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PREFACE

THIS book is intended primarily for the use of students reading
for an honours degree in mathematics, and our aim in writing it
has been to give a rigorous and systematic account of projective
geometry, which will enable the reader without undue difficulty
to grasp the fundamental ideas of the subject and to learn to
apply them with facility.

Projective geometry is a subject that lends itself naturally to
algebraic treatment, and we have had no hesitation in developing
it in this way—both because to do so affords a simple means of
giving mathematical precision to intuitive geometrical concepts
and arguments, and also because the extent to which algebra is
now used in almost all branches of mathematics makes it reason-
able to assume that the reader already possesses a working know-
ledge of its methods. We have accordingly taken for granted
acquaintance with the elements of linear algebra and the calculus
of matrices, and, except in one instance, we have not gone into
the proofs of purely algebraic theorems. The exception is a theorem
which is fundamental in our system but is possibly not met with
in quite the same form outside geometry, and this theorem we
have proved in the Appendix.

In spite, however, of treating geometry algebraically, we have
tried never to lose sight of the synthetic approach perfected by
such geometers as von Staudt, Steiner, and Reye. If one considera-
tion has been more prominent in our minds than any other it is
that of giving precedence to the geometrical content of the system
and the geometrical way of thinking about it. Nothing, in our
opinion, could be more undesirable than that this traditionally
elegant subject should be allowed to take on the appearance of
being merely a dressing-room in which algebra is decked out in
geometrical phraseology. We have, therefore, tried to show that
although the basis of the formal structure is algebraic, the struc-
ture itself is thoroughgoing geometry, inasmuch as its concepts,
its methods, and its results are all essentially dependent on
geometrical ideas.

The book is divided into two parts. Part I consists of two
chapters, of an historical and introductory character, which are
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intended both to serve as a link with elementary coordinate
geometry and to prepare the reader for looking at projective
geometry from a more advanced point of view. Part II is devoted
to the formal theory, which is developed afresh from a new
beginning so as to be logically independent of previous geometrical
knowledge. Projective spaces of one, two, and three dimensions
are considered in succession, and in the final chapter a short
introduction is given to the geometry of higher space. In addition
to discussing the usual topics of homographies, conics, quadrics,
twisted cubics, and line geometry, we have given considerable
space to collineations and linear transformations generally, since
the fundamental importance of these, and particularly of the
geometrical approach to them, is now universally recognized.
Throughout the book, moreover, we have laid considerable
emphasis on euclidean and affine specializations of projective
results. This hardly needs justification. It is the experience of
both the authors, and of most of those whom they have taught,
that the exhibition of concrete instances of the rather formal
projective concepts and results always endows these with a new
prestige and stimulates interest in them as nothing else eould at
this stage.

Numerous exercises have been provided throughout the book,
both interspersed in the text and collected at the ends of the
chapters. Very many of the problems are taken from recent papers
set in London University at the examination for B.A. Honours
and B.Sc. Special Mathematics, and a few from the Cambridge
Mathematical Tripos and the Mathematical Moderations at
Trinity College, Dublin. The authors’ grateful acknowledgement
is due for permission to draw upon these sources.

Acknowledgement is also due to Mr. A. E. Ingleton for having
read the manuscript and made many useful suggestions for its
improvement, and to Miss A. S. Dennis for criticism of the early
chapters. Finally, we would like to record our thanks to the
officers of the Clarendon Press for their unfailing courtesy and
helpfulness and for the excellence of the printing.

J.G. 8.
April 1952 G.T K.
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PART 1

THE ORIGINS AND DEVELOPMENT OF
GEOMETRICAL KNOWLEDGE

‘That all our knowledge begins with experience, there
is indeed no doubt . . . but although all our knowledge
originates with experience, it does not all arise out of
experience.’

KANT: Critique of Pure Reason

CHAPTER I
THE CONCEPT OF GEOMETRY

OuR main purpose in this book is to construct and develop a
systematic theory of projective geometry, and in order to make the
system both rigorous and easily comprehensible we have chosen
to build it on & purely algebraic foundation. In adopting such a
course, however, we may run the risk of appearing to reduce our
-subject to an ingenious manipulation of symbols in accordance
with certain arbitrarily prescribed rules. Although the axiomatic
form is the proper one in which £o present a mathematical theory,

we must not lose sight of the fact that an abstract system can only

be fully appreciated when seen in relation to a more concrete back-
ground; and this is the reason why we have prefaced the formal
.development of projective geometry with two introductory chap-
ters of a more informal character. The present chapter is devoted
to a rather general consideration of the nature of mathematics and,
more specifically, of geometry, while Chapter II contains an outline
of the intuitive treatment of projective geometry from which the
axiomatic theory has gradually been disentangled by progresswe
abstraction.

The growth of geometrical knowledge in the past has been
marked by a gradual shifting away from empirical observation
towards rational deduction; and we shall begin by looking for a
moment at this process.

Geometry is commonly regarded as having had its origins in
ancient Egypt and Babylonia, where much empirical knowledge

was acquired through the experience of surveyors, architects, and
304 : B
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builders; but it was in the Greek world that this knowledge took
on the characteristic form with which we are now familiar. The
Greek geometers were not only interested in the facts as such, but
were intensely interested in exploring the logical connexions
between them. In other words, they wished to raise the status
of mathematics from that of a mere catalogue to that of a deductive
science—and the Elements of Euclid is an embodiment of this
ideal. In the Elements we have the systematic derivation of a large
body of geometrical theorems by strict deduction from a small
number of axioms. The system, as is now known, is not altogether
perfect, and modern mathematicians have shown how it needs to
be amended; but the modifications required are comparatively
slight, and there is perhaps no easier way for a student to learn to
appreciate mature mathematical reasoning than by studying the
first book of Euclid and observing the way in which it is constructed.

Now for the Greeks, we must remember, geometry meant study
of the space of ordinary experience, and the truth of the axioms of
geometry was guaranteed by appeal to self-evidence. This view
persisted for a very long time, and was still accepted without
question at the end of the eighteenth century—when Kant, for
example, made it an integral part of his philosophy. But about
that time mathematicians were already beginning to see their
subject in a new light, as a branch of study not directly dependent
on experience, and this change of outlook was encouraged by the
discovery, early in the nineteenth century, of the non-euclidean
geometries, systems consistent within themselves but incompatible
with Euclid’s system. Since then it has become a commonplace
that the mathematician is free to study the consequences of any
axioms that interest him, whether or not they have any applica-
tion in experience, provided only that they are not mutually
contradictory.

We see, then, that in the period which elapsed between the first
beginnings of mathematics and the conscious adoption of the
modern axiomatic method, two major revolutions took place in
mathematical thinking. First, the mere collecting of useful or
interesting facts gave place to the rational deduction of theorems;
and then, much later, mathematicians began to detach themselves
from experience and to concentrate on the study of formal axio-
matic systems. Neither of the revolutions came about suddenly,
and the second is in a sense still in progress.
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Mathematics, as concéived today, is fundamentally the study
of structure. Thus, although arithmetic is ostensibly about num-
bers and geometry about points and lines, the real objects of study
in these branches of mathematics are the relations which exist be-
tween numbers and between geometrical entities. As mathematics
develops, so it becomes more abstract, until at last it is seen to be
concerned with networks of formal relations only, and not with any
particular sets of entities between which the relations hold. The
process of abstraction whereby the formal structure is by degrees
detached from the concrete systems in which it is exhibited is of
80 great importance to the understanding of the nature of mathe-
matics as to justify closer examination of the manner in which it
takes place.

One of the simplest illustrations of the process is provided by
the evolution of the concept of number. Our first rudimentary
idea of number is arrived at by simple abstraction from the pro-
cesses of counting and measuring ordinary objects, and this idea
is adequate at the level of school arithmetic. At a more advanced -
stage, numbers are seen to require redefinition in purely logical
terms, and several alternative definitions have, in fact, been given.
In whatever way numbers are defined, however, they obey the
same formal ‘laws of algebra’—the associative law of addition
(a+b)+c = a-(b-+c), the distributive law a(b+c) = ab--ac, ete.
—and many of the standard theorems of arithmetic and algebra
can be deduced directly from these laws, without any need to
specify further the nature of the numbers that are represented by
the symbolsa, b, etc. But thisisnot all. When studying elementary
algebra one soon becomes aware of the close analogy that exists
between the algebra of polynomials and the arithmetic of whole:
numbers; and it is now easy to account for this analogy by pointing
out that polynomials, as well as numbers, satisfy the ‘laws of
algebra’. This is tantamount to saying that the system of numbers
and the system of polynomials have a common structure; and when
once this fact is recognized it is a natural step to undertake the
study of an abstract system whose nature is unspecified beyond
the fact that it has this particular structure. Such a system is
known in algebra as a ring. If, on the other hand, we apply a similar
process of abstraction to the system of rational numbers or the
system of rational functions, we arrive at the abstract system
known as a field.
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There is no need for recognition of structural similarity to come
to an end, even at this stage. Thus we might observe, for instance,
that addition of rational numbers and multiplication of non-zero
rational numbers obey similar laws; and we could then verify that
the additive structure of a field and its multiplicative structure
(when the element zero is excluded) are formally alike. Carrying
the process of abstraction one stage farther, we could now intro-
duce the abstract system known as a group.

Mathematics, then, is concerned with abstract systems of various
kinds, each defined by a suitable set of axioms, which serves to
characterize its structure. But although, from the point of view
of pure mathematics, each structure is regarded as self-contained,
the mathematical scheme usually has one or more concrete realiza-
tions; that is to say, the structure is usually to be found (possibly
only to a certain degree of approximation) in a more concrete
system. Abstract euclidean geometry of three dimensions, for
instance, has as one of its realizations the structure of ordinary
space. Indeed this is what led to its discovery, as well as what
makes it 8o much more interesting than other systems which are
logically of equal status with it. We do not, of course, always have
to go all the way back to everyday experience for a realization
of a mathematical formalism, since one is usually provided, as in
the arithmetical example already considered, by a more concrete
part of mathematics itself. One of the most important instances
is the widespread occurrence of the group structure, which is found
not only in additive and multiplicative groups of numbers, but
also in groups of transformations and groups of matrices. Since
this type of structure pervades much of mathematics, we may say
that it is especially significant.

In this book we shall study the structure of pro;ectlve geometry
which, as is well known, is elosely associated with certain simple
algebraic structures, and with linear algebra particularly. Since
the relevant algebra is part of every mathematician’s essential
equipment, we shall take it for granted that the reader is already
familiar with it.

- What we have said so far about the nature of mathematics holds
quite generally, but when we limit the discussion to geometry we
are able to be rather more specific. The structures studied in this
branchof mathematics occur in experience as spatial structures,and
from this alone we can infer something of their general character.
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If, in fact, we turn back once again to Greek geometry, we may
recall that the geometrical knowledge with which the Greeks began

was derived ultimately from measurements made upon rigid bodies, -

and was therefore essentially a knowledge of shapes. Now the
shape of a body can be conceived as determined by those relations
between its parts which remain unaltered when the body is moved
about in space. Whenever one body can be made in this way to
take the place of another, the two bodies have the same shape;
and they are then equivalent as regards their geometrical properties,
or, in the language of elementary geometry, ‘equal in all respects’.
It will be remembered that in order to prove that certain sets of
conditions are sufficient to ensure the congruence of two triangles
Euclid showed that, if the conditions are satisfied, one triangle may
be placed so as to bring it into coincidence with the other.

The idea of studying those properties of bodies which remain
unaltered when the bodies are displaced in any way is most sug-
gestive to a modern mathematician. In the language now in use,
we would say that the geometrical (or, more accurately, the
euclidean) properties of a body are invariant with respect to the
operation of displacement in space; and invariance with respect to

a certain kind of operation at once suggests the existence of an,

underlying group of operations. In the present instance the

appropriate group is not far to seek. The totality of all displace-

ments in space is a group of transformations; two bodies are
congruent if and only if one can be made to take the place of the
- other by an operation of the group; and the shape of a body is

determined by those of its spatial characteristics which are in- -

variant with respect to the whole group. This, then, is the nature
of euclidean geometry—it is the invariant-theory of the group of
displacements.

Euclidean geometry, however, is not the whole of geometry.
Early in the nineteenth century it was realized that other syste-
matic collections of geometrical properties are possible besides
that of Euclid, and in 1822 Poncelet published his Traité des pro-
priétés projectives des figures, the first systematic treatise on
projective geometry. In constructing this system Poncelet was
fully conscious that his classification of geometrical theorems was
based upon a new kind of fundamental operation, namely conical
projection. A projective property of a figure is, in fact, simply a
property that is invariant with respect to projection, and this
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enables us easily to identify the associated group of transforma-
tions. Confining ourselves, for simplicity, to two-dimensional
geometry, we may consider the totality of all those transformations
of the plane into itself which can be resolved into finite chains of
projections from one plane on to another; and it is clear that this
totality of transformations is a group and that it has plane pro-
jective geometry as its invariant-theory. Since the euclidean
group, consisting of all displacements of the plane, may be shown
to be a proper subgroup of the projective group, it follows at once
that every projectively invariant property is also a euclidean in-
variant, whereas not every euclidean property is projective.

If we were now to take any arbitrarily chosen group of transforma-
tions of the plane into itself (containing the group of displacements
as a subgroup) we could use this group in order to define an associ-
ated system of geometry; and all such systems are, mathematically
speaking, of equal status. This was the general principle laid down
by Klein in his famous Erlangen Programme of 1872.% Some of the
geometries that can be obtained in this way, such as euclidean
geometry, affine geometry, and projective geometry, are very
well known; others, such as inversive geometry (which arises from
the group of all transformations that can be resolved into finite
sequences of inversions with respect to circles) are known but not
usually studied in much detail; and yet others are presumably
ignored altogether.

We shall confine our attention to the three geometries first
mentioned—the geometries of the projective hierarchy—and since
this restriction is somewhat arbitrary from a purely mathematical
point of view, we should perhaps give some indication of why we
choose to impose it. In the first place, euclidean geometry is of
particular interest on account of its close connexion with the space
of common experience, and this alone is sufficient to single it out
for special attention. It so happens, however, that euclidean
geometry is complicated; and we can appreciate it better when
we relate it to projective geometry, where the structure is very
much simpler. Projective geometry is more symmetrical than
euclidean, by virtue both of the existence of a principle of duality
and also of the fact that it may be handled by means of homo-
geneous coordinates. When homogeneous coordinates are used

t Klein: Vergleichende Betrgchtungen iiber neuere geometrische Forschungen
(Erlangen, 1872). Reprinted in Mathematische Annalen, 43 (1893).
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for this purpose, the algebra has the merit of being either already
linear or else readily made so. Thus the system of projective
geometry is easy to work out and equally easy to comprehend when
it has been worked out. Furthermore, projective transformations
have the property of transforming conics into conics; and this
means that the conic takes its place as naturally in projective
geometry as does the circle in euclidean geometry. Finally, the
essentials of euclidean geometry may be treated projectively by
the simple artifice of introducing the line at infinity and the
circular points. We thus have two geometries, projective geometry
and euclidean geometry, which fit naturally together and which
between them include most of the classical geometrical theorems.

It is convenient to take in conjunction with them affine geometry,

an intermediate geometry that is more general than euclidean but
less so than projective; and the projective hierarchy is then
complete.

What has been said so far concerns the subject-matter of our
book, and it still remains for us to say something of the kind of
approach that we shall use. It is customary to distinguish between
two modes of reasoning in geometry, commonly referred to as
synthetic and analytical. In a synthetic treatment we argue directly
about geometrical entities (points, lines, etc.) and geometrical
relations between them, whereas in an analytical treatment we
first represent the geometrical entities by coordinates or equations,
in order to be able to use the technique of algebraic manipulation.
Since the discussion of projective geometry which follows in Part IT
is to be analytical, we shall conclude this chapter by touching upon
the use of coordinates; but it should be realized, nevertheless, that
we are under no logical compulsion to introduce a coordinate
system at all. In the Elements, as in all Greek treatises, euclidean
geometry is treated synthetically, and synthetic treatments of
projective geometry are to be found in a number of modern books
on the subject.}

Coordinates were first introduced into geometry by Descartes,
in the seventeenth century, and the fruitfulness of the innovation
soon became apparent. The older method of labelling figures was
by letters of the alphabet, as in ‘the triangle 4 BC”’, but such labels

+ The first work of this kind was von Staudt’s Geometrie der Lage (Nuremberg,
1847). A standard text-book, written in a similar spirit, is Veblen a.nd Young'’s
Projective Geometry (Boston, 1910).
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were in fact no more than arbitrarily assigned names. Descartes’s
new technique of coordinates, on the other hand, made use of a
system of labels which itself possesses a mathematical structure
capable of reflecting the structure of the system labelled. This
method of labelling has since become indispensable in mathemaitics,
and the domain in which it can be applied now extends far beyond
that originally envisaged by Descartes. In geometry itself, not
only points but also lines and other entities can be represented
by sets of coordinates; and in dynamics—to take an instance of
another kind—the configuration of a system is ordinarily specified
by n coordinates ¢,,4,,...,,-

We have now seen how mathematics may be looked upon as a
study of formal structure, and how geometry may be fitted into
the general scheme. What has been said so far has been of a rather
general character, and we must now turn more specifically to the
details of the geometries of the projective hierarchy. This will
be the topic of the second chapter of Part I, in which our purpose
will be to recall enough of the elementary treatment of projective
geometry to enable the reader to appreciate the process of abstrac-
tion which leads to the formal system of Part II.




CHAPTER II
THE ANALYTICAL TREATMENT OF GEOMETRY

Tais chapter is devoted, for the most part, to a discussion of the
basic ideas involved in projective geometry and the apparatus of
coordinates which allows them to be handled algebraically, and
the point of view adopted is essentially elementary. The whole
account is to be regarded as introductory, and inPart IT a completely
fresh beginning will be made. The formal system to be presented
there is wholly abstract and independent of all previous geometrical
knowledge; but even so,-an elementary treatment such as that
given in the present chapter is necessary as a psychological though
not a logical presupposition of the more advanced theory. It alone
can give body to the abstract formalism.

This chapter is not meant to be more than a summary, and the
reader who desires a fuller account of the subjects touched upon in
it is referred to Graustein: Introduction to Higher Geometry (New
York, 1930).

§1. TaE ProJECTIVE HIERARCHY

We have already referred in Chapter I to the three geometries
of the projective hierarchy and the possibility of defining them in
terms of certain groups of transformations. It will be convenient,
before proceeding further, to make these ideas more precise by
giving a few details of each of the geometries; and once again we
shall confine ourselves to the geometry of the (real) plane.

Euclidean geometry

The underlying group (p. 5) is the group of all displacements
in the plane. The simplest invariant of this group is length, or the
distance between two points. Angle is another invariant, and it
follows from a theorem on congruent triangles (Euclid, I. 4) that
angles may be characterized by suitably chosen lengths.

Among the figures appropriately studied in euclidean geometry
is the circle, or locus of a variable point whose distance from a
fixed point is constant. The theorems which properly belong to
euclidean geometry include most of those in the Elements.

Analytically, euclidean geometry is best handled by means of
rectangular cartesian coordinates, since, by virtue of the theorem
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of Pythagoras, the expression for the distance between two points
then has a particularly simple form. Euclidean geometry may also
be handled by vectors, the length of a vector being expressed in
terms of the scalar product.

Projective geometry

The underlying group consists of all finite chains of projections
that begin and end on the given plane. Relations of incidence,
collinearity, and tangency are all projectively invariant, and cross
ratio (cf. p. 17) is an invariant quantity.

A figure that is appropriately studied in projective geometry
is the conic, since every conic is obtainable by projection from
a circle.

Analytically, projective geometry is best handled by means of
projective coordinates, which will be defined in § 5. These coordi-
nates are expressible in terms of cross ratios. Vectors, as ordinarily
defined in elementary books, have no application in projective
geometry proper.

Affine geometry

Affine geometry occupies an intermediate position between
euclidean geometry and projective geometry. The underlying
group is generated by all parallel projections in space. The simplest
invariant quantity for this group is the position ratio AP|/PB of
a point P with respect to two points 4, B with which it is collinear.
All projective properties are a fortior: affine properties; and when
we pass from the projective group to the more restricted affine
group, parallelism is introduced as a new invariant property.

Among the figures entering appropriately into affine geometry
are the parallelogram and the separate kinds of conic, the ellipse,
hyperbola, and parabola. The theorems which belong to affine
geometry include the theorem on the concurrence of the medians
of a triangle, Ceva’s theorem, and the theorems on diameters of
conics.

The coordinates which are suitable for handhng affine geometry
are oblique cartesian coordinates (perpendicularity of the axes
in this case producing no essential simplification) or areal co-
ordinates (see p. 25 below). Vectors may also be used; and since
the scalar product is not involved, only linear vector algebra is
required.
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§2. THE MODERN APPROACH TO GEOMETRY

Although it is over two thousand years since Euclid compiled
his treatise, our conception of geometry still continues to be
moulded by the tradition which goes back to the Greek geometers;
and the geometry that is taught in schools is essentially that of the
Elements, though modified to some extent for educational reasons.
Nevertheless, in the interval that has elapsed since the system was
constructed mathematical thought has had a long time to mature,
and we now do many things as a matter of course that might have
seemed startling or even incomprehensible to a Greek mathe-
matician. These new habits of thought have had a profound effect
upon our conception of geometry, and it is worth while to consider
them briefly in the present context.

For Euclid, & segment was simply & portion of a line intercepted
between two of its points and, as such, it had no essential character-
istic apart from its length. Nowadays we know the value of taking
into account the sense of the segment as well as the length, i.e.

we give the directed segment P_El precedence over the undirected
segment PQ. The advantage of doing this is that we are enabled
to formulate more comprehensive statements than would other-
wise be possible. Thus, for instance, if P, @, R are any three
collinear points then

—> —> —>

PR = PQ+QR,
irrespective of the order of the points in their line; whereas with
undirected segments we should have t6 distinguish a number of
different cases.

