ptol. 1. 8, p. 10 (Basle
ed.). Cf.Olympiodorusin Arist.Meteor.
1 p. 94 (ed. Ideler). Apuleius, 4pol.
16. Tzetzes, Chil. xm. 973. Heiberg,
Quaest. Arch. p. 33.

¢ vi. 3, p. 1026. Cf.Proclus, p. 41,
16.
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one another,’ on ‘parallel lines,’ on ‘triangles,’ on ‘the properties
of right-angled triangles,” on ‘data’’ Suidas says that Theodo-
sius wrote a commentary on the ‘Guide-book’ or épodiov of
Archimedes, perhaps a little treatise on geometrical methods.
Beside these, it is possible that Archimedes wrote yet other
books, for he on several occasions refers to propositions as
already proved, which are not so in any extant work, or reduces
a proposition to a problem which he does not solve (e.g. Sph.
et Cyl. 11 5. p. 158), or uses. a- theorem which is not proved at
all®,

127. It is usual to divide the works of Archunedes into
three groups, geo/m;e_"mca.l, arithm and mechenical, but
these distinctions are not strictly maintained by Archimedes
bimself. Thus in Quadrature of the Parabola, propositions V1.
—X1v. are founded on propositions proved in the preceding first
book of Equiponderance (e.g. in props. VI and VII a triangle is
suspended from one arm of a lever kept in equilibrium by
another area suspended at the other end). So, also, the 3rd
proposition of Measurement of the Circle is an attempt to find
an arithmetical value for the ratio between the circumference

1 Wenrich De Auct. Graec. Version-
ibus, pp. 194, 196, Heiberg Q. 4. pp.
29, 80. Heiberg is inclined to reject
these Arabic notices, save that on
‘circles touching one another,’ of which
he thinks, some extracts may be pre-

_ served in the 15 Lemmas,

3 E.g. in De iis que in humido 11, 2,
he uses, without a word of reference,
a theorem that, in a segment of a
parabolic conoid, the centre of gravity
divides the axis into two parts such
that the part on the side of the vertex
is twice the other. The proposition
Sph. et Cyl. . § is to divide a sphere
into two segments whose volumes are
to one another in a given ratio. Thisis
soluble only (to use algebraical symbols)
if a line a can be so divided that
a-z:b::c®: 23i.e. if the cubic equation
23~ az?+bc*=0, can be solved. Archi-
medes (who of course gives the pro-

G. G. M.,

portion only, not the equation) adds
a diorismus, or determination of a
condition under which this can be sol-
ved (for a positive root). If c=2(a-c¢),
then a — ¢ must be greater than . In
other words, z® - ax® + $a3b =0, is solu-

ble only if b< g—‘. Archimedes promises

& solution but does not give it. See
Cantor, pp. 265, 270, 271. Archime-
des is often said to have written a
Conics (xwwixd), but it is now generally
supposed that the Conics' and the
Elements, to both of which -he often
refers, are the works of Euclid ; Cantor
pp. 260, 261. Heiberg, Q. 4. p. 31.
Heracleides, however, the biographer
of Archimedes, accused Apollonius of
stealing from an unpublished work by
his predecessor. (See Eutocius in
Halley’s Apollonius, p. 8.)

15
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and its diameter, and the inquiry involves the extraction of /3.
Nevertheless, the division first suggested is exact enough for
most purposes, and may be adopted in the following brief
summary of the contents of the various books. The geometrical
are taken first.

The Quadrature of the Parabola begins with a letter to
Dositheus announcing the chief contents of the book. It
contains two solutions of the problem, the one mechanical, the
other geometrical. Both involve the use of the method of
exhaustion. Props. I.—IIL are simple propositions in Conics
without proofs: 1v. v. are of the same kind, but are.proved.
Then props. VIL.—XVIIL contain the mechanical proof that “any
segment which is contained by a straight line and the section
of a right-angled cone is 4 (émirpitov) of a triangle which has
the same base and the same altitude as the segment.” Archi-
medes starts, as above mentioned, by suspending a triangle or
trapezium and another area on opposite sides of a lever in
equilibrium, the triangle or trapezium being suspended from
two points, the area from one. The triangle or trapezium is
then shewn to bear a certain ratio to the area'. Then if BOI'
be a segment of a parabola, of which BT is the base and @ the
point on the curve most distant from the base®, the segment
BOT is shewn by exhaustion to be one-third of the space of
which the ¢riangle BOI' is one-fourth. Props. XVIIL—XXIV.

EUCLID, ARCHIMEDES AND APOLLONIUS.

1 E.g. Prop. vi. ABT is a lever, of
which B is the middle point. A right-
angled triangle BAT is suspended from
B, T, the right angle being at B, the
side BI' being half the length of the
lever. This is exactly balanced by an
area Z, suspended from A. Then Z is
one-third of the triangle. For in BI'
take E, so that EI'=2EB. Then the
centre of gravity of the triangle (as pre-
viously proved in the 1st Book of Equi-
ponderance) lies in the vertical line
drawn from E, and the triangle may be
suspended from E without disturbing
the equilibrium. Suspend it from E
and the triangle is to Z inversely as the

arms of the lever, or as AB to BE, and
AB=3BE. A summary of the follow-
ing propositions is given by Cantor,
PP. 278—279.

3 In Prop. xvi1. O is called the vertex,
xopvgth, of the curve. In Prop. xvir,
the first of the geometrical proof, it is
shewn that if the base BI' be bisected
and BO be drawn parallel to the axis
(called the ‘diameter’), meeting the
curve in 6, then O is the point from
which the greatest perpendicular can
be drawn from the curve to BT, and is
the xopugpy of the segment. The tan-
gent at O is parallel to BI'.
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contain the geometrical proof. The triangle BOI' is half the
parallelogram of the same altitude on BT, and is therefore more
than half the segment. Inscribe triangles in the segments cut
off by the lines BO, ®I'. Each of these is more than half the
segment in which it is inscribed and is also one-eighth of the
triangle BOI': the two together are one-fourth of it. Take a
z z x

Z I} 1_ ) 6_4- oooooo
to the triangle BOI'. The sum of these is less than the
segment. Their sum, again, plus }d of the least magnitude,

series of magnitudes, z, ;f,—,, of which « is equal

is iw

3
manner above indicated, it is found by reductio ad absurdum,
that the segment is §rds of the first triangle BOI.

The treatise on the Sphere and the Cylinder is in two books.
Book I. begins with another letter to Dositheus, announcing its
principal contents’. Then follow some definitions (curiously called
afidpata) and assumptions (AapBavipeva). Of the assumptions,
the 1st is “a straight line is the shortest of all lines which have
the same extremities.” The book begins with 7 propositions,
bearing on the theory of exhaustion, e.g. V1. is “a circle being
given and also two unequal magnitudes, it is possible to describe
about and within the circle two polygons, such that the cir-
cumscribed polygon shall have to the inscribed a less ratio than
the greater given magnitude to the less.” Props. VIIL—XVIL
are on the surfaces of pyramids (described within and about
cones), of cylinders and of cones (e.g. Prop. xvL. “The sur-
face of an isosceles cone is to its base as the side of the cone
to the radius of the base”). Props. XVIIL—XXI. are on the

Hence if the segment be exhausted by triangles in the

1 In this book Torelli numbers fifty
propositions. Other editors, who do
not count the first, number forty-
nine. In Prop. 1, Torelli omits a
reference to Euclid by name which is
given in all the MSS. Proclus (p. 68)
saysthat Archimedes mentionedEuclid,

and this is the only place in which -

such mention occurs. Heiberg (p. 157)
thinks the words are genuine. They

are merely “Take A equal to BT, by
the Second of the First Book of
Euoclid’s” (r&v Edx\eldov). It is in the
preface to this book that Archimedés
states that the cubatures of the pyra-
mid and cone (Euclid xm. 7, 10) were
discovered by Eudoxus. The cubatures
of the sphere and the cylinder are
referred to that of the cone,

15—2
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volumes of cones and of portions of cones. These propositions
are then used (XXIL—XXXIV.) in an exposition of the relations
of the surfaces and volumes of those solids, described within and
about a sphere, which are produced by the revolution of polygons
described in or about a great circle. Prop. Xxxv. is selected
for mention in the prefatory letter. It is that “the surface of a
sphere is four times that of one of its great circles.” Prop. XXxVI.
is “any sphere is four times a cone whose base is a great circle,
and whose altitude is a radius, of the sphere.” This leads to
xXXvViLl. The volume and the surface of a sphere are §rds of
the volume and surface, respectively, of a cylinder whose base is
a great circle, and whose altitude is the diameter, of the sphere
(the bases of the cylinder being included in its surface). This
discovery was the chief pride of its author. The figure of this
proposition is that which Marcellus, following an expressed wish
of Archimedes’, inscribed on his tomb. Props. XXXVIIL—XLVIL
deal with segments of a sphere and the inscribed and circum-
scribed solids produced, as before, by the revolution of polygons
described within and about a great circle. Props. XLVIIL—XLIX.
prove that the surface of a segment of a sphere, whether less or
greater than a hemisphere, is equal to a circle whose radius
is the straight line drawn from the vertex of the segment
to the periphery of its basal circle. Prop. L. is on the volume
of a sector of a sphere, which is shewn to be equal to a cone
whose base is a circle equal to the surface of the segment, and
whose altitude is the radius of the sphere.

Book IL of the Sphere and Cylinder begins with another
prefatory letter to Dositheus, in which the chief glories of
Book I. are again recounted, and which says that the Second
Book contains some problems and theorems suggested by the
First. Prop. IL is a problem “To find a sphere equal to a given
cone or given cylinder.” The analysis of this problem leads to
the discovery of two mean proportionals between two straight
lines. The synthesis, which is the analysis taken backwards,
of course, requires that two mean proportionals should be found.
Archimedes does not here shew how this is to be done, but it is

1 Plutarch Marcellus, 17.
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@ propos of this passage that Eutocius introduces that historical
account of the duplication problem which has been already so
often cited’. Prop. 111 is that “a segment of a sphere is equal
to a cone whose base is that of the segment and whose altitude
is to that of the segment as the radius of the sphere + the
altitude of the remaining segment is to the altitude of the
remaining segment.” Some problems are founded on this, solved,
as usual, first by analysis, then by synthesis. Prop. IX. is that
“if a sphere be cut by a plane which does not pass through the
centre, the greater segment is to the less in a ratio which is less
than the duplicate but more than the sesquialter of the ratio
which the surface of the greater bears to the surface of the
less*”. Lastly, Prop. X. is “of spherical segments with equal
surfaces a hemisphere is the greatest®.”

The book De Spiralibus begins with another letter to
Dositheus, which, after deploring the death of Conon, who
was studying the propositions*, recounts the contents of the
2nd book of the Sphere and Cylinder, then points out the chief
results of the treatise on Spirals and concludes with a note
that Archimedes has used the ordinary lemma (Euclid X. or XI1. 1.y
on which the method of exhaustion is founded. The deﬁnition'\,
of the spiral and the chief results of the book may be stated '
practically in the words of Archimedes himself. “If in a plane|
a straight line, fixed at one extremity, revolve evenly till it.\l,
return to the position from which it started, and if along :
the revolving line a point moves evenly from the fixed
extremity, this point will describe a spiral. I say that the

1 The solutions which Eutocius re- found everything, but never produce a

cords (Torelli, pp. 185—149) are those
of Plato, Heron, Philon of Byzantium,
Apollonius, Diocles, Pappus, Sporus,
Menaechmus, Archytas, Eratosthenes,
Nicomedes, in this order.

2 It appears from the preface to De
Spiralibus (p. 218) that Archimedes
had wrongly stated this and the next
proposition, in an earlier copy which
he sent to Dositheus, for the express
purpose of deceiving the boastful ama-
teurs of geometry, ‘‘ who say they have

proof, and sometimes claim to have
discovered the impossible,”

3 The treatise ‘‘ Measurement of the
Circle” is given in full in the next
section. The quadratures of the spiral:
and ellipse depend upon a previous:
quadrature of the circle.

¢ Pappus says that Conon invented
the spiral. Archimedes, however, only
says that he had sent the enunciations
of his propositions to Conon, who had:
been trying to prove them.
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space which is included bétween the spiral and the straight
line after one complete revolution is one-third of a circle
described from the fixed extremity as centre, with radius
that part of the straight line over which the moving point
advances during one revolution (Prop. xxiv.). Again, if a
straight line touch the spiral at the last extremity of the
latter’, and from the fixed point there be drawn a perpendicular
to the revolving line (after a complete revolutien) produced to
meet the tangent, this perpendicular straight line is equal
to the circumference of a circle described from the fixed
point as centre with the revolving line at the end of a com-
plete revolution as radius (Prop. XvIIL). Again, if the revolv-
ing line and the moving point thereon make several com-
plete revolutions, the space which is included by the second
revolution of the spiral is half that included by the third, a
third of that included by the fourth, a fourth of that in
the fifth and so on. But the space included by the first
revolution is one-sixth of that which is included by the second
(Prop. XxXvIL). Again, if in the spiral of one revolution two
points be taken and straight lines be drawn from them to
the fixed point and two circles be drawn from the fixed point
a8 centre with these straight lines as radii, and the lesser of
these straight lines be produced (to meet the larger circle), the
half-crescents included between the circles, the spiral, and the
straight lines are to one another in a given ratio. (Prop. xxvImL").
The book begins with some lemmas on constructions (Props. 1.—
1x.) and with two propositions, which are in effect the geometri-
cal summation of the series 1.4.9....7% (Prop. X.) and of the
series a, 2a, 3a...na (Prop. X1.). Then follow the definitions
and some propositions on tangents to the spiral and lines passing

1Jf A be the revolving line, A H. The space = is to the space II as

he fixed point, the last extremity (rd ©A+3§HA is to ©A+1HA.
&oxarov wépas) of the spiral is ©. T

2 The enunciation is extremely diffi-
cult to follow without a figure. © is
the fixed point, A, I" are points on the
spiral. From centre 6, describe circles

with radii ©A, OT, and produce 6A to H 2 B
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through the fixed point and cutting the curve (Props. X11.—XVIL).
The course of the remainder of the book is pretty well indicated
by the summary above given from the preface. But a word
should be added on the way in which Archimedes arrives at the
area of the spiral. The revolving line may be stopped any-
where. The space included between the curve and the line
is divided into sectors having equal angles at the fixed point.
Each of these is shewn to be less than one, and greater than the
other, of two similar sectors of circles. It follows, therefore,
that two plane figures (composed of similar sectors of circles)
can be described, one within, the other about, the spiral, such
that the difference between the two figures can be made as
small as we please, and exhaustion is thus effected”.

The treatise on Conoids and Spheroids is also sent, as was
promised in the letter which accompanied the De Spiralibus, to
Dositheus. A conotd is the solid produced by the revolution of a
parabola or a hyperbola about its axis. Spheroids are produced
by the revolution of an ellipse, and are long (mwapapdrea) or
Sflat (émvmhatéa) according as the ellipse revolves about its
major or its minor axis. The first 3 propositions are certain
very complex arithmetical theorems® Props. 1v.—vIr deal
with conics, e.g. v. and VI. are on quadrature of the ellipse
by exhaustion; VIL shews that ellipses are to one another as the
products of their axes. Props. vii.—X. shew that an infinite
number of right cones and cylinders can be constructed so as
to contain a given ellipse. Prop. X1 merely recapitulates some
well-known theorems on the ratios of cones and segments of
cones and cylinders to one another. Props. XIL.—XvV. shew that
the plane sections of conoids and spheroids are conics; XVI.—XIX.
are on planes touching these solids, XX. is on the division of

1 Compare the accompanying figure 2 They are of no intrinsic value. The
to Prop. xx1. which deals with a spiral  first is in effect that if
of one revolution only. s=a+2a+38a...... +na,
then 28 >n%a>2 (8 - na).
The other two cannot be stated shortly,
even with symbols. On these and the
other arithmetical propositions of Ar-
chimedes, see Heiberg, Q.4. Chap. 1v.
pp. 44 s8qq. esp. pp. 50, 51, 56, 57.
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a spheroid into two equal parts. XXI—XXIL are preparatory
to the cubature of the solids: if a conmoid or a spheroid
be cut by two parallel planes, the segment so obtained
contains one cylinder and is contained in another, and the
difference between these two cylinders may be made as small
as we please by bringing the two planes of section closer and
closer together. Then follow the propositions selected for
mention in the preface : Props. XXI1II.—XXIV. prove that every
parabolic “right-angled” conoid is to a cone on the same base.
and of the same altitude as 3 : 2; XXV.—XXVI. shew that seg-
ments of a parabolic conoid (cut by planes in any direction) are to
one another as the squares of their axes. Props. XXVIL—XXVIII.
deal with the volume of hyperbolic (“ obtuse-angled ”) conoids;
and XXIX.—XXXIV. with the volume of sections of spheroids cut
by planes, whether passing through the centre or not.

Lastly, of the Lemmas which may be authentic, Nos. Iv. and
XIv. are to find the area of two curvilinear figures, which
Archimedes calls respectively dpBnhos and odiwor. The dp-
Bnros, which literally is the name of
a shoemaker’s knife, is bounded by
three semicircles whose centres are in
a straight line. Its area is the circle
described about the perpendicular DB, B
The gd\wov, which perhaps means a ‘sieve’, (cf. calaf, kéoxivov)
is bounded by four semicircles, whose centres are in a straight
line, two having the same centre 4. Its area is equal to a
circle described about BC as diameter®,

No. x1 is that if in a circle two chords

cut one another at right angles, the

squares of the four segments of these A

chords are together equal to the square

of the diameter. No. VIIL is as follows. W

In a circle of which the centre-is A draw any chord AB and
produce it to I, so that BI' is equal to the radius. Join I'A,

1 Heiberg Q. 4. p. 25, suggests that  1v. 14 (pp. 208—232, ed. Hultsch) treats
these Lemmas 1v. and xIv. are extracts of the dpSnles. See also Cantor pp.
from the work of Archimedes on *‘cir- 256, 357.
cles touching one another.” Pappus
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cutting the circle in Z, and produce I'A to meet the circle again
in E. Then the arc AE will be three times the arc BZ. The
figure which leads to the proof is appended.

N

128, The reader will see, from this brief summary, how
ide a range of subjects Archimedes studied and with what
astonishing ingenuity he treated them. Nevertheless, quadrature
and cubature of curvilinear areas and solids bounded by curved
surfaces were his chief hobbies, and the process which he most
affects is exhanstion. This he handles with consummate mastery,
and with it he obtains results for which we now look to the
infinitesimal calculus. It is desirable, however, that an authentic
specimen of Archimedes’ geometrical work should be given in full.
For this purpose, the little work on “Measurement of the Circle”
is especially well adapted, both because it is short in itself, and
does not appeal to any recondite propositions the proof of which
is too long to be admitted, and because it gives all the main
characteristics of Archimedes’ style. It will be seen, at once,
that Archimedes writes not with any educational purpose, like
Euclid, but for the élite of the mathematicians of his time. He
does not confine himself to a stereotyped form of exposition, and
does not shrink from introducing, into a geometrical argument,
propositions of dpefunTiks and operations of AoyioTinr.
N The Measurement of the Circle is in three propositions only.
Prop. 1. is “Every circle is equal to a right-angled triangle, such
that the sides containing the right angle one is equal to the
radius, the other to the circumference of the circle.” The
proof, literally translated, save for the introduction of symbols,
is as follows.
“Let the circle ABCD be related to the triangle E ac-
cording to the hypothesis. ‘I say it is equal to the triangle E.
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For, if possible, let the circle be greater and let the square AC
be described in it, and let the circumferences be bisected, and

let the segments be finally less than the excess of the circle
over the triangle. Then the rectilineal figure is > the triangle.
Take the centre N and the perpendicular NX. Then NX
is < the side of the triangle. And the periphery of the recti-
lineal figure is <the other side, for it is <the circumference
of the circle. The rectilineal figure is therefore < the triangle,
which is absurd.

But let the circle, if possible, be less than the triangle E.
And let the square be circumscribed and let the circumferences
be bisected, and let tangents be drawn through the points of
bisection. Then the angle OAR is a right angle: therefore
ORis>MR, for MR=RA. And the triangle ROP is >4 0ZAM.
Let the segments similar to PZA be left less than the excess of
the triangle £ over the circle. Then the circumscribed recti-
lineal figure is < £, which is absurd, for it is > K, since N4 is
equal to one side of the triangle and the perimeter is greater
than the other. The circle therefore is equal to the trianglg E.
. Prop. IL. is “A circle has to the square on its diameter the
ratio 11 : 14 very nearly.”

The proof is as follows: “Take a circle, with diameter 4B,
and let the square CHD be circumscribed about it. And let
DE be double of the side CD, and EZ one seventh part of -.CD.
Since then the triangle ACE has to ACD the ratio 21:7, and
ACD has to AEZ the ratio 7 : 1, therefore the triangle 4 CZ is to
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the triangle ACD as 22:1. But the square CH is four times
the triangle ACD: therefore the triangle ACZ is to the square

=
\__/

CH as 22:28 or 11:14. And the triangle ACZ is equal to the
circle, since AC is equal to the radius and CZ to the circum-
ference (which will be shewn to be very nearly 3} of the
diameter). The circle therefore has to the square CH the
ratio 11 : 14 very nearly*,

\y Prop. 111. is “The circumference of a circle exceeds 3 times
its diameter by a part which is less than § but more than }¢ of
the diameter.” The proof is:

“Let there be a circle with diameter 4C and centre E
and tangent CLZ, and let the angle ZEC be a third of a nght
angle. Then EZ:Z(C::306:153 and g
EC:0Z>265:153. Draw EH, bi-
secting ZEC. Then ZE:EC::ZH: HC,
and permutando and componendo,
ZE+EC : ZC :: EC : CH. Where-
fore CE: CH > 571 :153. Therefore ¢

H|

EH* : HC*> 349450
EH : HC <591} : 153"

1 The word &yywra “very nearly’
seems to have been added throughout by
Wallis, The proposition should possi-
bly be placed third, but it must be
remembered that »=3} was a very
common approximation in Archimedes’
time. Heron in his Geometria (ed.
Hultsch, pp. 115, 136) refers it first to
Euclid, then to Archimedes. The E.
gyptian value was 3:1604. Ptolemy
(ed. Halma v1. 7) uses 3,,% =3-141666.

: 23409 and
Again, bisect

3 The omitted steps are EZ=2ZC

~EC=3ZC. _,Js >388. Itis

notknownhowArchxmedesobtamedthJs
approximation. Seesupra, pp. 53—b5.
But in fact (33§)?=1$14$=8 - sykvs.

3 N. B. 349450 = (5712 + 153?)
=(826041+23409). This is greater
than (5913)3=349,4288%. (5913)% is
nearer,
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the angle HEC by the line EP. On the same principle,
EC:CP>1162} :153". Therefore PE: PC > 1172} : 153",

V]

-

Batxw

B A
Bisect the angle PEC by the line XK. Then
EC:CK > 2334} : 153. Therefore EK : CK > 2339} : 153.
Bisect the angle KEC by the line LE. Then
EC:LC> 4673} : 153. :

The angle LEC is th of a right angle. At E, make the
angle CEM = LEC and produce 2C to M. The angle LEM is
o4th of a right angle. Therefore the line LM is the side of a
polygon of 96 sides (U,,) circumscribed about the circle.