Again in contrast to Euclid, we introduce coordinates whenever

- convenient. Having chosen a pair of perpendicular lines 0X, OY
as axes, we say that a point P has as its coordinates (X,Y) the

projections of the vector 67’ along the positively-directed axes.
It is partly because we cannot avoid taking sign into account when
we use coordinates that we instinctively do the same even when
coordinates are not introduced.

In Euclid’s system we often find ourselves distinguishing differ-
ent cases in what appears to be essentially the same configuration
or the same theorem, and having to apply somewhat different
arguments to each case. This is rather disturbing, and we often
try to avoid it by means of some kind of unifying device like that
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used above in connexion with the equation PR = PQ-+QR.
Sometimes, when we work in terms of coordinates, an appropriate
artifice is suggested by the algebra.

To take a simple example, a straight line may either cut a circle
in two distinct points, or it may touch it, or it may lie wholly out-
side it. Trying to find the coordinates of the points of intersection
leads us to a quadratic equation, and in the three cases the roots
are respectively real and distinct, real and coincident, and con-
jugate complex. We are accordingly led to say that a secant cuts
a circle in two distinct real points, a tangent cuts it in two coincident
real points, and a line that lies entirely outside it cuts it in two
conjugate complex points. There are two new notions involved
here—coincident points and complex points—and both of them
are of considerable service in making it possible to state theorems
in a more comprehensive form. We can say quite simply, for
instance, that every line cuts every circle in two points; and the
distinction between the possible cases is converted into a more
manageable distinction between different kinds of point-pair.

In complex points we have our first example of ideal elements
in geometry; for such points, having no ‘real’ existence, can only
be thought of as artificial entities which we find convenient to
adjoin to the actual plane. We are justified in treating them as if
they were actual points by the fact that they can be represented
by complex coordinates—and complex numbers behave algebraic-
ally in the same way as real numbers.

A rather different way in which we are led to introduce formal
artifices unknown to the Greeks is by thinking of geometrical
figures as capable of continuous variation. The most familiar
examples of this are our ways of thinking of tangency and paral-
lelism, which were two awkward concepts in Euclid’s system.

A tangent to a curve may be regarded as a limiting position of a
chord, in which one of the end-points tends towards coincidence
with the other; and in the case of the circle this fits in with what we
have just said about a tangent meeting the curve in two coincident
points. The crucial importance of this new way of looking at
tangency is that it enables us to find the equations of tangents by a
simple application of the differential calculus. In a similar way,
under suitable restrictions, we can define the circle of curvature of a
curve at a point as the limiting position of the circle which passes
through three points of the curve, two of which tend to coincidence
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with the third; and the differential calculus may then be applied
to this also. The way is thus made open for the development of
another subject—differential geometry This branch of geometry,
however, important though it is, does not fall within the scope of
our discussion.

A second limiting process in geometry is connected with the
relation of parallelism between straight lines. Euclid, as we know,
distinguished between two different kinds of line-pair in the plane,
namely intersecting lines and parallel lines. His distinction was
absolute, but we can make it less sharp in the following way.
Suppose that, being given two lines / and m which meet in P, we
choose a point 4 of { and then rotate / about this point. Aswe do so,
P moves farther and farther away along m until, when I is parallel
to m, it disappears altogether. If we go on turning beyond this
position, the point of intersection reappears and moves along m
from-the other end. Using & natural metaphor, therefore, we may
say that the two lines have a point of intersection even when they
are parallel, but that this point is then at infinity. Every line
possesses a single point at infinity, which may be approached by
travelling along the line in either direction, and all lines parallel
to the given line meet it in this same point.

So far this use of the term ‘point at infinity’ is an expressive
metaphor but nothing more, and if it remained a metaphor we
should only have obscured an important distinction by intro-
ducing it; but fortunately we are able to give a precise mathe-
matical meaning to the notion and so to make genuine use of it.
One way of doing this is to identify ‘point at infinity’ with unsensed
or absolute direction. Consider the following three properties of
straight lines:

(i) there is & unique line which passes through two given
points ;
(ii) there is a unique line which passes through one given point
and has a given absolute direction;
(iif) two lines, which do not coincide, either have a unique
common point or have the same absolute direction.

If we agree to replace the phrase ‘absolute direction’ by ‘point at
infinity’, and if we class together all the points at infinity as a
single line at infinity, the three properties can be replaced by one,
namely: There 18 a unique line through any two distinct pomts and
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any two distinct lines have a unique point in common. In this way it is
possible to construct a rigorous and serviceable theory of points at
infinity.

When we introduced complex points (on p. 12) we explained that
they are to be regarded as ideal points adjoined to the euclidean
plane; and the same is now true of points at infinity. These too are
ideal points, but since they have not been introduced by way of the
coordinate representation it is not immediately obvious how they
can be handled algebraically. This can, in fact, be managed quite
easily, as we shall now show, by making the coordinates homo-
geneous.

When a pair of axes has been chosen, all actual (i.e. non-ideal)
points of the plane admit of unique and unexceptional representa-
tion by pairs of real numbers (X, Y). Two lines, whose equations are

aX4bY4c=0 and a'X4bY+c =0,

meet, if they are not parallel, in the actual point whose coordinates
are given by

X:Y:1=b'—bc:ca’—ca:ab’—a’b.
Now whether or not the lines are parallel, supposing only that they
are distinct, the ratios

be’—b'c : ca’—c'a : ab’—a’b

are always determinate, in the sense that at least one of the quan-
tities concerned is different from zero. Our object, then, must be
to represent points by such sets of ratios rather than by pairs of
numbers which are liable to become infinite.

Instead, therefore, of representing points by pairs of coordinates
(X,Y), we propose to represent them by triads of homogeneous
coordinates (z,y,2), connected with the ordinary coordinates by
the relations X = z/2, Y = y/z whenever the point concerned is
actual. We agree, furthermore, that (i) proportional triads shall
always represent the same point, and (ii) the special triad (0, 0, 0)
shall be excluded. Plainly now, whenever z = 0 the triad (z,y,2)
represents an actual point, while every triad for which z = 0
represents unequivocally a definite point at infinity.

A homogeneous linear equation ax-by--cz = 0 represents an
actual line unless @ = b = 0, namely the line aX+bY+c¢ = 0; and
the sole exceptional equation of this type, the equation z = 0,
represents a unique ideal line—the line at infinity—which contains
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every point at infinity. We have here a justification for our earlier

convention of regarding the set of all points at infinity as a line.
 Although it was the consideration of a limiting process that
originally led us to the notion of points at infinity, we now see that
such points can be treated purely algebraically. When once we
have introduced the representation of the plane by komogeneous
cartesian coordinates x, y, 2, we can dispense with limits in this
context, and parallelism is made to depend on a distinction between
ordinary and ideal elements in our extended geometrical system.

Besides affording a simple algebraic representation of points at
infinity, homogeneous coordinates also have an incidental merit
that is by no means negligible. In terms of such coordinates, the
equation of every algebraic locus is homogeneous—e.g. for the
straight line we have ax+by--cz = 0 in place of aX+bY +c = 0
—and the greater symmetry of equations of this kind makes the
algebra very much easier to work with.

§ 3. ConNicAL PROJECTION AND PROJECTIVE EQUIVALENCE

Adoption of the modern approach to mathematics instead of
the classical Greek approach enables us, as we have just seen in
§ 2, to simplify euclidean geometry and to give it greater homo-
geneity. But to transform the subject in this manner is to alter its
character, and we may wonder whether we should not rather have
reorganized geometry even more radically by constructing an
entirely new system, more in accordance with our new way of
thinking. Such a system is in fact possible—namely the projective
geometry inaugurated by Poncelet—and it is to this that we shall
now turn.

The ideal points at infinity that were introduced on p. 13 fit into
the projective scheme even more naturally than into the euclidean.
Any two figures that can be transformed into each other by a series
of projections are to be regarded as projectively equivalent, so that
from the projective point of view they are two instances of the
same figure (as congruent figures are ‘equal in all respects’ in
Euclid). This means, in particular, that there is no projective
distinction between a pair of intersecting lines and a pair of parallel
lines, the actual point of intersection of the first and the ideal point

-of intersection of the second having exactly the same status.
Indeed, when we project from a plane 7 on to another plane =’
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that is not parallel to =, the line at infinity in 7 may be said to pro-
ject into an actual line of #'.

We shall now discuss various geometrical concepts in order to
see which of them are projective.

In the first place, straight lines project into straight lines, and
this means that collinearity of points is a projective property.
Similarly, concurrence of lines is also projective.

The length of a segment is not invariant over projection; any
finite segment can, in fact, be projected into a portion of & line
that extends to infinity (by projecting a pomt I of the segment into
a point at infinity).

Y

/< \ T e

Since any two (distinct) points can be transformed projectively
into any other two- (distinct) points, a point-pair can have no
projective individuality. In the same way, a triad of distinct
points has no invariant property beyond its collinearity or non-
collinearity.

ExercisE. Show that any three collinear points can be transformed into
any other three collinear points by a chain of at most three projections,
and any three non-collinear points can be transformed into any other three
non-collinear points by a chain of at most four projections. -

When we come to a figure consisting of four collinear points we
have for the first time a metrical characteristic—the cross ratio of
the points—which is a projective invariant and which enables ns

" to discriminate projectively between different collinear tetrads.
This invariant plays as fundamental a part in projective geometry
as does length in euclidean geometry. The precise definition of
cross ratio is as follows. :
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DEFINITION: Let A, B, C, D be four collinear points. Then the

cross ratio {4, B; C, D} of the ordered pair (C,D) with respect
. . AC [AD

to the ordered pair (4, B) is 0B/DB°

Thus the cross ratio is the quotient of the position ratios of C
and D with respect to 4 and B. All segments are, of course, to be
treated vectorially in the expression given in the definition.

ExERrcIsE. Prove that cross ratio is symmetrical in the two ordered pairs,
ie. {4, B; C,D} = {C,D; 4, B}.

The projective invariance of cross ratio is established in the
following theorem.

THEOREM 1. If foui collinear points A, B, C, D are projected from
a vertex V into four collinear points A’, B’, C', D', then

{4,B; C,D} = {4’, B’; ¢", D).

Proof. Considering magnitudes only,
A0 _ (40 [CE\ VA
CB  \VA/VB|VEB
_ [sindVC /sinCVB\VA
~ \sinVCA/sinVOB|VB
__VAsindVC
" VBsinCVB’
AC |[AD _ sin4VC [sinAVD -
CB[/DB "~ sinCVB/sinDVB’
and it follows that the two cross ratios have the same expression
in terms of the angles at V. Further, {4, B; C, D} is positive or

negative according as 4 and B are not separated or are separated

by C'and D; and, since the relation of separation of pairsis evidently
5304 o

Hence
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projectively invariant, the two cross ratios are equal in sign as
well as in magnitude.

COROLLARY. Any ordered set of four concurrent lines is cut by a
variable transversal in a set of points with a constant cross ratio.

This corollary makes possible the definition of cross ratio of two
ordered pairs of lines through a common point. If the lines VA4,
VB, VC, VD just considered are denoted by a, b, ¢, d, we define
their cross ratio as ‘

V{4, B; C,D} = {a,b; ¢,d} = {4, B; C, D}.

An important special case occurs when the value of the cross
ratio {4, B; C, D} is —1. In this case C and D divide the segment
AB internally and externally in the same ratio, and we have the
special mode of division known as harmonic section. The two pairs
of points (4, B) and (C, D) are then said to be pairs of harmonic
conjugates with respect to each other. If, in particular, C' and D
divide 4 B internally and externally in the ratio 1:1, one of them
is the mid-point of the segment A B and the other is the point at
infinity on the line 4 B. Thus two points are always harmonic with
respect to the mid-point of the segment which they determine
and the point at infinity on their line.

Up to the present we have considered only tetrads of collinear
points, but four points of the plane which are such that no three
of them are collinear also give rise to an interesting configuration,
known as the complete quadrangle.

Let the points be 4, B, C, D. They may be joined in pairs in
three ways, giving the three pairs of opposite sides of the quad-
,rangle: (4B,CD), (AC, BD), (AD, BC). Each pair of opposite
sides has a point of intersection, and we thus have three new points
X, Y, Z, the vertices of the diagonal triangle of the quadrangle.
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There is also a corresponding figure,-the complete quadrilateral,
which is built up from lines and points as the quadrangle is built
up from points and lines. The two figures possess important har-
monic properties, as we shall now show.

THEOREM 2. The two sides of the diagonal triangle of a quadrangle
which meet in any diagonal point are harmonic with respect to the two
sides of the quadrangle which meet in that point.

The two vertices of the diagonal trilateral of a quadrilateral which

lie on any diagonal line are harmonic with respect to the two vertices

of the quadrilateral which lie on that line.

Proof. To prove the first part we project the figure so that ZX
becomes the line at infinity. Then 4, B, C, D become the vertices
of a parallelogram, and the points where CD is met by YC, YD,
Y Z, YX become respectively two vertices of the parallelogram, the
mid-point of the side on which they lie, and the point at infinity
on this side. But these points form a harmonic range, and hence the
points of the original figure of which they are the projections also
form a harmonic range. The lines YC, YD, YZ, YX, which join ¥
to the points, accordingly form a harmonic pencil; and this is
sufficient to prove the first part of the theorem. The second part
may be proved by a similar argument.

We give this well-known proof here because it illustrates a power-

ful method of argument which has many applications in mathe-

matics. Suppose, in fact, that we have (i) a class of mathematical
objects of some specified kind, (ii) a set of transformations such
that any one of the given objects may be changed into any other
by a suitable transformation of the set, and (iii) a property of
objects which is left invariant by every transformation of the set.
Then we are able to show that the property holds for all the objects
simply by showing that it holds for a particular one—and for this
one we may be able to take an especially simple object, as we did
in choosing the parallelogram in the proof above.

§4. GEOMETRY OF THE CONIC

Since, as we have already remarked, projective geometry pro-
vides the natural setting for the geometry of the conic, it is appro-
priate at this juncture to say something about this special type of
curve. The classical definition of a conic section or conic is as a
plane section of a circular cone. In other words, every conic is a
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projection of a circle and every projection of a circle is & conic. The
whole theory of conics may be derived from this definition, and
there are various standard treatments in which this is done.¥,

The classical definition leads, in particular, to the focus-directrix-

property, and this in turn yields the standard equations
X2/a21 Y22 =1 and Y?= 4aX.

The theorems on conics that can be proved by elementary co-
ordinate geometry are therefore all valid for the conic as deﬁned
above.

Besides the properties that are pecuhar to the different types of
conic, there are many properties that are common to all conics—
the polar properties, for example. These are, in fact, the projective
properties, and they may be established by the general method
referred to at the end of § 3; for since every conic is projectively
equivalent to a circle, we have only to write down the projective
properties of the circle and restate them in terms of the general
conic.

Some projective properties of the circle are readily deducible
from the propositions in the third book of Euclid. An important
example of this is provided by the theory of pole and polar, which
can be treated by euclidean methods although it was not discussed
by Euclid himself. The theory may be worked out by using the
simple fact that the polar of a point P with respect to a circle
whose centre is O is the line which passes through the inverse
point P’ and is perpendicular to OP’. Here we make use of a notion
(that of inverse points) which does not occur in projective geometry
proper; but we use this notion to prove theorems on the circle, in
the formulation of which it does not appear, and then we generalize
the theorems by the argument that they are projective and therefore
valid equally for every conic. A key theorem that may be proved
in this way is Chasles’s Theorem:

THEOREM 3. If A, B, C, D are four fixed points of a conic 8 and
P is a variable point of 8, and if @, b, ¢, d, p are the tangents at A, B,
C, D, P respectively, then (i) the cross ratio P{A, B; C, D} is constant;
(ii) the cross ratio p{a,b; c,d} is constant; and (iii) the two constant
values are the same.

1 For the classical presentation, see Apollonius.of Perga, T'reatise on Conic -

Sections (Cambridge, 1896). For a modern account, see Askwith, 4 Course of
Pure Geometry (Cambridge, 1917).
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The first part is an immediate consequence of Euclid’s theorem
on the angle in a segment, and the remainder follows from the fact
that the polars of four collinear points are four concurrent lines
with the same cross ratio.

§ 5. DuALITY AND PROJECTIVE COORDINATES*

In the development of projective geometry we need to make
systematic use of points at infinity, and for this reason we naturally

work with homogeneous cartesian coordinates (z,y, z) rather than

with the non-homogeneous coordinates (X,Y) from which they
are derived. In terms of the new coordinates, every locus is repre-
sented, as we have seen, by a homogeneous equation f(x,y,z) = 0;
and more particularly, every line has an equation of the form
uz--vy+wz = 0. . Thus the lines of the plane are represented
algebraically in the simplest possible way, by homogeneous linear
equations, and this makes it easy for us to bring out the duality

_ between points and lines that is characteristic of plane projective

geometry.

We have already noticed various ways in which the projective
properties of points appear to be duplicated-in analogous properties
of lines. Thus, for example:

(i) when points at infinity are taken into account, two distinct
points always determine a unique line and two distinct lines
always determine a unique point;

(ii) we can define cross ratio not only for collinear points but
also for concurrent lines;

(iii) the complete quadrangle and the complete quadrilateral
have strictly analogous properties. ‘

The correspondence between properties of points and properties

of lines that is exemplified here runs through the whole of plane
projective geometry, and to every theorem involving points and
lines there corresponds a dual theorem involving lines and points.
This duality of the projective plane may be exhibited very clearly,
as we shall now show, by means of homogeneous cartesian co-
ordinates.

Instead of treating the points of the plane as the primary geo-
metrical entities, and the lines as loct or sets of points, we may fix
our attention from the outset upon the lines, regarding these as
simple entities. If we do this, we can define points in terms of lines,
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characterizing a point by the complete set of lines which pass
through it; and every point now appears as the envelope of a
variable line. When we adopt this second point of view, we natur-
ally wish to represent lines by suitable sets of coordinates, and a
simple way of doing this readily suggests itself. Each line is
represented, in the original coordinate system, by an equation of
the form uztvy+wz = 0,

and this equation is uniquely determined by the ratios between its
coefficients. We may therefore take the three numbers u, v, w
as homogeneous cartesian coordinates of the line; and a line is then
determined by its coordinates (u, v, w) just as a point is determined
by its coordinates (z,y,z). If we wish for a geometrical interpreta-
tion of the line-coordinates, which will enable us to plot a line when
its coordinates are known, it is sufficient to note that the ratios
u/w and v/w are the negative reciprocals of the intercepts made by
the line on the axes OX and OY.

If u, v, w are fixed, the equation

ur+ovy-twz =0

means that the variable point (z, ¥,z) lies on a fixed line, but if
z, ¥, z are fixed, the same equation means that the variable line
(4, v, w) passes through the fixed point (z, %, 2). Thus when a point
(z,y,2) is regarded as the common point of the system of all lines
through it, the equation ux-vy+4-wz = 0, with u, v, w variable,
may be called its equation in line-coordinates or its line-equation.
The coefficients in this equation are the homogeneous coordinates
of the point—and there is thus complete duality between the
representation of points and lines in terms of point-coordinates,
on the one hand, and the representation of lines and points in terms
of line-coordinates, on the other.

But although homogeneous cartesian coordinates reflect the
-duality of projective geometry, and although we can often use them
to good effect in proving projective theorems, they are still not
the most appropriate coordinates to use. In every cartesian
coordinate system the line at infinity has the same equation z = 0;
and since this line enjoys no special status in projective geometry,
but can be transformed projectively into any other line, the
restriction imposed in this way is quite arbitrary. We can remove
it by defining a more general type of coordinate representation—
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the projective coordinate system—which includes the cartesian
representation as a particular case.

Projective coordinates may be introduced in different ways:
either directly, in terms of cross ratios of certain pencils of lines,
or indirectly, as numbers arrived at by algebraic transformation
of cartesian coordinates. We shall here discuss the algebraic
method, which will be found in the end to lead to an interpretation
of the new coordinates in terms of cross ratios.

We begin by choosing once and for all a pair of rectangular
axes 0X, OY, and using these to define a system of homogeneous
cartesian coordinates z, y, z. We write

T = apr+a,y+a,2,

Y = 0y 2+ayY+ayz2, (A)

2 = a3 x+0a3y-+0as32,
where the expressions on the right are three fixed linearly indepen-
dent linear forms in z, y, 2, and the determinant |a,,| is accordingly
different from zero. The equations (A) determine z’, ¥, 2’ uniquely
when z, y, z are given, and vice versa; if z, y, z are not all zero,
neither can ', y’, 2’ all be zero; and if z, y, z are all multiplied by a
factor A, then 2, ¥, 2z’ are multiplied by the same factor. It is
reasonable, therefore, to regard z’, ¥, 2’ as homogeneous coordi-
nates in the plane; and we say that any transformation (A) of the
above form defines a system of projective coordinates (x',y',2') for the
points of the plane.

Plainly every homogeneous rectangular cartesian coordinate
system is projective, since it is related to the original system
(x,y,2) by equations

' = zcosa—ysina-}-az,

Y = 4 (xs8in ety cosa)-bz,
2 =z,

which are of the form (A); and it can be shown that the oblique
systems are also included. Since, further, the product of two
transformations of type (A) is another such transformation, we
deduce that (i) all projective coordinate systems can be derived
as above from any one cartesian system, and (ii) the equations of
transformation from one projective coordinate system to another
are also of the form (A). :

The equation of any line in the new coordinate system is of the




24 THE ANALYTICAL TREATMENT OF GEOMETRY 1L §5

form »'z’4-v'y’+w'2’ = 0; and (v',v’, w’) will be taken as the pro-
jective coordinates of the line in this system. '

The transformation of coordinates is determined by the ratios
of the nine coefficients a,, in equations (A) and has thus eight
degrees of freedom. If the old and new coordinates of a point are
given, this yields two homogeneous linear relations between the

a,,; and the transformation is therefore uniquely determined when
the projective coordinates of four points are assigned (assuming
that the eight conditions so imposed are compatible and indepen-
dent). In particular, the new system may be fixedf by means
of the four points whose projective coordinates are to be (1,0, 0),
(0,1,0), (0,0,1), and (1,1,1). The first three points are called the
vertices of the triangle of reference XY Z, and the fourth is called
the unit point E.