Since it has been proved that EC: CL > 46734 :153 and
AC=2EC and LM =2CL, therefore AC:LM > 4673} :153.
Therefore AC : periphery of U,> 4673} : 14688. Of these
numbers, the latter is three times the first + 6674, which is

< -ﬂ;}i Wherefore the periphery of U, is three times the

diameter + a part less than 4. Much more then is the cir-
cumference of the circle < 34 of the diameter.

Secondly, Take a circle with diameter 4 C, and make the
angle BAC jrd of a right angle. - Then 4B: BC <1351 : 780,
but AC': CB :: 1560 : 780.

Bisect BAC by HA. Then since « BAH= . HCB and also
=¢ HAC, ..« HCB=< HAC. And the right angle AHC is
common. Therefore the third angle HZC =the third < ACH.
‘Wherefore the triangles AHC, CHZ are equiangular and

1 EH :EC: HP: PC and EH : CH>591} : 168. Therefore
+.(EH+EC) : EC :: (HP+PC) : PC EC: PC > (571+591}) : 158,
and (EH +EC): (HP + PC):: EC: PC. * PE’=PC*+CE? > 1378048 %
But it was shewn above that >(1172§)%. (11724)* is nearer.

CE : CH>571 : 158
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AH:HC::CH:HZ: AC:CZ. But AC:CZ::CA+ AB: BC.

P,

L
c

Therefore CA + AB: BC :: AH : HC. Therefore
AH : HC <2911:780 : but AC: CH < 30134} : 780.

Bisect the angle CAH by AP. Then on the same principle
AP: PC < 59244} : 780 or < 1823 : 240, which numbers are % of
the preceding, respectively. Wherefore AC': CP < 1838 : 240.

Bisect the angle PAC by KA. Then
KA :KC<3661%:240, or (dividing by 44) <1007 : 66. Therefore
AC: CK< 10094 : 66. '

Lastly, bisect the angle KAC by LA. Then

AL : LC <2016} : 66: but AC: CL <2017} : 66.

Conversely CL: AC > 66 :2017}, and the periphery of the
inscribed polygon : diameter > 6336 : 2017}. Of these numbers,
the first is > 34¢ of the second. Much more then is the cir-
cumference of the circle > 344 of the diameter.

129, The arithmetical treatise of Archimedes (Arenarius,
Yrappirns) and also the cattle-problem have been summarised
above (pp. 57—61 and 99). It remains only to notice his works
on mechanics. For these he had fewer predecessors. Of the
simple machines two at least, the lever and wedge, were known
from a remote antiquity. Archytas is said to have invented the
screw (koy\ias) and the pulley (rpoyxiaia)’. Some kind of a
compound pulley seems to be described in Aristotle’s Mechanica
Problemata (c. 18). The same work shews that, in the century
before Archimedes, the mathematical theory of the lever was
under consideration, and that it was known that the power and
the weight if applied perpendicularly to a straight lever, so as to
produce equilibrium, are to one another inversely as the arms of

1 He invented also a child’s rattle, children *from breaking things about
which Aristotle recommends (Pol. virrz.  the house.”
5, 2) as & useful instrument to prevent
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the lever’. Some notion of the parallelogram of forces® and of
the principle of virtual velocity also appears. Many intelli-
© gent questions in mechanics, moreover, are here asked, and
Aristotle illustrates such explanations as he can give by geo-
metrical figures’. The author of the fragment De levi et
ponderoso (attributed to Euclid), if he lived before Archimedes,
bad some idea of specific gravity. Also somebody before
Archimedes had invented the term “centre of gravity” (xévrpov
Bdpovs) which Archimedes uses but does not define’. But
there was not as yet any mathematical proof of any proposition
in mechanics. This step is taken by Archimedes, who deals
however only with statics. Book 1. of the Equiponderance of
Planes begins abruptly with some -postulates’, of which the
second is “that equal weights suspended from unequal arms
(longitudes, udxea) are not in equilibrium (w7 looppomeiv) but
incline (sic)towards the weight which is suspended from the longer
arm.” A little further on, he assumes “that if equal and
similar planes fit exactly upon one another, their centres of

gravity also fit exactly upon

1 Aristotle says that cheating trades-
men would shift the centre of their
balances towards the scale in which
the weight lay (Mech. Probl. 1. fin.).
This practice, no doubt, led to the
discovery of the law, Aristotle dis-
tinguishes the balance ({vydr) from
the lever (uox\ds), and the owdprov
(rope) by which the former is suspended
from the vxroudxAiov (fulerum) on which
the latter is supported. He gives,
however, the same explanation of both.

% 8ee Mech. Probl. 1. and xxm., and
Heller, Geschichte der Physik, pp. 63—
66. Heller admits that *it would be
foolish to attribute to Aristotle a clear
knowledge” of the principle in question.
All that Aristotle says is as follows. If
a point 4 have two ‘“motions” (gopal)
at the same time, the one along the
straight line 4B and the other along
the straight line AC, and 4B, AC re-
present in length the ratio of the mo-

one another” (épapuoferv ém’

tions, then the resulting motion is along
the diagonal AD of the parallelogram
ABDC. He shews this bysupposing 4 to
move along 4 B, while the wholeline4B
moves towards CD. Thereisagood note
in Van Cappelle’sEd. (1812) pp. 150 8qq.

3 Cantor, p. 219 and supra, pp. 105n.
189.

¢ Eutocius defines it at the heginning
of his commentary (Torelli, p. 2). The
xévrpov poxr)s or Bdpovs of a plane figure
is “the point from which it must be
suspended, in order to remain parallel
with the horizon.” ¢“The centre of
gravity of two or more plane figures is
the point from which the balance (8
$vyés) must be suspended, in order to
remain parallel with the horizon.”
Pogsibly Archimedes had given this
definition in his lost treatise wepl fvydv.

5 According to Eutocius, Geminus,
who was a great purist in nomenclature,
proposed to call these ¢‘axioms.”
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d\\aka). “Of unequal but similar figures, the centres of
gravity are similarly placed.” * “In similar figures points are
similarly placed if the straight lines, making equal angles at
such points, make also equal angles on the homologous sides.”
Lastly, “In any figure, of which the periphery is concave
towards the same parts’, the centre of gravity must fall within
the figure.” Props. L.—I1I. are of exactly the same kind as the
initial postulates. Props 1v.—vV. shew how to find the centre
of gravity of two or three equal magnitudes whose centres of
gravity are in the same straight line. Props. vI. and vII are
“commensurable and incommensurable magnitudes hang in
equilibrium from arms which are inversely as the magnitudes.”
Prop. viiL is to find the centre of gravity of the remaining
part of a magnitude, from which a portion not having the
same centre of gravity as the whole, has been removed. Props.
IX.—XV. shew how to find first the line in which the centre
of gravity lies, and then the centre of gravity itself of a
parallelogram, a triangle and a trapezium. Between Books I.
and II. the Quadrature of the Parabola is interposed. Book
It. begins (Prop. 1.) by applying to parabolic segments ‘the
Props. VI.—VIL of the first book. Props IL.—VII deal with the
centres of gravity of rectilineal figures inscribed in a parabolic
segment, e.g. Prop, v. is “If a rectilineal figure be inscribed in a
parabolic segment, the centre of gravity of the whole segment is
nearer to the vertex than that of the inscribed figure.” Prop.
vIL is “The centre of gravity of a parabolic segment divides
the diameter so that the part towards the vertex is § of the part
towards the base.” Prop. IX. is a very complicated proposition*

1 This expression is not here ex-
plained. De Sph. et Cyl. Ax. 2 is “A
line is concave (xofAn) towards the
same parts in which, if any two points
be taken, the straight lines joining
such points either all fall on the same
side (¢éwl 7& adrd wixrovor) of the line
or some on the same side and some on
the line itself (xar avr7s) but none on
the other side” (éxl 74 repa).

2 The enunciation is to this effect:

If four straight lines (a, b, ¢, d, of
which a is the greatest) be in continued
proportion, and d:a-d:e:§(a-c)

2a+dbt6c+8d _ f o
5a+10b+10¢+5d  a-c’
e+f=%a. This is worked out in a
series of proportions obtained permu-
tando, componendo, dividendo. The
proof in modern symbols is given in
Heiberg, Q.4. pp. 49, 50.

and
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in arithmetic which is required for Prop. X. to find the centre
of gravity of a truncated parabolic segment.

It is evident that, in the composition of this work, Archi-
medes’ interest was not with mechanics but with mathematics.
He does not care about weights or balances but about proofs.
Some more practical propositions, perhaps, were contained in
the lost book repi {vydv, from which Pappus’ seems to quote
the problem “To move a given weight with a given power.”

"The two books on Hydrostatics, De 118 quae in humido
" wehuntur, are similar in character to the Equiponderance, but in
this department of mechanics Archimedes seems to have had no
\ predecessors whatever. His attention seems to have been first
called to the subject of specific gravity by the following circum-
stance. King Hiero, being anxious to discover whether a crown,
which was ostensibly made of gold, might not perhaps be
alloyed with silver, asked Archimedes to test it. The story
relates that the philosopher was in the bath when the proper
method of inquiry occurred to him, and that he immediately ran
home naked, shouting Efpnka, elpnka, “ I have found it.” Our
authorities, however, which agree thus far, now begin to diverge.
One® says that Archimedes, having observed, on stepping into
the bath, that bodies immersed in water displaced a quantity of
water proportionate to their bulk and not to their weight,
measured the quantity displaced by gold and silver masses of
equal ‘weight and thus obtained a ratio of bulk between the two
metals. A later writer® on the other hand, states that Archi-
medes, by weighing two equal weights of gold and silver immersed
in water, discovered not the quantity but the weight of the water
displaced, and thus arrived at the specific gravity of the metals.
Both methods may be authentic, but the latter leads more natu-
rally to the treatise on Floating Bodies. Book L* begins with

1 vi. 19. p. 1060.

2 Vitruvius, x. 8.

3 The author of a poem De pon-
deribus et mensuris, formerly attributed
to Priscian but now supposed to be
of about A.p. 500 (Hultsch, Seriptt.
Metrologici p. 88 8qq.). The passage
of Vitruvius and the lines of the poem

are printed in Torelli, p. 864.

¢ The definition of a fluid is given in
Positio 1. “Let it be assumed that
the nature of a fluid is such that, all
its parts lying evenly and continuous
with one another, the part subject to
less pressure is expelled by the part
gubject to greater pressure. But each
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two propositions to the effect that the surface of every still fluid
is spherical, the centre of the sphere being the centre of the earth.
Prop. 111 is that bodies of equal weight with an equal bulk of
any fluid do not, if immersed in the fluid, rise above or sink below
its surface. Props. Iv.—VIL are on bodies lighter than a fluid.
Prop. v. in particular contains the hydrostatic principle that
“a body lighter than a fluid, when immersed therein, sinks so
deep that the quantity of fluid displaced weighs as much as the
whole body.” Prop. VIL is on bodies heavier than a fluid and
immersed therein. Props. VIIL.—IX. are on segments of a sphere
lighter than a fluid and immersed therein. These will float
so that their axes are always vertical. Book II. begins with
a proposition (1), which gives a scientific definition of the
specific gravity of bodies lighter than the fluid in which the
unit of gravity is chosen. It is that “if a body, lighter than a
fluid, floats therein, its weight is to that of an equal bulk of the
fluid as the immersed part is to the whole.” The remaining
propositions IL—X. are on segments of parabolic conoids im-
mersed in a fluid and the positions which they will assume
under various conditions®.
Although, in these works, it is evident that mathematical
“interest far exceeds the mechanical, and though Archimedes, as
above mentioned, was of the opinion of Plato and Pythagoras
that the employment of the intellect in the useful arts was
degrading, yet it is certain that many of the most useful
mechanical contrivances of antiquity were due to his ingenuity.
Of these the most famous is the water-screw (xoyAias), which

part is pressed perpendicularly by the there made of them. 1.is “If in any

fluid above it, if the fluid be falling
(descendens in aliquo) or under any
pressure.”  Positio 11. occurs after
Prop. vir. and is ‘“‘Let it be assumed
that a body which is borne upwards by
a fluid, is 8o borne in the direction of
the perpendicular line which passes
through its centre of gravity.”

1 Two propositions of the De Spiral.
(1. and 11.) are of mechanical import-
ance, though no mechanical use is

"G. G. M.

line a point moves evenly and there be
taken in the line two parts, these shall
have to one another the ratio of the
times in which the point traverses them
respectively.” 11. is “If two points
move evenly each in its own line and
in each line there be taken two parts,
of which the two first are traversed by
the points in the same time and also
the two second, the parts will be pro-
portional.”

16



242

is still used. This apparently was invented by Archimedes
when in Egypt for the purpose of .irrigating fields, but it was
used also for pumping water out of mines or from the hold of a
ship’. Further the problem “how to move a given weight with
a given power,” above mentioned, was practically solved by
Archimedes?® by the construction of a machine which is variously
described. It is said by Athensus (and Plutarch has a similar
tale), that Hiero was in a difficulty about the launching of a
certain very large ship. Archimedes effected this very easily
by means of an apparatus of cogwheels, worked by an endless
screw (éM£)®. Plutarch, however, states that he used, for the
purpose, a compound pulley (woAvemacros). It is possible
that Athenzus has by some confusion attributed to Archimedes
the Bapoihkos which was invented by Heron*, but many autho-
rities concur in attributing to him a compound pulley of three
(TplomwagTos) or more (moAvomactos) wheels®. Perhaps this
machine was called by Archimedes himself a yapioriwy, for
Tzetzes who, in one place (Chil. 11. 130), records the proud boast
of the philosopher “ Give me a place to stand on (8ds mod a7&)
and I will move the whole earth with a yapioriwy,” elsewhere
(111. 61) repeats the same saying as referring to a rplomwacros
(or ToAdaTacTos)®™N It is well attested, again, that Archimedes
protracted the siege of Syracuse for a long time by his ingenuity
in constructing catapults which were equally serviceable for
long or short ranges, and others which could be applied to a
small loophole in a wall’, but the tale that he set fire to the
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1 See thearticle ‘Archimedean Serew’
with an illustration in Encycl. Brit.
The ancient authorities are Diodorus,
1. 34, v. 387, Vitruvius x. 6 (11), Philo
1L p. 330 (ed. Pfeiffer), Strabo xvir. p.
807, Atheneus v. 208 f.

2 Plutarch, Marcellus 14, Athensus
v. 207 a, b.

3 Eustathius ad Iliad m. p. 114,
ed. Stallbaum. )

4 Pappus 1L prop. 5. (Hultsch, p.
63) and vor props. 31 sqq. So also
Tertullian (De Anima, 14) ascribes to
Archimedes the hydraulic organ which
everybody else attributes to Ctesibius,

the teacher of Heron.

5 Beside Plutarch, Galen ¢n Hippocr.
DeArtic.1v. 27 (xviiL. p. 747, ed. Kiihn),
Oribasius, Coll. Med. xurx. 22 (1v. p.
407,ed. Bussemaker). Thelatter writer
loc. cit. and Vitruvius x. 2, describe
the 7plowasros. Proclus (p. 63) only
gives the fact that Archimedes moved
a large ship.

6 All the authorities are collected in
Heiberg Q.4., pp. 36—38,

7 Polybius vmi. 7, Livy xxiv. 84,
Plutarch, Marcellus 15. More reff, in
Heiberg, op. cit. pp. 38, 39.
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Roman ships, by means of burning-glasses or concave mirrors’,
though repeated by many late writers, is not found in any
authority older than Lucian (Hipp. 2).

It is evident, again, both from the Arenarius itself and from
many references in later authors, that Archimedes was much
engaged in astronomical observations’. Hipparchus (loc. cit.)
says “from these observations it is clear that the differences of
the years are very small, but, as to the solstices, I almost think
(ovk dmentifw) that both myself and Archimedes have erred,
by a quarter of a day, both in the observation and in the
calculation,” It would seem from this, and Ammianus expressly
states, that Archimedes was interested in the great question of
the length of the year. Macrobius says that he discovered the
distances of the planets; However this may be, it is certain
that Archimedes not only wrote a treatise (mentioned above)
on the constitution of a celestial globe (wepl adarpomolas) but
himself actually made one and also a planetary, exhibiting the
movements of the sun, moon and five planets. Both these were
brought to Rome by Marcellus and were inspected by Cicero
himself*.

It is mot difficult to understand how, in ancient times,
Archimedes came to be considered as the prince of mathe-
maticians, and that “an Archimedean problem ” became a name
for a difficulty insoluble to the ordinary intellect and an “Archi-

1 The same story is told of Proclus 1. 63, Nat. D. 11 88, Ovid, Fasti, V1.

by Zonaras (Montucla 1. p. 334).
Montucla, who has some rather a-
musing pages (1. 282—235) on this
subject, shews the improbability of the
tale about Archimedes. It appears
that le pere Kircher and also Buffon
made some successful experiments with
a great number of mirrors. Buffon,
with 400 small mirrors, melted lead at
a distance of 140 feet.

? Hipparchus in Ptol. Almagest. 1.
p. 163. Ammianus Marcell. xxvr. 1, 8,
Macrobius, Somn. Scip. 1. 8. Livy, loc,
cit. calls Archimedes ‘unicus spectator
caeli siderumque.’

3 Cicero, De Rep. 1, 21—22, Tuso.

277, etc. Mozt of the passages con-
taining references to the mechanical
contrivances of Archimedes are printed
in Torelli’s dppendiz, pp. 363—370.
Some further references are added by
Heiberg, Q.4. cap. 3, pp. 35—44. The
loculus Archimedius, mentioned by late
Roman writers (Marius Victorin. A7t.
gr. 8, Atilius Fortun, De Metr. vI. p.
271), was a square of ivory cut into 14
pieces of various shapes. It was a
common game to put these together
again into the original square. There
is no reason tosuppose that Archimedes
invented this toy.

16—2
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medean proof” was the type of incontrovertible certainty™.
The older men of the modern school, from Tartaglia to Leibnitz,
while geometry and mechanics were still largely dependent for
support on the discoveries and demonstrations of the Greeks,
were as enthusiastic as the ancients about Archimedes. Even
later writers, such as Gauss and De Morgan and Chasles®, who
were familiar with the highest modern methods, do not hesitate
to rank him with Newton in the very forefront of the champions
of science. But knowledge has lately advanced too fast for the
fame of Archimedes to keep up with it, and, though his name is
no doubt immortal, few readers now know upon what services
his immortality depends. Possibly these few paragraphs will
justify it at least to mathematicians who understand what diffi-
culties the work. of Archimedes involved.

- 130. The chief contemporary of Archimedes was the famous
Eratosthenes. As he was eleven years younger than the mathe-
matician of Syracuse, he was probably born B.c. 276 or 275.
He was a son of Eglaus, a native of Cyrene, but lived almost all
his life in Alexandria. He was a pupil of Callimachus, the
poet, and after a visit to Athens, was invited to succeed his
master as custodian of the Alexandrian library. He is said to
have almost lost his sight by ophthalmia and on that account
to have committed suicide, by voluntary starvation, about
B.C. 194.

The multifarious activity of Eratosthenes may be guessed
from the fact that, among other contributions to literature and
science, he wrote works on Good and Ewil, Comedy, Geography,
Chronology, the Measurement of the Earth and the Constella-
tions®. He was also a considerable poet. The students of the

1 Cic. ad Att. xi1. 4, xo. 28, Pro
Cluentio 32, Ac. Priora 86.

2 Chasles, 4pergu, p. 15, says of the
discoveries of Archimedes that they
are “for ever memorable for their
novelty and the difficulty which they
presented at that time, and because they
are the germ of a great part of those
which have since been made, chiefly in
all branches of geometry which have

for their object the measurement of the
dimensions of lines and curved surfaces
and which require the consideration o:
the infinite,” :

8 See the article Eratosthemes in
Smith’s Dic. of Gr. and Rom. Biogr.
for the authorities who mention these
and other works, none of which are
extant.
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University used to call him Pentathlus, the champion in five
sports’. It was Eratosthenes who first made a fairly accurate
measurement of the obliquity of the ecliptic and an approxi-
mate measurement of a geographical degree®. It was certainly
in his time also that the calendar®, which we now call Julian,
with an intercalary day every four years, was introduced. His
arithmetical device for finding prime numbers has been described
above (p. 87), but of the geometrical work of Eratosthenes only
one fragment now remains, the letter which he addressed to
Ptolemy Euergetes on the duplication-problem and which is
preserved in the commentary of Eutocius on Archimedes, Sph.
et Cyl. 11. 5. This is mainly occupied with the description of a
mechanical contrivance for effecting duplication, which Eratos-
thenes hence called a mesolabium or “mean-finder,” and of
which he was so proud that he dedicated a specimen of it in a
temple to be a possession for ever to posterity. It consists of
three oblong frames, with their diagonals, sliding in three
grooves so that the second frame can slide under the first, the
third under the second.

A

\d

B 1

¢
:

If AB, GH -be the two lines between which it is required
to find two mean proportionals, then slide the second frame
under the first and the third under the second so that A@ shall
pass through the points C, E, at which the diameters of the

who certainly studied the stations and
retrogradations of the planets (Ptol.

1 They also called him Beta, as a
little later they called a certain as-

tronomer Apollonius Epsilon. Ishould
think these were simply the numbers
of certain lecture-rooms, but Ptolemy
Hephaestio (in Photius, Cod. cxc.) says
that Apollonius was called Epsilon be-
cause he studied the moon, of which
" the letter ¢ was a symbol. This
Apollonius may be Apollonius of Perga,

Almag. xi. 1).

2 On the astronomical and geode-
tical work of Eratosthenes see Delam-
bre 1. ch. vi. pp. 86—97.

3 See the edict of Canopus, de-
scribed by Lepsius in his Zeitschrift
1877. Heft1. Cantor, p. 283.
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second and third frames, respectively, cease to be visible. Then
CD, EF are the required two mean proportionals®,

131. Contemporary with Eratosthenes and Archimedes,
though younger than either, was Apollonius of Perga (in Pam-
phylia). He was born in the reign of Ptolemy III. (Euergetes
247222 mn.c.), and flourished under Ptolemy IV. (Philopator
222205 B.c.). He came when quite young to Alexandria and -
studied under - the—successot&—OLEgﬁluubgugh_thpecml

preceptor_is named. He. stayed for some time at Pergamum,
where there was an university and library similar to the

Alexandrian, and where he made the acquaintance of that
Eudemus to whom the first three books of his magnum opus,
the Conic Sections, are dedicated. The brilliance of this work
gained for him the title of ‘the great geometer, but no more
than these meagre facts” is known of his history.

Of the eight books which the treatise on Conic Sections
originally contained, we possess only seven, and these again have
come to us in two parts from two distinct sources. Sir Henry
Savile had a Greek MS. of the first four books; but though the
whole work seems to have remained for many centuries a
text-book of the Greek schools®, the last four books seem to
have been ultimately abandoned as hopeless and the Greek
text of them has wholly disappeared. The 8th was lost as
early as the time of Tabit ibn Korra who (in the 9th century)
translated the first seven books into Arabic. This translation
remained the standard Arabic text of Apollonius, The Persians,

1 Pappus vir, Proem. pp. 636, 662 Arabiatranslationsof Apollonius. Han-

(Hultsch) mentions a work of Era-
tosthenes mwepl pecorfrwy or rémor wpds
pecéryras, which perhaps dealt with
the duplication-problem or with conics.
Montucla 1. p. 280.

2 These are obtained from the pre-
fatory letter to Book 1. of the Conics,
and from Eutocius’ Commentary there-
on, Halley’s ed. pp. 8 and 9.

3 Geminus, Serenus, Pappus, Hy-
patia and Eutocius all wrote commen-

.taries on Apollonius.
4 There is some difficulty about the

kel (p. 234), quoting Casiri, says that &
version was made, in the time of Al
Mamun, of the first four Books: thatthis
was edited by Muhammed, one of the
Beni Moses (i.e. the three sons of Musa
ibn Schakir), and that Tabit added a
translation of the 5th, 6th, and 7th
Books. But the writer of the Golian
MS. (see Halley, p. 255) says that he
has followed the version of Tabit, as
emended by the Beni Moses. The Per-
sians Abulphath and Abdulmelik, next -
mentioned, are not otherwise known.
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Abulphath and Abdulmelik made an epitome of it, and the
famous Nasir-Eddin edited the whole with a commentary about
A.D. 1240. But, in Europe, only the first four books were
known as late as the middle of the 17th century, when one
Golius, a professor at Leyden, introduced an Arabic MS. written
in 1248, containing the first four books in Nasir-Eddin’s edition,
but the last three from the translation of Tabit with emendations
by the Beni Moses'. This MS. was bought by Dr Marsh, arch-
bishop of Armagh, who lent it to Halley, the astronomer, who
was then Savilian professor of geometry at Oxford. In 1710
Halley published the Greek text of four books and a Latin
translation of the remaining three, together with the lemmas of
Pappus to each book, the commentary of Eutocius and a
conjectural restoration (by Halley himself) of the lost 8th book.

The contents of the eight books of Conics are stated in
a very brief summary by Apollonius himself in the prefatory
letter to Book 1. The more interesting and material parts of
this are as follows: “ Apollonius to Eudemus, greeting. When I
was in Pergamum with you, I noticed that you were eager
to become acquainted with my Conics; so I send you now the
first book with corrections and will forward the rest when I have
leisure. I suppose you have not forgotten that I told you that
I undertook these investigations at the request of Naucrates the
geometer, when he came to Alexandria and stayed with me: and
that, having arranged them in eight books, I let him have
them at once, not correcting them very carefully (for he was on
the point of sailing) but setting down everything that occurred
to me, with the intention of returning to them later. Wherefore
I now take the opportunity of publishing the needful emen-
dations. But since it has happened that other people have
obtained the first and second books of my collections before
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1 In 1656, almost simultaneously
with the arrival of Golius’ MS., an-
other was found in the Medicean library
at Florence. Galileo’s pupil, Viviani,
had then nearly completed his restora-
tion of the four last books, all of which
were supposed to be lost. It wasfound,
on comparison, that he had omitted

much that was in Apollonius but had
improved on the real text in many re-
spects. The restoration of lost works
of Apollonius founded on the lemmas
of Pappus and other authorities, was
a favourite exercise of mathematicians
from the 16th century onwards. See
infra, pp. 261—263.
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correction, do not wonder if you meet with copies which are
different from this. Of the eight books, the first four are
devoted to an elementary introduction. The Ist contains the
mode of producing the three sections and the conjugate hyper-
bolas (avrieluevasr, ‘opposite’) and their principal character-
istics, more fully and generally worked out than in the writings
of other authors. The 2nd Book treats of diameters and axes
and asymptotes and other things of general and necessary use in
diorismi. What I mean by diameters and axes you will learn
from this book. The 3rd Book contains many curious theorems,
most of which are pretty and new (xalAd xal Eéva), useful
for the synthesis of solid loct and for diorismi. In the in-
vention of these, I observed that Euclid had not treated syn-
thetically the locus éml Tpeis xal Téooapas ypappuds (‘the locus
which is related to three or four lines’)* but only a certain
small portion of it, and that not happily, nor indeed was a
complete treatise possible at all without my discoveries. The
4th Book shews in how many points the sections of a cone can
coincide with one another or with the circumference of a circle *
and some extra propositions (éA\a éx mwepioaod), none of which
had been published by my predecessors. The rest (the last

1 The 7éwos éml 7pels ral Téooapas The conic as & locus ad quattuor lineas

ypappds would have been treated ana-
lytically in Euclid’s lost Conics. Pap-
pus vir. 86, p. 678 (Hultsch), definos
this locus as follows: “If three straight
lines be given in position and from
a point straight lines be drawn to

meet the given three at given angles, .

and the ratio of the rectangle under
two of the lines so drawn to the square
of the third be given, the point will lie
on a solid locus given in position, i.e.
on one of the three conics. If four
straight lines be given in position and
four straight lines be drawn as before,
and the ratio of the rectangles under
two pairs be given, similarly the point
will lie on & conic.” If five or six
straight lines were drawn, whose pro-
ducts were in a given ratio, the locus
of the point could not be described.

is used by Newton in the Principia.
Chasles Apergu p. 38 points out the
importance of this aspect of conics.

3 This sentence is only a paraphrase.
The Greek has mwocaxws (‘‘in how many
ways”) and karé mosd oqueia (‘‘in
how many points”) in two distinct
sentences, as if these were two different
things. But the introduction to the
4th book has only xard mosd onuelas
and it is probable that these words
were added as a gloss on mocax@s by
some commentator, The same intro-
duction to the 4th Book says also that
the subject here assigned to it had
been treated already, but very badly, by
Conon, whose work was severely criti-
cised by Nicoteles of Cyrene, and that
some props, of the 4th Book had been
cursorily treated by this Nicoteles,
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four books) is more advanced (mepiovaiacTikwTepa). One is, for
the most part, on mazima and minima : the next about equal
and similar conics: the next about ‘determinative’ (dioristic)
theorems; the last on some problems so ‘determined’ (Swpio-
péva).” The first three books were sent to Eudemus at intervals,
the remainder (after Eudemus’ death) to one Attalus. All
(except the 3rd) are accompanied by little prefatory notes,
which repeat in effect the remarks of the first letter. The
preface to Book 1I. is interesting, as shewing the mode in
which Greek books were “published” at this time. It runs
“I have sent my son Apollonius to bring you the second
book of my Conics. Read it carefully and communicate
it to such others as are worthy of it. If Philonides the
geometer, whom I introduced to you at Ephesus, comes into
the neighbourhood of Pergamum, give it to him also.”

It will be seen that Apollonius does not pretend that his
first three books were entirely new, but only that they were im-
provements on his predecessors. The statement of Pappus,
therefore, that Apollonius’ first four books are founded on the
Conics of Euclid is probably substantially true, and there may be
some foundation for the accusation of Heracleides that Apollonius
had stolen from the unpublished MSS. of Archimedes. But
how far the study of conics had been carried before Apollonius
cannot now be ascertained. Menaechmus, we know, first wrote
on the subject and advanced far enough to apprehend the
existence of asymptotes to the hyperbola. He was followed by
Aristaeus the elder, whose work was used by Euclid at least in
his treatment of the locus ad tres et quattuor lineas', which
seem to have been partly discussed in his Conics®. But the
Conics of Menaechmus, Aristacus and Euclid were almost
immediately driven out of the field by the superior book
of Apollonius, and the only clue to their contents is to be found
in those passages of Archimedes (especially in the Quadrat.
Paraboles and De Conoidibus) in which propositions in conics

1 Pappus vir. 34 (Hultsch p. 676). occurred. But it could hardly have been
- % Eutocius (Halley p. 12) did not in the 7éwo wpds émgpavelg, because
know where the passage of Euclid to  the locus in question was a conic. See
which Apollonius refers in his preface, note on preceding page.
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are referred to as well known or assumed. A careful exami-
nation of these shews, in the first place positively, that almost
all the propositions which Archimedes uses are to be found
in the first three books of Apollonius’, and, in the second place
negatively, that no predecessor of Apollonius was acquainted
with the names parabola, ellipse and hyperbola, and with the
new treatment of conics which these names imply. It is
evident, therefore, that almost the whole of Apollonius’ work
was original.

132. The completed work adheres closely to the lines
indicated in the prefatory letter, but it is obviously difficult to
. give an intelligible or readable analysis of a huge treatise

in which the propositions do not, as they generally do with
Archimedes, Jead gradually up to one crowning achievement.
The theorems, of course, are in great measure identical with
those of the modern text-books, but a summary of them, if
stated in modern language, would lose historical suggestiveness,
and, if stated in the language of Apollonius, would generally be
tedious or incomprehensible. This paragraph, therefore, and
the next are to be regarded only as containing some hints upon
the matter and manner of Apollonius.

Book 1. begins with a series of definitions. If a line be
drawn from a fixed point to the circumference of a circle, which
is not in the plane of the point, and the line revolve round the
circumference of the circle, it describes a cone, of which the
circle is the base, the fixed point the verter. The awisis the
line joining the vertex and the centre of the base. If the axis
is at right angles to the base, the cone is right: if otherwise,
scalene. “Of every curve in one plane, that straight line is
a diameter which, being drawn from the curve, bisects all the
straight lines drawn in the curve parallel to a certain straight
line.” The extremity of the diameter on the curve is the
vertex of the curve: each of the parallels is drawn ordinatim

1 See Heiberg in Zeitschr. fiir Math, 21, 26, 83, 35, 36, 46, 49: 11. 3, 12, 13,
u. Phys. Hist. Lit. Abth. xxv. pp. 41 27, 49: 1m. 17: vi. def. 7, props. 2
8qq. and a summary of this in Litter- and 11, of Apollonius were known to
argesch. iiber Euclid, pp. 86—88. He his predecessors.
concludes that the props. 1. 11, 17, 20,



EUCLID, ARCHIMEDES AND APOLLONIUS. 251

(reraypévws katikrar “is an ordinate”) to the diameter. Of
two curves in one plane, that straight line is a transverse
(m\ayla) diameter which, cutting both curves, is a diameter of
each; and that straight line is an erect (dpfia) diameter,
which, lying between the curves, bisects all the lines inter-
cepted between them which are parallel to a certain straight
line. Conjugate (ovlvyets) diameters are straight lines of
which each is a diameter and each bisects the straight lines
parallel to the other. The azis of the curve (or of two
curves) is the diameter which bisects the parallels at right
angles, and conjugate azes are the conjugate diameters, each of
which bisects the parallels to the other at right angles. The
definitions of the centre of the ellipse and the conjugate hyper-
bolas and one or two more are added after Prop. Xvi. Book vI.
begins with the definitions of similar and dissimilar conics and
segments of conics. But many of the most important definitions
(e.g. of parabola, ellipse and hyperbola, latus rectum and trans-
versum, conjugate hyperbolas and asymptotes) are contained in
the propositions in which the things defined first appear. The
geven extant books contain on an average about 50 propositions
apiece.

The first and most striking of the novelties which are due
to Apollonius himself is his mode of producing the three conic
sections and the names and descriptions which he gives of
them. It will be remembered that his predecessors had always
cut the cone by a plane at right angles to one of its sides, and
had therefore produced the parabola as the section of a “right-
angled cone,” the ellipse in an “acute-angled cone,” the hyper-
bola in an “obtuse-angled cone.” Apollonius produces all
these sections in one and the same cone, whether right or
scalene, cut by a plane which is parallel or not parallel to one of
its sides. The old names, therefore, ceased to be appropriate,
and new ones were required. It will be remembered, again,
that a rectangle, applied to a straight line, was said mapa-
BaX\eobay, if its base exactly coincided with the line, Jmrep-
BdAew, if it exceeded the line, é\Aeimew, if it fell short of it.
From these technical terms, Apollonius derived his new names.
Let C be any point on a conic of which 4B is the axis, and from
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C draw OD perpendicular to AB, cutting off (the abscissa) AD.
From A draw AE at right angles to AB and equal in length to
what we now call the latus rectum of the conic. Draw a rectangle
equal to the square on CD and having AD for one of its sides.
If this rectangle, applied to AE, has its other side exactly coin-
ciding (wapaBar\iouevov) with AE, the conic is a parabola. If
the side applied to AE is too short (éAleime), the conic is an
ellipse: if it is too long (YmepBaiher), the conic is a hyper-
bola. (In the language of modern analytical conics, if p be the
parameter, the Parabola is so-called because y*= pz: the Hyper-
bola because y*> pz: the Ellipse because y* <pz.) It is in this
way that Apollonius gets rid of the cone and exhibits the conic
as a plane locus. But he does not define the conic with any
reference whatever to a focus and directriz. The focus of an
ellipse and hyperbola he discovers only incidentally (111. props.
45—52): he does not discover the focus of a parabola at all and
has no notion of a directriz for any conic’.

These remarks being premsed the critique of M. Cha.sles,
which repeats some of them in another form, may be here
substantially reproduced®. Almost the whole of the learned
treatise of Apollonius, he says, “ depends upon a single property
of the conic sections, which is derived directly from the nature
of the cone in which these curves are formed....Conceive an
oblique cone on a circular base. A plane, passing through the
axis, perpendicularly to the base, produces a triangular section,
which is called the triangle through the axis. Apollonius sup-
poses, in the formation of his conic sections, the cutting plane

EUCLID, ARCHIMEDES AND APOLLONIUS.

1 Pappus vi. 238 (p. 1013) first
suggested the focus of a parabola and
the directriz. The theory of foci was
first worked out by Kepler; Newton
first made any use of the directriz,
which was adopted from him by Bos-
covich. Taylor, dncient and Mod.
Conics, LIV., LXV., LXXI,

2 Apercu, pp. 18—20. I select this
passage because it rather happily com-
bines some information on the nomen-

clature and elementary propositions of

Apollonius, with some indications of
the profounder part of his researches.
A much fuller summary is given by
Mr Taylor, Ancient and Modern Conics,
pp. xui.—L. Montucla (1. p. 247) is
extremely brief. Cantor (pp. 290—296)
is tolerably full, but gives no precise
references. The fact is that Apollonius
is tedious, as Prof. de Morgan found
him (Art. ‘“Apoll.” in Penny Cy-
clop.).
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to be perpendicular to the triangle through the axis. The
points in which this plane meets the sides of the triangle are
the vertices of the curve, and the straight line joining these
points is a diameter of it. Apollonius calls this diameter latus
transversum (m\ayia)'.

“At one of the two vertices of the curve erect a perpendi-
cular to the plane of the triangle through the axis, of a certain
length, to be determined as herein-after mentioned: and from
the extremity of this perpendicular draw a straight line to the
other vertex of the curve. Now, from any point in the diameter
of the curve draw at right angles an ordinate: the square of
this ordinate, lying between the diameter and the curve, will be
equal to the rectangle contained by the part of the ordinate
comprised between the diameter and the straight line and the
part of the diameter comprised between the first vertex and the
foot of the ordinate. Such is the generic (originaire) and
characteristic property which Apollonius recognises in his conic
sections and which he uses for the purpose of inferring from it,
by very adroit transformations and deductions, almost all the
rest. It plays, as will be seen, in his hands, almost the same
part as the equation of the second degree with two variables in
the system of Analytical Geometry of Descartes.

« It will be observed that the diameter of the curve and the
perpendicular raised at one of its extremities, suffice to construct
the curve. These are the two elements which the ancients
used to establish their theory of conics. The perpendicular in
question was called by them latus erectum (opfla): the moderns
first changed this name to that of latus rectum, which was long
employed, and afterwards replaced it by parameter, which has
remained. Apollonius and the geometers who wrote after him
gave different geometrical expressions, found in the cone, for the
length of this latus rectum for each section, but none has
appeared to us so simple and elegant as that of Jacques
Bernoulli. It is as follows: Take a plane parallel to the base of
the cone and situate at the same distance from its vertex as the
plane of the proposed conic: this plane will cut the cone in a

1 A parabola, having only one vertex, has no latus transversum.
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circle, the diameter of which will be the latus rectum of the
conic’. From this it is easy to infer the mode of placing a
given conic in a given cone.

“The most interesting properties of the conics are to be
found in the treatise of Apollonius. We may cite those of the
asymptotes, which form the chief part of Book II.: the constant
ratio of the products of the segments made by a conic on two
transversals parallel to two fixed axes and drawn through any
point (props. 16—23 of Book I11.): the principal properties of
the foci of the ellipse and hyperbola (1L 45—52)7: the two
pretty theorems on conjugate diameters (VIL 12 and 22:
30 and 31).

“We ought also to cite the following theorem, which has
obtained so great importance in recent geometry as the basis of
the theory of reciprocal polars, and which LaHire had, earlier,
made the foundation of his theory of conics. °If, through.the
point of concourse of two tangents to a conic section, a trans-
versal be drawn which meets the curve in two points, and the
chord which joins the points of contact of the two tangents in a
third point, as the whole transversal to the part of it outside
the curve, so are the segments of the chord to one another’
(1. 37)°

“The first 23 propositions of Book Iv. relate to the harmonic
division of straight lines drawn in the plane of a conic. These
are, for the most part, different cases of the theorem just enun-
ciated. In the following propositions Apollonius considers
the system of two conics and shews that these curves can cut
one another only in four points. He examines what happens
when they touch one another in one or in two points and treats

1 Novum theorema pro doctr. Sect.
Conic. in the Leipzig Acta Eruditorum,
anno 1689, p. 586.

2 The foci are called ‘“points of
application.”

3 Save for the use of the word
¢‘transversal” I give the enunciation
practically as it stands in Apollonius.
Chasles converts it into modern phra-
seology, concluding ¢‘ce troisidme point

et le point de concours des deux tan-
gentes seront conjugués harmoniquespar
rapport aux deux premiers.” So Mr
Taylor, p. xLv. ‘“Any chord through
the intersection of two tangents to a
conic is out harmonically by their
point of concourse and their chord of
contact” (11r. 37—40). Apollonius does
not use the word ‘harmonic,” but
gives his proportions in full.
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various other cases of the respective positions which they can
present’. .

“Book V. is the most precious monument of the genius of
Apollonius. Here, for the first time, appear questions of mazi-
ma and mimima®. The book contains all that the analytical
methods of to-day teach us on this subject, and we may recog-
nise in it the germ of the beautiful theory of evolutes (déve-
loppées)®. In fact, Apollonius proves that there is, on each side
of the axis of a conic, a succession of points from which only one
normal can be drawn to the opposite part of the curve: he gives
the construction of these points and observes that their con-
tinuity separates two spaces which present this remarkable
difference, viz.: from any point of the one two normals can be
drawn to the curve and none can be drawn from any point of
the other. Here then we have centres of osculation (curvature)
and the evolute of a conic perfectly determined®. Apollonius
makes use of an auxiliary hyperbola, of which he determines
the elements, for the purpose of constructing the feet of the
normals let fall, from a given point, on the proposed conic. All
these investigations are conducted with admirable sagacity.”

It should be added that Book VI. treats mainly of similar
conics : Book VII. of conjugate diameters, Book VIIL, as restored
by Halley, consists of 33 problems (or porisms, as he might have
called them) to find conjugate diameters which satisfy certain
given conditions.

133. It will be obvious that, for the mere purpose of
illustrating the style of Apollonius, one proposition will do
almost as well as another. The proofs, which I shall give in
this section, are those of two propositions of exceptional histori-
cal interest. -

Prop. 11. of Book 1. exhibits the characteristic of the parabola
above described. The enunciation (slightly abbreviated) is as

1 Every proposition in Bk. 1v. is
proved by reductio ad absurdum.
" % This is not quite true. Euclid vr.
27 (supra p. 84, n.), is the first known
proposition in which a mazimum is
found. Compare also the determination
given by Archimedes De Sph. et Cyl.

11. 5, given above, p. 225, n.
3 Suggested first by Huyghens in
1673. Taylor, Conics, pp. 221, 222,
4 The remarks of Chasles on Bk. v.
are practically identical with Mon-
tucla’s.
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follows: “If a cone be cut by a plane through the axis and by
another plane cutting its bases along a straight line which is
perpendicular to the triangle through the axis, and the diameter?*
of the section be parallel to one of the sides of the triangle
through the axis: the square of the straight line which is drawn
to the diameter from the section of the cone parallel to the
common section of the cutting plane and the base of the cone
will be equal to the area contained by the abscissa (7 dmorauBa-
vouévn) of the diameter and a certain other line which has, to
the straight line lying between the angle of the cone and the
vertex of the segment, the same ratio which the square on the
base of the axial triangle has to the rectangle under its sides.
Let a section of this sort be called a Parabola.”
The proof (somewhat abridged) is as follows :

ABTI' is the axial triangle. Let the cone be cut also
by a plane which cuts its base along AE, at right angles
to BI. AZE is the conic, ZH its diameter, parallel to AT,
one side of the axial triangle. From Z draw Z® at right
angles to ZH, making Z® : ZA : BI" : AB.Al. From any
point K on the curve draw KA parallel to AE, meeting the
diameter in A. Then KA*=0Z.ZA.

Through A draw MN, parallel to B[. Now KA is parallel
to AE, therefore the plane through KA, MN is parallel to the
plane through BT, AE, i.e. to the base of the cone. Therefore

1 This diameter, which is in fact the  diameter éx yevvioews, ‘‘arising from
‘axis, is called in the corollary to 1. 46  the generation of the curve.”
the principal (dpxcf) diameter or the
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the plane through KA, MN is a circle, of which MN is a
diameter. And KA is perpendicular to MN (as AE to BT).
Therefore KA*=MA . AN

And since BI® : BA. AT = ®Z : ZA, but BI" : BA. AT
is the ratio compounded of BI' : T'A and BI' : T'A, there-
fore ®Z : ZA is the same compounded ratio. But

BI' : TA = MN : NA : MA : AZ;
and BI': BA :: MN : MA :: MA : MZ :: the remainder NA: the
remainder ZA. Therefore ®Z : ZA (being compounded of the
ratios MA : AZ and NA : ZA)is MA.NA : AZ.ZA.

But ®Z : ZA :: ®Z.ZA : ZA.ZA. Therefore
MA.NA=0OZ.ZA. But MA.NA = KA’ as already proved.
Therefore KA’=0Z.ZA. Q.E.D.

The proof concludes with a direction that ®Z may be called
either the line related to the squares of the ordinates (wap’ 7y
Svvavras) or latus rectum (6pOla).