Now let P be a general point of the plane, with projective co-
ordinates (2, 3’,2'). By transforming back to cartesian coordinates
and evaluating the cross ratio directly from its definition, the reader

may verify tha.t X{E,P;Y,Z} = y'[

X

/Y z\

This means that the ratios between the coordinates of P may be
identified with the cross ratios of certain pencils of lines determined
by P and the four fundamental points X, Y, Z, E which character-
ize the coordinate system. Projective coordinates are thus related
in a pro;ectlvely invariant manner to the frame of reference.

By taking special tetrads of points as X, Y, Z, E we are able to
define various projective coordinate systems with special pro-
perties:

(i) If XY is the line at infinity and E lies on the bisector of the
angle XZY, the coordinate system is & homogeneous

t We omit the formal details, since the same result appears in Part II as
Theorem 1 of Chapter IV.
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cartesian system (in general oblique) with Z as origin,
ZX, ZY as axes, and a scale of measurement determined
by the unit point E.

(ii) If XYZ is an actual triangle and E is its centroid, the
coordinates z’, y', 2’ are areal coordinates. They are pro-
portional to the areas of the triangles PYZ, PZX, PXY,

- withsuitable signs.

(iii) If XY Z is an actual triangle and F is its incentre, ', y', 2’
are trilinear coordinates. They are proportional to the
distances of P from Y Z, ZX, XY, again with suitable signs.

In projective geometry proper we do not distinguish these special
systems.

If two pomts Q1 Q, of the plane have projective coordinates
(%), 941,21), (%%,93,22) respectively, the coordinates of a general
point of the line @, @, may be written as

(Az1+p2s, W1+ 1ys, A21+pza),
and the ratio A:pu is uniquely determined. This is an algebraic con-
sequence of the fact that the line has a linear equation. We often
write 6 = p/A (allowing 0 to take the improper value co at Q,)
and we then call 6 a projective parameter for the line. The parameter
is uniquely determined when the coordinates of @, and Q, are speci-
fied or, what comes to the same thing, when the points Q,, Q,
are fixed and a third point @ is also given, whose parameter is 1.

The projective parameter is of fundamental importance in
projective geometry, as the invariant {P,, P,; P;, P,} of four points
of the line @, @, admits of a simple expression in terms of the
parameters of the points.

THEOREM 4. I f Py, B, By, P, are four points of the line Q, Q,, with
parameters 0y, 0,, 0, 0,, then
(PR PPy = il [l

0,—6y/ 6,—0,’

Proof. Take a cartesian representation (X, Y) of the plane, with
@, as origin, @, @, as axis of X, and @, as the point (1,0). Then,
if F;is the point (X, 0) (¢ = 1,2, 3, 4), it follows immediately from
the q:sﬁnition of cross ratio that
_X 3 .X ‘-'X 4

{1)1’1)2! I)B’P{} haa -Xz"‘Xa .Xg—X4
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In terms of homogeneous cartesian coordinates, the points
@1, @, P, may be represented respectively by the coordinates
(0,0,1), (1,0,1), (X;;0,1); and for the cartesian system-—a special
projective system—the projective parameter of P, with respect to
@ Q.18 X,;/(1—X,). If we now pass, by a transformation of type
(A) above, from the cartesian coordinates (z, y, z) to the projective
coordinates (z,y’,2’), the new coordinates of any point

(x1+ 03, Y1+ 0y, 2,-4-02,)

will be (2} +0x3, y1-+0ys, 21+62;); and the value of the parameter
6 will remain unaltered. In our particular case, therefore, we have
0, = X,/(1—X,) (¢ = 1,2, 3,4), and asimple calculation shows that

0,—0, [6,—6, _ X,—X, |X,—X,
02_03 02_04 - Xz—Xa Xz_.X4.

This completes the proof of the theorem.
It follows from Theorem 4 that the expression

01_03 01—04
0,— 03/ 6,—0,

depends only on the points P,, F,, B, F,, and is independent of the
choice of parametric representation of the line (in particular, of the
choice of @, and @,). It is called the cross ratio of the four numbers
6,, taken in the proper order, and is denoted by {f,, 0,; 6;,6,}. The
properties of this rational function of four variables will be discussed
in Chapter ITI. Using the new terminology, we may now restate
Theorem 4 in the form: When the points of a line are represented
by means of a projective parameter, the cross ratio of two given pairs
of points is equal to the cross ratio of the corresponding pairs of para-
meters.

It may further be shown that if (uy, vy, wy), (us, vy, w)) are the
projective coordinates of two lines then the coordinates of any
line through their point of intersection are expressible uniquely

in the form (W, Ouy, v+ Ovh, wi—+0uw).

The parameter 8 is called a projective parameter for the pencil
of lines; and the cross ratio of two pairs of lines of the pencil is equal
to the cross ratio of the corresponding pairs of parameters. The
range of points and the pencil of lines are, in fact, completely dual
to each other, and this duality is fully reflected in their algebraic
representations.
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We have now at our disposal a coordinate system, valid for both
points and lines, which makes possible an algebraic treatment of
the whole of plane projective geometry. One of the most important
applications of this formal apparatus is to the study of the general
conic, which has a simple representation in terms of projective
coordinates. The cartesian equation of any proper conic, referred
to suitably chosen rectangular axes, may easily be shown to be
quadratic and irreducible; and since the equations of transforma-
tion (A) are linear, it follows that the equation of a conic in pro-
jective coordinates is always an irreducible quadratic equation.
It may also be shown that, conversely, any (real) curve represented
by such an equation is a proper conic. This means that the pro-
jective properties of the general conic may all be derived from
algebraic properties of the general quadratic equation

ax?+4-by?+-c2?4-2fyz+-2gza+-2hay = 0.
Since an equivalent discussion will form part of the formal theory
of Chapter V, we shall not pursue this subject further at the
present stage.

Besides, however, being algebraically deducible from the genera]
quadratic equation, the projective properties of the conic can also
be arrived at synthetically; and this alternative mode of derivation
is often more suggestive and satisfying.

A suitable starting-point for a synthetic treatment of the general
conic is provided by Chasles’s Theorem, which was stated on
p. 20. It follows from this theorem that if 4 and B are two fixed
points of a proper conic s and P is a variable point of s, then the
cross ratio of any four rays A P, taken in any order, is equal to the
cross ratio of the four associated rays BP, taken in the correspond-
ing order. Now this property has an important converse:

THEOREM 5 (Steiner’s Theorem). If p and p’ describe pencils of
lines, with vertices A and B respectively, and if the rays of the two
pencils are associated in pairs in such a way that the cross ratio of any
four rays p is equal to the cross ratio of the corresponding rays p’, then
the locus of the point of intersection of corresponding rays is a conic
through A and B.

Taken together, the theorems of Chasles and Steiner permit us
to identify conics with loci of the points of intersection of corre-
sponding rays of two pencils which are associated in the manner
described. Since all the concepts involved in the definition of such
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a locus are projective, we have here a projective generation of the
conic; and it is instructive to compare it with Euclid’s generation
of the circle. The projective generation of the conic, as we shall
see, opens the way to a synthetic treatment of the projective
properties of this curve.

§6. HoMoGRAPHIC CORRESPONDENCES

The idea of a correspondence that preserves cross ratio, which we
meet for the first timeé.in connexion with the projective generation
of the conic, is very fruitful in projective geometry, and such
correspondences—usually referred to as homographic correspon-
dences or homographies—have been studied in considerable detail.
The concept may be defined precisely as follows:

A one—one correspondence between two ranges of points, two pencils
of lines, or a range of points and a pencil of lines, is said to be homo-
graphic when the cross ratio of any four elements of either system is
equal to the cross ratio of the four corresponding elements, taken in the
corresponding order, of the other system.

Let us consider the case of a homographic correspondence
between two ranges. If we take projective parameters 6, ' for the
ranges, we can represent the homography algebraically by means
of an equation connecting the parameters of corresponding points.
To do this it is only necessary to take three fixed corresponding
pairs (6, 6;), (0,,63), (65,65), chosen once for all, and a variable
corresponding pair (6,6’). Then we have, by Theorem 4,

{0’ 01’ 02: 03} - {0’7 9,1; 0’27 '3};

© and this relation can be written in the form

abf’ +b6-+cd’ +d = 0.
Now conversely, as may easily be verified directly, every equation
of this form, with ad—bc # 0, defines a homographic correspon-
dence (see Theorem 2 of Chapter III). We can say, therefore,
that a one-one correspondence between two ranges is homographic if
and only if it is associated with a bilinear relation between projective
parameters.

The representation of homographies by bilinear equations is the
starting-point for the algebraic investigation of the properties of
such correspondences; but this is another subject that we prefer
to leave until we meet it again in the more formal setting of the
. next chapter.




(29)

§7. PROJECTIVE TRANSFORMATIONS

Plane projective geometry has been interpreted so far as the
invariant theory of the group of projective transformations—a
projective transformation of & plane into itself being defined (as
on p. 6) as a transformation which can be resolved into a finite
sequence of projections from one plane to another, beginning and
ending with the given plane. This definition is stated in purely
geometrical language, and we need to translate it into the language
of algebra. This is made possible by the following theorem.

THEOREM 6. When the plane is referred to a fixed system of pro-
Jective coordinates, every projective transformation is represented
algebraically by a non-singular linear transformation; and conversely,
every such transformation defines a projective transformation of the
plane into itself.

This means that every projective transformation of the plane

into itself is equivalent to an algebraic transformation

px = ayx+a5,y+-0542,

PY' = Gy Tty Y+ayz,

p7 = a5 2+agy+ag,7, A
where |a,,| # 0, and p is an arbitrary factor of proportionality
which arises from the fact that the coordinates are homogeneous.
In practice we usually omit the factor p, making the tacit reserva-
tion that two transformations are to be regarded as identical if
their coefficients are proportional.

In order to prove the above fundamental theorem we‘need a
number of lemmas.

LEMMA 1. There exists a projective transformation which transforms
four given points, no three of which are collinear, into Jour other given
points, some or all of which may coincide with the Jirst four, and no
three of which are collinear.

Proof. Let , be the plane which contains the given tetrads of
points. We begin by applying a preliminary transformation,
projecting the second tetrad from an arbitrary vertex, not in g,
on to a general plane ,. We then have two tetrads, 4,, B,, C,, D,
in 7, and 4,, B, C,, D, in m,, and it is sufficient to show how to
transform the second of these into the first by a chain of projections,

Since 7, has been chosen generally, 4,4, does not lie in ,;
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and we may choose a vertex of projection U on 4,4, and then
project m, on to a plane m,, distinet from ;, which passes through
A,. Let the projections of 4,, B,, Cy, D, be A4,, By, Cy, Dj.

If we call 4, B,.C, D, the point E, and 4, B;.C; D, the point Ej,
the lines 4, B, E, and A4, B;E, are coplanar, and B, B;, E, E;
therefore intersect, in V say. We now take V as vertex of pro-
jection and project 74 on to a plane m,, distinet from =;, which passes

-through 4, B;. Let the projections of 4,, B, C3, Dy, E; be A,, B,
C, D, E,.

Since C,, D,, E, are collinear, so also are C,, D,, E,; and the line
C,D,E, is clearly coplanar with the line C, D, E;. It follows that
C,C, and D, D, intersect, in W say. Taking W as vertex of pro-
jection, we now project =, on to =, and 4,, By, C;, D, project into
A4,, B, C,, D,.

A chain of projections has now been defined which transforms
the second of the given tetrads of points into the first. If, in a
particular case, some of the points of the second set coincide with
points of the first, it may be possible to simplify the construction;
but this is of no importance in the present context.

LEMMA 2. In terms of a fixed projective coordinate system, there 18 @
unique non-singular linear transformation of the plane into itself
which transforms four given points, no three of which are collinear,
into four other given points, no three of which are collinear.

This is a purely algebraic result, and it follows at once from
Theorem 1 of the Appendix.

LEMMA 3. In terms of a fixed projective coordinate system, every
projective transformation of the plane into itself is a non-singular
linear transformation.

Proof. Suppose the given transformation changes the points
X, Y, Z, E into points X’, Y’, Z’, E’. Then no three of these
transformed points are collinear, and they define a new system of
projective coordinates z’, y’, 2’. If P, P’ are any two corresponding
points, and the coordinates of P in the original system are (z, ¥, 2),
while those of P’ in the new system are (z',%’,2’), we have

y/z={E,P;Y,Z} and y'[z' ={E' P;Y',Z'};
and consequently, by the projective invariance of cross ratio,
y/z = y’[z’. By symmetry, therefore, x:y:z = 2’:y':2’. But any
two projective coordinate systems are connected, as we have seen,
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by a non-singular linear transformation, and this means that the
coordinates of P and P’ in the original system are connected by
an algebraic transformation of this kind. The lemma is therefore
proved.

Combining the results expressed in the above three lemmas, we
now have Theorem 6, as enunciated on p. 29.

The significance of the theorem is that it leads to an algebraic
characterization of projective properties of figures. A property is
projective if it is invariant for every projective transformation of
the plane into itself, and this is now seen to mean that a property
18 projective if and only if its expression in terms of projective co-
ordinates remains invariant when the coordinates are subjected to any
non-singular linear transformation.

We have now encountered two distinct geometrical interpreta-
tions of the algebraic transformation

2 = ayxta,yta,z,
Y = ayr4ay,ytayz,

2 = a5 x+ag,ytasy?,
where |a,,| £ 0:

(i) as a change of coordinates from one projective system to
another—(xz,y,2) and (z',y’,2’) being coordinates of the
same point in the two systems; and

(i) as a projective transformation of points, referred to one and
the same coordinate system—(x,y,2) and (2',y",2’) being
coordinates of the original point and the transformed point
in this single system.

Since the algebra is the same in both cases, it makes no difference
whether we define a projective property, as we did at first, as one
which is invariant over projective transformation, or, alternatively,
as one whose algebraic expression in every projective coordinate
system is the same. We shall in fact find it convenient now to
shift our ground, and throughout the formal development of pro-
jective geometry in Part IT we shall adopt the second point of view.

In the same way we can redefine the euclidean properties of the
plane—originally defined as invariants with respect to displace-
ment—as those properties whose expression is the same in all
right-handed rectangular cartesian systems with the same unit of
measurement; for the equations which represent a transformation
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from one such coordinate system to another are of the same form
as those which represent a displacement in terms of a fixed rect-
angular system.

More generally, we may define similarity euclidean geometry as
consisting of those properties of configurations which are invariant,
not only over displacement, but also over the operations of radial
expansion about a point and reflection in a line, and this is equiva-
lent to our defining it as consisting of those properties of con-
figurations which are expressible in the same way in all rectangular
cartesian coordinate systems, changes now being allowed both in
the unit of measurement and in the senses of the axes. The equa-
tions of the typical transformation—of the plane or of coordinates,
as the case may be—are now

2’ = p(x cos a—y sin a)4-az, ,
Yy = +-p(xsin a+ycosa)t-bz, (B)
7 =2z,

where p, «, @, b are arbitrary parameters, with p > 0, and the
alternative sign is — or -+ according as the transformation of the
plane does or does not involve reflection. In terms of change of
coordinates, the corresponding distinction is between the case in
which one of the two sets of axes is right-handed and the other left-
handed and the case in which they are both of the same kind.

We now have before us two quite distinct systems of geometry,
each defined in terms of a particular kind of algebraic transforma-
tion. Our next task will be to show that there is a simple relation-

.ship between the two systems, and that the whole of similarity
euclidean geometry can readily be derived from projective geometry
by means of a convenient device, that of the so-called ‘circular
points’.’

§8. THE CIRCULAR POINTS AT INFINITY

The circular points are two conjugate complex points, lying on
the line at infinity, which have many remarkable properties. One
of these is that the coordinates of the points are the same in every
rectangular coordinate system. ‘ ,

Consider a general circle, whose equation in some fixed system
of (homogeneous) rectangular cartesian coordinates is

2%+ y%+2fyz+2gzx-+c2% = 0.
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The circle is met by the line at infinity 2 = 0in the two points whose

coordinates are given by the equations :
224y = 0=z,

i.e. the conjugate complex points (1,-+%,0). These points are

independent of the particular circle which served to define them—

i.e. they are common to all circles of the plane—and they are

known as the circular points I and J.

It is easily verified that the coordinates of I and J are left
invariant by every transformation of type (B) above. More
precisely, if the alternative sign in the equations is +, the triads
of coordinates (1,7,0) and (1, —4,0) are individually invariant,
while if the sign is — they are interchanged by the transformation.
Thus the circular points, taken as a pair, have the same representa-
- tion in every rectangular coordinate system (as is also evident from
the way in which they were defined). We can now establish the
converse of this result, by showing that every projective coordinate
system in which I and J have coordinates (1, 4-1, 0) is rectangular
cartesian. In the first place, if 7 and J have these coordinates,
the equation of the line at infinity IJ is z = 0, so that z/z = AX,
Y[z = pY,where X, Y are cartesian coordinatesand ), . are positive
constants. If the axes of X and Y are inclined at angle w, the
equation X%4 Y24 2X Y cosw = 1 represents a circle; and hence,
in the projective coordinates, the circular points are given by

@/A)?+ (y/p)*+2(x/A) (y/p)cosw = 0 = z.
Their coordinates are therefore (1, -3, 0) only if cosw = 0 and
A = p, ie.only if the coordinates are rectangular cartesian.

A non-singular linear transformation of coordinates, then,
changes any given rectangular-system into another rectangular
system if and only if it leaves the representation of the point-pair
(1, J) invariant; and, in view of the twofold interpretation of the
equations of transformation (B), we can infer from this that a
© projective transformation of the plane into itself preserves all
-similarity euclidean properties if and only if it leaves the point-pair
(I, J) invariant. In other words, similarity euclidean geometry may
be interpreted as projective geometry relative to the point-pair (I, J).
The subclass of projective coordinate systems which characterize
similarity euclidean geometry consists of those projective systems
in which the point-pair (I, J) is represented by the equations

’ 224y =0=2z.
5304 : D



34 THE ANALYTICAL TREATMENT OF GEOMETRY 1II§8

From this new point of view, the properties of configurations that
enter specifically into similarity euclidean geometry must be inter-
preted as projective relations to the absolute point-pair (1, J). To
mention only two examples: two lines AB, AC are perpendicular
when they are separated harmonically by AI, AJ ; and a point F
is a focus of a conic s when the lines F I, F.J are tangents to s. We
shall not go into further details here as the subject will be treated
more fully in the formal theory of Part II (see the discussion in
§ 8 of Chapter IV).

Not only euclidean geometry but also affine geometry may be
treated projectively in this manner. Affine geometry is concerned
with those properties of figures which are invariant over affine
transformation, and affine transformations are simply projective
transformations which leave the line at infinity invariant. The
affine properties of figures are accordingly those of which the
expression is the same in every cartesian coordinate system,
rectangular or oblique.

§9. GEOMETRY IN SPACES OF OTHER DIMENSIONALITY

Throughout this chapter we have been thinking of geometry as
- primarily the study of plane figures; that is to say, our geometry has
been two-dimensional. This restriction, however, was imposed
merely for the sake of convenience, and we could equally well
consider the geometry of configurations in spaces of other dimen-
sionality. Before leaving this introductory survey, therefore, we
shall refer briefly to spaces whose dimensionality is different from
that of the plane.

In the first place, little need be said of one-dimensional geometry.
When we confine ourselves to the points of a single line, the resulting
geometry is of necessity very simple; and one-dimensional projec-
tive geometry reduces, in fact, to the theory of homographic
correspondences on the line. This will be made clear in Chapter III.
We might perhaps remark, in anticipation of later discussions, that
in one dimension the analogue of the conic is the point-pair, given
by a single quadratic equation ax?+ 2hxy+-by? = 0.

When once we are familiar with the geometry of the plane, the
extension to three-dimensional space is not particularly trouble-
some. The geometrical structure is of course more elaborate, and
the fact that figures cannot be drawn so easily makes three-
dimensional geometry rather harder to visualize; but there is no
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difficulty of principle, and we shall accordingly pass over the details
of the extension. A point that is perhaps worth mentioning, how-
ever, is that a projective property can now no longer be defined in
terms of invariance over projection; for ordinary space has only
three dimensions, and we cannot speak, in this connexion, of
projection from one space to another. But we can introduce the
idea of a projective coordinate representation of space (obtained
from a fixed homogeneous cartesian representation by applying
an arbitrary non-singular linear transformation) and then define a
projective transformation of space into itself as one that is repre-
sented in any projective coordinate system by a non-singular set of
linear equations. If we call a property projective when it is in-
variant with respect to every such transformation, we obtain a
three-dimensional projective geometry that is strictly analogous
to the two-dimensional projective geometry discussed in the earlier
sections of this chapter. As soon, in fact, as projective geometry
has been translated into the language of algebra, we are able
without difficulty to increase the number of dimensions of the space
under consideration from two to three, and beyond. So we arrive at
n-dimensional projective geometry, in which a point is defined by
a set of n+1 homogeneous coordinates (xg, Z4,...,%,), and a pro-
jective property is one that is invariant for every non-singular
linear transformation of the coordinates. When = is greater than
three the system has no concrete realization as a space of geo-
metrical intuition, but it is adequately defined algebraically as an
object of abstract mathematical thought.

§10. ConcLuUsION

We have now reached the end of the preliminary survey of geo-
metry which forms the first part of this book. In the compass of

two chapters we have attempted to trace the evolution of the

geometrical ideas that will be treated more systematically in

* Part II, and the reader should by this time be in a position to

appreciate the structure of the formal system. ‘

We have seen in the course of our discussion how axiomatic
geometry had its origin in the work of Euclid and other Greek geo-
meters, how the two subjects of geometry and algebra were fused
together by the genius of Descartes, and how the modern approach
to geometry ultimately found formal expression in Klein’s Erlangen
Programme of 1872, We have also examined in some detail
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Poncelet’s projective geometry, which we recognize to be one of the
major creations of nineteenth-century mathematics. As the
.ancestral member of the projective hierarchy, projective geometry
unifies and makes more intelligible a wide variety of classical
" geometrical theorems.

Besides discussing the concepts on which projective geometry is
based, we have also shown how the cartesian method comes fully
into its own in this sphere. The representation of the plane or three-
dimensional space by projective coordinates is devised in the first
instance as a technique ancillary to geometry proper, but it soon
shows itself capable of fulfilling a higher function. When projective
geometry is expressed in algebraic language the application of
Klein’s principles becomes remarkably simple and illuminating.
We have seen, in fact, how projective geometry is rooted in the full
linear group, i.e. the group of all non-singular linear transforma-
tions; and this fundamental connexion provides us with an alter-
native foundation for projective geometry, firmer and more fully
under our control than geometrical intuition. We are thus enabled
to take the final step in the process of successive abstraction out-
lined in Chapter I by rebuilding our subject from the beginning as
a purely abstract formalism. '

In § 7 we showed that a geometrical property is projective if
and only if its expression in terms of projective coordinates remains
invariant when the coordinates are subjected to any non-singular
linear transformation. We now define the projective plane as a set
of abstract entities which can be represented by homogeneous
coordinates (z,y,z) and projective geometry as the study of those
properties of the ‘plane’ whose expression in terms of the coordi-
nates is left invariant by every non-singular linear transformation.
In this way we set up an abstract axiomatic projective geometry,
based on an algebraic foundation, which has intuitive projective
geometry as & concrete realization. '

EXERCISES ON CHAPTER II

1. Being given a quadrilateral A BCD in a plane 7, show how to choose a
vertex of projection A and a plane of projection « so that 4 BOD projects
into (i) & parallelogram, (ii) a rectangle, (iii) a rhombus, or (iv) a square.

2. Two parallel planes =, 7’ being given, and also two points U, V not in
either plane, a projective self-transformation of = is defined by the con-
dition that points P, P’ of this plane correspond when UP and VP’ meet
onz’. If UV meets 7 in O, prove that the correspondence between P and P’




II EXERCISES ON CHAPTER II 37

is a radial expansion from O (i.e. that O, P, P’ are in line and the ratio
OP’[OP is constant) and find out under what conditions the correspondence
reduces to reflection in the point O.

Show also that if UV is parallel to 7 the correspondence between P and
P’ is a translation.

3. Three planes «, 8, y meet in 0, and a self-correspondence in « is set
up by projecting « from a vertex L on to 8, then projecting B from a vertex
M on to y, and finally projecting y from a vertex N on to «. Show that O
is one self-corresponding point in o and that, in general, there are two
others on the line of intersection of o with the plane LMN.

Discuss the special case in which L, M, N are collinear.

4. Prove that a transformation of the plane into itself which is com-
pounded of a displacement and a radial expansion about a point, with or
without reflection in a fixed line, has equations (referred to any given
rectangular axes) of the form

X' = p(Xcosa—-—Ysiﬁa)-}-a,
Y’ = 4p(Xsina+¥Y cosa)+b,

the — or 4 sign being taken according as a reflection has or has not been
included.

Show that the result of applying successively any number of transforma-
tions of this general type is another transformation of the same type.

5. Show that every transformation of the type considered in the pre-
ceding exercise expands or contracts all distances in the same fixed ratio p:l.

6. Show that, in rectangular cartesian coordinates, the equations of any
projective transformation of the plane into itself are of the form

,_ G X+bY4c Y,_a2X+b,Y+cz
T ag X+b,Y fey’ T ag X+ Y+’
where the determinant (abe),,, is not zero. .

Find the equations of the projective transformation which leaves the
origin and the point (1, 1) invariant and transforms the points (1,0) and
(0, 1) respectively into the points at infinity on the axes OX and OY.

Find all the circles which are transformed into circles by this trans-
formation.

7. If X, Y are cartesian coordinates and z, y, z are the corresponding
homogeneous coordinates, such that X = z/z, ¥ = y/z, prove that the

‘point (%, +A%y, ¥1+Ays 2,+A2;) divides the line joining (z;,¥,,2,) and

(%3, Y3, 25) in the ratio Az,:z,.

Show that this line is divided harmonically by the conic ax?+by?+c2? = 0
if and only if ax; zy+ by, y,+c2,z, = 0.

8. A, B, C, D are the four points (1, 1), (—1,1), (—1, —1), (1, —1) respec-
tively. Find the locus of a variable point P such that the cross ratio

P{A,C; B,D}

has a constant value %.

9. X', Y, Z’, E’ are the reference points and unit point of a system of
projective coordinates z’, y’, 2/, and in a given system of homogeneous car-
tesian coordinates z, y, z the coordinates of the four points are (—1,—1,1),
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(1,—1,1), (0,2,1), and (0,0, 1) respectively. Obtain equations expressing
the ratios of 2/, ¥, 2’ in terms of z, ¥, 2.

10. If u, v, w and u’, v’, w" are homogeneous line-coordinates in the
cartesian and projective systems of the preceding exercise, express v/, v/, w’
in terms of u, v, w, and vice versa.

11. By plotting a sufficient number of lmes, find out what envelopes are
represented by the following equations in rectangular cartesian line-
coordinates:

(i) 3u?+4v2—w? = 0;

(i) u?—2024w? = 0;

(i) v*—wu = 0.

Check your conclusions algebraically.

12. If ABCD is a given quadrangle, show that a projective coordinate
system can be defined in which the points 4, B, C, D all have coordinates
of the form (1, +1, 41).

Find the coordinates of the sides, diagonal points, and sides of the diagonal
triangle of the quadrangle; and hence give an algebraic proof of Theorem 2.

13. Show that parallelism may be handled by means of ideal points at
infinity in space as well as in the plane. Obtain an analytical representation
of such points by introducing homogeneous cartesian coordinates x, y, 2, ¢;
and show that

(i) the points at infinity are those points for which ¢ = 0;

(ii) the totality of points at infinity may be regarded as forming a plane

at infinity ¢;

(ili) two planes are parallel if and only if they meet ¢ in the same line, and

two lines are parallel if and only if they meet ¢ in the same point;

(iv) theline atinfinity in any given plane z is the line in which 7 is met by ¢;

(v) all spheres meet ¢ in the same (virtual) conic.

14. If (X,Y) and (X *, Y'*) are two conjugate complex points of the plane,
prove that there is one and only one real line whose equation is satisfied by
the coordinates (X, Y') and that the equation of this same line is also satisfied
by the coordinates (X*,Y*).

Show that the line is the radical axis of a system of real coaxal circles,
with real limiting points and with the given complex points as common
points, and find the equation of the line of centres of this coaxal system.

15. Find the two points at infinity on the hyperbola whose equation in
homogeneous cartesian coordinates is

22+ bry +4y?+ 6z — 2yz+ 322 = 0.
Find the asymptotes of the hyperbola.

16. A variable tangent to an ellipse ¥ meets the tangents at the ends of
the major axis in U, V and those at the ends of the minor axis in U’, V’.
Prove that the circles on UV and U’V’ as diameters describe orthogonal
coaxal systems, of which the first has the foci of k£ as common points. Find
the (conjugate complex) common points of the second coaxal system.

17. OX and OY are respectively the transverse and conjugate axes of a
central conic %, ¢ is any circle touching k at its intersections with a line p




II EXERCISES ON CHAPTER II 39

paiallel to OY, and d is any circle touching % at its intersections with a line q
parallel to OX. If P is any point of k, prove that

PT?* = ¢PM* and PT? = 2PN,

where PT, PT’ are tangents from P to ¢, d, PM, PN are perpendiculars
from P to p, g, e is the eccentricity of k, and ¢’ is a number which satisfies
the equation 1/e341/e’t = 1,

Show that when p is a directrix of k (meeting % in a pair of conjugate
complex points) the circle ¢ reduces to a point-circle at the corresponding
focus.

18. A conic % is the section of a right circular cone by a plane . Show
that the foci of k are the points at which 7 is touched by two spheres inscribed
in k, the corresponding directrices being the lines in which 7 is met by the
Planes of contact of x with the spheres (Dandelin’s Theorem).

19. If two curves touch at a point P, prove that the ratio of their curva-
tures at P is a projective invariant. [Hint. Use Newton’s expression for
curvature.]

20. If P and P’ are inverse points for the circle ¢, whose equation is
X?+Y? = k2, show that their coordinates are connected by the equations

, kX . WY
=X 7y =Xy

Establish the following properties of the self-transformation of the plane in
which every point P goes over into its inverse point P’ (i.e. inversion with
respect to ¢):
(i) a circle which does not pass through the centre O of ¢ transforms
into a circle;
(ii) a circle through O transforms into a straight line parallel to the
tangent to the original circle at O;

(iii) inversion preserves tangency ;

(iv) inversion preserves the (unsensed) angle of intersection of two

curves;

(v) a circle k and a pair of points 4, B, inverse for k, transform into a

circle &’ and a pair of points A’,B’, inverse for k’.

21. Prove that the transformations of inversion defined by two circles
¢, and ¢, are commutative with each other if and only if ¢, and ¢, cut ortho-
gonally.

22. Prove that inversion with respect to a circle ¢ transforms g general
conic into a bicircular quartic, i.e. a curve of the fourth order which passes
twice through each of the circular points.

Investigate the effect of inversion in a circle whose centre is at the origin
on the lemniscate whose polar equation is 72 cos 20 = a2,



PART II
ABSTRACT PROJECTIVE GEOMETRY

CHAPTER III
PROJECTIVE GEOMETRY OF ONE DIMENSION

§1. INTRODUCTION. FORMAL DEFINITION OF
PROJECTIVE GEOMETRY IN GENERAL

THE somewhat informal discussion of projective geometry in Part I
was intended to introduce the reader to the intuitive geometrical
notions which it is our present purpose to formalize and to treat
by rigorous mathematical argument. We shall now begin afresh
and work out the details of a system of abstract projective geometry
based on a foundation of pure algebra. The algebra that will be
presupposed is essentially elementary, consisting mainly of linear
algebra and the simplest portions of the theory of groups. Two key
theorems, which will be applied again and again in the course of
the development, are given in the appendix at the end of the book.

Although the formal system of projective geometry is logically
self-contained and independent of geometrical intuition, the full
significance of the formal steps is only to be grasped by bearing in
mind all the time the concrete realization of the abstract model
that has already been sketched in Part I. In order to help the reader
to do this we shall occasionally insert remarks that form no part of

the formal system.

The n-dimensional projective domain

Our plan is to discuss projective spaces of one, two, and three
dimensions, in this order, and the present chapter will be devoted
to one-dimensional projective geometry. Before we begin this
systematic treatment, however, it is desirable to give once for all
a general definition of projective space of » dimensions, which
covers all the particular cases at the same time. In order to do this
we first make precise the notion of a coordinate representation.

Let C be a given class of entities (whose nature may remain
unspecified). We say that C admits of an #-dimensional representa-
tion by homogeneous coordinates belonging to & given field K if a
correspondence can be set up between the elements of C and the
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ordered (n--1)-tuples (2,, z,,..., 2,,) of elements of K—i.e. the vectors
X in the vector space V,,,(K)—in such a way that (i) to every
vector X, other than the null vector 0, corresponds a unique element
of C, and (ii) two vectors X, y are associated with the same élement
of C if and only if y = Ax, where A is a non-zero element of K.

The field K from which the coordinates z; are drawn is usually
referred to as the ground field. The choice of ground field is quite
arbitrary as far as the abstract concept of a coordinate representa-
tion is concerned, but when once a particular field has been selected
the choice must be adhered to.

A coordinate representation of C of the kind just defined gives
rise to a derived representation, by non-homogeneous coordinates,
of all those elements of C for which z, % 0. If, in fact, we put
X, = z;/xy (¢ = 1,2,...,n), each element of C for which z, £ 0 is
represented uniquely by the n non-homogeneous coordinates
(X,,X,,...,X,). Conversely, if we begin with a non-homogeneous
representation of a class C’, we can derive an associated homo-
geneous representation if we adjoin to C’ new elements which
correspond to coordinate vectors with x, = 0—just as we have
already adjoined points at infinity to the affine plane.

DEFINITIONS. An n-dimensional projective domain over the ground
Jield K, or projective space S,(K), is a set of entities (usually called
the points of the space) that admits of a certain class (%) of allow-
able representations by homogeneous coordinates (g, Zy,...,%,) in
K, this class being such that, if %, is any one allowable representa-
tion, the whole class (%) consists of all those representations that
can be obtained from %, by non-singular linear transformation

n
:c; =kzoaikxk (1: = 0, 1,..., n).

The projective properties of S,(K) are those properties of which

the expression in every allowable coordinate system Z is the same.
The totality of all these properties is the projective geometry of
8,(K), or n-dimensional projective geometry over K.
- It will be seen from the above definitions that the allowable
representations # of S,(K) are connected by a group of non-
singular linear transformations. The group is called the projective
group PGL(n; K), and from the algebraic point of view n-dimen-
sional projective geometry over K is simply the invariant theory
of this group.
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Many of the projective properties of S,(K) are the same whatever
field is taken as K, but others are dependent on the particular
choice of ground field. When nothing is said to the contrary, we shall
assume that K is the field of all complex numbers. This choice of
ground field is particularly convenient in view of the fact that the
complex field is algebraically closed, every equation with complex
coefficients having just as many roots as its degree indicates. When
we wish to confine our attention to real projective geometry we
must take as ground field the field of all real numbers; and since
the real field is a subfield of the complex field we can do this by pick-
ing out the real points in complex space and considering them alone.

We can, if we choose, take as ground field one of the very special Galois
fields, which have only a finite number of elements, and then we obtain a
projective space with a finite number of points. For details of the finite
geometries see, for example, Veblen and Young, Projective Geometry, I, 201
and the references there given.

§2. PrROJECTIVE GEOMETRY OF ONE DIMENSION

We now take up the systematic treatment of the simplest pro-
jective space, namely the projective line S;(K), which we get by
taking » to be 1. Since we are now supposing that the ground field
is the field of complex numbers, we may suppress explicit reference
to K, and we shall accordingly denote the complex projective line
by 8.

In any allowable representation £ of S,, each point is given by a
pair of homogeneous coordinates (z,,z;), and for every non-zero
value of A the coordinates (A, Az,) represent the same point.

THEOREM 1. If the coordinates of three points of the line are speci-
fied, the representation X is uniquely determined; and the coordinates
of the three points may be chosen arbitrarily, as long as no two pairs of
coordinates are proportional.

Proof. Take a fixed allowable representation %, of S;; and let
4, B, C be three (distinct) points of 8, represented in %, by
coordinate vectors a,, by, c,. Then every two of these three vectors
are linearly independent. If,now,a, b, c are three given coordinate
vectors, no two of which differ only by a scalar factor, the vectors
a, b, c are linearly independent in pairs, and it follows from
Theorem 1 of the Appendix that there is a unique non-singular
linear transformation which transforms a, b, ¢, into a, b, c.
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This transformation then transforms 2, into an allowable repre-
sentation £ in which 4, B, C are represented respectively by the
vectors a, b, ¢, and Z is clearly the only representation with this

property.

Remarks

(i) The points whose coordinates are (1,0) and (0, 1) are called
the reference points X,, X,, and the point whose coordinates are
(1,1) is called the unit point E for the representation . It follows
that # may be defined by specifying these three points.

Exercise. Find the equations of transformation from a given coordinate
representation %, to a new represenbatlon Z if the reference points and unit
point of Z are represented in %, by the coordinates (3, 2), (2, 1), (—-1,3)
respectively.

(ii) By choosing the representation £ suitably, we can arrange
for any three distinct points to have any assigned linearly indepen-
dent coordinates. This means that no triad of points of S, is
projectively different from any other.

§3. THE PROJECTIVE PARAMETER

The algebra that is involved in one-dimensional projective geo-

metry is so simple that the elaborate apparatus of suffix notation
is frequently an encumbrance. It is useful to formulate general
‘results in this la.ngua.ge in order to exhibit their relation to the
systems of projective geometry of higher dimensionality, but when
we are handling specific problems we usually do better to work with
a single non-homogeneous coordinate 8 = z,/z;. We call 8 the
projective parameter associated with the coordinate representa-
tion Z.

The point whose projective parameter is 6 is simply the point
(6,1), and by letting 6 run through all complex values we obtain
all the points of §; with the single exception of the reference point
X, whose coordinates are (1,0). In order to include this point as
well, we have to allow 8 to take the improper value oo, which is
not a number of the complex field. Infinite values of the parameter
can be avoided altogether by going back to the pair of homogeneous
coordinates; but with a little experience one discovers how to
perform equivalent formal manipulations with the symbol o
itself, and this often simplifies the algebraic working.
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The results that we have already obtained may now be restated
in the language of projective parameters.

(i) When the representation is changed from % to %', the pro-
jective parameter undergoes a transformation of the form

o — af-4-b
cd4+d’
where ad—bc 5 0; and conversely, every such transformation may
be interpreted as the transformation from £ to a second allowable
representation. k

(ii) Anallowable representation of the points of S, by a projective
parameter is uniquely determined when the parameters oo, 0, 1 are
assigned to three points. These points are the reference points
and unit point of the representation.

(iii) More generally, any three distinct values 6,, ,, 8, may be
assigned to three chosen points, and the representation is then fixed.

ExaMpLE. An ordinary euclidean line, completed by its point at infinity I,
provides a concrete realization of the projective space S;(R), R being the
field of real numbers. If we choose a point O of the line as origin and a seg-
ment OF as unit segment, every point P has a uniquely defined cartesian
coordinate X, given by O—; =X 0_173' X is, of course, a projective para-
meter, I and O being the reference points and E the unit point.

If Xy, X, are any two finite points of the line we can easily define a pro-
jective parameter for which X, and X, are reference points—namely the
position ratio ﬁ/}’—z In this representation of the line, the unit point
is the mid-point of the segment X, X,.

If we wish to obtain the most general allowable representation of S;(R)
we must find a way of choosing the unit point arbitrarily as well as the
reference points, and this can be done by taking as parameter § a fixed mul-
tiple of the position ratio: —_—

—"
EX,
The parameter 8 is therefore given by
—_—
g %P /X, E
==
. PX,| EX,
= {P, E; X, X}
= {E, P; Xo, X,}.
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Thus the most general projective parameter for the euclidean line is not
position ratio but a cross ratio.

§4. Cross RarTIo

The cardinal role already assumed by cross ratio in our informal
treatment of projective geometry is an indication that this concept
will also be important in the formal theory. Before proceeding
farther, therefore, we shall define cross ratio algebraically and
establish its fundamental properties.

DEFINITION. If (z,,z,) and (z4,2,) are two ordered pairs of
elements of a field K, the rational function
T~ [T, —,
xz“‘%/ Ty—%y
is called the cross ratio of the second pair with respect to the first.
Since the rational function is unaltered if the two ordered
pairs are interchanged, it is also the cross ratio of the first pair with
respect to the second, and we may refer to it simply as the cross
ratio of the two ordered pairs. We shall denote it by {x,, z,; x,, 2,}.
It may easily be verified that, although the value of the cross
ratio depends upon the order of each pair, if the orders of both
pairs are changed simultaneously the value of the cross ratio is

unaltered, i.e. )
{21, 255 23, 24} = {25, 215 24, 24}
THEOREM 2. Cross ratio is invariant over non-smgular bilinear
transformation; i.e. if
ax;+b
xi = —
cx;+d
where ad—bc # 0, then
{xl’ 25 T3y xl} = {x;.’ Ta; x:h x’l}'
Proof. By direct substitution, and cancellation of the non-zero
factor ad—be.
' COROLLARY. T'he unique bilinear transformation which is defined
by the three corresponding pairs (x;,}) (¢ = 1,2, 3) may be written
{&, 21 25, 25} = {2, 7); 23, 75}, ‘
ExERCISE. Vemfy that this equation may be reduced to the form

ax’+b
cx'+d’

(¢t=1,2,3,4),

X =
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THEOREM 3. If P,, P,, P, P, are four given points of S, and
6y, 8y, 03, 0, are their parameters in a representation &, the value of
the cross ratio {0, 0,; 0, 0,} is independent of the particular choice of .

Proof. Since a change of the representation £ is equivalent to a
bilinear transformation of the parameter, this theorem is an im-
mediate consequence of Theorem 2.

Theorem 3 states, in effect, that {0,,0,; 6,,60,} is a projective
characteristic of the two ordered pairs of points (B, B,) and (B, P,),
and this makes legitimate the following definition.

DEFINITION. If (P, B,), (B, F,) are two ordered pairs of points
in §,, their cross ratio is defined as

{Pl’Pz; P, PA} = {01’02; 08’ 04}’

where 0,, 0, 0,, 6, are the parameters of P, P,, P,, P, in some allow-
able representation %.

THEOREM 4. The cross ratio {P,, B; F,, P,} is equal to the ratio
¥o/xy, where (xy,x,) are coordinates of P, in the representation & of
8, for which By, P, are the reference points and P, is the unit point.