The enunciation of I. 12 establishes a similar law for the
hyperbola. “If a cone be cut by a plane through the axis and
by another plane cutting its base along a straight line perpen-
dicular to the base of the axial triangle, and the diameter of the
section produced meet one side of the axial triangle produced on
the other side of the vertex®, the square of any ordinate (described
as before) will be equal to an area {applied to a certain straight
line, to which the portion of the diameter of the conic produced,
which subtends the exterior angle of the triangle, has the same
ratio as the square of the straight line which is drawn, parallel
to the diameter, from the vertex of the cone to the base of the
triangle has to the rectangle contained by the segments of that
base made by it} having for its side the abscissa and excessive
(vmépBarrov) by a figure similar and similar in position to that
which is contained by the straight line subtending the external
angle of the triangle and the straight line to which the area,
equal to the square of the ordinates, is to be applied (7 evfeia
wap’ fv Svvavras ai karaybuevai). Let a section of this kind

be called a Hyperbola.” This rigmarole (abridged from the

1 The nomenclature is remarkable.  dxé.
70 dpa ¥wd TGv MAN loov -éorl 7¢ dmd 2 Two cones, having a common
706 KA. Natice the use of vxd and vertex, may here be supposed.
G. G, M. 17
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original) will be easier to follow by reference to the figure?,

in which ABT is the axial triangle: AZE the section: ZH the
diameter produced to meet I'A in ®. MN is the ordinate.
Then MN* is equal to an area applied to ZA, which line is
perpendicular to ZH, and is such that ®Z : ZA :: AK* : BK. KT,
the line AK being drawn parallel to the diameter ZH. The
area in question, ZE, has the abscissa ZN for one side, and
is such that it “overlaps” (JmepBailes) the line ZA by the
figure AE which is similar and similar in position to the
rectangle ®Z.ZA. The line ZA is drawn at right angles to
ZH. From N,NOE is drawn parallel to ZA,and the point & is
that in which ®A produced meets NOZ. The only addition
made to the figure for the purpose of the proof is that, through
N, P3 is drawn parallel to B. The proof is of the same kind
as that for the parabola, but concludes with the additional
statement that ®Z is to be called mAayla, latus transversum.

The next proposition (I. 13) contains a similar theorem with
regard to the ellipse. The latus rectum is determined precisely
as before. The square of the ordinate is equal to an area
applied to the latus rectum, but deficient by a figure similar and
similar in position to the rectangle under the latus transversum
and the latus rectum. The proposition contains also directions
for producing an elliptical section.

1 In the figure AO and IIZ ought to be parallel to ZN.
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Book III. prop. 45, first exhibits the foc: of the ellipse and
hyperbola. The enunciation is as follows: “If in a hyperbola
or ellipse or circle or conjugate hyperbolas, from the extremities
of the axis there be drawn straight lines at right angles, and a
rectangle equal to a fourth part of the figure' be applied to the
axis at either end, in the hyperbola or conjugate hyperbolas
excessive by a square but in the ellipse deficient, and there be
drawn a tangent to the curve meeting the straight lines drawn
at right angles as aforesaid, the straight lines drawn from the
points of concourse to the points determined by the application
aforesaid (td ék Tis mwapaBolijs yevebévra onueia) make right
angles at those points.” ’

The proof is as follows:

z

A

E

Let AB be the axis of any of the proposed sections, and
draw AT, BA at right angles to this. I'EA is a tangent. And
let a rectangle equal to a fourth part of the figure be applied
at either end of AB, as above mentioned, viz. the rectangles

1 The figure (3 eldos) is the rectangle  overlaps by a square, and in an ellipse
contained by the latus transversum and  is deficient by & square. See Taylor,
the latus rectum. A rectangle, equal to  Anc. and Mod. Conics, pp. xuIv. 81 n.
one-fourth of this, is to be applied to 111 Schol. E,
the axis, so that in a hyperbola it

17—2
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AZ .ZB, AH. HB: and join I'Z, TH, AZ, AH. The angles
T'ZA and THA are right angles.

It has been shewn (111 42) that the rectangle AI'. BA is
equal to the fourth part of “the figure” on AB. Therefore the
rectangle AZ . ZB = the rectangle AI' . BA. Therefore

TA : AZ = ZB : BA.
And the angles at A and B are right angles. Therefore the
angle AT'Z =the angle BZA and angle AZI =angle ZAB.
And the angles AT'Z, AZT" are together equal to a right angle,
therefore the angles AZT', BZA are equal to a right angle:
therefore the remainder AZT' is a right angle. Similarly, THA
may be proved to be a right angle.

The following propositions, XLVL.—LIL, deal with some other
theorems suggested by the same construction.

The two proofs, here given, which are both comparatively
easy, will perhaps suffice to indicate to the reader the lack of
technical terms and symbols, and consequently the cumbrous
modes of proof, which characterise the higher Greek geometry.
It seems superfluous to add more specimens, which probably no
one would read.

134. The century which produced Euclid, Archimedes and
Apollonius was, beyond question, the time at which Greek
mathematical genius attained its highest development. For
many centuries afterwards geometry remained a favourite study,
but no substantive work fit to be compared with the Sphere and
Cylinder or the Conics was ever produced. One great invention,
trigonometry, remains to be completed, but trigonometry with
the Greeks remained always the instrument of astronomy and
was not used' in any other branch of mathematics, pure or
applied. The geometers who succeed to Apollonius are pro-
fessors who signalised themselves by this or that pretty little
discovery or by some commentary on the classical treatises.

“The works of Archimedes and Apollonius,” says M. Chasles?,
“marked the most brilliant epoch of ancient geometry. They
may be regarded, moreover, as the origin and foundation of two
questions which have occupied geometers at all periods. The
greater part of their works are connected with these and are

1 Except, perhaps, by Heron. See below, pp. 288, 284. 2 Apergu, pp. 22, 23.
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divided by them into two classes, so that they seem to share
between them the domain of geometry.

“The first of these two great questions is the quadrature of
curvilinear figures, which gave birth to the calculus of the
infinite, conceived and brought to perfection successively by
Kepler, Cavalieri, Fermat, Leibnitz and Newton.

“The second is the theory of conic sections, for which were
invented first the geometrical atia.lysis of the ancients, afterwards
the methods of perspective and of transversals. This was the
prelude to the theory of geometrical curves of all degrees, and
to that considerable portion of geometry which considers, in the
general properties of extension, only the forms and situations of
figures, and uses only the intersection of lines or surfaces and the
ratios of rectilineal distances.

“These two great divisions of geometry, which have each its
peculiar character, may be designated by the names of Geometry
of Measurements and Geometry of Forms and Situations, or
Geometry of Archimedes and Geometry of Apollonius®.”

135. It remains only to add a few words on a great number
of other geometrical works which are attributed to Apollonius.
Pappus® ascribes to him the following works (1) On Contacts
(mepl émwapdv), (2) On Plane Loci (émwimedoc Témor), (3) On
Inclinations (mwepl vevoewv), (4) On Section of an Area (mepl
xwplov dmotouds), (5) On the Determinate Section (mepl Siwpio-
wévns Topds), and gives a few lemmas, from which attempts
have been made to reconstruct the lost originals®. Vieta
restored the 1st in his Apollonius Gallus: Fermat in 1637 and
Simson in 1746 attempted the 2nd: Ghetaldi the 3rd : Halley
(in his edition of De Sectione Ratiomis) restored the 4th:
Snellius, Ghetaldi, and Simson, again, worked at the 5th. All

1 ¢These two divisions,” he adds,
“are those of all the mathematical
sciences which have for their aim, to
use Descartes’ expression, the investi-
gation of order and measure.” Aristotle
had already uttered the same thought
in these terms : *“ With what are mathe-
maticians concerned save with order

and proportion?” The quotations are
from Descartes, Regles pour la direction
de UEsprit, 14° and 4° Regle, Aristotle,
Metaph. x1. 3,

? vir. Nos. 298—311, pp. 990—1004
(Hultsch).

3 See Montucla, 1. pp. 251, 252 and
notes F and G, pp. 285—288.

.
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of these were certainly exercises in geometrical analysis, and an
account of their supposed contents is given by Montucla, but
does not seem worth citing. The passage, however, in which
the same writer mentions Vieta's restoration of the work On
Contacts is interesting as illustrating the manners and customs
of mathematicians at a time when they were more dependent
on Greek learning than they are now. Vieta (1540—1603)
having a contention with one Adrianus Romanus, a clever
geometer of the Low Countries, took occasion “to propose to
him the principal problem, and the only difficult one in the book
(On Contacts). It is this: Three circles being given, to find a
fourth, which shall touch the three. Romanus solved this badly
by adopting the expedient which presents itself at first sight
and determining the centre of the desired circle by the inter-
section of two hyperbolas. The objection is that the problem
is plane, and can consequently be solved by the aid of ordinary
geometry. Vieta solved it in this way and very elegantly: his
solution is the same as that in the Arithmetica Universalis® of
Newton. Another is given in the 1st Book of the Principia®,
“where this question is necessary for some determinations of
physical astronomy. Here Newton, with remarkable skill,
reduces the two solid loci of Romanus to the intersection of two
straight lines. This problem, one of those to which algebraical
analysis does not lend itself with facility, occupied Descartes
also: and of two solutions which he found, he admits that one
gave an expression so complicated that he would not undertake
to construct it in a month. The other, though less crabbed,
was sufficiently so to prevent Descartes from touching it. We
may mention finally, on the subject of this problem, an anecdote
which in a way illustrates it. The princess Elizabeth of Bo-
hemia®, who, as is well-known, honoured our philosopher (Des-
cartes) with her correspondence, deigned to occupy herself with
it and sent him a solution, but as this' is derived from algebraic
calculation, it is open to the same objection as that of Descartes.”
But a work of Apollonius called De Sectione Rationis was
translated from the Arabic and published by Halley in 1706.
This deals with the cases of one problem, which is as follows.

1 Prob, xuviL 2 Lemma xvI. 3 Daughter of our James L
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Two straight lines of infinite length, MN, PQ, are in one plane,
parallel to one another or intersecting in a point. On each any
one point is taken (4 and B respectively), and a point O is given
outside them. It is required to draw from O a straight line
meeting MN, PQ in the points C and D, so that the sequents
AC, BD shall be in a given ratio. In the first book, 14 cases are
treated, where the lines are parallel and where they intersect,
but the points 4, B upon them are the point of their intersection.
The second book contains 63 cases. All are solved analytically
with the aid of conics®.

A work of Apollonius on Unclassed Incommensurables (d\o-
«yor &raxTor) is mentioned in an Arabic commentary on Euclid’s
10th Book, which is translated from a Greek commentary,
written perhaps by Vettius Valens, a Byzantine astronomer of
the 2nd century. It is, however, impossible to discern from
the commentary what these “unclassed incommensurables”
were®. Hypsicles (see below) knew another work of Apollonius,
and Proclus (p. 105) mentions a treatise on the screw.

136. Lastly, Eutocius, in his often-cited commentary to the
Bphere and Cylinder, attributes to Apollonius, Heron and Philon
of Byzantium, methods of duplication which are practically
identical, and which Apollonius, as the oldest of these three
mathematicians, must be taken to have invented®. This solution
is in effect as follows. If AB, AC be the two straight lines
between which it is required to find two mean proportionals,
place them at right angles to one another, the right angle being
at the common extremity 4, and complete the parallelogram
ABDC.

Join BC and bisect it in E. From the centre E describe a
circle F@, cutting AB, AC produced in F and @, so that the

EUCLID, ARCHIMEDES AND APOLLONIUS.

1 On all these minor works of Apol-
lonius,the lemmasupon themin Pappus’
virth Book and the important antici-
pations of modern geometry which
these contain, see Chasles, dpergu, pp.
28—47.

2 Cantor, pp. 299—301, quoting an
essay of Woepcke'sin Mémoiresprésentés
& Udcad, des Sciences, x1v. 658—720,

Paris, 1856, and Chasles in Comptes
Rendus, xxxvir. 563—568(0ct. 17,1853).
3 Philon may be the oldest, for Vi-
truvius assigns him to Alexander’sreign,
but other authorities give him a much
later date, about B.c. 150. Heron’s solu-
tion is given first by Eutocius (Torelli,
pp. 136—138). Philon constructs the
figure a little more conveniently.
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points F, D, @ are on the same straight line. “This may be
effected if a ruler (xavoviov) cutting AF, AG be turned about
D until EF, EG are equal.” From E draw EH perpendicular
to AC and bisecting it in H.

E

A H [ G

Then (by Euc. 11. 6) AG . GC+ HC*=HG* Add EH" to
each equal. Then AG@ . GC+ EC*=EQR. In the same manner
it may be shewn that AF.FB+ EB'=EF'=EG’ And
EC*=EB*. Therefore AG . GC=AF . FB and

AQ : AF :: FB : GC.
But, by similar triangles, AG : AF :: CG : CD = BD : BF.
Therefore BD : BF :: BF : CQ = CQ@ : CD.



CHAPTER VIIIL,
THE SECOND CENTURY B.C.

137. THE materials for a history of Greek geometry after
Apollonius are both scanty in quantity and most unsatisfactory
in quality. We know the names of many geometers who lived
during the next three centuries, but very few indeed of their
works have come down to us, and we are compelled to rely for
the most part on such scraps of information as the later
scholiasts,” Pappus, Proclus, Eutocius and the like, have inci-
dentally preserved. But this information, again, generally affords
little clue to the date of the geometer in question. Thus,
though we have abundant evidence that mathematics remained
a chief constituent of the Greek liberal curriculum, we cannot
tell with any accuracy what subjects were most in vogue or
what mathematicians were most generally regarded at any

particular time. It is certain, however, that during the whole:

period between Apollonius and Ptolemy only two mathemati-
cians of real genius, Hipparchus and Heron, appeared, that both
of these lived about the same time (120 B.C.), and that neither
was interested in mathematics per se, for Hipparchus was
above all things an astronomer, Heron above all things a sur-
veyor and engineer. The result might have been different if
some new methods had been introduced. The force of nature
could go no further in the same direction than the ingenious
applications of exhaustion by Archimedes and the portentous
sentences in which Apollonius enunciates a proposition in
conics. A briefer symbolism, an analytical geometry, an infini-
tesimal calculus were wanted, but against these there stood the
tremendous authority of the Platonic and Euclidean tradition,
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-

and no discoveries were made in physics or astronomy which
rendered them imperatively necessary. It remained only for
mathematicians, as Cantor says, to descend from the height
which they had reached and “in the descent to pause here and
there and look around at details which had been passed by in
. the hasty ascent’.” The elements of planimetry were exhausted,
. and the theory of conic sections. In stereometry something
still remained to be done, and new curves, suggested by the
spiral of Archimedes, could still be investigated. Finally, the
arithmetical determination of geometrical ratios, in the style of
the Measurement of the Circle, offered a considerable field of
research, and to these subjects mathematicians now devoted
themselves. '

138. One of the first of the successors of Apollonius was
perhaps Nicomedes, who invented the curve called conchoid or
“mussel-like.” At any rate the conchoid was known to Geminus
about B.c. 70% and Eutocius® says that Nicomedes made sport
of Eratosthenes’ mesolabium, and boasted the superiority of his
own invention. It is not likely that Eratosthenes had been
long dead at this time.

The treatise on the conchoid which Nicomedes wrote is
known to us only from Eutocius’ commentary on duplication,
from Pappus, and two or three casual remarks of Proclus. It

B

is a curve such that the straight line joining any point on the

1 Cantor, p. 801, cf. p. 238, * Proolus, p. 177. 3 Torelli, p. 146.
4 Book 1v. (Hultsch) pp, 244—246, .
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curve with a given point is cut by a given straight line so that
the segment between the curve and the given straight line is of
a given length. Nicomedes invented a little machine for
describing it, of the form here depicted. It will be seen that
the arm AB can move ouly horizontally along DE, to which it
is confined by a button C sliding in a groove. The length AC
therefore is constant. The point £ was called the pole (wo\os).

The method of duplication, with the aid of the conchoid,
may be thus described.

Let aA and aB be the given straight lines between which it
is required to find two mean proportionals. Place these at right
angles to one another (as in the solution of Apollonius), and
complete the rectangle aBya.

I
a
N
B € /i x

Produce B to n, making Bn = By, and join 7\, bisecting a8
in 8. Bisect By in ¢ and from e draw e{ at right angles to By,
so that y§=B8. Join n{ and through ¢ draw @ parallel to &
From ¢ as pole, with 0 as fixed straight line and 88 as the
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length of the constant segment describe a conchoid, cutting
78 produced in «. Join «\ and produce it to meet Ba pro-
duced in u. Then au and o« are the two mean proportionals

M. a=a—7\.7vy. Now

. . . pa _
required. By similar triangles &

Yk
ah . Ny=1y. B3, (since y x 2w =2y x 2), . pa=TI Bug

z—zgg—z copa=E0, and (k= ge_,_%?:“&

By the use of Euc. 11 6 (precisely as in the solution of
Apollonius) it may be shewn that ¢&* =Bk .wy+ yf* and
ud=Pu.pa+ad. .. Br.xy+ 9l =PBp.pa+ad¥ But
v =ad . Be.ky=PBu.pa. .. Bu: Bx=1rky: pa. But
Bu:Be=wyN:qoyk=au:a\. ..oyA:qyk=rK:au=au:a\.

The conchoid was also used to solve the trisection of an angle
in a way which closely resembles the 8th of the lemmas attri-
buted to Archimedes (supra, p. 233). Proclus says that Nicomedes
himself solved this problem, but Pappus claims the solution
which he gives as his own',

Let aBy be the angle which it is required to trisect. From
a draw ay perpendicular to By. Complete the parallelogram,

4

Now from B as pole, with ay as fixed straight line and 248 as
constant distance describe a conchoid which shall meet {a pro-
duced in e. The line Be cuts ayin 8. Bisect 8¢ in 7 and join az.
It is then easy to see that an =ne=aB and the triangles aB, ane
are isosceles. Therefore the exterior angle anB = 2zen= 278y,
and the angle anB = aBn = 278y.

139. Probably at the same time as Nicomedes, say 180 B.C.,
lived Diocles, the inventor of the cissoid or “ivy-like” curve,
His date can be approximately determined only by the two

1 Proclus, p. 272; Pappus 1v, 88, p, 274 (Hultsch).



THE SECOND CENTURY B.C. 269

facts that Geminus knew the cissoid by this name, and that Diocles
lived after Archimedes, for he wrote a commentary on the un-
finished problem (11. 5, supra, p. 225n) of the Sphere and Cylin-
der. The work in which this occurs was called mepl mupiwv or
arvpelwv’, whatever that may mean, and contained also a
solution of the duplication problem which Eutocius cites with
the rest® This solution, which involves also the definition of
the cissoid, may be described as follows. Let aB and & be

diameters of a circle at right angles to one another. On ¢/8, at
equal distances on either side of the centre A, take the points
x and 7, and draw the ordinates xe, . Join €8, cutting n¢
in . The point @ (as also all other points similarly determined)
lies on the cissoid. Also yn : n&=n¢: 78 =78 : 56.

As n¢is perpendicular to the diameter ¢, it is plain that
yn : ¢ =n¢: 9. For a similar reason®, yx : xe=rxe : k8. And
by similar triangles xe: £8 =170 : n8. Therefore yx : ke =170 : 78

1 Eutocius in Torelli, p. 171. Ivpetor
(which may be the right reading),
Lat. igniaria, was an instrument for
making fire, by turning a pointed per-
pendicular stick (rptwavor) in a hole
made in a flat board (éoxdpa). If this
was worked by strings, like a drill
(see the chapter on fire-drills in Tylor’s
Early Hist. of Mankind), then Diocles’
book may have been a treatise on
some geometrical theorems suggested

by the machine.

2Torelli, p. 138. Cantor, pp. 306, 307.
Thesolutions of Pappus and Sporus (an
otherwise unknown geometer), which
Eutocius gives next, are practically
identical with this, though the con-
structions are not obtained with a
cissoid.

3 A shorter proof would run: ‘And
yn :9¢=238k: ke =20n:n0. Therefore
=0 gd=95:70.’
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and «e:xy=n8:70. But ke=7{ and xy=98. Therefore
n8:nd=n8:n6. Thus 9¢ 78 are two mean proportionals
to «m, 6.

Now, in any circle, with diameters aB, 43, at right angles to
one another, draw the corresponding cissoid. On the diameter
af, take a point 7 such that oA : Ar=a : b, where a and b are
the two straight lines to which two mean proportionals are
required. Join o7 and produce it to meet the cissoid in .
Then 4n : nf=a : b. It is now necessary only to alter the lines
n¢, 78 (which are known to be mean proportionals to ¢y, 76) in
the ratio of 7 : @, and the solution is obtained.

140. In the same century, again, perhaps about the year
150 B.C. Perseus, a geometer who treated of the sections of the
omeipa’, seems to have lived. His date can be guessed only
from the facts that he is not included in the Eudemian summary,
that no notice is taken of him by the classical geometers, that
Heron describes the omeipa (110 B.C.), and that the work of
Perseus was well known to Geminus®. The owelpa is somewhat
imperfectly described by Heron® as the solid “ produced by the
revolution of a circle which has its centre on the circumference
of another circle and which is perpendicular to the plane of that
other circle. This is also called a xpixos (ring).” This solid
varies in form according to the ratios between the radii of the
two circles. It may resemble an anchor-ring or a modern tea-
cake, with a dimple at the centre. Proclus describes three
kinds of sections, which were obtained from it and which were
the same as those described above (p. 185), & propos of the
immomédy of Eudoxus. Elsewhere (p. 356, 12) he seems to
suggest that Perseus had treated the spiral sections as Apollonius
had treated the conics. From this, perhaps, it may be inferred
that whereas one or two sections of the oweipa were known
before and were obtained from different forms of the solid,
Perseus investigated all the sections and shewed that they

1 Geminus in Proclus, pp. 111,112, in this connexion, on the errors of
3 The dates of Perseus, Nicomedes, Montucla. Bretschneider is obviously
Diocles, Serenus and Hypsicles are all  right on all the dates except that of
disoussed by Bretschneider (4nhkang, Serenus,
p. 176—end who is especially severe, 3 Defl. 98, p. 27 of Hultsch’s ed.
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could be obtained from one omeipa’. But the work of Perseus
is wholly lost, and no extracts whatever from it are preserved by
any later writer®, :

141, There is not so much reason for assigning Zenodorus
to the 2nd century B.cC. a8 there is for the other writers above
mentioned. He is later than Archimedes, whom he names, and
is older than Quintilian (A.D. 35—95) who names him. He is
supposed to be an early successor of the former merely because
his style recalls the classical period. He was the author of a
geometrical treatise on Figures of Equal Periphery, fourteen
propositions of which are preserved both by Pappus and Theon®,
Both citations are almost verbally identical, but Theon does,
and Pappus does not, name Zenodorus as the author. Theon’s
ascription is confirmed by Proclus, who says that Zenodorus
called a quadrilateral with re-entrant angle a xo\oywveov, which
word occurs in Theon’s extract. Of these fourteen propositions
five, Nos. 1, 2, 6, 7 and 14, are worth quoting. Prop. 1 is “of
regular polygons with equal periphery, that is the greatest
which has most angles.” Prop. 2 is “The circle has a greater
area than any polygon of equal periphery.” Prop. 6 is “Two
similar isosceles triangles on unequal bases are together greater
than two dissimilar isosceles triangles which are upon the same
bases and have together the same periphery as the two similar

1 Bretschneider (pp. 179, 180) makes
a great difficulty about this, owing to
the fact that he mistranslated 5 7o
Urwov wédn as ““‘horse’s hoof” (p. 177)
instead of ‘‘horse-fetter.” He con-
ceived this apparently to be a curve of

instead of CQ

and could not understand how it was
obtained from a oxeipa at all. His
mistake is the more remarkable be-
cause Proclus afterwards twice (pp.
127, 128) refers to the curve as ixwo-
7édy, which no decent scholar ought
to render ‘horse-hoof.”

3 Chasles (pp. 8, 9) speaking of the
spirals of Perseus and Geminus, says

the form

il gerait intéressant de voir leur
théorie géométrique de ces spiriques,
qui sont des courbes du quatridme
degré, dont 1’étude semble exiger au-
jourd’hui des équations de surfaces et
un calcul analytique assez profond.”