Proof. If, in some allowable representation, the coordinates of
P, are (2§, 2{?) (i = 1, 2, 3,4), the value of the cross ratio is '

1 ) 4
2D 2® 20" ZD  ofa® a2l (a2l —a{Dal®
%2) x&S) ¢ x§’2) xaﬁ x82)x‘(13)_x:(12)x83) va)xg:i)_’xg?)xSi)

2 3) 2 (3
P I O

Substituting the coordinates (1,1), (z,,z;), (1,0), (0,1) we obtain
the value

1.0-1.1 {1.1—-1.0
xo-O_‘xl.l xo. 1——2131.0’

ie. zyfx;.
Remark. We have given the calculation in full in order to show
how difficulties with the improper number o can be avoided by

working with homogeneous coordinates. In practice we should
compute the cross ratio less rigorously as follows:

(BB BRY = (L6;00,00 = =2 =0 — 1[5 =0,
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§ 5. TaE S1x CrOSS RATIOS OF FOUR POINTS

The cross ratio {P,, P,; P,, P,} has been defined as a function of
the two ordered pairs (P, F,) and (B, B,). If, now, we take an
unordered tetrad of points of S;, we can arrange the points as two
ordered pairs in various ways, and we then have a number of
different cross ratios associated with the same tetrad. There are
twenty-four possible arrangements of the four points P;, and there-
fore twenty-four possible cross ratios {P,, Fy; F,, B}. But since the
cross ratio is unaltered if the two pairs are interchanged or if
the points of both pairs are transposed simultaneously, each of the
cross ratios is equal to a cross ratio of the form {Fo By; B, B},
with P, in the last place. Thus we have at most six distinet cross
ratios: {P,, Fy; By, B}, (B, By; B, P, (B, Ps By P, (B, By; B, B,
{Ps, Bi; B, P}, {PB, P,; P, P,}. When the tetrad of points is general
the six values are in fact distinct, for if the first is denoted by A

1 1 A :
XIS AT

The set of six rational functions of A that we have just written
down is of considerable interest, as all six of the functions may be
obtained from any one of them by carrying out alternately the
two operations of subtracting from unity and forming the recip-
rocal. It follows from this fact that any symmetric function of
the six cross ratios is a projective invariant of the unordered tetrad
of points {R, P, P, P,). Many such symmetric functions are
constants—for example, the product of the six cross ratios—but
there are non-trivial ones. The sum of the squares of the six cross
ratios is such a function. (Cf. p. 69, Ex. 18.)

-—%, i—i—f\’ and z\-il- are distinct
functions of A, but when a numerical value is given to A the values
of the functions need not all be different. This means that if the
four points P, F,, P,, P, happen to be related in a suitable way
some of the six cross ratios formed from them may be equal. A
complete catalogue of the special cases may easily be drawn up by
equating A successively to the various expressions given above,
solving the equations, and interpreting the results geometrically.
It is found that there are three and only* three such special cases,

(i) The six values, in some order‘, arel,1,0,0,00,00. This case
arises when two of the four points coincide.

the others ‘are respectively 1—A, 51-\, 1

The six expressions A, 1—A, %, 1
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(ii) The six values are —1, —1, 4, 4, 2, 2. This is the important
case of harmonic separation, to be discussed in detail immediately
below.

(iif) The six values are —w, —w, —w, —0?, —w?, —w? where
w = e2miB, Tn this case the four points, which cannot all have
real parameters, are said to form an equianharmonic tetrad.

It will be noticed that in every case all the values of the cross
ratio occur the same number of times in the full set of twenty-
four—four times. in the general case, eight in the first two special
cases, and twelve in the last case.

§6. Tar Harmonic RELATION
We say that the pairs of points (P, P,) and (B, F,) are harmonic
if {P,, P,; P, P} = —1. This means that there exists a representa-
tion Z in which the four points have parameters 0, o0, 1, —1
-respectively.
If {P,P,; P, P} = —1, then

{Py, Py; Py B} = {B,, By; By, B} = {Fy, By, By, Byp = — 1.

Thus if the pairs (P,, B,) and (B, F,) are harmonic, so also are the
pairs (P, B,) and (P,R), (P, PB) and (B, Py, and (B, P,) and
(P, B,). In other words, the harmonic relation is independent of the
order of the points within each pair and of the order of the pairs. We
may say that the unordered pairs (P, B,) and (F;, F,) separate each
other harmonically; and this is a projective relation between them.

Exercise. Interpret geométrically the harmonic‘relation between two
pairs of points on the euclidean line, using the parameter defined on p. 44.
Show that if two pairs are harmonic then they separate each other in the
ordinary sense. :

The harmonic relation is a fundamental relation in projective
geometry, and in view of its importance we shall now give three
different formulations of the criterion for two pairs to be harmonic.

Condition 1. The pairs (P, P,) and (B, P,) are harmonic if and
only if {P,, By; By, P} = {P, By; Py, B},

Condition 2. If, in some representation #, the parameters of
P, P, P,, P, are 0y, 0, 6,, 6, the pairs (P, P,) and, (B, ;) are har-
monic if and only if '

(0,4-0.)(0;-+0,) = 2(6,6,+656,).
Condition 3.. If the parameters of (P, B,) and (B, F;) are given
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respectively by the quadratic equations a#2+42h6-+b = 0 and
a'624-2h’0+b" = 0, then the pairs are harmonic if and only if

: 2hh' —ab'—a'b = 0.
(This condition is the polarized form of the condition for the first
quadratic equation to have equal roots, namely h2—ab = 0.)

The reader should verify that, when the four points P,P,P, P
are distinet, the above three conditions are equivalent to each
other and to the original definition of the harmonic relation.

When coincidences occur among the points, we encounter
difficulties in trying to use the original definition, for the cross
ratio may then become an indeterminate expression. If we use a
continuity argument we can show that if P, coincides with F, the
harmonic relation holds if and only if F, or P, also coincides with
F, and F,, which means that two pairs can only be harmonic if
either the four points are distinct or at least three of them coincide.

- Since, however, we are basing our system of projective geometry

on an algebraic foundation, the appeal to continuity is not legiti-
mate, and we must try to dispense with it. We cando so by turning
to Condition 2 or Condition 3. Both these conditions are satisfied
in the two cases just mentioned, and in these cases only. If, there-
fore, we take either of these criteria as our definition of the harmonic
relation, the new definition is equivalent to the old one taken in
conjunction with the argument in terms of continuity. We shall
accordingly regard the harmonic relation from now on as defined by

the equation (01+02)(03+04) = 2(6, 6,4-6506,).

The above reference to continuity is of some interest. We can eliminate
analytical ideas from projective geometry and make the subject purely
algebraic if we take care to avoid quotients and rational functions and to
deal always with polynomials. We have already seen in Chapter I how points |
at infinity can be introduced either analytically, by means of a limiting
process, or algebraically, by making the coordinates homogeneous. If we
are to carry our programme through consistently, we must dispense with
cross ratio, which is a rational function, in order to be able to deal with
coincident points; and this is the reason why we have had to modify the
definition of the harmonic relation. .

Exzrorse. If {8,,6;; 0,,6,} = —1, show that
2 .

é; ’
(b) if 6, = o, then 6,48, — 20,.
Interpret these results geometrically when 6 is an ordinary cartesian co-

ordinate on a euclidean line.
5304 o]

. 1 1
(a) if 0‘ = 0, then 6;-’—0—2 ES
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§7. HOMOGRAPHIES

The only projective property of §; that we have met so far is
the fact that any two ordered pairs of points have a cross ratio—
so that, in particular, the harmonic relation may possibly hold
between them. In order to develop further the geometry of S,
we need to introduce an altogether new idea, namely that of
homographic transformation or correspondence.

DEFINITION. A non-singular linear transformation of the line
into itself is called a homographic transformation or homography.

Let w be a given homographic transformation. If a representa-
tion £ is chosen, the coordinates of any two corresponding points
will be connected by fixed equations

7
PTo = Qoo o1 %y (
0 .
pry = G19%o+81 ¥y

or, as we usually write,

Qo0 Qo1
%10 %1

” 0),

1
px; =k§oa‘ikxk (¢t=0,1),

where |a,,| # 0 and p is an arbitrary factor of proportionality.
Since the coordinates are homogeneous, we still have the same
transformation of points when the factor p is suppressed, and we
shall always suppose this done. The transformation = may thus
be written algebraically as

A z; =k§10“m“’k (z=0,1)
or, in matrix notation,
| x' = Ax (JA] #0), -
where the coordinate vector x is the 2 1 matrix (ﬁ“’)

If, on the other hand, we choose to work with the projective
parameter § = x,/x, we can write the same transformation in the
equivalent form

g = 00t (g | 2 0).

ay00+4-ay,

It is usually more convenient to drop the suffixes, writing simply

o — 3_‘;{_@ (a8 —By # 0).
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The equation may be solved for 8 in terms of 6, and we have
g 98

— ' 4o
This is again a non-singular transformation, the inverse transforma-
tion =1

The two transformations = and =~ together give a (1, 1) corre-
spondence of the line with itself. The equation of this correspon-
dence may be written in the symmetrical form

Y08’ —af+86'—B = 0
or " abf'4-b0+-cl'+d =0 (ad—bc # 0).
In terms of the coordinates z,, x, this becomes
axy 2o +bxyx) +cxg 2, +da, ) = 0.

If the condition «8—By 5 0 is not satisfied, the equation
v Y08’ —af+86'—8 = 0
may be written as

By00’ —aB0+4-BS6’—p2 = 0,

ie. 880’ — B9+ B56'—p2% = 0,
ie. (ab+B)(86'—B) = 0.
When this is the case, every value of 8 gives rise to the same value
B/3 of ¢, and the transformation is degenerate.

There are thus several different ways of writing the equation of
a homography, all of which are useful on different occasions. We
still have to show, however, that the definition of homography is

itself legitimate, i.e. that homography is a projective concept.
This is the content of the next theorem.

THEOREM 5. If two allowable representations R, R are connected

by the equation x =P ([P|+0),
and if a transformation w is represented in # by an equation of the
Jorm X' =Ax (JA] #£0),

then w is represented in X by an equation of the same form
% =A% (|A] #0).
Proof,
If X' = Ax,

then Px' = APX,
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and hence %' — P-1AP%
: = ARX, say.
Then K| = |[P-AP|
= [P1[.|A[.|P|
= |P|1. [A[.|P]
= |A]
#* 0.

Since a homographic transformation w, referred to some fixed
representation £, is of the same algebraic form as the transforma-
tion from one allowable representation to another, our earlier
theorems on choice of the representation can be reformulated as
theorems on homographies. In view of the fundamental impor-

tance of these simple properties of homographies we shall state the
results explicitly. '

THEOREM 6. Every homographic transformation leaves cross ratio
tnvariant.

THEOREM 7. There exisis a unique homography w which carries .
over three given distinct points P, into three given distinct points P,
some or all of which may coincide with the F.

COROLLARY 1. The homography determined by the three pairs
0,,0;) (+ = 1,2, 3) has the equation

{0, 60,; 65,63} = {0,6,; 6,,65}.

COROLLARY 2, Four given pairs of points (B, Py) (i = 1,2,3,4)
correspond in some komography if and only if :
(P}, Py; Py, Pi} = {B, Py; B, P).

COROLLARY 3. Ifa (1, 1) transformation of the line into itself leaves

cross ratio invariant, then it is a homography.

THEOREM 8. T'he set of all homographic transformations of the line
into itself is a group.

Proof. Let w; (+ = 1,2) be a homography given by

w(X) = Ap. X (|A;] #0).

Then w{wy(X)} = w(ApX)

== AloAzx
= AjA;. X (|AA,] #0).
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Thus when w, and o, are applied in succession, the product trans-
formation w, w, is itself & homography with matrix A, A,.

1 0
0 1) we have

a homography e; and this clearly satisfies the equation

Corresponding to the unit matrix I = (§,,) = (

€W = WeE —= W

for every w. ,
Finally, every homography w has an inverse w1, already defined
above, such that 1

ol = ool =ec

Thus the set of all homographies isa group in which e, the identical
homography, is the identity element.
ExErcIsEs

(i) If = has matrix A, show that w~! has matrix A-1,

(ii) Show, by means of an example, that the group of homographies is
non-abelian, i.e. that there exist homographies w,, @, such that -

Wy Wy F Wy Wy

§8. REPETITION OF A HoMOGRAPHIC TRANSFORMATION

Consider a fixed homography =, given, in terms of & chosen
representation &, by

. _ob+g
0= w(0) = J045 (a8—PBy # 0).
The transformation may be represented diagrammatically as
follows:
P

BN

" Pa@mP

the line being drawn twice because it functions in two different
capacities.

Now suppose we choose a point P and transform it repeatedly
by w. In this way we obtain a sequence of points: P, P’ = wP,
P’ = w%?%P,...; and there are two possible cases to be distinguished.
The points may all be different, so that P gives rise to an infinite
sequence of distinct points, or we may return to P after a finite
number of steps. In the second case the sequence of points

P,P,P,..
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consists of a finite set of points recurring cyclically; and since this
situation is of considerable geometrical interest we shall examine
in detail how it can arise.

(i) Suppose P’ = P. Inthis case P issaid to be a self- correspond—
tng or united point of w. If o = ¢, every point of the line is self-
corresponding; but if w # ¢ there are just two self-corresponding
points, which may possibly coincide. Their parameters are the
roots of the equation o of+8

70+8’
ie. 8 (8—a)i—B = 0.
If (—a)2+4By = 0, the two self-corresponding points coincide;
and in this case w is said to be an elation.

If (3—a)?+-4By # 0, there are two distinct self-corresponding
points, which we usually denote by M and N.

(ii) Suppose P’ = P, P" = P.

P P
| i
I +
PP P-@P
In this case w?P = P

and hence ‘

w?P' = w?. wP = wP = w.w?P = wP = P'.
Thus P and P’ are united points of the homography =2 But = has
at least one united point M, necessarily distinct from P and P’,
and M is a united point of w? also. The homography =? thus has
three distinct pairs (P, P), (P’, P'), (M M) in common with ¢, and
hence, by Theorem 7, w? = .

This relation may also be written w = w-1, and it means that
w is self-inverse or, as we usually say, involutory. We have therefore
the result:
~ THEOREM 9. If there exists one point P, not a united point of w,
such that w?P = P, then w is involutory. The relation w?P — P
then holds for every position of P.

Taking the transformations w and @1 together as a single (1, 1)
correspondence, we may say that if a homographic correspondence
has one symmetrical pair of distinct elements then all its pairs are
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symmetrical. Such a symmetrical homographic correspondence is
called an involution.

THEOREM 10. A homographic correspondence (other than the
wdentical correspondence) represented by

a6’ +b8-+-c6’'+d = 0

18 an involution if and only if b = c. .

Proof. If b =c, the equation is symmetric, and the corre-
spondence defined by it is clearly involutory.

If, conversely, the correspondence has an involutory pa.ir 9,6
of distinct elements, then

a6’ +4-b8-+4-¢b'+d = 0

and aff’ b0’ +ch4-d = 0.
By subtraction, (b—c)(0—6') = 0,
and hence b—c=0.

(iii) We could now go on to consider the cases P’ # P, P* +# P,
P" = P, and so on, but these are not of sufficient geometrical
interest at this level to justify detailed study. The main results

are given in Exercise 23 at the end of this chapter.

/ Exercise. Show that, if a homography w has a cyeclic triad of distinct
points P, P’, P”, such that wP = P/, wP’ = P”, wP” = P, then w® = ¢,
and every point of the line belongs to a unique cyeclic triad.

§9. CavoNicAL EQUATIONS OF HOMOGRAPHIES

In any allowable representation %, the equation of a given
homography w is necessarily of the bilinear form

a8’ +-b6-+-ch'-+-d = 0.

If, instead of an arbitrary frame of reference, we take one that
is specially related to the correspondence, we can simplify the
equation by making some of the coefficients take special values,
and in this way we obtain various canonical forms of the equation
of a homography. The most obvious way to simplify the equation
is by relating the reference points X, X, to the united points of .
Consider first the case in which the united points M, N are
distinet, so that they may be taken as the points X,, X, with
parameters oo, 0 respectively. If the equation of w is

aff’' +b0-+-c6'+d = 0,
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0, oo are the roots of the quadratic equation

a%4(b+-c)0+d = 0.
Thus @ = d = 0, and the equation of = reduces to
| b84-cf’ = 0,

or ' 0’ = k6.
This is the canonical form of the equation of a homography with
distinct united points,

If {P, P’} is a general corresponding pair, then

{M,N; P, P'} = {0, 0; 0,k6} = k.

This gives us the important result:

THEOREM 11. If w has distinct united points M, N, and if (P, P’)
18 a variable corresponding pair of distinct points, the value of the
cross ratio {M,N; P, P’} i3 constant.

Remarks

(i) The constant % is called the modulus of w. Whether the
modulus is k or 1/k depends upon the order that is assigned to the
united points.

(ii) If = has united points M , IV and modulus k, =1 has united
points M, N and modulus 1/k.

(iii) = is completely determined by the ordered pair of united
points and the modulus.

(iv) w = ¢ if and only if £ = 1, and @ = w1 if and only if
k= +1.

(v) Since the modulus % is interpreted as a cross ratio of points,
it is a projective characteristic of =, independent of the choice of Z.

Now consider the other possible case, in which the united points
of = coincide, at M say. We may take this point as X, with § = co,
and then the roots of the equation

a2+ (b+c)f+d = 0 ’
are both infinite. Thus @ = b+c = 0, and the equation of w
reduces to b0—b6'+d = 0,
or 0 = 0+a.

This is the canonical form of the equation of a homography with
coincident united points.
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Remarks

(1) Since this last equation is not homogeneous, the constant «,
unlike the modulus % in the previous case, is not a projective
‘invariant. For if we change the representation % by putting

Ty = Ay, Ty = &y,
so that _ 6 = Ad,
the equation of = becomes
A = N+a,
. g,
ie. =08+ 3

(ii) A homography with coincident united points is uniquely
determined by the united point M and one other pair of correspond-
ing points.

Exercise. Show that every non-singular bilinear equation

o — af+8
y0+38
may be written in the form
o TTH_ g 0—p
O—pa 9—#:’
or the form 7 _l_p 0 +a,

according as the associated homogra,phy has distinct united points with
parameters u,, u; or coincident united points with parameter u. Reduce
to one or other of these forms each of the equations

g = 4= 56 ,  110+12
20—7 T TT3641

We now have at our disposal all the equipment that is needed in
order to establish a large number of properties of homographies,
namely the following notations and properties:

(i) the matrix representation X’ = Ax;

(ii) the canonical forms 6’ = k6, §' = §+«;

(iii) the fact that the set of all homographies constitutes a group;

(iv) the further fact that a homography is umquely determined

by three corresponding pairs.

The theorem which follows is a typical result in the theory of
homographies. It concerns cyclic homographies, or homograpmes
@ such that @™ = ¢ for some positive integer m.
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THEOREM 12. Every cyclic homography has distinct united points.
There exist cyclic homographies of every period, and the modulus of a
- cyclic homography of period m is a primitive mth root of unity.
Proof. If w is given by the equation
0 = 04a (xs#0),
then w" is given by 0 = 0-+ra,
and therefore w” = eif and only if » = 0. Thus if = has coincident
united points it cannot be cyclic.
If = is given by 0" = kb,
then »” is given by 0 = k0,
and w" = eif and only if * = 1. In this case there exists a smallest
positive integer m for which k™ = 1, and % is then a primitive mth

root of unity. Conversely, if k is a primitive mth root of unity, the
homography given by 0 — o

is cyclic of period m.

§ 10. PROPERTIES OF INVOLUTIONS

The involution, or cyclic homography of period 2, has a par-
ticularly important place in the general theory of homographies,
and we shall accordingly discuss the special properties of involu-
tions in greater detail.

It follows from Theorem 12 that the united points of an involution
are necessarily distinct, and that the equation of an involution can
be put in the canonical form

0 = —4.

The modulus of the involution is —1, and if M, N are the united
points the pairs of the involution are simply the pairs of harmonic
conjugates with respect to M and N. There is now no need to
distinguish between the pairs (P, P’) and (P’, P), and we often
refer to a pair of corresponding points as a pair of mates in the
“involution.

THEOREM 13. An involution is uniquely determined by two corre-
sponding pairs. '
Proof. The equation
afd’+b(60+8')+d =0
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involves two effective coefficients; and the involution determined
by (6,,8;) and (8,,6;) is given by o
00 646 1
6,6, 6,+6, 1
0,05 0,46, 1

THEOREM 14. Three given pairs (P, P;) (i = 1, 2, 3) with P, # P,
correspond in a common involution if and only if

{1)1, P;.; Pz: -P3} = {P;,) I’l, P'27 -P’B}'
Proof. The three pairs determine a unique homography w.

= 0.

(i) Suppose = is an involution. Then, since wP, = P}, it follows
that wP) = P;; and hence w carries over P, P}, F,, P, into P}, P,
P3, Pj respectively. Therefore

(B, Py; B, B} = (P}, B; P}, Py,

(ii) Suppose the two cross ratios are equal. Then there is a
homography which transforms P,, P;, F,, P, respectively into
P}, P, P;, Py, and this homography is the homography w defined
by the three pairs (P, P;). But then = has the involutory pair
(B, P1) and, by Theorem 9, it is an involution. This completes the
proof of the theorem. :

Alternative forms of the equation of an involution

We obtain a second canonical form for the equation of an involu-
tion 7 by taking as reference points not the united points of = but
an arbitrary pair of mates. Suppose this is done, and the equation

of  is B0’ 4-b(84-6")+d = o,
ie. azyxy+-b(x, 2y +xh 2,)+-dx, 2y = 0.
Since the points (1, 0) and (0, 1) are corresponding points, b = 0;
and the equation of r accordingly reduces to
a6’ +d = 0.

The equation may be written as

‘ 00" = m,
and this is the required second canonical form.

ExerciseEs

(i) Show that the constant m is not a projective invariant.

(ii) Why is there no second canonical form for the equation of a non-
involutory homography ?
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Besides the two canonical equations, we have yet another way of
representing an involution algebraically, by using ideas of a rather
different kind. An involution is a simply-infinite system of un-
ordered pairs of points, and as such it is represented quite naturally
by a symmetric bilinear equation

a6’ 4-b(6+0')+d = 0. «
A single pair of points, with parameters 0,, 65, may, however, be
represented by the quadratic equation
a0?+4-2h8+b = 0
whose roots are 8, and 6}, and we may ask what is the form of the
quadratic equation which represents a variable or generic pair of a
given involution =. The answer is very simple, namely that the
coefficients in the equation depend linearly on a parameter.
THEOREM 15. In any fived representation &, the pairs of a given
involution T may be represented, for varying A, by a quadratic equation
of the form S4AS = 0,
where 8 = af24+-2h0+-band 8’ = a'624-2h'0-+b’. Conversely, sucha
quadratic equation represents in general the pairs of an involution.
Proof. Take two pairs of the given involution , represented
respectively by the quadratic equations
’ S = af24-2h0+b = 0

and . S = a'6242104+b" = 0,
and let the pair of united points (M, N) of 7 be represented by the
equation a,02+2h, 6+b, = 0.

Then, by the harmonic property of the involution,
2hh1—ab1—a1b = 0
and 2h'hy—a'by—a, b’ = 0,
and hence
2(h4-Ab" )by, —(a-+Aa’)by—a,(b-+Ab") = 0.
“Thus the pair of points represented by S-+AS’ = 0 is a pair of =
for every A. By choosing the value of A suitably we can make this
pair contain any assigned point, and the set of point-pairs therefore
‘makes up the whole involution 7.
Since both an involution and a system of point-pairs S+A8’ = 0
are uniquely determined by two given pairs of points, it follows
that every general system S+AS’ = 0 is an involution.
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THEOREM 16. Two homographies have, in general, two pairs of
corresponding points in common. Ifthe homographies are involutions,
these two common pairs coincide, i.e. two involutions have, in general,
a unigue pair of mates in common.

Proof. Suppose w,, w, are two given homographies, and (P, P’)
is & common corresponding pair. Then

’ o P =w, P
and hence wg lw, P = P,

Thus P is a united point of the homography w; lw,, and unless
w3 lw, = ¢ there are two possible positions of P, distinct or
coincident. Hence, if w; 7 w,, the homographies have exactly
two common pairs, which may possibly coincide.

If =, and w, are both involutions, and if (P, P’) is a common
pair, then (P’, P) is also a common pair. The two common pairs
are thus accounted for, and as order is immaterial we may say
that two involutions have a unique pair of mates in common.

THEOREM 17. If 7y, =, are involutions with (M, N) as a common
pair of mates, then T, 1, is a homography with M and N as united
points. Conversely, any homography with distinct united points M
and N can be expressed in infinitely many ways as a product of two
wnvolutions with (M, N) as a common pair of mates.

Proof. (i) If 7, =, are involutions, each with (M, N) as a pair of
mates, then 7,7y M = 7y N = M and 7,7, N = M = N. Thus
the homography 7, 7, has M and N as united points.

(ii) Let = be a homography with united points M and N. If we
choose an arbitrary involution =, with (M, N) as a pair of mates,
then 7, wM = 7; M = N, and similarly », wN = M. Thus T wis
& homography with (M, N) as an involutory pair, i.e. an involution
7y Then w = 'z, = 7, 7y, and 7, 7, are involutions with (M, N)
as & common pair of mates.

Remark. The above resolution of = into two involutions is easily
arrived at algebraically. Let w be represented by its canonical

equation w(8) = k6.
Then if 7, is an involution with the reference pbints M, N asa
pair of mates, the equation of , assumes the canonical for
; 07,(6) = m, ’
and m can be assigned arbitrarily.
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It now follows that
m
v w(0) = (k) = —
1w(6) = (k) = 77,

so that =, w is an involution 7,.

Exercisg. Verify that Theorem 17 holds also when M and N coincide.

§11. PERMUTABILITY OF HOMOGRAPHIES

THEOREM 18. If w,, w, are two homographies, both distinct from e,
then w, wy = w, w, if and only if either (a) w, and w, have the same
united points, distinct or coincident, or (b) w, and @, are involutions
whose pairs of united points separate each other harmonically.

Proof. (i) Suppose w, w, = w, w,, and let M be a united point
of w,. Then w,w, M = w,w; M = w, M, and therefore w, M is
a united point of w,. Thus any united point of either homography
is transformed by the other homography into a united point (the
same or another) of the original homography.

Now suppose the united points of =, coincide at M. Then
necessarily w, M = M, and M is therefore a united point of =,
also. Suppose, if possible, that w, has a second united point N,
distinct from M. Then =, N is a united point of w,, and therefore
wyN=Mor o;,N=N.

If w, N = M, then N = wi{ M = M.

If w,N = N, N is a united point of =,, and again N = M.
Thus =, has no united point distinct from M, and in this case,
therefore, w, and w, have the same united points M, M.

We have now to consider the case in which one of the two homo-
graphies, and therefore the other as well, has distinct united points.
Suppose, then, that the united points of w, are M and N. By what
was proved at the beginning, w, M and w, N are united points of
w,, and hence either (2) w, M = M, wyN = N, or (b) w, M = N,
w,N = M. In case (a) M and N are united points of w,, and the
two homographies have the same united points. In case (b) w,
has an involutory pair (M, N). It is therefore an involution with
(M, N) as a pair of mates, and its united points are separated har-
monically by M and N. In this case, by symmetry, w, is also an
involution. This completes the proof of the necessity of the con-
dition for =, to commute with =,. We now consider its sufficiency.
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(ii) Suppose =, and =, have the same united points, distinct or
coincident. Then their equations may be reduced simultaneously

either to wy(0) = k, 0, wy(6) = ky 0
or to w,(0) = 0+ay, wy(0) = O0+ay;
and in either case w, wy(0) = wyw,y(0).

If, on the other hand, =, and w, are involutions whose pairs of
united points separate each other harmonically, the united points
of w, are mates in w,; and if these points are taken as reference
points the equations of =, and w, will be reduced simultaneously to

@ (0) = —0, w,(0) = 1”5.
Once again, therefore,
@, w,(0) = @, wy(6).
The theorem is now completely proved.

COROLLARY. If 7, and 7, are involutions, both distinct from e,
then r47, 18 an involution if and only if the pairs of united points of
7, and 7, separate each other harmonically. If this condition 1is
satisfied, then v, 7, = 7,7, = 73, 80y, and the product, in either order,
of any two of the involutions r, T4, 75 i the third.

Proof. A necessary and sufficient condition for the homography
757, to be an involution is

—_— -1
7971 = (1),
1 — = la=1 —
1.e. 1'2 Tl =Ty T~ = TyTy.

Since 7, and 7, cannot have the same united points unless they are
the same involution, it follows from Theorem 18 that their pairs of
united points must be harmonic.

If the condition is satisfied, and 7, 7, = 7,7, = 73, then

TyT3 =TiTy =7

and TyTy =TT = Ty

and similarly - Ty = TyTy =Ty
This proves the second part of the corollary.

Remark. If v, 7,, 74 are three involutions, related in the manner
just described, the homographies e, 7,, 7,, 73 by themselves form a
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multiplicative group of four elements. This group has the multipli-
cation table

€ T Ta T3

T1 € T3 To

To | T3 | € 1

T3 T Ty €

It is isomorphic with the group formed by the four operations of
permuting four given points in pairs (i.e. those permutations which
leave the cross ratio invariant). Both these concrete groups are,
in fact, realizations of the abstract group known as Klein’s four-

group.
THEOREM 19. If w, wy, w, are three homographies such that o
commutes with, w, and wr,, then

(i) @ commutes with w, w,;
(i) = commutes with w1
Proof. (i) Since ww; = w, w and ww, = w, w we have

w(wy wy) = (ww,)w,

= (v w)w,
= wy(wwy)
= wy(w, @)
= (o, w,)w.
(ii) Since ww, = W, w,
therefore oy {ww)w{ ! = oy Yo, o)L,
e, (wilw)(wy o) = (wylwy)(Toi ),
ie. ol = ol

COROLLARY 1. If wr commutes with w; (s = 1,2,...,k) then =
commutes with w, w, ... wy,.

COROLLARY 2. If w commutes with w,, every positive or negative
power of w commutes with every positive or negative power of w,.

§12. AFFINE GEOMETRY OF ONE DIMENSION
The affing line may be derived from the real projective line §,(R)
as follows. We select a point I of S;(R), to be called the point at
infinity, and restrict the class of allowable representations to those
representations %, of S)(R) in which the point I has coordinates
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(0,1). This point I is then regarded not as a point actually belong-
ing to the affine line, but as an ‘ideal’ point adjoined to it. Other
ideal points are also to be adjoined to the line, namely a set of com-
plex points, one for each properly complex ratio z,: 2, in any given
representation %,. Since any two affine representations %, are
connected by a real linear transformation, the distinction between
real and complex points is invariant over change of representation.

In this way we obtain a real line, whose points may be repre-
sented without exception by a single real non-homogeneous co-
ordinate X = ,/x,. Adjoined to the line is the ideal point I, with
coordinate o0 in every allowable representation, and the system
of ideal complex points, corresponding to complex values of X.
Those properties of the affine line which have the same expression
in every allowable representation %, are the affine properties of
the line, and their totality constitutes one-dimensional affine
geometry. &

The reader may compare this abstract treatment of affine geo-
metry with what was said about the same subject in Chapter II.

THEOREM 20. If 2, 18 any one allowable representation of the affine
line, then the whole class (2,) of allowable representations consists
of all those representations which can be dervved from %, by applying
a transformation of the form

X' = bX+c,

where b, ¢ are arbitrary real numbers, with b # 0.

Proof. Let %, be any allowable representation. Then, in terms
of homogeneous coordinates,

1
x: =k§6alkxk (¢=0,1),
where |a,,| 5% 0.

Since %, is allowable, xy = 0 whenever z, = 0 and z, # 0.
Thus ay, = 0, and the equations of transformation reduce to
’ Ty = Gy,

T} = B1o%o+0y 2y,
with @y, 7% 0 and a,; # 0.
Dividing the second equation by the first, we have
= B0 I
X' = aoo+a°oX’

and this is an equation of the required form.
5304 . F
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Since agq, a4, @1, are subject only to the conditions ay, 7 0 and
@y, 5% 0, b and ¢ can take any real values provided that b # 0.
Remark. The set of all transformations of the form
X'=bX+c (b+#0),
is a group, the affine group in one dimension.

If 4 and B are any two actual points of the affine line, the mid-
point of the segment A B is the harmonic conjugate of I with respect
to A and B. Clearly the coordinate X of this mid-point is the mean
of the coordinates of 4 and B.

If A, B, C are three points with coordinates X,, X,, X, respec-

tively, the ratio § §1 is an affine invariant. It is called the
3y '

position ratio of B with respect to 4 and C. More generally, any

ratio of differences of coordinates fé §1 is an affine invariant.
47 “r3

§13. EUCLIDEAN GEOMETRY OF ONE DIMENSION
If we restrict the class of allowable representation still further
by selecting two actual points 4, B of the affine line, and regarding
as allowable only those representations %, in which the ‘length’
| X;—X, | of the segment A B is unity, we obtain euclidean geometry
of one dimension.

THEOREM 21. If Zy is any allowable representation of the euclidean
line, then the whole class (&) of allowable representations consists of
all those representations which can be derived from Ry, by applying
a transformation of the form

' X' = eX+ta,
where a i3 an arbitrary real number and ¢ = 1.
Proof. Let #y be any allowable representation, and suppose
X' =bX+4c (b +#0).

Then  Xp—Xj = (bX,+c)— (bX1+c) = b(X,—X,),
and hence b = il
Remarks
(i) The set of all transformations of the form
X' = eX+a

is a group, the euclidean group in one dimension.
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(ii) A euclidean transformation leaves every ‘length’ invariant,
not merely that of the chosen unit segment.
~ (ili) If we require the quantity X,— X, to be equal to unity in
sign as well as in magnitude, we obtain the oriented euclidean line.
Any two allowable representations are now connected by a proper
euclidean transformation

=X +.a.

A concrete realization of the abstract scheme that has just been
discussed is provided by the straight line of elementary geometry
with an ordinary cartesian coordinate X. This coordinate gives an
allowable representation %y, the reference points being the origin
and the point at infinity.

Every homography on the line can be represented by an equation

, aX4b
X' = T cX+d

in which a, b, ¢, d are real numbers such that ad—bc #« 0. The
homography is said to be hyperbolic, elliptic, or parabolic according
as its united points are real and distinct, conjugate complex (ideal),
or coincident. This distinction only arises in the case of the real
line, :

If the united points M, N are distinct, the homography has a
real centre O, the mid-point of MN. If this centre is taken as origin,
the equation of the homography reduces to

XX'+a(X—X') = k.

In this equation £k is positive or negative according as the homo-
graphy is hyperbolic or elliptic. The homography is an involution
if and only if ¢ = 0.

ExgrcisE. If w is a homography with united points M and N, prove that:
(i) if M is finite and NV is at infinity, w is a dilatation about M, possibly
combined with a reflection in M ;
(ii) if NV is at infinity and r is involutory, w is a reflection in M ;
(iii) if M and N are both at infinity, w is a translation.

EXERCISES ON CHAPTER III
1. If four points 4, B, C, D on a line have projective parameters
0o, 6,, 6,5, 65, prove that A, C separate B, D harmonically if and only if
6,—0,, 6,—0,, 8;—0, are in harmonic progression.
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2. Three points 4,, 4,, B on a line being given, a sequence of points
Aq, A, A,,... is constructed by teking as 4, for each integer n greater than 1,
the harmonic conjugate of 4,_, with respect to 4,_; and B. Show that a
projective parameter  can be defined in such a way that the value of 8 at
A;isi (3= 0,1,..).

3. If 4, B, P, Q, U, V are six points on a line, prove that

(1) {A’ B; P, Q}{As B; Q9 U} = {A9 B; P, U};

(ll) if {A’ B; P’Q} = {A’B; U,V} then {A, B; P, U} = {A’ B; Q’V}'

4, If § is a given projective parameter on a line, find a new parameter
é = (aB+4-b)/(cf+d) which takes the values 0, 1, co at the points for which 0
has the values 1, 2, 3. Find the transformed equation, in terms of the new
parameter, of the homography given by

00’'—0—~56"+9 = 0.

5. Show that the equation 6’ = (af-+b)/(c6+d) of any homography with
distinet united points § = m and 6 = n can be written in the form

0'—m _dm+an 0—m
0 —n dntam —n’

with appropriate modifications if m or n is infinite, or m+n = 0.
If the homography has coincident united points § = m, show that its
equation may be written in the form

11 2
0—m 0—m+a+d'

6. Reduce each of the following equations to one or other of the forms
suggested in Exercise 5:
(i) 306’—0+50'—7 = 0;
(i) 60’'—20+4 = 0;
(iii) 4606'4-130—0'+9 = 0;
(iv) 60’ =k (k #0).

7. If w and o are the homographies whose equations are respectively

0’ = (46+6)/(30+2) and 0" = (40-2)/(6+2), obtain the equations of the '

homographies w'¢ and ow™!; and find the common pairs of = and o.

8. Ifthe homography @, givenby 8 = (af+-b)/(cf-d), has distinet united
points, show that the two alternative values k and 1/k of its modulus are the
roots of the following quadratic equation in z:

(ad—be)(x+1)2—(a+d)’x = 0.

9. Prove that the condition for the homography = of Exercise 8 to be of
period 3 is a?+d24-ad+4-be = 0, and the condition for it to be of period 4
(but not of period 2) is a?+d2+2bc = 0.

10. A homographic transformation carries three points 4, B, C of a line
into points 4’, B’, C’ of the same line. Prove that it transforms the united
points of the homography which permutes 4, B, C cyclically into the united
_ points of the homography which permutes 4°, B’, ¢’ cyclically.
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11. Discuss, for all real values of A, the character of the (real) homography
06'+(3+X)0+A0"+A+8 = 0.
12. Find all the homographies that commute with the involution
06’41 = o.
[Answer. Those whose equations are of one or other of the forms
00’;|—b(0+0’)—-1 =0, 06’ +b(0—0)+1 = 0.]

13. Find a transformation 6 = (ap+B)/(yd+3) of the projective para-
meter 6 which reduces the two involutions 88’—2(6+6')+7 — 0 and
66°+-3(6+6')—3 = 0 simultaneously to the forms ¢¢’ = m and ¢’ = n.

14. A variable homography = on a line has two assigned pairs of corre-
sponding points. Show that, by choosing the projective parameter suitably,
it is possible to reduce the equation of w to the form

06’ +A+a)f+A—a)’+1—20 = 0,

where « is constant and A is variable. Discuss the character of w for all
possible values of A. :

15. If w, and w, are two given homographic correspondences on a line,
show that there exist involutions 7, 7;, 75, in general uniquely determined,
such that w, = 7,7 and w, = rr,.

16. If = is a homography on a line, with distinct united points M, N,
prove that there are exactly two homographies oy and o, which satisfy the
condition ¢? = , and show that ¢, 071 is the involution whose united points
are M and N. How is this result modified if w has coincident united points ?
If w is a real homography, find conditions for ¢, and g, to be real also.

17. Two pairs of numbers are defined by the quadratic equations

ax?+bx+c =0 and a’z224+bx+c" =0
respectively. Show that the two possible values of the cross ratio of the

numbers of the one pair with respect to those of the other pair are the roots
of the quadratic A2—2mA+1 = 0, where

m (bb"—2ac’ — 2a’c)? + (b2 — dac)(b’2— 4a’c’)
= (bb"—2ac’—2d’c)*— (b°—4dac)(b'*—4a’c))’
18. If o, is the sum of all the products, two at a time, of the six cross ratios
of four general points, prove that

Ar—241)
A2A—1)2 °
where X denotes any one of the six cross ratios.

Prove that two unordered sets of four distinct points can be related homo-
graphically, when they are paired suitably, if and only if the invariant o3
has the same value for each set. ‘

19. Any projective parameter § = X +iY for the complex line defines a
one-one mapping of this line on the Argand plane, the complex point  of
the line being represented by the real point (X,Y) of the plane; and the
general homographic transformation 6’ = (af-+b)/(cf+d) of the line into

oy = 6 —
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itself then goes over into a corresponding self-transformation of the Argand
plane. Show that this latter transformation has the following properties:
(i) every member of the complete family of circles (which includes the
straight lines of the plane) is transformed into a member of the same
family ;
(ii) the angle at which two curves intersect and the angle at which the
transformed curves intersect are equal in magnitude and in sense;

(iii) the point given by Z = X+4¥ = —d/c transforms into the unique
point at infinity of the Argand plane, and all circles through the point
—d/c are transformed into straight lines;

(iv) the transformation has two united points (X,,Y,), (X,,Y,), and, if
they are distinét, the coaxal systems for which they are (a) the
common points, and (b) the limiting points, have the property that
every circle of either system is transformed into a circle of the same
system.

20. Prove that two pairs of complex numbers (Z,, Z,) and (Z;, Z,) are
harmonic if and only if the points Z, and Z, in the Argand plane are the
intersections of a circle through Z, and Z, with a circle of the coaxal system
for which the points Z, and Z, are limiting points.

Deduce from this the geemetrical properties, in the Argand plane, of the
involution whose equation is

22'+p(Z+2)+q = 0.

21. A one.dimensional non-euclidean geometry on a real line I may be
defined as follows. Two finite points 4, B of l are selected, and only the points
of the segment A B are regarded as existent, the interior points of the seg-
ments being actual and the end-points 4 and B ideal. A non-euclidean

distance I_?Q is now defined, for every ordered pair (P, Q) of existent points,
by the formula —
PQ = }log{d, B; P, @}.
With this definition of distance, show that
(i) A and B are both infinitely distant from every actual point P;

(ii) if P, @, R are any three actual points, then I—’ZH- a%+1?1>’ = 0;

(ili) the segment PQ determined by any two actual points has a unique

mid-point, namely the unique existent united point of the involution
on ! determined by the two pairs (4, B) and (P, @).

22. With the notation of Exercise 21, show that, if 7 is the involution
on ! whose united points are 4 and B, there are two types of homography on
1 which commute with 7, and these give rise respectively to the non-euclidean
translations and non-euclidean reflections for the non-euclidean line 4 B.

23. Work out the general theory referred to on p. 55 by proving the
following theorems on the repetition of a homographic transformation.

(i) If =@ is a given homography and {="} denotes the sequence of homo-
graphies {...w™1, @ w,...} then either (a) all the powers =" are disiinet, or
(b) the sequence {w"} is formed by cyclic repetition of a finite set

(w @ ™)
of distinet powers of w. In case (b) w' = w*if and only if r = & (modm).
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(ii) If = is a given homography and F, is a given point, and the sequence -

of points {...P._;, R, B,,...} is defined by the relation P, = =iF,, then either
(a) all the points P, are distinct, or (8) the sequence {P,} is formed by cyclic
repetition of a finite set (F,, B,,..., P;_,) of distinct points. In case (b) P, = F;
if and only if ¢ = 5 (mod k).

(iii) If the homography w is cyclic of period m, then every point F,
other than a united point, generates a cyclic sequence {F;} of period m.



CHAPTER IV

PROJECTIVE GEOMETRY OF TWO DIMENSIONS

" §1. DEFINITIONS

A two-dimensional projective domain Sy(K) is a class of entities that
admits of certain allowable representations # by means of triads
of homogeneous coordinates (2, Z;, ), drawn from a given ground
field K. This means that in any representation Z, the elements
of 8,(K) are represented by vectors X belonging to V;(K), and that
two vectors represent the same element of S,(K) if and only if they
differ at most by a scalar factor.

The class (%) of all allowable representations has to satisfy the
following condition. If # is any one such representation, then

(i) every other allowable representation %’ is related to Z by
a transformation of the form

2
x;'. = z Qi Ty (i = Os 1,2)
k=0

ie. x' = AX,
where la,s| = |A] # 0;

(ii) every representation %’ which is related to Z by a trans-
formation of this form is allowable.

The allowable representations A of Sy(K) are thus connected by
a group of non-singular linear transformations, the projective
group PGL(2; K) in two dimensions, and the projective properties

~ of 8,(K) are invariant for all transformations of this group.