3 Pappusv.pt.1.p.301sqq. (Hultsch).
Theon. Comm. Almag. ed. Halma,
p. 33 sqq. reprinted by Hultsch in
Pappus, pp. 1190—1211, with a pre-
fatory note on the date of Zeno-
dorus. The fact that both Theon and
Pappus cite the same props. seems to
Hultsch (Pappus, Vol, mx. p. xv.) to
give colour to his theory that a large
part of Theon’s commentary was really
taken from Pappus.
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triangles.” Prop. 7 is “Of polygons with equal periphery the
regular is the greatest.” Prop. 14 is “ Of segments of circles,
having equal arcs, the semicircle is the greatest.” It is obvious
that investigations of this kind were closely connected with and
suggested by the work of Archimedes and Apollonius.

142, To the same century, again, Hypsicles is assigned.
To him the 14th and 15th Books added to Euclid’s Elements
are attributed by many MSS,, but recent critics are of opinion
that these are by different authors’, and that only the 14th is
by Hypsicles. This is certainly not Euclid’s, for it has a preface
which cannot have been written by Euclid, and the Elemenis are
expressly stated by Marinus, in his prolegomena to the Data, to
consist of 13 books. The preface in question, which is addressed
to one Protarchus, is as follows : “ Basilides of Tyre, coming to
Alexandria and making the acquaintance of my father through
their common love of mathematics, stayed with him during the
greater part of his visit. They were discussing at one time the
writings of Apollonius on the comparison of the dodecahedron
and the icosahedron inscribed in the same sphere®, shewing
what ratio these have to one another, and they came to the
conclusion that Apollonius was wrong. They therefore emended
the proof, as my father used to tell. But I afterwards came
across another book of Apollonius® containing a sound proof on
the subject, and was greatly incited to the investigation of the
problem. The publication of Apollonius may be seen anywhere,
for it has a large circulation, but I send you my lucubrations,”
etc. From this it is inferred, not very cogently, that Hypsicles’
father died in the lifetime of Apollonius, or that, at any rate,
Hypsicles cannot have lived long after the latter. But a more
satisfactory determination of Hypsicles’ date is obtained from
the fact that his astronomical work, Avapopikds, does not use
the trigonometry which was certainly introduced by Hipparchus,
and would have been absurdly antiquated if written after
Hipparchus’ time (B.c. 130)*.

1 See esp. Friedlein in Bulletino 8 This in xIv. prop. 2 is referred to
Boncompagni 1873, pp. 493—529. as “a second edition.”

2 This is the only mention of such 4 Bretschneider, p. 182, quoting Vos-
a treatise by Apollonius, . gius and Delambre.
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The 14th Book of the Elements, or the book of Hypsicles on
‘the Regular Solids’, consists of seven propositions, viz. 1. The
perpendicular from the centre of a circle to a side of the inscribed
regular pentagon is half the sum of the radius and the side of
an inscribed decagon. 2. The same circle comprises the
pentagon of a dodecahedron and the triangle of an icosahedron
inscribed in the same sphere'. 8. If from the centre of a
circle there be drawn a perpendicular to the side of the in-
scribed regular pentagon, thirty times the rectangle under the
perpendicular and the side is equal to the superficies of the cor-
responding dodecahedron. 4. The surface of the dodecahedron.
is to that of the icosahedron as the side of the cube to the side
of the icosahedron. 5. The side of the cube is to that of the
icosahedron as (z + y)*+ 2*: (z+y)’ + 4%, where « is the greater,
and y the less, of the segments of a line cut in extreme and
mean ratio. 6. The volume of the dodecahedron is to that of
the icosahedron as the side of the cube to that of the icosahedron.
Prop. 7 is really a lemma to 6 and is that two straight lines cut
in extreme and mean ratio are to one another as their greater
segments.

The dvagopuxds, or treatise on ‘Risings’ (@vadopar), contains
only six propositions, of which the first three, dealing with
arithmetical progressions, have been already cited. The only
interesting proposition is the 4th, which is to the following
effect®. Divide the zodiac into 360 local degrees and the time
of its revolution into 360 chronic degrees. Then, given the
ratio, for any place on the earth, of the longest day to the
shortest, we can deduce the number of chronic degrees for each
number of local degrees®. Here, for the first time in any Greek
work, we find a circle divided in the Babylonian manner into
360 degrees. This division, perhaps, was used by Eratosthenes
who is said to have calculated the length of a degree, but it is

1 The proof of this is said to be of Aristaeus.
given by Aristaeus in his work on 3 See Delambre Astr. Amc. 1. pp.
«The Comparison of the Five figures” 246 sqq. The text was printed Paris,
(xévre oxnudrww obyxpois). This is 1657, ed. J. Mentel.
not mentioned by Pappus, who (vir. 3 Delambre loc. cit. pp. 248, 9 shews
pref.) alludes only to the orepeol réwec  that the proof is faulty.
G. G. M. 18
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not necessary to suppose that Eratosthenes actually performed
this feat, though he undoubtedly shewed how it was to be
done?, and it is observable that Hypsicles introduces the division
as if it were a novelty. He does not, however, take the next
step, to trigonometry. '
'y’ 143. This was undoubtedly taken by Hipparchus, one of
the greatest geniuses of antiquity, the observer and thinker
upon whose work the whole system of Greek astronomy was
founded. He was a native of Nicaea in Bithynia and made
astronomical observations, certainly at Rhodes, possibly also
at Alexandria, between 161 and 127 B.c.* But though the
Almagest of Ptolemy is clearly derived almost -entirely from
writings of Hipparchus, none of the works of the earlier
astronomer have survived, save a commentary in three books
on the Phenomena of Aratus, a poor poet who copied Eudoxus,
The criticisms of Hipparchus on his predecessors are founded
chiefly on his own more accurate observations and have no
mathematical interest. In the Second Book, however®, he
claims to have invented a method of solving spherical triangles
for the purpose of finding the exact eastern point of the
ecliptic. The treatise in which this was contained was called
7 TeV ouvavatoAdv mpayuatela, but is lost. Theon, in his
commentary on the Almagest, also states that Hipparchus
calculated a “table of chords” (i.e. practically of sines) in

1 Eratosthenes (Delambre, pp. 86—
97) found that the distance between
the tropics was 33 of the circumference.
This looks as if he had not, at that
time, any division of the circle into
degrees. Similarly, he found that the
distance between Alexandria and Syene
(which he believed to be on the same
meridian) was gsth of the circumference
of the earth, from which it was easry
to infer the length of a degree, though
perhaps Eratosthenes did not do this,

2 Delambre (1. p. 167, cf. p. 170)
gives a very neat instance of the way

“in which Hipparchus’ date can be
ascertained. In the concluding chapter

of Book 1m. of his commentary on
Aratus, Hipparchus gives, in time, the
distances between stars, obtained by
observing their meridian passages.
He begins with #» Canis, in his time on
the solstitial colure, longitude 90°. In
1750, this star was long. 116° 4' 10”.
The precession here is 93850”. This, at
50" per annum, would make the date
of the book about 130B.c. Delambre
doubts whether Hipparchus was ever
at Alexandria, becanse Ptolemy does
not distinguish observations made at
Rhodes and Alexandria, which, he sup-
posed, were on the same meridian.
3 Delambre 1. pp. 142, 3.
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twelve books. It is evident therefore that Hipparchus was the
founder of trigonometry, though we are obliged to look elsewhere
for information as to the progress of the Greeks in this depart-
ment of mathematics.

It is not intended, in these pages, to give a history of
Greek astronomy or to describe any astronomical theories,
which depend for their verification on observation and not
on deduction. But est modus in rebus and I do not like to
pass over Hipparchus with merely the customary eulogy. The
following little summary, taken from Delambre, will shew
what manner of man he was. {It was he who determined
(very nearly but not with absolute accuracy) the precession of
the equinoxes, the inequality of the sun, and the place of its
apogee, as well as its mean motion: the mean motion of the
moon, its nodes and its apogee: the equation of the centre of
the moon and the inclination of its orbit. He had discovered
a second inequality of the moon (the evection), of which he
could not, for want of proper observations, find the period and
the law. He had commenced a more regular course of observa-
tions for the purpose of supplying his successors with the
means of finding the theory of the planets. He had both a
spherical and a plane trigonometry. He had traced a plani-
sphere by stereographic projection : he knew how to calculate
eclipses of the moon and to use them for the improvement of
the tables: he had an approximate knowledge of parallaxes,
more correct than Ptolemy’s. “He invented the method of
describing the positions of places by reference to latitude and
longitude. What he wanted was only better instruments.
Yet in his determination of the equations of the centres of
the sun and moon and of the inclination of the moon, he
erred only by a few minutes. For 300 years after his time
astronomy was stationary. Ptolemy followed him with little
originality. # Some 800 years later the Arabs added a few
more discoveries and more accurate determinations and then
the science is stationary again till Copernicus, Tycho and
Kepler?.

1 Delambre 1. pp. 184—186. See —xxv, and De Morgan’sarticle Ptolemy
also his preliminary discourse pp. xxi  in Smith’s Dic. of Gr. and Rom. Biogr.

18—2



276

144, The same century which gave birth to all these
writers produced also the famous Heron of Alexandria'. He
was the pupil of Ctesibius of Alexandria, who, though originally
a barber, obtained great fame by his mechanical inventions,
especially a water-clock, a hydraulic organ and a catapult,
worked by compressed air. Ctesibius lived in the reign of
Ptolemy Euergetes II. (or Physcon, ‘pot-belly’), that is, between
170 and 117 B.c. His pupil Heron, therefore, may be taken
to have flourished about 120—100 B.C.

A very considerable number of writings, now extant, and
others not extant, but mentioned by ancient writers, are
attributed to @ Heron, but it happens that the extant writings
are in an extraordinary state of corruption and confusion and
also that a great many Herons are known to history. It is
.only within recent years that any attempt has been made to
bring order into this chaos. First Theodore Henri Martin, in
a monograph® which is a model of its kind, investigated all
the facts concerning the life of the great Heron of Alexandria
and ascertained what works were rightly attributed to him and
which of them are extant and where. His biographical results
have been stated, in effect, in the above few lines. But his
essay deserves a closer analysis. He finds (pp. 10—18) ezghteen
undoubted Herons named in later Greek literature, mathemati-
cians, doctors and monks. Of these, three only belong to the
first class, viz. Heron of Alexandria our author, Heron the
teacher of Proclus (who was possibly the same as one Heronas,
who wrote a commentary on the Arithmetic of Nicomachus)
and Heron of Constantinople, who lived in the 10th century®.
Then, after commenting on the date of the first Heron (pp.
22—28), he passes (pp. 28—51) to the works which are rightly

THE SECOND CENTURY B.C,

1 This writer is usually called by the
Latinized name Hero. Perhaps I
ought to use this (like Plato), but
there is a special advantage in retain-
ing the form Heron, because the more
familiar Hero was & woman,

3 Recherches sur la vie et les ouvrages
d’'Héron d’Alexandrie, disciple de Cte-
sibius, ete. in Vol. 1v. of Mémoires

présentés etc. a Vacadémie d'inscrip-
tions etc., Paris, 1854,

3 Later writers, as Vincent, cited
below and Cantor, p. 815, deny that
there was such a person as Heron of
Constantinople and doubt whether
Heron, the teacher of Proclus, was a
mathematician at all.
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assigned to him. These are (1) Myyawvica or Mpyavical
€lgaywyai, from which extracts are given by Pappus (1L 5,
p. 63 and viL 3l—end). The book obviously treated of
centres of gravity and of the theory of the five simple machines,
the lever (moxAds), wedge (o¢iv), screw (xoxAias), pulley
(moNyomaoTov), and wheel and axle or windlass (dfwv év
wepurpoyip). The work perhaps exists in MS. at the Escurial
or at Venice. (2) the Bapoilos, in three books, which dealt
with the problem of Archimedes to move a given weight with a
given power, perhaps exhibited the practical uses of these
machines. The first chapter of this is appended, perhaps by
accident, to the treatise mepl diomrpas and some extracts from
it are given by Pappus at the end of his Book v It exists
at Leyden in a Latin MS. translation made by Golius from the
Arabic. It is perhaps in Greek at Rome. (3) The xarame-
Tikd, BeNomoinTika or Belomrouixa is printed in the Mathematict
Veteres'. The solution of the duplication-problem here given
is quoted in Pappus 11t (4) xeipoBaliorpas xarackevy xal
aupuerpla, also in Math. Vett., but obviously an appendix to
(8). (5) xamapika also in Math. Vett. but obviously an appen-
dix to (4). So is another fragment mepi xapBeatpiwyv. Both
exist in MS. at Vienna. (6) adrdpara and {iyia, on certain
toys. The former is in Math. Vett. The latter is lost. (7)
Ilepl ¥8piwv dpoaromeiwv. This is mentioned in the mvevua-
7ice and also by Pappus and Proclus. It is lost now but
existed in the 10th century. (8) mvevuatikd, in the Math. Vett.*

THE SECOND CENTURY B.C.

1 This is a collection of writers on some other matter. The date of

engines of war, edited by Thevenot
and De la Hire, Paris, 1693. It con-
tains works of Heron and of Athenaeus,
Apollodorus (?both temp. Hadriani),
Philon (8.c. 330, ace. to Vitruvius vir.
pref.), Biton (probably soon after Alex-
ander the Great), Sextus Julius Afri-
canus (kecrol, about A.n. 220), and a
treatise on siege-works, which Martin
ascribes to Heron of Constantinople.
Of the named authors (other than
Heron) all deal almost entirely with
catapults save Africanus, who has

Athenaeus seems to me to be wrongly
given (on the authority of Heron of
Constantinople). He himself speaks
of Ctesibius as a contemporary and
dedicates his book to one Marcellus,
who may be the conqueror of Syra-
ouse.

3 An English translation of the
Ilvevparicd, with woodouts, was pub-
lished by J. G. Greenwood, London,
1851, The book contains an account
of 78 ingenious machines, some mere
toys as whistling birds, drinking figures
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(9) on Hydraulics and the armillary Astrolabe, according
to an Arabic compilation, now in the Bodleian (Cod. Arab.
cMLIv.). The following also are probably Heron’s, (10) xaTomr-
Tpika, cited by Damianus who was not much later than
Ptolemy. This is probably the same work as the xatowrpixa

printed at Venice, 1518, and then ascribed to Ptolemy.

(11)

Ilepl Siomrpas, on a kind of theodolite. This is ascribed to
Heron by the MSS. and was certainly written at Alexandria.
It has been edited by M. A. H. Vincent', (12) Scholia on

etc., but some more useful as a fire-
engine (27), & self-trimming lamp (33),
& new kind of cupping-glass (56), &
water-clock (63), two small organs (76
& 77). In most of these, the action
depends on a vacuum into which water
will flow. But no. 50 is a toy in which
& metal sphere, filled with steam, is
made to revolve by the action of the
steam as it issues from two bent spouts
fixed in the sphere. (Compare also no.
70). Heron does not claim all the
discoveries as his own, and it is curious
that Vitruvius (1x. 8 & x. 7) and Pliny
(viz. 38), describing similar inventions,
attribute them to Ctesibius and say
nothing of Heron. The preface shews
clearly that Heron did not understand
the pressure of the air as causing the
filling of the vacuum, but ascribed this
result to nature’s abhorrence.

1 Text and translation in Notices et
Egztraits des MSS. de la Biblioth.
Impér. Vol. xix. Pt. 11. Paris, 1858,
p. 157 sqq. The book contains 33
props. of which the last is the first of
the Bapoiiros. The others are of the
following kind (1) to find the difference
of level between two points, (18) to
cut a straight tunnel through a hill
from one given point to another, (14)
and (15) to sink a vertical shaft to
meet a horizontal tunnel, (24) to
measure a field without entering it.
The dioptra was a straight plank, eight

or nine feet long, mounted on a stand
but capable of turning through a semi-
circle, It was adjusted by screws,
turning cogwheels, There was an
eyepiece at each end and a water-level
at the side. With the dioptra two
poles, bearing discs, were used, exactly
as by modern surveyors. Two append-
ed props. (34) and (35) describe a
hodometer, an arrangement of ocog-
wheels attached to a carriage, so0
that eight revolutions of the wheel
turn the first cogwheel once and the
motion is then slackened down through
a series of cogwheels of which the last
moves a pointer on a measured disc.
The proposition from the Bapsiikos
also describes a machine consisting of a
series of cogwheels, started by a screw.
The case supposed is that a power of
five talents is to move a weight of
1000, In Pappus viir. 10 (Hultsch
p. 1061) the power is four talents, the
weight 160, and the wheels are of a
less diameter. Vincent, who is later
than Martin, thinks that there was no
Heron of Constantinople at all, but
that some writer produced a geodesy,
founded on the Dioptra, which he
called ‘‘a Heron”, as we might say
““an Euclid”. He also remarks that
Heron (p. 163, n.) is not a Greek
name but in Egyptian ‘“porte une
signification qui revient a celle d’in-
génieur”,
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Euclid, mentioned by Proclus. It exists probably in Arabic at
Leyden. (13) Merpica mentioned by Eutocius, at the end of
his commentary on the Measurement of the Circle, as an
authority on the extraction of square roots. Parts of this work
were (a) Ta mpo Tis dpbuntiriis orouyeiwaewns (lost), (b) Td
mPO THS ryewpeTpikis aTouxeiwoews, which is also lost, but
portions of which have been preserved in the 8pos, (¢) eloayw-
yal Tev yewpeTpovuévwy, parts of which are preserved in the
ryewpeTpovueva, yewdaiaia, Or yewpueTpia, TEPL PéTPWwY OF GTEPED-
perpied, and yenpmovikov BiBhlov, (d) eloaywyal Tdv oTepeo-
petpovpévwy of which fragments are contained in a work of
the same title and also in the last two books mentioned under
(c). All these fragments are extant in MS. at Paris and most
of them contain tabular statements, made at different dates but
all later than our era, of weights and measures. These abridge-
ments and compilations seem to have passed through more
than one hand and were made at different dates. The ryenmov:-
xov seems to be as late as the 10th century and to have been
made at Constantinople.

All the works here mentioned which are of mathematical
importance were collected and edited in 1864 by Dr F. Hultsch,
the well-known authority on ancient metrology and mathe-
matics. Hultsch’s volume contains the dpot, or Definitions of
geometrical names, with a table of measures appended, the
yewperpia, which begins with similar definitions and measures,
the yewdaiaia, the elcaywyal Tév arepeoperpovpévewy, Stereo-
metricorum collectio altera, the perpnaeis or mepi pérpwv, the
«yenmovikov, which again has similar definitions and measures,
and an extract from the Dioptra on the measurement of
triangles’. But no two MSS. contain exactly the same collec-
tion, and the contents of these works shew fully the grounds of
Martin’s opinion upon them. The Heronic formula for the
area of triangles is given in the Dioptra and the Geodesy: the
Geodesy is practically the same as a large part of the Geometry :
the two books on Stereometry contain much repetition of one

1 He adds also Didymi Alexandrini  Variae collectiones ex Euclide, Herone
Mensurae marmorum et lignorum and ete.
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another, and the Measurements reproduces all the preceding in
a very confused manner. On the other hand, in the Geometry
the area of a pentagon is said to be the square of the side x 17,
and “elsewhere’” to be the same square X § and there are
other similar discrepancies which point, at the very least, to
two editions of the original, if not to gross interpolations and
unauthentic additions. The probability is, as Martin suggests,
that all these fragments formed part of ome comprehensive
work on all the knowledge necessary for land-surveying, from
which subsequent compilers took, correctly and incorrectly, such
matter as they required for their immediate purpose. These
extracts in passing from hand to hand, were annotated by many
generations of surveyors and thus contradictory statements and
extracts from such a late writer as Patricius and references to
Roman measures® became incorporated in the text.

145, The character of the contents of the Heronic collec-
tion may be indicated in a very few lines. The &po: contains
128 definitions of all manner of geometrical terms, followed
by a short table of measures. The Geometry begins with a
few definitions, followed by an account of the empirical origin
of the science, then more definitions, then measures, and passes
finally to the solution of problems to find the areas or some
linear measurements of triangles, circles, parallelograms and
polygons, of which the necessary linear measures or areas are
given®’. The Geodesy, a short extract, begins in the same way

1 «Elsewhere" is é&v &g B8Ny 700 (1) *“ Let there be a circle with circum-

“Hpwrvos, not named, Geom. ¢, 102,
p. 134 (Hultsch), A similar alternative
is given on the same page for the
hexagon. So on p. 115 the value =32
is attributed to Euclid, on p. 136 to
Archimedes, and this value is generally
used, but in the Measurements r=3 is
alone used. 8o, again, although Heron
is cited by Eutocius as an authority on
square-roots, in the extant works the
roughest approximations are contin-
ually used.

2 E.g. olyyla=uncia: so ¢olpros=
furnus is mentioned.

3 E.g. chap. xv. §87 is Ilepl xixAwr.

ference 22, diameter 7 oxowla. To
find its area (éuSadér). Do as follows.
7x22=154 and 134 =38}, That is the
area.”” (2) An alternative method,
(§x32) is then added. Then (3) “If
you wish to find the area from the
circumference only, do as follows.
(22)3x 7=38388 and 2338 =384.” Then
(4) to find the area from the diameter
only. (5) The same according to Euclid.
(6) To find the circumference from the
diameter etc. All these examples are
applied to circles of various given cir-
cumferences, diameters, Or areas.
Heron then treats similarly of semi-
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but deals only with the areas of given triangles. The Stereo-
metry 1. has no definitions but plunges at once into problems to
find the volume of given spheres, cubes, obelisks, pyramids and
similar figures and next the contents of cups, theatres, dining-
rooms, baths, etc. The Stereometry 11. is chiefly concerned with
the same matter as the last part of the preceding book, but in.
c. 31 (p. 180) suddenly the method of finding heights by
measuring shadows is inserted. The Measurements and Geé-
ponicus are a miscellaneous collection of problems similar to or
identical with those in the preceding books. '

The reader will see at once that Heron is chiefly engaged in
arithmetical calculations which depend on geometrical formulae,
which for the most part he does not, and has no occasion to,
prove. Soraetimes, however, he actually works out a geometri-
cal theorem. Thus, in the Belomoiixa’, he happens to suggest
a method of increasing threefold the power of a catapult. This
requires that a certain cylinder should be trebled and, as
cylinders are to one another as the cubes of their diameters, we
are face to face with a problem of triplication of the cube.
Upon this, Heron inserts a solution of the duplication-problem,
which is identical with that attributed above to Apollonius.
In the last chapter of the Geodesy (p. 151), he gives a general
formula for finding the area of a triangle. The sides being
a, b, ¢, he says the area is

Ja+b+c a+b—ca—-b+cb+c—a
T2 2 2 T2

But he works out the proof in the Dioptra® It is as follows.

circles, and segments greater or less
than a semicircle. On p. 133 occurs
the problem, *“Given in one number
the diameter and the circumference
and the area of a circle, to find each.”
This of course leads to a quadratic
equation, of which the solution was
given above p. 106.

! Vett. Math. p. 142, The same
proof is given by Pappus (111 p. 63)
and Eutocius (in Torelli, p. 136). The
latter says it occurs in the unxawvical

eloaywyal as well as Belowotikd.