We shall continue to omit explicit reference to the ground field
K whenever, as is usually the case, we wish to take the complex
field as ground field. We shall also fix our attention from now on
upon one. particular S,, supposed fixed once and for all, which we
call the projective plane; and the elements of this system will be
called the points of the plane. Our task is to study the projective
properties of this projective plane 8;, and to introduce formal
equivalents of the familiar notions that find a place in elementary
projective geometry. Much of the theory can be derived from the
single notion of linear dependence of points, which we now define.
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§2. LINEAR DEPENDENCE OF PoINTs

DEFINITION. A point P of §, is said to be linearly dependent on a
- set of points P, B,,..., B, if a coordinate vector x which represents
P in some allowable representation % is linearly dependent on
coordinate vectors x®, x®, .. x™ which represent P, F,..., P, in
Z; i.e., if there exist scalars A, Ay,..., A, such that

X = A XD ), X044 A xm, Y

We have to show that this definition is legitimate, that is to say
that it does in fact define an intrinsic relation between points,

It is clear, first of all, that if we take different vectors to repre-
sent the points in the same representation %, so that P is now
represented by y = ax and so on, then a corresponding relation of
linear dependence necessarily holds between the new vectors.
We have, therefore, only to show that if a relation (1) holds in one
representation Z then a similar relation holds in every representa-
tion. Suppose, then, that a new representation Z is introduced
by means of the transformation X = Ax. Multiplying equation
(1) by the matrix A, we have

CAX = N AXDL A, AXO 4 A AX,
or R = N XOHQ, KO- A, KO,

which is the result required.

We can now say that a set of points in §, is a linearly independent
set if none of the points is linearly dependent on the other m—1.
It follows from simple theorems in linear algebra that the maximum
number of points in 8, that can be linearly independent is three,
and that three points represented by the coordinates ({9, 2%, )
(¢ = 1,2,3) are linearly independent if and only if

@ 2P | £ 0.
xsz) x(lz) x(zz)

a® 2® 2P

THEOREM 1. If X, X, X,, E are four points of S, every three of
which are linearly independent, then there exists a unigue allowable
representation X in which the four points are represented respectively
by the vectors (1,0,0), (0,1,0), (0,0,1), (1,1,1).

Proof. This theorem, like Theorem 1 of Chapter III, follows

. immediately from Theorem 1 of the Appendix.
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X,, X,, X, are called the reference points of %, and E the unit
point. Specifying these four points is usually the most convenient
way of characterizing a given representation Z.

ExercisE. Determine the equations of transformation from Z to 174

if the reference points and unit point of &’ are represented in Z by the
coordinate vectors (4, 5,1), (3, —1,3), (6,16,2), (5,1,1) respectively.

- §3. LINES AND COLLINEARITY

Suppose @ and R are fixed points, with coordinate vectors y
and z in some representation . If the points are distinct they are
clearly linearly independent, and their coordinates then satisfy one,
and essentially only one, linear equation

uo xo+u1 x1+u2 xz = 0.
The equation may, in fact, be written in determinantal form as
X, % | =0,
Yo Y Y2
29 % 2%
and it follows that a point P is linearly dependent on @ and R if
and only if its coordinates (%, %y, %,) satisfy this equation.

DEFINITION. The set of all points linearly dependent on two
given (distinet) points @, R is called the line determined by @
and R, or simply the line QR.

EXERCISES _

(i) Show that a line is determined by any two of its points.

(ii) Show that the set of all points whose coordinates satisfy a given
(homogeneous) linear equation is a line in the sense of the above definition.

The line QR admits of two kinds of algebraic representation.
Since a general point of the line is linearly dependent on @ and R,
it may be represented by a coordinate vector of the form

X = Ay +pz; ‘

and the ratio A:p is uniquely determined. In this way we obtain a
representation of the points of the line by the homogeneous pair of
parameters (A, ). Alternatively, we may use the non-homogeneous
representation X = y+0z, if we allow 6 to take the value oo at R.

The other mode of representation of the line is by its equation

2 .

S ux;=0. Ifwe take the coefficients u,, u,, 4, in this equation as

i=0
components of a column-vector u, we may write the equation in
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matrix form u”x = 0. Theleft-hand side is just the inner product
(u, x) of the vectors u and x, and so the equation may also be
written (u, x) = 0.

Since the line is defined in terms of the projectively invariant
notion of linear dependence of points it is a projective entity.
This may also be seen directly as follows. Let the representation %
be changed by the transformation x’ = Ax. Then the equation

ul’x =0
gives uTA-1x’' = 0,
ie. (A-1Ty)Tx’ = 0,
or u'rx’ = 0,

where u’ = A-1Tu; and the equation u'Tx’ = 01is of the same form
as the original equation u?x = 0.

THEOREM 2. The lines of the projective plane form a two-dimen-
sional projective domain.

Proof. Let us select, arbitrarily, an allowable representation
2 of the plane. Then every line has a linear equation (u,x) =0,
and this equation may be specified by the vector u. Furthermore,
two vectors u, v give rise to the same equation, and therefore the
same line, if and only if they differ at most by a scalar factor.
Thus the vector u furnishes a set of three homogeneous coordinates
(ug, %y, u,) Of the line. '

We now have & class (%) of representations of the lines of the
plane, one for each representation % of the points, and it only
remains for us to show that (%) is a class of allowable representa-
tions in the sense previously defined. Let Z, %’ denote the repre-
sentations of lines arising from two given allowable representations
R, Z' of points. If Z and #’ are connected by the transformation
' X' =AX, # and #' are connected, as has already been shown,
by the transformation u’ = A-1Tu, This is a non-singular linear
transformation; and, by choosing A suitably, we can make it
coincide with any assigned non-singular linear transformation.
The representations % of the lines of the plane therefore form a
class of allowable representations, and this proves the theorem.

-Since the algebra of line-geometry now runs parallel to the
algebra of point-geometry, the projective geometry of the plane
may be said to exhibit a twofold character. This.is something to
which we shall return below, on p. 78. For the present we merely
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formulate the following theorem, whiéh, in spite of its apparent
triviality, is of some importance because it brings out the reciprocal
dependence of points and lines on each other.

THEOREM 3. Any two distinct points of the plane determine a
unique line, which contains them both. Any two distinct lines of the
plane determine a unique point, which they both contain.

§4. SUBORDINATE PROJECTIVE GEOMETRIES

The one-dimensional projective geometry discussed in Chapter
IIT and the two-dimensional projective geometry that forms the
subject of the present chapter are not merely two analogous but
otherwise quite independent systems. There is a much closer con-
nexion between them than mere analogy, and this is brought out
in the next theorem.

THEOREM 4. The two-dimensional geometry of the projective plane
tnduces a subordinate one-dimensional projective geometry on every
line of the plane.

- Proof. Let ! be a given line in the plane, and let two points @, R
be taken on it. When a definite representation # of the plane is
assigned, and definite vectors y, z are chosen to represent @, R in
this representation, every point P of  has a unique representation
by a vector X of the form A\y+uz; and we may take (A, ) as homo-
geneous coordinates of P on l. If the underlying representation %
is changed, all coordinate vectors are subjected to the same linear
transformation, and the values of the parameters A, p remain
unchanged. We may accordingly confine ourselves to the one
representation Z of the plane.

Now suppose a new parametric representation of / is defined by
means of a fresh pair of points @', R’. If @', R’ have coordinate
vectors y’, z’, we may write

y = ay'+p2),
z = yy' +oz/,
where, since y and z are linearly independent, ad—pBy 5= 0. Then
X = Ay+uz
— (A yp)y' +(BA+8u)2
= X'y'+p'z, say.
Thus when new coordinates A’; u’ on ! are introduced by means of a
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fresh choice of the reference pbints @ and R on/, they are connected
with A, u by the non-singular linear transformation

X = ad+typu,
, K = BA+-3p.
By taking into account all possible choices of Q and R, we obtain a

class of allowable (one-dimensional) representations of 7, and I
therefore has the geometrical structure of an 3,.

COROLLARY 1. All projective entities on any line in the plane—
such as, for instance, cross ratio, the harmonic relation, and homo-
graphic correspondences—are projective entities in the plane also.

COROLLARY 2. If four points P, of the line QR are represented by
vectors X = \,y+p,z (i = 1,2,3,4) then
{‘Pls P23 Pa’ PA} = {01’ 02;.08’ 04}’
where 0; = p,/,.
COROLLARY 3. In particular, the harmonic conjugate with respect
to Q and R of the point represented by y+ oz is represented by y—oz.

Let us now consider once again the reference points Xy X, X,
and the unit point E, which serve to determine a given representa-
tion Z of the plane. Any three of the four points X, X,, X. 2 E are
linearly independent, and therefore non-collinear. Xy X, X, are
often called the vertices of the triangle of reference, and the lines
X, X,, X,X, X,X, are the ' ;
opposite sides of this triangle.
The equations of these sides
are respectively ¥y = 0, 2, = 0,
Z,=0. Xy is the Iline
Z;—2, = 0, and it meets X, X,
in the point E, with coordinates
(0,1,1). This point, and the
similar points E,, E, on X, X,,
X, X, respectively, are called the subordinate unit points on the
sides of the triangle of reference.

A generie point P of X, X, has coordinates of the form (0,A, p);
and if the coordinate vectors of X,, X,, K, are taken as x®, x(®,
e@respectively, where x® = (0, 1, 0), x® = (0, 0, 1), e® — (0,1,1),+
then e® = x4 x® and P has the coordinate vector AXD i x(@),
Thus when the coordinates of P, regarded as a point of 8,, are written

1 Strictly, of course, these are column-vectors.
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as (0,2, u), (A, ) are coordinates of P in the one-dimensional geometry
induced on X, X,, the reference points and unit point being respec-
tively X, X,, and E,.

Exercise. With the notation used in the proof of Theorem 4, show that an
allowable representation of ! may be uniquely specified either (a) by giving
the particular coordinate vectors y and z which are to represent Q and R,
or (b) by giving the points @ and R and also the point which is to be the unit
point of the representation.

The results just obtained make it easy to establish the con-
nexion between harmonic pole and polar with respect to a triangle.

THEOREM 5. If D, E, F are the points of intersection of the sides
BC, CA, AB of a triangle with the lines joining A, B, C to a point P
which does not lie on any of the sides, and if D', E’, F' are the har-
monic conjugates of D, E, F with respect to the point-pairs (B, C),
(C, A), (A, B) respectively, then D', E', F' are collinear.

Proof. Take ABC as triangle of reference and P as unit point.
Then B, C, D are respectively (0,1, 0), (0,0,1), and (0,1, 1), and
hence D’ is (0,1, —1). The coordinates of D’ therefore satisfy the
equation By, +7q = O;
and since this equation is symmetric, D, E’, F' all lie on the line
p which it represents.

Remarks

(i) The point P and the line p are said to be harmonic pole and
polar with respect to the triangle ABC. ,

(ii) The harmonic polar with respect to the triangle of reference
-of the unit point is, as has just been shown, the unit line (1,1, 1).
It follows that the coordinate representation # is determined
equally by the vertices of the triangle of reference and the unit
point, and by the sides of the triangle of reference and the unit line.
EXERCISES

(i) Prove the converse of Theorem 5.

(ii) Show that the harmonic polar of the point (a, b, ¢) with respect to the
triangle of reference is the line (1/a, 1/b, 1/c).

(ili) In ordinary euclidean geometry, what is the harmonic polar of the
centroid of a triangle with respect to the triangle?

§5. TeE PRINCIPLE OF DUALITY
We have already seen that the lines of the projective plane, as
well as its points, are elements of a two-dimensional projective
domain, so that there is a projective geometry of lines as well as
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of points. It is now necessary to examine the relation between the
two geometries in greater detail.

A line can be represented either by a linear equation Y u;z; = 0
in point-coordinates or by a triad (u,, u,, u,) of line-coordinates;
and similarly a point can be represented either by its point-
coordinates (%0, %1, Z,) or by a linear equation in line-coordinates.
The equation I w,x; = O expresses, in fact, the symmetrical
relation of incidence between the point (g, 1, %,) and the line
(o, w1, up). If wy, u;, u, are thought of as constant, the equation
means that the variable point (z,,,,2,) describes the fixed line
(%o, %y, u,) as its locus; and if x,, 2,, 2, are thought of as constant, it
means that the variable line (w,,u,,u,) describes the fixed point
(%9, %1, %) as its envelope.

The class of all the points of the plane and the clags of all the lines
of the plane are symmetrically related to each other, and to every
property of lines in the (original) geometry of points there corre-
sponds a property of points in the geometry of lines. In view of this
parallelism, we do not need to discuss both sets of properties in
detail. Having once proved a theorem in the geometry of points,
we can immediately write down the corresponding theorem about
lines, simply by changing the wording suitably, and we do not need
to repeat the details of the proof. This is the essence of the impor-
tant Principle of Duality. ‘

If T is any theorem that is valid in the projective geometry of the
plane, and T' is the theorem that is obtained from T by changing
the word ‘point’ into the word ‘line’ and vice versa throughout the
enunciation and making the appropriate linguistic adjustments, then
T' is also valid in the same geometry.

Remarks :

(i) Typical ‘linguistic adjustments’ are the replacement of ‘inter-
section’ by ‘join’ and ‘collinear’ by ‘concurrent’.

(ii) Two theorems 7', 7" that are related in the manner described
are said to be dual to each other.

Among the important theorems that can be obtained by dualizing

results already established, the following is especially worthy of
mention.

THEOREM 6. If g, r are two distinct lines, represented by coordinate
vectors v, w, a general line through their point of intersection is given

by the vector U= Avuw.



80 PROJECTIVE GEOMETRY OF TWO DIMENSIONS 1IV,§5
If four lines p, of the system are given by
u? = N, vp,w (0= 1,2,3,4),

then the cross ratio {0y, 0,; 05,03, where 8, = p,;/A;, depends only on
the four lines, and not on their mode of representation.

The cross ratio referred to in Theorem 6 is called the cross ratio
of the ordered pairs (p,, p,) and (p;, p,) of lines in the pencil deter-
mined by ¢ and r, and it is denoted by {p,, p,; D3, D4}

§6. FUNDAMENTAL INCIDENCE THEOREMS

Now that we have seen how the points and lines of the projective
plane may be represented by suitably chosen coordinates, we are
in & position to prove a number of theorems of a more geometrical
character. We shall consider first a group of theorems which
embody the so-called incidence properties of the projective plane,
theorems that are of fundamental importance in any development
of plane projective geometry.

THEOREM 7 (Desargues’s Theorem). If two triangles correspond to
each other in such a way that the joins of their corresponding vertices
are concurrent, then the intersections of their corresponding sides are
collinear, and conversely. ’

Proof. Let the triangles be ABC, A’B’C’, and let AA’, BB,
CC’ be concurrent in P. Let the points BC.B'C’, CA.C'4’,
AB.A'B’ be respectively L, M, N.

For simplicity we shall adopt the convention that, in some
chosen representation %, each point is represented by a coordinate
vector denoted by the corresponding letter, A being represented

”by a and so on.

Then

a’ = p+aa,

b’ = p+ub,

¢’ = p+wc,
and therefore b’—c’ = ub—vc.

The vector b’—c’ consequently represents a point lying on
B'C’ and also on BOC, i.e. the point L. We may accordingly put
1 = b’—¢’, and similarly m = ¢’—a’ and n = a’—b’, so that we

have 1+m-+n = 0.
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Thus the points L, M, N are collinear, which proves the direct
theorem. The converse follows at once by duality.

Remark. Two triangles related as in Theorem 7 are said to be
in perspective. P is called the vertex of perspective and the line
LMN the axis of perspective.

THEOREM 8 (Pappus’s Theorem). If (44, 4,,43), (By, By, By)
are two triads of collinear points, not on the same line, then the three
cross inlersections A; B;. A; B, are collinear.

Proof. Let the two given lines be XZ and Y Z, and let
A,B;. Ay B,, A;B,.A,B;, A,B,.4,B,
be denoted by L,, L,, L;.. We may write
a,=x+Nz (t=1,23),

Then L, can be represented both by a vector
P(X+2A:2)+9(Y+p32)

and also by a vector
P'(X+2A32)+q (Y +p22);

and therefore P_9_ PAstqps

, ¢ Phtdee
Then PAstqps = PAat+qps,
Le. - pAe—A3) = q(pe—ps),
and we may accordingly write

L = (po—pa)(X+2,2) + (A —A5)(Y+13Z) -

= (pe—pa)X+ A —2A3)Y + (A2 2 — A3 15)Z,

with similar expressions for 1, and 1,. Then, by addition,
L+1,+1; =0,

and the points L,, L,, L, are therefore collinear.
5304 . G
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THEOREM 9 (The harmonic construction). Let A, B, C be three
(déstinct) collinear points, and let three arbitrary lines AXO, BYO,
CY X be drawn, one through each of the points, to meet in pairs in
Y, X, 0. Then, if AY and BX meet in T, the line OT meets the line
A BC in the harmonic conjugate D of C with respect to A and B.

A o\ BN c

Proof. Take the representation % for which 4, B, O are reference
points and 7' is unit point. Then the coordinates of ¥, X, D are
respectively (0,1,1), (1,0,1), and (1,1,0). XY is therefore the line
%y+2,—x, = 0, and C is the point (1,—1,0). Thus d = a+b
and ¢ = a—b, and hence {C,D; 4, B} = —1.

Remarks

(i) Theorem 9 furnishes a construction, using only relations of
incidence, for the harmonic conjugate of a given point with respect
to two other given points collinear with it. In real projective
geometry the construction can be carried out with the straight-
edge alone.

(ii) The construction may be thought of as based upon the har-
monic property of the quadrangle 4 BY X (Chapter II, Theorem 2).

ExERCISE. If XY meets OD in E, prove that E is the harmenic conjugate
of C with respect to X and Y.

§7. HoMoGRAPHIC RANGES AND PENCILS

In Chapter III we defined the notion of homographic correspon-
dence between two variable points P and @ of §;. If, now, we select
any line a in §,, the points of @ form a one-dimensional projective
domain, and we may accordingly consider homographies on a. We
are no longer confined, however, to a single line, but have the whole
doubly infinite system of lines in 8, at our disposal; and we can now
introduce the idea of a homographic correspondence between a
variable point P which moves on one fixed line @ and another
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variable point @ which moves on a second fixed line b. Corre-
spondences of this kind are especially interesting because, as we
shall see, they are equivalent to certain simple incidence construc-
tions in the plane, and this gives them a specifically geometrical -
significance. We shall now give a formal definition of homography
in the new extended sense, and then go on to establish the main
properties of such homographies.

The set of all points of a fixed line @ will be called a range of points,
having @ as its axis; and dually, the set of all lines through a
fixed point 4 will be called a pencil of lines, having A as its vertex.
Both these systems are one-dimensional projective domains, as
we have already seen, and the equations

X=y+60z and u=v+iow
give rise, in the two cases, to allowable representations by a para-
meter §. Whenever we refer to a parameter of a point of a range
or of a line of a pencil we shall mean an allowable parameter defined
in this way.

DEFINITION. A (1,1) correspondence between (a) two variable
points P, @, lying on fixed lines a, b, or (b) two variable lines p, g,
passing through fixed points 4, B, or (c) a variable point P, lying
on a fixed line @, and a variable line ¢, passing through a fixed
point B, is said to be homographic if the parameters of corresponding
elements of the ranges or pencils concerned, referred in each case
to an arbitrary allowable representation, satisfy a fixed equation
of the form . a0+B

T 9048
Since cross ratio is invariant over bilinear transformation, this
definition is in harmony with the less formal definition of homo-
" graphy already given in Chapter II (p. 28). We need, however, to
establish its legitimacy in the formal system, i.e. to show that
the concept of homography is independent of the particular c¢hoice
of representations. This may be shown by a mode of argument
that is already familiar, and it will be sufficient here to indicate the
result. In terms of homogeneous parameters (A, u) and (X', u’), the
equation of the homography may be written

() =G 5

or A’ = AX, say.
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If we change the representation of the two ranges or pencils accord-
ing to the scheme X = PA N = QN

we then have A= A},

where A is the non-singular matrix QAP-1,

Since ranges and pencils enter into our system in exactly the same
way, it is often convenient to have a neutral term meaning ‘range
or pencil’, and the term usually adopted is one-dimensional form,
or simply form if there is no risk of ambiguity. The above definition
then allows us to speak of a homographic correspondence between
any two forms. When such a correspondence is defined we say
that the forms are homographie, projective, or related.

If P and @ are variable corresponding points of two homographic
ranges, we often write (P) R (Q); '

and a similar notation is used to indicate that any two one-dimen-
sional forms are homographically related.

'THEOREM 10. A homographic correspondence between two given
one-dimensional forms is uniquely determined by three corresponding
pairs.

This theorem, which is an immediate consequence of Theorem 7,
Chapter III, is of fundamental importance in projective geometry—
like many other theorems which specify the number of degrees of
freedom of a geometrical entity. It plays a central role in the non-
algebraic axiomatic development of projective geometry, where it
appears as the Projective Axiom or Correspondence Axiom.

Homographies between ranges and pencils can all be defined,
as we have already mentioned, by suitable incidence constructions.
The reason for this is that the basic operations of projection and
section, from which all incidence constructions are built up, trans-
form ranges and pencils always into homographically related
pencils and ranges. Thus every correspondence set up by means
of an incidence construction is homographic; and we have only to
show that the general incidence construction has the right amount
of freedom in order to be able to infer, from Theorem 10, that every
homographic correspondence is obtainable in this way. The reduc-
tion of homographies to incidence constructions, then, depends
ultimately on the basic connexion established by the following
theorem.
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THEOREM 11, If a s a fixed line and A is a fixed point that does not
lie on a, then the correspondence between a variable point P of a and
the line p which joins P to A is homographic: i.e. (P) X(p).