2 Reprinted by Hultsch (pp. 235—
237) who thinks it is interpolated in
the Dioptra. The formula, together
with Heron’s example of its application
to a triangle whose sides are 13, 14, 15
(and therefore its area 84), was stolen
bodily by Brahmegupta. See Cole-
brooke pp. 295 sqq. and comments by
Vincent op. cit. pp. 200—293, Chasles

.Apercu, Note xm. pp. 429 sqq. Cantor

pp. 560 sqq.
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‘Let aBy be the given triangle. Inscribe in it the circle 8eg,
having its centre 7. Join 52, 98, 7y, 73, ne, n&.  (Comp. Eucl -

A

1v. 4). The rectangle Bry. ge is double of the triangle By, and
aB.n8 of anB, and ay.n¢ of ayn. Therefore the rectangle
under 7¢ and the perimeter of aBy is double the area” of aBqy.
Produce 4B to . Make B0=ad. Then Oy is half the peri-
meter. Therefore the rectangle Ory.en is equal to the area of
the triangle afBqy.

Draw 9\ at right angles to 7y, and S\ to By and join oA,
Then, the angles on\, 9B\ being two right angles, the quadri-
lateral ynpBA is in a circle. Therefore the angles yn8, yAB are
equal to two right angles and also equal to the angles y98, and,
which also = two right angles (since the angles at 7 were
bisected by an, Bn, vn). Therefore the angle and = angle
yAB, and the triangles and, ¢S\ are similar. Therefore
By : BNt ad : O = 68 : ne, and permutando (évaArd§)
By : BO :: BN : ne = Bx : ke, and componendo (cvvBévre)
¥8 : 68 :: Be : ex, and 0 : y0.08 :: Be.ey : ey.ex (or né).
Therefore 6" x ne*=46.68 x Be.ey. But of.7¢, which is
equal to the area of the triangle, is the square-root (wA\evpa) of
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8 x ne’.!  Therefore the area of the triangle is the square-root
of y8.608. % Be.ey. Each of these factors is given, for 46 = helf
the periphery : 68 is half the periphery minus By, e the same
half minus afB, B the same balf minus ay. Therefore the area
of the triangle is given.” A triangle with sides 13, 14,15 is
selected as an illustration. Its area »/4? X 6 x 7 x 8 =84.

But, though Heron’s ability is sufficiently indicated by these
proofs, as a general rule he confines himself merely to giving
directions and formulae. From these also it is easy to perceive
how readily he availed himself of the highest mathematics of
his time®. Thus in the Dioptra, two chapters treat of the mode
of drawing a plan of an irregular field and of restoring, from a
plan, the boundaries of a field in which only a few landmarks
remain. The method, in the former case is to draw a rectangle,
three corners of which lie on three sides of the field. In the
remaining spaces perpendicular co-ordinates are drawn to the
sides of the rectangle and are measured off. The method is
closely similar to the use of latitude and longitude introduced
by Hipparchus. So, again, in three different places® Heron
gives, for finding the area of a regular polygon from the square
of its side, formulae which imply a knowledge of trigono-
metry. Suppose F, to be the area of a regular polygon of
which a, is a side, and let ¢, be the coefficient by which a,” is
to be multiplied in order to produce the equation F,=c.ap’

0
then it is easy to see that c, =gcot 1_20_ .
consecutive values of ¢ to six decimal places, and give the

If we reckon the

1 This sentence is introduced earlier
in the original. It will be seen that,
though the expressions are geometrical,
they are intended to indicate the alge-
braical rule that =y is A/z%2. No
classical Greek geometer would have
dared to multiply a square by a square,
In his view this would have produced
a figure of four dimensions, which
would have been absurd. Pappus
(p. 680 of Hultsch’s ed.) expressly
protests against the practice, which,
he says, had come into use before his

time.

% The following remarks are taken
from Chaps. 18 and 19, pp. 313—343,
of Cantor, who has made the ancient
surveyors and Heron in particular a
favourite study. Much more will be
found in his pages than can be here
given. Bee also his Romische Agri-
mensoren, Leipzig, 1875.

3 Geom. 102, Mens. 51—53, Geépon.
76—177. Hultsch pp. 134, 206, 218,
229. This repetition shews the au-
thenticity of the formulae.
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Heronic formula first in its original form and then in decimals,
we find according to Heron,

¢, =43 =0433333 for the correct 0-433,012.
¢, = 1=1000,000 .........cvueennnne. 1-000,000.
¢, = =1714,285 (or § =16066,666) 1°720,477.
G, =19 =2600,000 ...c00venuiirennnnnn. 2:598,176.
¢, =% =6375,000 (or §#=6-333,333) 6:181,824.
C, =4 =11250,000 .................. 11-196,152.

This table shews that his approximations are generally near
enough. We need not be surprised that Heron could perform
such calculations. We know that Hipparchus made a table of
chords, that is to say, that the coefficients k, were known,
with the aid of which a, =Fk,r, where  is the radius. Then

c”=g \/ I%’ —1, and Heron was competent to extract such

square roots. But Heron does not use the sexagesimal fractions,
and it is clear, from this as from all other evidence, that sexa-
gesimal fractions were always, as they were afterwards called,
astronomical fractions; indeed, save by Heron, trigonometry
was generally conceived to be a chapter of astronomy and was
not used for the calculation of terrestrial triangles’.

Some passages of Heron contain noticeable errors. Thus
in Geéponicus (146—164, pp. 225—228) he gives a rule that
the side of a polygon inscribed in a circle is equal to three
diameters divided by.the number of sides, which is true only of
the hexagon, and in Stereometrica 1. (35, p. 163) where he
proposes to find the volume of a truncated pyramid on a tri-
angular base, he gives dimensions for the upper and lower
triangles which could not be found in similar triangles at all®.

146. Enough perhaps has been said to shew that Heron
was by no means a geometer of the Euclidean School. He is a
practical man who will use any means to attain his end and is
altogether untrammelled by the classical restrictions. He is
also a mechanician who, unlike Archimedes, is clearly proud of

1 Cantor pp. 3835, 336 abridged. 2 Cantor pp. 337, 338 shews that
There is, in truth, no evidence to shew  the first error is probably not Heron’s.
how Heron came by his formulae. The second is & mere slip.
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his own ingenuity. He adds nothing, or almost nothing, to the
geometry of his time but he is learned in the ordinary book-
work. On the other hand, as was mentioned above (p. 106) he
is the first Greek writer who uses a geometrical nomenclature
and symbolism, without the geometrical limitations, for algebrai-
cal purposes, who adds lines to areas and multiplies squares by
squares and finds numerical roots for quadratic equations.
Hence, for a similar reason to that which led Prof. de Morgan
to suspect that Diophantus was not a Greek, it is now commonly
believed that Heron was an Egyptian. His name, if it is Greek
at all, is found only at a late era and belongs to persons of
Egyptian or Oriental birth. Further, the whole style of his
work recalls the book of Ahmes which has been described
earlier in these pages. His directions are introduced by the
same form of words, wolet o¥Tws, “Do as follows”. Like Ahmes,
he gives few general rules, but a large collection of similar
examples. As Ahmes called the top-line of a figure Merit, so
Heron calls it xopu¢n, vertexz'. The isosceles parallel-trapezium
was a favorite figure of Abmes: so it is of Heron® Heron's
method of drawing a plan seems to have had its forerunner in
the method of Ahmes®. Ahmes gives tables of measures, so
does Heron. Lastly Heron treats equations in precisely the
style of Ahmes. “It will be remembered that the kau-problem
of Ahmes, no. 28, was literally ‘§ added, } deducted, remainder
10’, which was explained as meaning (z+ §z) —} (z + § ) =10.
Compare with this the problem of Heron. ¢Given a segment
of a circle, with base 40 feet, height 10 feet : to find its circum-
ference. Do as follows. Add base and height together. The
total is 50 feet. Take away a quarter. It is 12}. Remainder
373. Add a quarter. It is 934 The total is 46444 This
is the measure of the circumference. We added } and sub-
tracted 1, because the height is } of the base’”” The style
here and the form of the fractions recall exactly the old

1 Geometria 8(p. 44). Other similari- 3 The examples of Ahmes are muti-
ties of nomenclature in Cantor, p. 881. lated. See above p. 127,

* Nine chapters of the Geometry are 4 Heron, pp. 199, 200, Cantor p.
devoted to it (pp. 103—108). 332. :
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Egyptian. Such evidence s this goes a long way to confirm
the suspicion not only that Heron was an Egyptian, but also
_ that algebra was an Egyptian art and that the symbolism of
Diophantus was of Egyptian origin. But it is obvious also that,
if Heron was not a Greek, he relied almost entirely on Greek
learning and did not resort to the stores of priestly tradition of
which the contemporary Edfu inscriptions shew the miserable

character.

He is a man who writes in Greek upon Greek

subjects, but who thinks in Egyptian®.

1 Let it be remembered that the
seqt-calculation of Ahmes leads to tri-
gonometry: his hau-caleulation to alge-
bra. Almost the first sign of both ap-
pears in Heron, whom there are other
reasons for thinking to have been an
Egyptian. An algebraic symbolism
first appears in Diophantus, but the
symbols are probably not Greek and

probably are Egyptian. Both Heron
and Diophantus were Alexandrians,
This is all the evidence that trigono-
metry and algebra were of Egyptian
origin, but does it not raise a shrewd
suspicion ? Proclus (p. 429) speaks of
ol wepl “Hpwra, as if Heron founded a
school,



CHAPTER IX.

FROM GEMINUS TO PTOLEMY (B.C. 70—A.D. 150).

147, IF the materials for a history of Greek geometry in
the second century B.C. are scanty, they become still more so
for the next 250 years. Only a few works, and those not of a
very valuable character, survive from this period.

About 70 B.C. lived Geminus of Rhodes' who seems to have
been the freedman of a wealthy Roman and who wrote, beside
the astronomical work elocaywyr) els Ta pawdpeva, still extant?,
a book on the Arrangement of Mathematics, wepl Tis T@v pabn-
pdrov tafews, which, without being expressly historical, con-

1 Proclus always writes I'eutvos. Sui-
das has Teulvios, Svoua xvpiov. In the 6th
chapter of his Phaenomena Geminus
says ¢ The Greeks suppose the feast of
Isis to fall on the shortest day. So it
did once, 120 years ago, but every four
years the incidence is shifted a day
and is now a month behind.” If the
feast of Isis here mentioned could be
exactly identified, there would be no
difficulty in finding the date of Ge-
minus. But there are two dates in
the Egyptian calendar (the 1st and
17th of Athyr) on both of which some
sort of feast to Isis seems to have been
held and calculations founded on both
these give 77 B.c.and 137 B.c. asthe dates

of Geminus. Cantor (pp. 344—8) gives
excellent reasons for preferring the
former, the chief of which is that
Geminus edited an extract from ég7-
ynas perewpohoyicdv of Posidonius, who
can hardly be other than Cicero’s
teacher and Pompey’s friend.

2 It is printed in Halma’s edition
of Ptolemy’s Canon, Paris, 1819. A
very full abstract in Delambre Astr.
Anec. 1. c. x1. pp. 190—213. It is not
like Euclid’s Phaenomena, a geometrical
treatise, illustrative of astronomical
theory, but is an account of astronomi-
cal observations and of the theories by
which they are explained.
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tained abundant notices of the early history of Greek mathe-
matics and from which Proclus and Eutocius' derived much
of their most correct and valuable information on that subject.
A book of this kind, written not long after the classical age by
a competent geometer, would, if preserved, have cleared up a
hundred difficulties which do not now admit of solution.

148. Probably near to the time of Geminus lived Theo-
dosius (? of Tripolis), who is mentioned by Strabo and Vitruvius
and must therefore be a pre-Christian writer, though Suidas
attributes to him a commentary on one Theudas of Trajan’s
time®. He is the author of Sphaerica, a very complete treatise
on the geometry of the sphere, in three books®. It was remarked
above, however, on the subject of Euclid’s Phaenomena, that
both that and the treatise of Theodosius are evidently founded
on some earlier work on Spherics, perhaps by Eudoxus. The
work of Theodosius contains no trigonometry (a spherical triangle
is not mentioned) and there is nothing particularly interesting
either in his style or in his discoveries, if indeed he made any.
The character of his propositions will be sufficiently indicated
by the following enunciations. I 13, “If in a sphere a great
circle cut another circle at right angles, it bisects it and passes
through its poles.” (1. 14, 15 are the converse of this)) II 22,
“If in a sphere a great circle touch another (second) circle and
cut a third which is parallel to the second and lies between it
and the centre, and if the pole of the great circle lies between
the two parallel circles, then any great circles which touch the
third will be inclined to the (first) great circle, and that will be

1 Eutocius in Apoll. Conica, p. 9,
calls the book pabnudrwy fewpla. The
title 7dfis is quoted by Pappus vii.
8 (p. 1026 Hultsch). Proclus quotes
the book sixteen times, especially on
curves.

$ Vitravius (1x. 9) mentions a Theo-
dosius who invented an universal sun-
dial. Strabo (xm. 4, 9) mentions a
mathematician Theodosius, but calls
him a Bithynian, whereas Tripolis was
on the Phoenician coast. Suidas (s.v.)
expressly says that the author of the

Sphaerica was & native of Tripolis but
gives also another Theodosius of the
same place, & poet. Probably Vitruvius
refers to our Theodosius. Vitruvius
and Strabo both lived under Augustus
and earlier.

3 This has been often printed. First
in 1568 by Pena at Paris: in 1675 by
Isaac Barrow, London: in 1853 at
Berlin by Nizze with Latin trans. and
an appendix of Arabic variant proofs.
The figures are not given with the
text.
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at the greatest inclination (6pféraTos) which touches the third
at the point of bisection of its greater segment, and that will be
at least inclination (Tamewdraros) which touches it at the
bisection of its lesser segment, etc.”. '

Strabo, also, (XII. 3) mentions Dionysodorus, a native of
Amisus in Pontus, who seems to be the mathematician who, like
Diocles, attempted to finish the problem (Sph. et Cyl. 11. 5), ‘to
cut a sphere so that its segments shall be in a given ratio’, which
Archimedes had left incomplete. But Eutocius (Torelli p. 163,
169) complains of both that they did not fill up the gap in Archi-
medes’ solution but produced entirely different proofs of their own.

149, Serenus of Antissa, in Lesbos, lived after Christ.
Bretschneider, indeed, who pointed out (pp. 183—184) that
Antissa was destroyed by the Romans B.C. 1677, -was inclined to
place Serenus about 200 B.cC., but the name Serenus is Roman
and the town Antissa was restored in Strabo’s time? so it is
probable that Serenus lived under the Roman régime‘. He is
not mentioned, however, by any writer earlier than Marinus,
the pupil of Proclus (A.D. 500), and author of the preface to
Euclid’s Data. His work, however, does not seem to be very
late and he may be placed here in default of better authority.
He is the author of two treatises, one on the Section of the
Cylinder in 35 propositions, the other on the Section of the
Cone in 63, both of which are printed as an appendix to Halley’s
edition of Apollonius. The treatise on the Cone, which is
addressed to one Cyrus, deals entirely with the triangular
section. E.g. Props. 5 and 6 are “If a right cone be cut by
planes through the vertex and the axis be not less than the
radius of the base, then the triangle through the axis is the
greatest of the triangles so produced”. Prop. 21, “To cut a

and Theodosius seem to have been
ignorant even of the observations of

1 Theodosius was also the author
of an extant astronomical treatise repl

nuepdv kal vukrdv and another wepl
olkfoewv, in the style of Euclid’s
Phaenomena. The enunciations of
thess were published by Dasypodius
(1572 Strasburg) along with the work
of Autolycus (Delambre 1. pp. 234—
241), It is curious that both Geminus

G.G. M.

Hipparchus. There are a foew lines on
both these mathematicians in Chasles
Apergu, p. 25.

2 Livy, xvuv. 31.

3 Strabo, xm1. 2.

4 Cantor, p. 347,Blass in Fleckeisen’s
Neue Jahrb. 1872, p. 34.
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scalene cone through the vertex so that the section shall be an
isosceles triangle”, Prop. 22, “Such isosceles triangle is the
greatest of the triangular sections of the scalene cone: the least
is that which is produced by a plane perpendicular to the base”.
From this point onwards the book deals almost entirely with
mazima and minima. The treatise on the Cylinder, which is
addressed to the same friend Cyrus, deals with all the sections,
but chiefly the elliptical. Prop. 19 shews that the same ellipse
can be produced by sections of a cone and a cylinder. Props.
21 and 22 are “Given a cone (cylinder) and an ellipse in it, to
find the cylinder (cone) of which the same ellipse is a section™.
Props. 22 and 23 are “Given a cone (cylinder), to find a
cylinder (cone), such that the section of both by the same plane
produces the same ellipse”. Prop. 31 is “The straight lines
which are drawn from the same point to touch a cylinder have
their points of contact on the sides of a parallelogram”, Prop.
33 is important as being the foundation of the modern theory
of harmonics. It is as follows:

) 4

If from the point &, outside the triangle afBy, the straight
line den¢ be drawn cutting the triangle in ¢, ¢, and the point
be taken so that 8¢ : 6= en : ¢, and A7y be joined and produced
to meet the base, any other transversal dxAu shall be so divided
by an produced that 8« : Su=xX : Au. With the aid of this it
is proved (Prop. 34) that all straight lines drawn from the same
point to touch a cone, haye their points of contact on the sides
of a triangle. Then comes the last proposition (35 which is
similar in kind to Prop. 32). Itisasfollows. ABC is a triangle,
DE, F@ are parallel to its base. From a point H, not in the
plane of the triangle draw HD, HE, HF, HG and produce them
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to meet a plane KLXMN, which is at all points equidistant
from ABC. The plane HDKE will cut X

this second plane in KN, and the plane

HFLG@G will cut it in LM, and KN, LM M

are parallel to DE, FG. Also KL, DF

are parallel and MN, GE. Therefore KL,

NM produced will meet. Let them meet D B

in X. Then the triangles XKN, ABC are
similar. “Now if the point H be supposed
to be an illuminating point and the tri-
angle A BC (whether per se or in a cone) M
be opposite its rays, then the rays will

make the shadow K NX triangular and similar to A BC. Although
this consideration belongs to optics and on that account is
alien to our subject, yet it is clear that without the proofs here
given concerning the cone and the cylinder, I mean about the
ellipse and its tangents, it is impossible to solve a problem of
this kind: wherefore not carelessly but on purpose the subject
has here been introduced'.” ‘

A lemma of Serenus, on angles which stand on equal arcs
of a circle, is preserved in the Astronomy of Theon Smyrnzeus®,
but there is no evidence to shew how it came there. Theon
lived about 130 A.D. and may have himself used Serenus.

150. One date in the life of Menelaus is absolutely certain.
Ptolemy® records two astronomical observations made by him
in the first year of Trajan, A.D. 98. He was the author of a lost
work on the calculation of chords, but his Sphaerica in 3 books,
though not extant in Greek, is extant in Arabic and Hebrew
and has been often translated into Latin®. This is a treatise
on spherical triangles, describing their properties in much the
same way as Euclid, in Book I. of the Elements, treats plane

W
[+

1 On the question raised by this
proposition, whether the ancients were
acquainted with the method of per-
spective, see Taylor Anc. & Mod.
Conics, p.1v. See also Chasles Apercu
Pp. 47, 48, 74.

2 Martin’s Ed. p. 340.

3 Almagest ed. Halma vir. 3. Vol. 11.

pp. 25, 27.

4 Halley made a translation which
was published by G. Costard, Oxford,
1758. Costard promises a preface,
but this is wanting from both copies
in the Brit. Mus. There is a full
summary, as usual, in Delambre 1.
pPp. 244—246.

19—2
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triangles. But there is no attempt at solution of the triangles,
and though in Book III the first proposition is the foundation
of the ancient method of solution, Menelaus makes no such
use of it. His propositions are of the following kind. In every
spherical triangle any two sides are greater than the third (1. 5):
the sum of the three angles is greater than two right angles (1. 11):
equal sides subtend equal angles and the greatest side the greatest
angle (1. 8, 9): the arcs which bisect the angles meet in a point
(1L 9): the arc which bisects any angle cuts the opposite side
into two segments, such that the chords of twice the segments®
are to one another as the chords of twice the other sides (11I. 6).
The chief proposition (111. 1) describes two properties of plane and
spherical triangles, cut by a transversal. The property of plane
triangles (stated in a lemma) is that if the three sides be cut
by a straight line, the product of three segments which have no
common extremity is equal to the product of the other three®
For spherical triangles, the rule is similar, but for “three
segments ” read “the chords of three segments doubled”. “The
proposition in plane geometry ” says Chasles  of which we shall
speak below in the article on Ptolemy (because it is in the
Almagest that it has generally been noticed) has acquired a
new and great importance in recent geometry, where the illus-
trious Carnot has introduced it, making it the base of his theory
of transversals®.” The theorem on spherical triangles was greatly
admired by the Arabs, who called it “ the rule of intersection”:
early mediaeval writers called it by its Arabic name catha, and
it was known later by another name, requla sex quantitatum®.
Pappus (1v. p. 270) says that Menelaus, and also two otherwise
unknown geometers, Demetrius of Alexandria and Philon of
Tyana, investigated curves on curved surfaces. One of these was
called mapddofos ypapuus), but Pappus does not describe it.

151, Practically all that we know of the trigonometry of

1 Halley always translates ¢‘chord ¢ This name is in Stifel’s Arithm,
of twice the are” by sinus, which of Integra. Nuremberg, 1544. The names
" course properly is half the same chord.  of the proposition are given in Costard’s

2 Menelaus does not say “product”: edition p. 82. A complete account of
he says that a, has to b, the ratio its history is in Chasles dpergu, Note
compounded of b, : ay and by : a, VL. pp. 291—293. Chasles thinks it

3 Apercu, pp. 25—27. was originally one of Euclid’s porisms,
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the Greeks, is derived from two chapters of the famous Meyals)
SYvrafis’ of Claudius Ptolemeus. This work contains many as-
tronomical observations by Ptolemy himself, of which the earliest
was made in A.D. 125, the latest in A.D. 151. Beyond these facts
and also that Ptolemy certainly observed in Alexandria in
A.D. 139, we know nothing of his history. The Arabs indeed
have many details upon his personal appearance, etc., but these
statements betray the romancer by their minuteness®. The
common name ueyal) vvrafis was altered by still more
fervent admirers into ueyiorn and this word was adopted by
the Arabs who got translations of the book earlier probably
than of any other Greek mathematical work. The Arabic article
was then added and the name corrupted into Almidschists,
whence is derived its common mediaeval title .4Imagest®.

Book I. chap. IX. of the Almagest, shews how to calculate a
table of chords®. The circle is divided into 360 degrees (Tu1-
pata) each of which is halved: its diameter into 120 degrees
each of which is divided into 60 minutes, 3600 seconds (rpdTa
éEnroara, Sevrepa éfnroara). Ptolemy does not pretend that
these divisions were new. The division of the circle was, among
Greeks, as old as Hypsicles and was of Babylonian origin : the
sexagesimal scale of the division of the diameter shews it also
to have been Babylonian, and, as such, it was no doubt known
at least to Hipparchus, though it is not now to be found before
Ptolemy®. But Ptolemy’s method of calculating chords scems to

1 Ptolemy’s title is uafnuaricy Zov-
Tafis.

2 Boncompagni’s Gherardo Cremo-
nese, pp. 16, 17 (cited by Cantor, p.
851) Weidler Hist. Astr. p. 177. The
Arabs say that Ptolemy was a fair
man, with 8 red mole on the right
side of his chin, etec,

3 The whole of Delambre’s second
volume is devoted to Ptolemy. There
is & splendid article on him by Prof.
de Morgan in Smith’s Dic. of Gr. and
Rom. Biogr., and a neat summary of
the Almagest in Wolf's Gesch. der
dstronomie, Munich, 1377. The great

edition is the Abbé Halma's, Paris,
1813—186.

4 The chapter is introduced thus
early for the purpose of measuring the
arc of the solstitial colure which lies
between the poles of the equator and
the ecliptic. Our names ‘‘minutes’
and ‘‘seconds” are taken from the
Latin “partes minutae (primae)”,
‘ partes minutae secundae”.

5 Ptolemy says merely “I shall use
the method of arithmetic with the
sexagesimal scale, because of the in-
convenience of fractions” (Halma, p.
26).
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be his own. The measures of the sides of regular polygons,
as chords of certain arcs, were known in terms of the diameter.
Some of these Ptolemy first sets out. He next proves the
proposition, now appended to Euclid vI. (D), that “the rect-
angle contained by the diagonals of a quadrilateral inscribed in
a circle is equal to both the rectangles contained by its opposite
sides'”, and then proceeds to shew how from the chords of two
arcs that of their sum and difference and how from the chord of
any arc that of its half may be found. Hls proofs which are
very pretty are as follows®:

(1) Given the chords a8, ay, it is required to find Bry.
Draw the diameter a8 and join 3, 88. Then 48 =,/120°—ay’,
B8 =./120°—af, and ay.B8=pBy.ad +aB.¢48. Therefore
a«le"O’-a,B'—120/37+a,8J120’ ay®, whence By can be
found.

(2) Given the chord By, it is re-
quired to find the chord o8 of half
the same arc. Draw the diameter
ay and join aB, a8, B8. In ay take
ae=af. Join de and draw &8¢ per- L £
pendicular to ay. The triangles a3,
ade are equal, and their sides B9, 8¢ are equal. But 88 =35y,
therefore the triangles d¢f, 8¢y are equal. Therefore

120
b= =721 B g0z =By

B8

1 Chasles Ap. p. 27 note 1. says that * Halma, pp. 30—35. The proofs
Carnot in his Géométrie de Position in the text are abridged after Cantor

shewed that all rectilineal trigonometry  (pp. 352—354) with some corrections.
could be deduced from this theorem.
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But the triangles 4¢3, y23 are similar, therefore &y : 48 :: 43 : ay,
whence 8 =ay . &y =120 (60 — $,/120" — By*). From this ¢8
can be found.

(8) Given the chords a8, By, it is
required to find the chord ay. Draw
the diameters a8, Be and join B8, 3y,
e, 8e. The triangles afB, 8¢e are
equal and aB=¢d. Then the diagonals
BS.qye=Py.8+d.Be, or
VI20° — o x V120°— By’

=By.aB +120 V120° —ay’, 5

whence ay can be found.

Returning then to the known chords (or sides of polygons),
Ptolemy finds from the chords of 72° and 60° the chord of 12°.
From this the chord of 6° 8°, 13° 4°. His intention, however,
is to give a table of the chords of arcs, increasing successively
by 4°. He requires therefore to find the chord of 1° This he
effects in the following manner.

(4) ap, By are given arcs, of which
By is the greater. Draw their chords
and also the chord ary. Bisect the angle
at B by B3 cutting ay in e. Join a3, &y
and draw 8¢ perpendicular to a@y. From
centre &, with radius Je¢, describe a
circle, cutting 8z, 8¢ in 7, @ respec-
tively. Then (angle aBy being bisected)
aB : By : ae : ey, therefore ae <ey, i.e.

ae<%y and e falls between a and { Therefore 82> 8¢ > &¢,

whence it is plain that n lies on 8z, @ on 8¢ produced. Then
sector den < triangle ea, and sector 8¢f > triangle 8¢f. There-
tri. Seg < see del and tri. 8ef_ tri. del

fore sec. den sec. den sec. 8;n>tri. dea’ Therefore

tri. de¢ _sec. 8ed But tri. 3¢ _ e sec. def _arc. ef

tri. dea  sec. den’ tri. dez  ea sec. den arc. en’

Therefore §§<a_r<i._ 50 Add unity to each side and then
€2  arc. en



296 FROM GEMINUS TO PTOLEMY.

ay 2 arc nf

double them. It follows that — < Deduct unity
ex  arcen

from each side and it follows that —= 67 Mi_arc 0”. But

arc en
ey _ By and 2¢ e + arc 6n _ angle BS-y arc By That is to
ez af arc en angle B8z arc Ba’

say, the quotient of the greater chord by the less is smaller than
the quotient of the greater arc by the less. Now take the
' chord 1° _arc 1°

0 0 0
chords of 1§’ 1° and §°, and we find that chord I° <o T P and
chord 13° arc 1{° arc 1° arc 13° _
“chord 1° < are 1°° ut arc §° =4 and Py Uil 3. There-

fore § chord 134° < chord 1° < § chord §°. From this is obtained
the approximation chord 1°=1.2.50". The chord 13° is
known and hence also the chord 3° and the table of all chords,
rising by half a degree at a time, can be eompiled. Ptolemy
goes only as far as 180° on the ground only that he never
requires arcs of greater magnitude. For arcs which lie between
any two given in the table, Ptolemy applies merely a proportion,
For instance, the arc 20° has a chord 20. 50". 16”, the arc 203°,
has a chord 21.21'.12"”. The addition of half a degree to the
arc corresponds to an addition of 30" 56” to the chord. This
increase, divided by 30, is 1’ 1”7 52" and this is taken to be the
increase in the chord for every increase of a minute in the arc
between 20° and 20° 30"*.

Chapter Xx., which follows, is en the obliquity of the ecliptic
as determined by observation. The next, XI, XIL contain
spherical geometry and trigonometry “ enough for the determin-
ation of the connexion between the sun’s right ascension,
declination and longitude and for the formation of & table of
declinations to each degree of longitude®” Chap. XI. contains
mpolapPavopeva, “preliminaries to the spherical demonstra-

1 These proportional increases are 2 De Morgan.- Ptolemyintroducesthe
stated in a third column by Ptolemy. subject by saying *“It follows next to
Ideler in Zachs’ Correspondenz, Vol. shew the magnitudes of the arcs, com-
xxvI. July, 1812, pp. 3—38, finds that prised between the equator and the
Ptolemy’s numbers are correct to 5 ecliptic, of the great circles drawn
places of decimals. through the poles of the equator”.



FROM GEMINUS TO PTOLEMY. 297

tions”. These begin with the lemma of Menelaus, the regula
sex quantitatum, borrowed without any acknowledgement. After
proving this, he gives four proposi-
tions. If AB, BG be two arcs,
each less than a semicircle (“a G
supposition which can be made of p
all arcs to be hereafter. taken”) and
AG@ be joined and BD be drawn to A )
the centre D, cutting AG in E,
then the chord of 24 B : chord of 2B@ :: AE: EG. From this
it follows that, given the arc 4 G and the ratios of the chords of
24 B, 2B@, the arcs AB, BG can be found.‘_’ Produce .GB to
meet DA in F. Then chord 2G'4 :chord 24B :: GF : BF.
From this it follows that, given arc GB only and the ratio
between the chords of 2G4, 24 B, the arc AB can be found.
These propositions being proved, Ptolemy then proves the regula
sex quantitatum for a spherical triangle, and proceeds (Chap. X11.)
to find the magnitudes of the arcs above-mentioned, and
(Chap. xm1.) “ the magnitudes of arcs of the equator which lie
between circles which pass through its poles and through given
points of the ecliptic”. The method, in both cases, is founded on
the rule of Menelaus.

ABGD represents a great circle, passing through the poles
of the equator AG. BED is the eclip-
tic: E is the vernal equinox; B the
winter, and D the summer, solstice.
Z is the pole of the equator. On the
ecliptic take an arc HE, and through
H describe the great circle ZHT. It
is required to find the magnitudes of
HT (Chap. x11.) and TE (Chap. xm1). D
Ptolemy gives the solutions only for
cases in which £H is 30° or 60°, and then adds tables. The lemma
of Menelaus is, later on, applied in a great many ways to this
same figure, for there are four triangles, XHT, ZHB, ZTA, EBA,
which are cut by the following transversals respectively, ZBA,
ETA,BHE, ZHT. One example (ch. x11.) will serve for an illus-
tration. ETA is a transversal to the triangle ZHB. Therefore
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chord ZAZ : chord 24B :: chord 27Z x chord 2HE : chord
2TH x chord 2EB. HE is ex hypothesi 30°. Arc ZA is 90°
ie.chord 2Z4A=120.2arc ABis 47° 42' 40", its chord 48.31’. 55".
2 arc HE is 60, its chord 60. 2 arc EB is 180° its chord 120.
“If from the ratio 120 :48 .31 . 55” we subtract (dperduev)
that of 60 :120, the remainder will be the ratio chord
277 : chord 2TH,i.e. 120 :24.15 57”. But 27Z =180, its
chord 120. Therefore chord 2TH =24.15' 57", its arc is
23° 9’ 59" therefore the arc TH is half this, viz. 11' 40" very
nearly'”

This paragraph contains in fact the whole of Greek trigono-
metry. The further progress of this department of geometry
is due mainly to the Indians and after them to the Arabians.
With the former, trigonometry seems, after its suggestion in
Ptolemy, to have had quite a native development. The Indians
never used “the chord of twice of the arc”, as the Greeks always
did, but half that chord. This they called jydrdha or ardhajyd,
but the name of the whole chord jyd or jivd was also used for
shortness. The Arabs, taking the latter term, transliterated it
to dschtba, which later was altered for the Arabic word dschazb,
which is of nearly the same form. Dschaib means ‘bosom’ and
was therefore translated ‘sinus’ by Plato of Tivoli in his Latin
version (‘De Motu Stellarum’) of the astronomy of Albategnius®.

FROM GEMINUS TO PTOLEMY.

1 Delambre (in Halma) has some B4 (a), TE (b), HE (h), and their
notes on the proof, complements.  The application of
chord 2Z4 _ ch. 2TZ ch. 2HE Menelaus’ rule produces the following

chord 24B ~ ch. 2TH " ch. 2EB
. ch. 180° _ ch. 180° ch.2long.
1-6- oh.2 obliq. ~ oh.2 decL’ ch. 1800
ch.2decl. _ch.20blig. ch.2long.
Then =780 ~ ch. 180° * ch. 180
;b 2 dedl. _ 48.81 55" 60
120 - 120 ©120°
“On voit par 14 que, dans le langage

equations. The transversal ZBA gives
cos h=cosa.cosb: the transv. ET4
gives sin a=sin a 8in k: the transv.
BHE gives cosa . sinb.sina=cosa
.sina (or tan a=sin b. tana): the
transv. ZHT gives sinb.cos h=cos b
.co8a.sinh (or tan b=cos a . tan k).
2 Plato of Tivoli was certainly

des anciens, retrancher une raison,
¢’6toit diviser par cetteraison.” Han-
kel (p. 285, 286 n.) has a very neat
note on Ptolemy’s procedure. He points
out the four triangles and their trans-
versals. All the arcs in the figure can
be expressed in terms of HT (a),

writing between A.n. 1116—1136. At
the latter date he was at Barcelona.
Albategnius (878 —918) was Mohammed
of Battin in Syria. On these persons
see Cantor, pp. 560, 632, 778, where
also the derivation of sinus is given.
Also Hankel, pp. 217 sqq., 287 sqq.
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In this way, sine came to be a technical term of modern trigono-
metry. Further evidence of the distinct character of Indian
trigonometry is to be seen in their division of the diameter.
Ptolemy divided this into 120 parts with sexagesimal fractions
and so did the Arabs. The Indians divided it in various ways.
Dividing it into 120,000 parts they calculated the sides of
regular polygons of 3, 4, 5, 6, 7, 8, 9 sides to be 103923, 84853,
70534, 60000, 52055 (for 52066), 45922, 41031 (for 41042)
respectively. Ptolemy (Almag. vi. 7) has w=3.8".380"
(=3 + ¢5 + 383y = 3'141, 666....) The oldest Indian tradition
makes 7 = 3 or, more exactly, V10. Aryabhatta has $4448. This
value was obtained in the following way. If, in a circle with
radius unity, S, be the side of an inscribed regular polygon
of n sides, S, that of a like polygon of 2n sides, then

8, =/2—/4— 8?2 TFrom the side of the hexagon they calcu-
lated the sides of polygons of 12, 24, 48, 96, 192, 384 sides.
The periphery of the last (the diameter being taken =100) is

~'98694, This square root or rather that of 986,940,000 is
exactly Aryabhatta’s value®.

152. The applications of trigonometry in Book II. of the
Almagest and the geometry of eccentric circles and epicycles in
Book III. belong too distinctly, by language and purpose, to the
history of astronomy to be described here. Besides the Alma-
gest, Ptolemy wrote also many other works, most of which are
extant. The Geography (edited by the Abbé Halma, Paris 1828)
contains a description of the earth, defining the position of many
thousand places by latitude and longitude. Book I.,chap. 24 con-
tains directions for drawing a map and various modes of projec- .
tion are here discussed. Ptolemy prefers the method by which

I have somewhere seen a statement radius into 600,000 parts. The latter

that sinus, which in Latin means
primarily ¢a fold,” was applied to the
¢folded’ chord, i.e. half the chord.

1 Hankel, pp. 215, 216. Par-
bach (1423—1461) and Regiomontanus
(Miiller of Konigsberg, 1436—1476),
both of whom made abstracts of the
Almagest, but use sines, divided the

afterwards substituted the value
=1,000,000 (Montucla 1. pp. 539—
544). In Brigg and Gellibrand’s T'ri-
gonometria Britannica (Goudae, 1633)
oap. 2. sines are caleulated to 15 places
of decimals. Here also Ptolemy’s
propositions are given exactly.
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the eye is supposed to be at the pole and points’on the earth’s
surface are projected on the plane of the equator’. He wrote
also a Canon or chronological list of kings of various countries
(also ed. Halma), a treatise on Sound (‘Apuovikd, ed. Wallis,
Oxford, 1682) and another on Optics, extant only in a Latin trans-
lation from the Arabic. The 5th book of the Optics deals with
refraction, in which, as an astronomer, Ptolemy was especially
interested’. Cleomedes an earlier astronomer (A.D. 60) had
already suggested that the reason why stars are still seen, though
below the horizon, was due to the same cause as that which
renders a ring, previously unseen, visible when the vessel, which
contains it, is filled with water. But Ptolemy works up the
subject carefully. He compares rays passing through air and
water, air and glass, and water and glass. He finds as a general
law that a ray, passing from a rarer to a denser medium, is
refracted towards the perpendicular: if passing from a denser to
a rarer medium, away from the perpendicular: and he invented
a simple contrivance (a graduated circle with moveable spokes,
the lower half of which is placed in water) for the purpose of
ascertaining the amount of the refraction in water for various
angles of incidence®. Some works in astrology and metaphysics
probably not genuine, are also attributed to Ptolemy*, but
Proclus (pp. 362—368) has preserved some extracts from a
work of his in pure'geometry, from which it appears that he
also discussed the propriety of Euclid’s famous 12th Axiom,
(sometimes printed as 11th), on parallel lines. He endeavoured
to prove it as a theorem in the following way. If the straight

1 Cantor p. 358 says that Aiguillon
in 1613 gave to this method the name

this by supposing that the Optics was
written later.

of ‘“stereographic” projection. Modes
of projection are also discussed by
Ptolemy in his Planisphere and Ana-
lemma (trans. Commandinus 1558 and
1562). An analemma is a delineation
on a plane of the circles of the heaven-
ly sphere. See Hultsch’s Pappus, 111.
pref. p. xi.

2 Refraction is not mentioned in
the Almagest. Delambre accounts for

3 See Heller, Gesch. der Physik. pp.
136, 137, Delambre 1. pp. 411—431,
De Morgan doubts the authenticity of
the Optics, chiefly on the ground that
the geometry is bad.

4 Simplicius (in. Arist de Celo, Book
1.) mentions & book on dimensions (mwepl
dcaordoewv) and Pappus vim, p. 1030
seems to mention a book on Mechanics.
Both are lost.
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line e{nf meet the straight lines

aB, 48 and make the two interior €
angles equal to two right angles, @ / P
then af, o8 are parallel. For if N < > "
not, let the interior angles B¢y, 5 7 5

&nd be two right-angles and let
the two straight lines, 8¢, 87, meet %

in k. Then, the angles aln, &ny,

will also be equal to two right-angles and the straight lines a{,
on will meet in N and thus two straight lines will enclose a
space. Conversely, if the straight lines are parallel, the interior
angles are necessarily equal to two right-angles. For af and o9
are not less parallel than {8, 78 and therefore whatever the sum
of the angles B¢n, {nd, whether greater or less than two right-
angles, such also must be the sum of the angle afy, {n8. But
the sum of the four cannot be more than four right-angles,
because they are two pairs of adjacent angles.



CHAPTER X.

LAST YEARS.

153. THE revival of Platonism and Pythagorean mysticism
in Alexandria and the East, perhaps also the dispersion of the
Jews and their introduction to Greek learning, led about
Ptolemy’s time to the revival of the theory of number and this
in the hands of Nicomachus, Theon, Smyrnaeus and others
became a favourite study’. No doubt geometry continued to
be one of the most important parts of the Alexandrian course,
but no important geometer appears for 150 years or so after
Ptolemy. The sole occupant of this long gap is S8extus Julius
Africanus, a Libyan by birth, who lived, however, most of his
life in Palestine. He flourished about A.p. 200. Africanus has
left a collection of papers similar to those of Heron, and en-
titled Kearo, i.e. ‘Patchwork’, ‘miscellanies” A portion of this
dealing chiefly with catapults is printed in the Mathematicy
Veteres, but Chap. 31 contains some problems of strategy®, to
find the breadth of a river the opposite bank of which is oc-
cupied by the enemy, etc. Two solutions of this problem are
given, both depending on similar triangles. The first is as
follows. The point 2 being on the opposite bank, take a distance
0B, evidently greater than c6, 6 being on your own bank and let
0B be at right angles to the bank. With the dioptra determine

1 Vide supra, p. 88 sqq. cent along with Heron’s Dioptra above
2 This is separately printed by Vin- mentioned.
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By at right angles to 8. From  with the dioptra determine
the angle Bya. Bisect By in & and from & draw 8e parallel

a

I’} d

to 68, meeting ay in € and from e draw e{ to 68, parallel to By.
Then ¢B is half a8 and {8 can be determined by measurement.
The other method is as follows. The pointa being on the opposite

V] o 7

bank, determine af3 crossing the river at right angles and measure
By parallel with the banks. At the point & on By lay a T-square
70¢, 80 that its extremity e lies on the line ¢z, as determined by
the dioptra. Then 8 : 8¢ :: 48 : Ba. The first three of these
distances are known and thus Ba is obtained. This procedure,
the Roman varatio, was one of those which made the reputation
of Heron and all the gromatici of antiquity. It could be
applied of course, as Euclid applies it in the Phenomena, to
finding heights and depths as well as horizontal distances’,

1 Chap. 76 of the Kegrol describes a  in Greek alphabetic signs and in this
curious system of telegraphy. Three manner a word was spelt out, e.g. 7 on
posts were set up, each bearing 9 the second post (0=70) and 4 on the
moveable arms. Onerepresented units, third (v=400) would spell ov, ‘No.’
the next tens, the third hundreds. Cantor, pp. 372—374.

The numbers thus exhibited were read
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154, But the end of the third century produced one of the
greatest of Greek mathematicians, Pappus of Alexandria. His
date, indeed, though he certainly lived before Proclus and
Eutocius who often mention him, is a matter of some doubt,
because the two authorities for it contradict one another. A
. scholiast of the 10th century has written, in the margin of a
MS. of Theon’s manual tables (now at Leyden), opposite the
name Diocletian, éml Tovtov 6 Ildmos &ypagper, which can
hardly refer to anybody but our Pappus. Suidas, however,
says that Pappus was a contemporary of Theon and as it is
evident from the same tables that Theon lived about 872, in
the time of Theodosius, the two accounts vary by nearly a
hundred years. Now Suidas says that Pappus wrote a com-
mentary on the four (instead of 13) books of the Almagest
and it is in the highest degree unlikely that both Theon
and Pappus, living in Alexandria at the same time, should
both have written a commentary on the same work'. And
Suidas, besides making a mistake about the Almagest it-
self, does not mention Pappus’s great work, the cuvaywyj, at -
all. From this it is inferred that Suidas knew hardly any-
thing about Pappus and the other writer, who assigns him to
Diocletian’s time (A.D. 284-305) is deemed better worthy of
credence®.

Many writings are attributed to Pappus. Proclus (p. 429)
speaks of Pappus’ pupils (oi mepi Ilammov), so he evidently
was the head of a school. Eutocius (in Torelli, p. 208), and
Suidas mention his commentary on the Almagest. The fcrmer
also (Torelli, p. 90), mentions some notes on Euclid’s Elements®.
Suidas ascribes to him a description of the earth, a book on the
rivers of Libya and another on the interpretation of dreams.
Pappus himself (1v. 27, p. 246), speaks of his commentary on the
analemma of Diodorus, a writer of whom nothing is known.
Proclus (pp. 189, 190), perhaps quoting the notes on Euclid,

1 Nevertheless Theon does not men-  Vol. of his Pappus and Cantor, pp.
tion Pappus's commentary. Hultsch, 374—376.
as above stated, thinks he stole from 3 From these, no doubt, Axx. 4 and
it. 5 were taken (Proclus, p. 197, 6).

2 See Hultsch’s preface to the 3rd
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says that Pappus pointed out that an angle may 3
be equal to a right angle without being a right

angle. In the annexed figure of two equal semi-

circles, for instance, the angle comprised between

the two curves a3, ay, is obviously equal to the * A
right angle 828.

But the one work by which Pappusis known is his cvvaywys,
a collection of mathematical papers, originally in 8 books, of
which the first and part of the second are missing. This is the
work to which so frequent references have been made in these
pages and which, of all extant Greek books, is the richest in
information on the lost treatises of the foremost Greek geometers.
The design of the collection is to give a brief account of the
contents of most of the mathematical works which, in Pappus’s
day, enjoyed the highest repute and then to set out lemmas or
auxiliary propositions to them. These lemmas, however, as is
evident by a comparison of them with extant works, such as
Euclid’s Phaenomena or Apollonius’ Conics, are selected in the
freest possible manner, and have often no apparent bearing on
the book which they are supposed to illustrate. On the other
hand the same comparison shews that Pappus gives a very
careful and correct summary of the works of which he
treats, and for this reason it seemed possible to the mathema-
ticians of the last century to reconstruct lost works on the
authority of Pappus alone.

155. The contents of the cuvaywyrj may be here briefly
indicated'.

The fragment of Book I1. deals entirely with the tetrads of
Apollonius and has been described above (pp. 62—63).

Book 1II. contains four tracts, the first on the methods of
duplication of Eratosthenes, Nicomedes, Heron and Pappus
bimself : the second on the theory of proportion, introduced by
a problem to exhibit an arithmetical, a geometrical and a
harmonic mean in the same figure®: the third is on Euclid 1. 21,
and shews that if the straight lines meeting within the triangle

! This summary is partly from 8n arithmetical, geometrical or har-
Cantor, pp. 378—382. monical mean, according as
2 pp. 70, 72. Between a and ¢, b is a-b:b-c=a:a,ora:dora:ec,
G. G. M. 20
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be drawn from two points not the extremities of the base, then
“the sides of the included triangle may be greater than the
sides of the triangle which includes it in any ratio which is less
than that of two to one'”: the fourth is on the five regular
polyhedra inscribed in the sphere and uses the Sphaerica of
Theodosius. Here Pappus proceeds by a method contrary to
that of Euclid x111. Euclid, who finds a ratio between a side of
the polyhedron and the diameter of the sphere, constructs the
polybedron first and describes the sphere about it: Pappus
constructs the sphere first and inscribes the polyhedron.

Book 1v. begins with the theory of transversals to the circle,
followed by the problem to describe a circle about three circles
which touch one another. Then follow more problems on
figures touching one another. Pappus next passes to the spiral
of Archimedes, the conchoid of Nicomedes and the quadratriz,
which last is very fully discussed. Various subjects are here
incidentally treated, such as the rectification of the circle, the
relations between the quadratriz and the spiral, the trisection
of an angle, the division of a circle, into arcs which have to one
another a given ratio, by means of the quadratriz and the
spiral, the use of the quadratiz for the solution of the three
problems (1) to describe in a circle a regular polygon of any
number of sides, (2) to find for any given chord a circular
arc which has a given ratio to the chord, and (3) to draw
angles which shall be incommensurable with one another.

Book v. begins with an extract from the work of Zenodorus
on plane figures of equal periphery, passes then to the trea-
tise of Archimedes on the half-regular solids, then returns to
Zenodorus on solids of equal surface and shews that, of the
regular solids with equal surface, that is the greatest which
has most angles.

Book VI. gives lemmas to the uiwkpds darpovouovuevos
(témos) or Minor collection of Astronomy®. This contained,
according to the preface, the following works, viz., the Sphaerica

1 Simson’s note to Eucl. 1. xxi. study intermediate between the Ele-

2 This collection, with some Arabic ments of Euclid and the Almagest.
additions, constituted the ¢‘middle See Steinschneider in Zeitschr. Math.
books” of the Arabs, i.e. the course of  Phys. for 1865, x. pp. 456-—498.
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of Theodosius, the Data, Optica, Catoptrica and Phaenomena of
Euclid, the mepi Sioikrioewy (De Habitationibus) and De Noctibus
et Diebus of Theodosius, the Moving Sphere of Autolycus, the De
Magnitudinibus etc. of Aristarchus, the dvagopikss of Hypsicles,
the Sphaerica of Menelaus. The books, perhaps, were not
studied in this order, for it is difficult to see why Autolycus
should be taken after Euclid, but on the other hand the 7émos
avalvopevos was studied in the order of its books' and there
seems no reason otherwise for dividing the works of Theodosius.
Pappus omits the Catoptrica, the dvapopirss and the Spherics of
Menelaus, but as he promises (p. 602 lin. 1) some lemmas to &
commentary by Menelaus on Euclid’s Phaenomena, which are
not now included in the book, it may be that some mutilation
has taken place.

Book vil. deals, in like manner, with the romwos dvalviuevos
or Collection of Analysis. This contained Euclid’s Data,
Apollonius’ Sectio Rationis, Sectio Spatii, Sectio Determinata,
De Tactionibus, Euclid’'s Porisms, Apollonius’ De Inclinationibus,
Plane Loct, and Conics, the Solid Loci of Aristaeus, the Tdmoe
mpos émipaveia of Euclid and lastly Eratosthenes’ mepi ueco-
rijrwv. The contents of these, down to the Conics, are described
in a long preface and then follow lemmas to all the books except
the Data and those of Aristaeus and Eratosthenes. The
Porisms of Euclid are taken between the Plane Loci and the
Conics of Apollonius, but otherwise the above order is preserved.

Book viir begins by announcing that it will deal with some
mechanical questions *“more tersely and clearly and in a better
manner” than they had been handled by the ancients. To
these belong the theory of the centre of gravity and of the
inclined plane, and the problem, by means of cogwheels whose
diameters are in a given ratio, to move a given weight with a
given power. Here, again, arises the duplication-problem,
or rather the problem to construct a cube which has a given
ratio to another cube. This is solved by a mechanical device.
Pappus then discusses the method of finding the diameter of a
cylinder which is broken so that an exact measurement can-

1 Cf. p. 636. 18. “Of the above mentioned books of analysis the order
(rdfes) is as follows.”

20—2
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not be taken on either base. Suddenly he passes thence to
problems (or porisms) to find given points on a sphere, e.g. the
point which is nearest to a given plane or the points in which a
given straight line will cut the sphere. Then he shews how to
inscribe seven similar regular hexagons in a circle, one having
the same centre as the circle, the other six standing each on
one side of the first. This problem serves for the construction of
cogwheels and extracts from the Bapodikos and the Mechanics
of Heron, added perhaps by a later hand, conclude the collection.

156. To the development of Greek geometry the Collection
of Pappus can hardly be deemed really important. It is
evidence, indeed, that the geometrical school of Alexandria was
still flourishing after 600 years and it shews what subjects were
studied there. But among his contemporaries Pappus is like
the peak of Teneriffe in the Atlantic. He looks back, from a
distance of 500 years, to find his peer in Apollonius. In the
long interval, only two or three writers, Zenodorus and Serenus
and Menelaus, had produced in pure geometry a little work of
the best order, and there are none such to follow. The
Collection of Pappus is not cited by any of his successors’, and
none of them attempted to make the slightest use of the proofs
and apergus in which the book abounds. It becomes interesting
only in the history of mathematics during the 17th and 18th
centuries, when there were again geometers capable of using it
and others who independently struck out and pursued lines
of investigation which were more or less clearly anticipated by
Pappus. To give here an elaborate account of Pappus
would be to create a false impression. His work is only
the last convulsive effort of Greek geometry which was now
nearly dead and was never effectually revived. It is not so
with Ptolemy or Diophantus. The trigonometry of the former
is the foundation of a new study which was handed on to other
nations indeed but which has thenceforth a continuous history
of progress. Diophantus also represents the outbreak of a
movement which probably was not Greek in its origin, and

1 Hultsch’s Preface to Vol. mx. p. 3.  Pappus, cites the proposition vir. 11
Eutocius however, (in Torelli p. 139) of the Collectio. (This is also in Bk.
referring to the unyavwal elocaywyal of 111 pp. 64—69 of Hultsch).
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which the Greek genius long resisted, but which was especially
adapted to the tastes of the people who, after the extinction of
Greek schools, received their heritage and kept their memory
green. But no Indian or Arab ever studied Pappus or cared in
the least for his style or his matter. When geometry came
once more up to his level, the invention of analytical methods
gave it a sudden push which sent it far beyond him and he was
out of date at the very moment when he seemed to be taking a
new lease of life.

A few lines only will be sufficient to call attention to some
passages of Pappus in which modern geometers still take an
antiquarian interest’. These occur mostly in Book vii. Here
(p. 682) occurs the theorem, afterwards re-discovered or stolen by
Guldin, (1577-1643), that the volume of a solid of revolution is
equal to the product of the area of the revolving figure and the
length of the path of its centre of gravity. Here also (p. 1013)
Pappus first found the focus of a parabola and suggested the
use of the directrix. Here in the lemmas to the Sectio Determi-
nata the theory of points in involution is propounded : and
among those to the De Tactionibus the problem is solved, to
draw through three points lying in the same straight line, three
straight lines which shall form a triangle inscribed in a given

- circle®. Here also (p. 678) occurs the problem “given several
straight lines, to find the locus of a point such that the perpen-
diculars, or more generally straight lines at given angles, drawn
from the point to the given lines shall satisfy the condition that
the product of certain of them shall be in a given ratio to the

1 Some of these have been mentioned
before & propos of the books to which
the lemmas of Pappus refer. A sum-
mary of a kind more satisfying to the
modern geometer will be found in
Chasles Apercu pp. 38—44. Cantor
pp. 382—386 cites generally the same
propositions as Chasles, but adds some
remarks on hints of algebraical sym-
bolism in Pappus. Taylor (dnc. and
Mod. Conics. pp. lii—liv) gives little
more than the lemmas to Euclid’s
poriems from Book vir.

2 On this problem (no. 117) Chasles
hasthefollowingremarks. ‘¢ The props.
105, 107, 108 are particular cases of
it. One of the points is there supposed
to be at infinity. The problem, gen-
eralised by placing the points anywhere,
has become celebrated by its difficulty,
by the fame of the geometers who
solved it and especially by the solution,
as general and simple as possible,
given by a boy of 16, Ottaiano of
Naples.” Apergu, pp. 44, 328.
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product of the rest ”". Descartes and Newton brought this into
celebrity as the “problem of Pappus.” But though the seventh
Book, which contains the lemmas to the Témwos dvarvduevos is
by far the most important, there is matter in the other books of
a very surprising character. The 4th Book, which deals with
curves, contains a great number of brillianut propositions,
especially on the quadratriz and the Archimedean spiral. Pap-
pus supplements the latter by producing (p. 261 sgq.), a spiral
on a sphere, in which a great circle revolves uniformly about a
diameter, while a point on the circle moves uniformly along its
circumference. He then finds the area of the surface so deter-
mined, “a complanation which claims the more lively admiration,
if we remember that, though the whole spherical superficies was
known since Archimedes’ time, to measure portions of it, such as
spherical triangles, was then and for long afterwards an unsolved
problem*®”. The 8th Book (p. 1034 s9g.) contains a proposition to
the effect that the centre of gravity of a triangle is that of another
triangle of which the vertices lie on the sides of the first and
" divide them all in the same ratio®. All these, and many more of
equal difficulty, seem to be new and of Pappus’ own invention. It
ought not, however, to be forgotten that in at least three cases,
which have been noticed above in their proper places, Pappus
seems to have assumed credit to which he is not entitled. In
Book 111 he gives as his own a solution of the trisection-problem
with a conchoid, which can hardly be other than the solution
which Proclus ascribes to Nicomedes: in Book 1v. he gives 14
propositions of Zenodorus without so much as naming that
author: and in Book VIIL he solves the problem ‘to move a
given weight with a given power’ in a manner which differs
only accidentally from Heron’s‘. It is probable that many

LAST YEARS.

1 It is in this problem that Pappus
objects to having more than 4 straight
lines, on the ground that & geometry
of more than three dimensions was
absurd.

2 Cantor p. 384.

3 Pappus supposes points, starting
simultaneously from the three vertices,
to move along the sides with velocities

proportionate to the length of the sides.
4 InHeron the weight is 1000 talents,
the power 5, and he solves the problem
by a series of cogwheels, the diameters
of each pair being in the ratio 5:1.
Pappus takes the weight 160, power 4
and the diameters 2:1. See Pappus
vir. prop. 10 (p. 1061 sqq.) and Vin-
cent’s Heron cited supra, p. 278 n.
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works of ancient geometers were, in Pappus’ time, becoming
rare. Pappus himself, for instance, does not seem to have seen
Euclid’s Conics and Eutocius and Proclus (much later) had
certainly not seen many books which they knew by name’, It
was therefore possible to appropriate many proofs without
much chance of detection and it may be that Pappus used this
opportunity.

157. It was suggested at the beginning of this chapter, that
possibly the Jews had something to do with the revival of the
arithmetical investigations which culminate about this time in
the Algebra of Diophantus. It is possible also that the decay
of Greek geometry was due to the gradual advance of peoples
who have never, at any time, cared much for this branch of
mathematics, though they have a surprising natural talent for
the other. At any rate, nearly all the leading writers of the
Neo-Platonic and Neo-Pythagorean schools were not Greeks.
Philo was a Jew: Nicomachus was an Arabian: Ammonius
the founder of Neo-Platonism was an Egyptian: so was Ploti-
nus: Porphyrius came from Tyre: the name of Anatolius,
wherever he was born, means literally ‘Oriental’: Tamblichus
was a native of Chalcis, in Ceelesyria. These are the philoso-
phers who, in the first four centuries of our era, commanded the
largest influence and not one of them was a geometer. Never-
theless, the world is wide and the geometrical school at
Alexandria was still largely attended, though it produced no
brilliant professors after Pappus. Perhaps Patricius, the
author of two rules now inserted in Heron’s works (Geom. 104*
and Stereom. 1. 22) belonged to this time, but there are two
persons of this name, one a Lydian of about A.D. 374, the other
somewhat later, a Lycian and the father of Proclus. Theon of
Alexandria was certainly making astronomical observations in
A.D. 365 and 372, and he as certainly held classes (ocvvovelar)
for which he prepared his edition of Euclid. 'We have seen also
that the preface to Euclid’s Optics consists of notes from Theon’s
- lectures. He also wrote a commentary on the Almagest, (ed.
Halma. 1821) most of which is extant and which is perhaps in

1 Heiberg, Litterargesch. Euklid. p. 89.
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great part founded on the similar work of Pappus’. This also
contains many little historical notices which have been extracted
above in their proper places, and the commentary to Book 1. of
Ptolemy is especially valuable for its specimens of Greek
arithmetic. Theon’s daughter Hypatia (0b. A.D. 415), seems to
have been a better mathematician than her father. The story
of her life and her tragical death are familiar to English readers
through Kingsley’s novel. None of her works are extant, but
Suidas (sub voce) says she wrote “vmwéuvnua eis Acopavryy Tov
daTpovoukdv Kavova eis Ta Kovikd “Amol\wviov vmouvnua”.
This may mean three works, viz.: notes to Diophantus, the
astronomical canon and notes to Apollonius’ conics, or (altering
Avopdvryy to Acodavrov) may refer to two only, notes to the
astronomical canon of Diophantus and notes to the conics.
Hypatia was the last of the Alexandrian professors who attained
any fame. The Neo-Platonic school in Athens, under Syrianus,
now began to attract more attention, and in the interests of
Platonism the historical study of geometry was for a time
revived. Proclus the successor (8tadoyos) of Syrianus at the
Athenian school (A.p. 410—485), studied in Alexandria and
there acquired that general acquaintance with Greek geometry
which. enabled him to write his commentary on Euclid’s
Elements. His notes on the first Book are still extant® and
contain a very large proportion of all the most valuable informa-
tion we possess on the history of Greek geometry. But Proclus
himself is a wordy and obscure writer and his best things are
taken from Geminus and Eudemus. Proclus’ pupil Marinus of
Neapolis (i.e. Flavia Neapolis, the ancient Sychem in Palestine)
wrote the life of his master and is the author of the preface to
Euclid's Data. He also was at the head of the Athenian
school. Isidorus succeeded him and was the teacher of
Damascius of Damascus, who appended the 15th Book to

1 The wss. have a fragment of
Pappus’s commentary at the beginning
of Theon’s to Book v. and in Theon’s
to Book 1. occurs a tractate on cal-
culation with sexagesimal fractions
which is, in some Mss, attributed to

Pappus or Diophantus.

2 Some of the extant scholia to the
other books are thought to be by
Proclus. See Knoche’s essay, cited

_ above p. T4 n.
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Euclid’s elements', and also of Eutocius of Ascalon, the commen-
tator on Archimedes and Apollonius. Along with Damascius,
Simplicius, the author of the commentary to Aristotle’s De
Coelo, taught in the Athenian school, but the Emperor
Justinian, who was by way of being a Christian, did not approve
of the heathen learning and, after many annoying decrees,
finally in 529 closed the school altogether. Meanwhile in
Alexandria the study of mathematics was still in some sort
maintained, but it may be conjectured that there was no great
zeal for geometry since the only mathematical works of which
we hear anything are three commentaries on the Arithmetic of
Nicomachus, by Hermas, Asclepius of Tralles and Johannes
Philoponus. The end was rapidly approaching. Mahomet fled
from Mecca in September 622 and died in 632, and his successors
prepared to enlarge the realm of Islam with the sword.
In 640 Alexandria fell and then “with one stride comes
the dark ”.

158. A summary of the history of Greek mathematics,
which has been given in these pages, can be rendered effective
only by being so condensed that conjecture is indistinguishable
from fact.

At first the higher mathematics were cultivated only in the
service of philosophy and it was part of every philosophical creed
to despise the aims and arts of the vulgar. The same prejudice
remained after mathematics had come to be studied for their
own sake, and thus the attention of competent mathematicians
was always diverted from the ordinary methods of calculation
and Greek arithmetic remained to the last hampered by a vile
symbolism and consequently cumbrous procedure.

Geometry was introduced to the Greeks by Thales from
Egypt, but the same knowledge was, somewhat later, imported

1 This supposition is founded on the les built the San Sofia church at Con-
fact that the author of Bk. xv. mentions  stantinople. Book xv. appended to the
(prop. 7) his great teacher Isidorus.  Elements contains only 7 props, chiefly
Cantor (p. 426) pointsout that therewas  problems to inscribe one regular solid
another Isidorus of Miletus, in this cen-  in another.
tury, who along with Anthemiusof Tral-
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elsewhere by Pythagoras and led in his hands to far more im-
portant results. He also, by insisting that every proposition on
the relations of lines, or continuous magnitudes, has its analogue
in the relations of numbers, or discrete magnitudes, and vice versd
started the investigation of the theory of numbers and gave to
this inquiry its deductive style and the geometrical nomenclature
which it always retained. From his time both these studies
advance almost pari passu, but the history of the theory of
numbers is far more obscure than that of geometry.

In the fifth century B.C. the head-quarters of mathematics
shift from Italy to Athens. Here Hippocrates opened the
geometry of the circle, which Pythagoras had neglected for that of
rectilineal figures, and he also recast the problem of duplication
of the cube into one of plane geometry. Plato revived
stereometry and raised analysis to the position of a recognized
geometrical method. The Athenian successors of Plato began
the study of conics and other curves. ,

Then, about B.c. 300, the head-quarters are removed to
Alexandria and in the following century Greek mathematics
reach their highest development. Stereometry, the geometry
of conics and theory of loct were now practically complete, so
far as the Greeks were able to finish them. Succeeding cen-
turies do no more than treat of isolated cases which the great
geometers had overlooked.

But during this time practical astronomy had been making
rapid strides in the hands of Eudoxus, Aristarchus, Eratosthenes
and others down to Hipparchus. Now the needs of the
practical astronomer are in many respects similar to those of
the surveyor, the engineer and the architect. Each of these is
chiefly concerned, not to find the general rules which govern all
similar cases, but to find under what general rules a particular
case, presented to them, falls. But the question whether an
angle is acute, or a triangle isosceles, can be determined only by
measurement, and hence about 130 B.C.,in the time of Heron
and Hipparchus, we find the results of geometry applied to
measured figures, for the purpose of finding some other measure-
ment as yet unknown. Trigonometry and an elementary
algebraical method are thus introduced. For such calculations
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the Egyptians and Semites, who had now secured the grand
results of Greek deductive science, had an especial aptitude, and

_ the study of the theory of numbers, which was revived by Neo-
Platonists and Neo-Pythagoreans, mostly of Semitic and
Egyptian origin, changes its character accordingly. With Nico-
machus, in effect, propositions no longer run “All numbers,
having the same characteristic, have such or such another
characteristic”, but, “ The following numbers have the same
characteristics”. The equations of Diophantus, in which for
the first time algebraical symbols appear, and which are intend-
ed to find numbers which satisfy given conditions, are the
inevitable consequence.

The learning of the Greeks passed over in the 9th century to
the Arabs and with them came round into the West of Europe.
But no material advance was made by the Arabs in geometry
and it was their arithmetic, trigonometry and algebra which
chiefly interested the mediaeval Universities. In the 16th cen-
tury Greek geometry again became known in the original and
was studied with intense zeal for about 100 years, until Descartes
and Leibnitz and Newton, the best of its scholars, superseded it.
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Sakwor, 232
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Savile, Sir H., 208
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Sectio Spatii etc. of Apollonius, 261, 307
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numeral signs, 43—44
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Gk. mathematics, 107, 311
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Seqt, 128, 129, 141, 142

Serenus, 270 n., 289—291

Series, 19, 20, 77, 97, 103

Sexagesimal fractions, 52, 293

Simplicius, 313

Simson, 200: on Porisms, 218

Sine, 292 7., 298, 299

Sophists, 160—161

Spain, Arabic learning in, 205—206

Zweipa, 185, 270

Sphaerica pre-Euclidean, 212: of Theo-
dosius, 212, 288: of Menelaus,
291—292

Sphere and Cylinder of Archimedes,
227—229
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231232

Spiralibus, De of Archimedes, 229—231,
310

Sporus, 269 n.

Square-roots, in Archimedes, 58—55 :
Theon’s rule for finding, 56—57

Stereometry, 181

Suan-pan, 31, 33 n.

Subtraction, 49: of a ratio, 298 n.

Surds, 69 n., 73—74

Symbols, algebraic, 105—111

Syrianus, 312

treated by Archimedes,
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Tabit ibn Corra, 89, 204, 246

Technical terms of Greek mathematics,
in arithmetio, 69, 70, 74, 75, 78, 79,
89—93, 108—109: in geometry,
176 n., 199, 298 n.

Telegraphy, 803 n.

Tetrads, 62—63

Thales, 138—145

Theaetetus, on incommensurable lines,
85—86 : his geometry, 183

Theodorus of Cyrene, 164

Theodosius, 288, 289

Theon of Alexandria, on compound
division, 52—53: on square-roots,
58—57 : his edn. of Euclid’s Ele-
ments, 199—203 : notes on Euclid’s
Optics, 213 : date eto., 311

Theon Smyrnaeus, date and works,
95—96

Theudius, 188

Three, limit of counting, 8

Thymaridas, 96, 97, 100.

Témos dvalvouevos, 210, 211 n., 307

Témot, see Loci

Translations of Euclid’s Elements,
203—206, Addenda : see also Arabic

Triangles, numerical formulae for
right-angled, 70, 71, 81 n.: Heron's
rule for areas, 282—2883 : centre of
gravity of, 239, 310

Triangular numbers, 70

Trigonometry, of Hipparchus, 275:
Heron, 283—284 : Ptolemy,292— 298:
among Arabs and Indians, 2908—299

Trisection of an angle; 161: effected
with quadratrix, 163: by Archi-
medes, 233: by Nicomedes or Pap-
pus, 268

Trivinam, 72 n.

Tunnu-calculation, 19

Tylor, 4 n.

Varatio, 303

Uchatebt, 128

Veteres Mathematici, 277 n., 302, 303
Vieta, 262

Virtual velocity, 105 n,
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Viviani, 247 n. X in algebra, Addenda
Universities, mediaeval, 206, 207: Xenocrates, 71 n., 86
mathematical work in Oxford and
Cambridge, 206—208
Zeno, 158 : Aristotle’s answer to, 188
Zenodorus, 271, 306
Woepcke, 37 n., 214 Zeuxippus, 221
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