(X WA

X [P X'\ a

Proof. Take the triangle of reference as shown, and let P be
the point (0,1,8). Then p is the line 6x;,—x, = 0, i.e. the line
(0,8, —1). Thus the parameters of P, referred to X, X, as reference
points, and of p, referred to AX,, AX, as reference lines, are respec-
tively § and —1/0; and these are connected by a non-singular
bilinear equation.

COROLLARY. The rays of a pencil cut homographic ranges on any
" pair of transversals.

Proof. If the variable ray p cuts the transversals a and b in
points P and @ respectively, then

(P) ~(p) ~(Q)-

Note. In this and similar arguments where we construct a chain of homo-
graphies, we use the transitivity of the relation 7x; i.e. the fact that if
(P)~ (Q) and (Q) ~ (R), then (P) A (R). The relation is necessarily transitive
because the set of all non-singular bilinear transformations §’ = agig
a group.
~ Theorem 11 describes the simplest possible homographic corre-
spondence between a range and a pencil. There also exist homo-
graphic correspondences between two forms of the same kind

which are almost as simple.

THEOREM 12. If variable points P, Q, describing ranges with
distinct axes a, b, correspond in such a way that the line PQ always
passes through a fixed point V, not lying on a or b, then the correspon-
dence 18 homographic. Dually, if variable lines p, q, describing pencils
with distinct vertices A, B, correspond in such a way that the point pg
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always lies on a fixed line v, not passing through A or B, then the
correspondence is homographic.

Proof. The first part of the theorem is equivalent to the corollary
to Theorem 11, and the second part follows from the first by duality.

DEFINITION. Two ranges related as in Theorem 12 are said to be
in perspective from the vertex V; and two pencils related as in
Theorem 12 are said to be in perspective from the axis v.

A range and a pencil related as in Theorem 11 are also sometimes
said to be in perspective.

The correspondence between two forms in perspective is called a
perspectivity.

Now that we have discovered these very simple kinds of homo-
graphy between two forms, the question naturally arises whether
perspectivities are the only kinds of homography that exist, or
whether there are other kinds. We shall see that there are more
general homographies, but that they can all be expressed as pro-
ducts of perspectivities.

THEOREM 13. Two homographic ranges (P), (Q), with axes a, b
respectively, are in perspective if and only if the point ab is self-
corresponding.

Proof. Let O be the point ab. If the ranges are in perspective,
then O is clearly self-corresponding.

Suppose, conversely, that (P) & () and O is self-corresponding.
Take two fixed corresponding pairs (7, @,), (5, @,) and let P, @,,
P, ), meet at V. Then the perspectivity with vertex V is a homo-
graphy which has three pairs (0, 0), (B, @,), (£, @,) in common
with the given homography, and the glven homography therefore
coincides with this perspectivity.

COROLLARY 1. Dually, two homographic pencils (p), (q), with
vertices A, B respectively, are in perspective if and only if the line
A B 1is self-corresponding.

COROLLARY 2. If A, B, C, D are collinear and A, B’, C’, D’ are
collinear, and if {A,B; C,D} ={A,B’; C",D'}, then BB’', CC’,

- DD’ are concurrent. Dually, if a,b, ¢, d are concurrent and a, b’, c¢’, d’
are concurrent, and if {a,b; c,d} = {a,b’; ¢’,d’}, then bb’, cc’, dd’ are
collinear.

It follows from Theorem 13 that not every homographic corre-
spondence between two ranges is a perspectivity. For suppose we
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take two lines a, b, meeting in O, and choose points F,, F; on a and
@, @y, Q; on b, all distinet from O. Then there is a homography
connecting the ranges on a and b for which (0, @,), (B, @), (£, @s)
are pairs, and this homography is certainly not a perspectivity
since O is not self-corresponding.

We shall now show that every homography between two distinct
lines which is not already a perspectivity can be resolved into a
product of two perspectivities.

THEOREM 14. If w is a homography, but not a perspectivity,
between two ranges (P), (Q) with distinct axes @, b, there exists a
third related range (R), with a third line c as axis, such that, for any
point P and the corresponding points Q and R, the line PR passes
through a fixed point V and RQ through a fixed point W.

Proof. Choose three pairs of w: (P, @,), (B, @), (P, @3). On the
line P, @, take two points V, W, distinct from each other and from
P,and Q,. Let VP,.WQ,, VF,. W@, be denoted by R,, R,, and let
the line R, R, be denoted by c. Then, clearly, ¢, V, and W satisfy
the conditions of the theorem; for the product of the perspectivities
defined by V, a, ¢ and W, ¢, b is a homography which has three
pairs (B, @;) (¢ = 1,2,3) in common with w.

COROLLARY. Any homography that relates variable points P, @
of the same line can be resolved into a product of not more than three
perspectivities.
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Harmonic ranges and pencils

By making use of Theorem 11 we can now give a simple alter-
native proof of Theorem 9 on the harmonic construction; and we
give this proof here because the method used is of wide applicability.

/A o\  B\™ C

By Theorem 11,
(4,B,C,D) K T(4,B,C,D)

AY,X,CE)
A O{Y,X,C,E)
N (B,4,C,D).

Therefore {4, B; C,D} = {B, 4; C, D}, and the pairs (4, B) and
(C, D) are harmonic.

Four collinear points 4, B, C, D such that {4, B; C,D} = —1
are said to form a harmonic range; and dually, four concurrent lines
a, b, ¢, d such that {a,b; ¢,d} = —1 are said to form a harmonic
pencil. By Theorem 11, any transversal cuts the rays of a har-
‘monic pencil in the points of a harmonic range, and the rays
joining the points of a harmonic range to & common vertex form a
harmonic pencil.

ExERCISE. A figure made up of points and lines is constructed as follows:
4, B, 0, D are four points, no three of which are collinear, and they are
joined in pairs by six lines; these lines meet in three further points X, Y, Z,
which are also joined by lines. Show that the three pencxls of four lines which
occur in the figure are harmonie.

The figure just described is called a complete quadrangle. A, B,
C, D are the vertices; (4B, CD), (AC, BD), (AD, BC) are the pairs
of opposite sides; and X, Y, Z are the diagonal points or vertices
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of the diagonal triangle. The dua,l figure is called a complete quadri-
lateral (cf. p. 19).

THEOREM 15 (The Cross Axis Theorem). If P, Q describe homo-
graphic ranges on distinct lines a, b, then the point of intersection
 P,Q,.P,Q, of the cross joins of any two corresponding pairs (B, @,),
(Pys Q) lies on a fixed line.

Proof. Let a and b meet at O, and let P, @,.F, @, be the point 7'.
We have to show that the locus of 7' is a fixed hne and in order to
do this we take separately the cases in which the correspondence
between P and Q is and is not a perspectivity.

(i) Suppose the ranges (P), (@) are in perspective from a vertex V.

Since OV T is the diagonal triangle of the quadrangle P, F, @, @,,
the lines OT', OV are harmonic with respect to @, b. But OV, a, b
are all fixed lines, and therefore OT is also a fixed line. Thus T'
always lies on a fixed line through O.

(ii) Suppose the ranges (P), (@) are not in perspective. Then if
to O on a corresponds V on b, and to O on b corresponds U on a, -
U and V are both distinct from O.

Since (U, 0), (0,V), (B, @), (B, @) are all pairs of the given
homography,

{U: O; I)J,,Pz} = {0: V’ Qp Qz} = {V) 0; Q27 Ql})
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and therefore (U, V), (0,0), (P, Q,), (B, @,) are four pairs of a
homography. This homography, by Theorem 13, is a perspectivity,
and UV, P, Q,, P,Q, are therefore concurrent. Thus P, @, and
P, @, meet on the fixed line UV.

Remark. The line which contains all points of intersection of
Ppairs of cross joins of a homographic correspondence between two
ranges is called the cross axis of the correspondence. In the general
case, when the homography is not a perspectivity, this line is the
line joining the points of the two ranges which correspond, in each
direction, to the common point of the axes of the ranges.

The Cross Axis Theorem is a key theorem in plane projective
geometry, for it enables us actually to construct, by means of the
straight-edge, the homographic correspondence between two given
lines that is determined by three assigned pairs. Suppose B, B, B,
are three given points of alinea and @, @,, @, are three given points
of a second line b, and P is an arbitrary point of a. If we wish to
determine the point @ of b that corresponds to P in the unique
homography determined by the three pairs (P, @,), (P, @,),
(83, @,), we find the cross axis of the homography by constructing
the points P, @,.F, @, and P, Q;.F, Q,. Then @ may be obtained
by joining P, to the point where the cross axis is met by PQ,, and
marking where this join meets 5.

EXERCISES

1. Show how to construct the homography on a single line a that is
determined by three given pairs (P, @,), (P, @), (F, @3). [Hint. Project
Q,, @2 Q3 on to another line b.]

2. Show how to construct the homography on a that is determined by
(i) one of its united points, M, and two pairs (B, @), (B, @,), and (ii) its two
united points M, N and one pair (£, @,).

3. Deduce Pappus’s Theorem (Theorem 8) from Theorem 15.

4. State the dual of Theorem 15 (the Cross Vertex Theorem) and also the
dual of Pappus’s Theorem.
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§8. SPECIALIZATIONS OF TWO-DIMENSIONAL
PROJECTIVE GEOMETRY

We have already seen, in Chapter 111, how the affine line and the
euclidean line can be obtained from the projective line by suitable ‘
specialization, and we now wish to see how to carry out analogous
specializations in two dimensjons. Since additional complications
arise in this more general case, we shall go into rather more detail
here than in Chapter III.

All points in the projective plane S, are indistinguishable within
the system of projective geometry, and all lines are similarly
indistinguishable. If, therefore, we now allow certain points or
lines to have recognizable individuality, we shall obtain a geometri-
cal system with a more elaborate structure. By singling out special
points and lines suitably we can in fact construct abstract models
of affine and euclidean geometry, and this is our present purpose.
The idea may easily be translated into algebraic language. A point .
will possess recognizable individuality if its representation in every
allowable coordinate system is the same; and we may therefore
take special points into account by reducing the class (%) of
allowable representations to a subclass of itself—this subclass
being defined by the invariance of the representation of the points
concerned.

Affine geometry involves an invariant line (invariant as a whole,
though not necessarily point by point), while euclidean geometry
involves an invariant point-pair. This means thet the affine
specialization is linear, whereas the euclidean specialization is
quadratic; and although we can consider affine geometry over a
general field K, we encounter difficulties with euclidean geometry
if the ground field is not the real field. We require the ‘distance’
H(X,—X,)2+(¥;—Y,)?%} to be real, for example. This being so,
we shall presuppose throughout this section that the ground field
is the real field R.

Affine geometry of two dimensions

We begin, then, with the real projective plane S,(R), and its
allowable representations &, which are connected by the group
PGL(2; BR). If we select one particular representa.tion 2, which
we agree to regard as fixed for the tirme being, we may embed the
real plane in a complex plane by adjoining to it points which
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correspond to sets of coordinates (zy,#,,z,) which are essentially
complex—i.e. which cannot all be made real by multiplication
by a common complex factor. If we now change the representation
to Z’, by a real non-singular linear transformation, the coordinates
of the points are in general changed; but, since the coefficients
in the equations of transformation are real, the coordinates of the
original points are still real and the coordinates of the adjoined
points essentially complex. The distinction between the two
kinds of points is thus invariant over the group PGL(2; R), and
we may legitimately refer to the real projective plane with complex
points adjoined to it. We shall call the original points real or
actual and the adjoined points complex or ideal. The real pro-
jective plane, extended in this way by ideal complex points, will
be denoted by S,.

Our next step is to pass from S, to the real affine plane; and to
this end we single out a real line 5 of S,, to be called the line at
tnfinity. This line is to be removed from the plane, in the sense that
its points will be treated not as actual points of the plane but as
ideal points. We now have two kinds of ideal points, namely complex
points and points at infinity (both real and complex). In one sense
they do not form part of the affine plane, for every figure that we
consider as an actual figure in affine geometry consists wholly of
actual points; but in another sense they do form part of the plane,
and we often argue about actual and ideal points at the same time,
using the properties of ideal points in order to deduce properties
of actual points. The reader may recall the remarks about ideal
points made in Part I.

Having once introduced the line at infinity, we can easily define
various affine concepts. Thus two lines of the affine plane are said
to be parallel if and only if they meet in a point of <. Again, if 4
and B are two points which do not lie on 4, and if A B meets i at N,
then the harmonic conjugate of N with respect to 4 and B is called
the mid-point of the segment 4 B.

In order to handle affine geometry algebraically, we have to
characterize the line ¢ by an invariant equation, and we shall
suppose that this equation is z, = 0. Since the points of  are now
regarded as ideal points, no point with z, = 0 is actual, and this
means that we can represent the actual points of the affine plane
by pairs of non-homogeneous coordinates (X,, X,), where

X, = x)/x,, Xy = 2,/2,.
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The allowable representations %, of the affine plane are those
representations Z of S, in which the line ¢ has the equation 2, = 0;
and this leads at once to the following theorem.

THEOREM 16. If %, is any one allowable representation of the
affine plane, then the whole class (#,) of allowable representations
consists of all those representations which can be derived from %, by
applying a transformation of the form

X1 = b,y X 45, X0y,
X5 = by X140y X+,

where the coefficients are arbitrary real numbers, subject to the con-
dition |b.,| # 0.

Proof. As Theorem 20, Chapter III.

Remark. The set of all transformations of the type specified in
Theorem 16 is a group, the affine group for the plane. It is the sub-
group of PGL(2; R) which is picked out by the invariance of the
equation z, = 0.

Euclidean geometry of two dimensions

The euclidean plane is obtained from the (real) affine plane by
further specialization. Two conjugate complex points I, J on the
line at infinity ¢ are singled out as absolute points, and they are
required to be recognizable (either individually or as a pair). Since
these points are already ideal, the actual points of the euclidean

_plane are the same as the actual points of the affine plane, but we
can now distinguish additional relations between them.

The lines which join any point P to I and J are called the isotropic
lines through P. If P is real they are, of course, conjugate complex
lines. Two lines a and b are said to be perpendicular if they are
harmonic with respect to the isotropic lines through their point
of intersection.

Let a, b be any two lines, both distinct from ¢, and let f ,Jj' be the
isotropic lines through the point ab. Putting

m(a, b) = {a’b;j:j,},

we call m(a, b) the angle modulus of the ordered pair of lines (a, b).
It is, of course, presupposed that a definite order is assigned once
for all to I and J; otherwise the angle modulus can have either of
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two reciprocal values. The angle modulus has the following
properties:
(i) m(a,b).m(b,a) = 1;
(ii) if @ and b are perpendicular, m(a,b) = m(b,a) = —1, and
conversely;
(iii) if a, b, ¢ are concurrent, m(a,b).m(b,c) = m(a,c);
(iv) m(a,b) = 1 if and only if @ and b coincide.
If a, b and ¢, d are two pairs of lines such that
) m(a,b) = m(c,d),
we say that the angle between @ and b (in that order) is equal to

the angle between ¢ and d, and we write &B = c/g It will be noted
that we have defined equality of angle without first defining an
angular measure.

If, now, a and b are neither of them isotropic lines, and j, j* are
the isotropic lines through ab, there is a unique pair of lines z, ¥,
harmonic with respect to both the pairs a, b and j, j°, namely the
common pair of rays of the two involutions whose self-correspond-
ing rays are respectively @, b and j, j/. Then, since

{z,y;0,b} = {z,9;5.5} = —1,
z and y are the self-corresponding rays of the involution determined
by the two pairs (a,b) and (4,5'); and hence

{a,7;5,5} = {b,2; 5,5} = {2,b; 5,5}

~N A . ~ -\
Thus m(a,z) = m(z,b), or ax = zb; and similarly ay = yb. We
may therefore call z and y the bisectors of the angles between a
and b. :

By means of the angle modulus m(a,b) we can handle all the
properties of angles that interest us in the present book. If, how-
ever, we wish to have a formal counterpart of the familiar angular
measure of euclidean geometry, this can easily be introduced by
means of Laguerre’s formula. Let us adopt for the moment the
point of view of elementary coordinate geometry, working with a
pair of rectangular axes Oz, Oy. If a and b are two lines through
the origin we may write their equations as y = m,z and y = m,z,
~ where m; and m, are the gradients of the lines. Since the coordi-
nates of the circular points are (1, ¢, 0) (cf. p. 33) the equations
of the isotropic lines j and j° through O are y = iz and y = —z.
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We have, therefore, m(a,b) = {a,b;j,j'} = {m;,my; ¢, —i}; and
since the angle « between a and b is given by

tan o = (my—my)/(1+m;my)

we can express « in terms of the angle modulus. In this way we
obtain Laguerre’s formula

1 . o
o« = ﬁlog{a,b,‘y,j }

If, therefore, we wish to introduce angular measure into the
formal system, we need only include the further definition

@b = L b
=5 ogm(a,b).

In order to handle euclidean geometry algebraically, we must
assign invariant coordinates to I and J. It does not matter what
coordinates we choose, as long as we do not violate the condition
&, = 0; but in order that our algebra may agree with that familiar
from ordinary coordinate geometry we naturally choose the co-
ordinates (0,1,4) and (0,1, —%). This choice determines the class
(%) of allowable coordinate representations of the euclidean plane.

THEOREM 17. If Ry is any one allowable representation of the
euclidean plane, then the whole class (Zy) of allowable representations
consists of all those representations which can be derived from Ry by
applying a transformation of the form

X] = ¢(X,cosa+X,sina)+a,

X3 = o(—X,sina+ X, cosa)+b, ‘
where a, b, ¢, o are arbitrary real numbers, with 0 < « < 27 and
¢c>0.

Proof. Let (X,,X,) and (X3, X,) be non-homogeneous coordi-
nates in %5 and a second allowable representation #%. Then,

by Th 16 ,
y Lheorem 15, X3 = by X, +b, X0,
Xy = by X +bgy Xo+-5,
where b,;by0—b,5 by # O.
Since (0,1,7) and (0,1, —¢) are invariant homogeneous co-
ordinates, i by lby.itc,.0
1 bll' 1+b12.i+61.0’
and ——_z _ bm.l—}-bgz.(—z:)—}-ca.O;
1 by 14+-bye. (—9)+¢4.0
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ie. (b11—b39)i—(b13+bgy) = O,
and — (b1 —bap)i—(b1a+by) = 0.

Therefore by,—byy = b,,-+by, = 0, and the equations of trans-
formation reduce to

X =by X146y Xptcy,
X, = —by X; 40y Xp4-c5;

and these equations may be written in the form given in the
enunciation of the theorem. The values of @, b, ¢, « may be assigned
freely except that, if each transformation is to be obtained once
only, « must be confined to an interval of length 27 and ¢ taken
positively.

Remarks
(i) If we apply the transformation just obtained to the expression

p? = (X;— 1)+ (X,—T)?
we obtain the equation p'? = c??

The function |p| is called the distance between the points (X, X,)
and (Y;,Y;). It is not a euclidean invariant, but any ratio of dis-
tances is invariant. For this reason the euclidean plane, as we have
defined it, is sometimes referred to as the similarity euclidean plane.

(ii) If we require I and J to be recognizable only as a point-
pair, and not individually, the class of allowable representations
is correspondingly widened. We now have the improper euclidean
transformations

X; = ¢(X, cosa+X,sina)-+ta,
X; = —c(—X,sina+X,cosa)+b,

as well as the proper transformations with ¢ in the second
equation. :

(iii) If we start with a system of rectangular coordinates (X, X,)
in the plane, a transformation of the type given in the theorem
represents a rotation through an angle a, a magnification in the
ratio 1:c, a reflection in the axis of X, (for the improper trans-
formation only), and a change of origin to (—a, —b). Distinguish-
ing between I and J is thus equivalent to distinguishing right-
handed from left-handed axes. (Compare the remarks made above
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on the angle modulus.) ‘The constant ¢ corresponds to the arbitrari-
ness of the unit of length—there is no ‘natural’ unit of length in
euclidean geometry, although there is a natural unit of angle.

(iv) If we go farther, and fix the length of a given segment as
unit of length, the transformation from any allowable representa-
tion to any other is an orthogonal transformation, with ¢ =1
—or ¢ = =1 if improper transformations are permitted. We shall
not make any such restriction in our system.

(v) The reader will now see that the distinction between affine
and euclidean geometry does not fully reveal itself until we have
two dimensions at our disposal. Thus in one dimension there is no
distinction between the affine line and the similarity euclidean
line; and in one dimension the distance between two points is a
linear function of the coordinates, namely X —Y, whereas in two
dimensions it is an irrational expression

W& —1)+ (X~ 1)

Non-euclidean geometry of two dimensions

We mention non-euclidean geometry here for completeness
although, as we have not yet introduced conics, it is logically
out of place. We shall not take up the study of non-euclidean
geometry systematically in this book, but it is interesting to see
how it is related to projective geometry.

The absolute point-pair (I, J) may be looked upon as a degener-
ate conic envelope, and this leads us to ask what happens if we
assign a similar role to a proper conic envelope. If we do this we
obtain not euclidean geometry but non-euclidean geometry.

Let a proper conic Q in the real projective plane be singled out as
the absolute conic. Two lines which meet in a point of Q will then
be said to be parallel, and two lines that are conjugate for Q will
be said to be perpendicular. If A, B are two points, not lying on Q,
and if AB meets Q in M, N, a distance modulus of 4 and B is
defined as m(4, B) = {4, B; M, N}. Dually, if a, b are two lines,
not touching Q, and if the tangents to Q from ab are m, n, an angle
modulus of @ and b is defined as m(a,b) = {a,b; m,n}.

It will be seen from this that euclidean geometry may be looked
. upon as a degenerate case of non-euclidean geometry. The duality,
for example, which is so prominent a feature of projective geometry
may still be traced out in non-euclidean geometry, but in euclidean

geometry it no longer exists.
5304 H
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EXERCISES ON CHAPTER IV

[In these exercises, and throughout the rest of the book, we shall adopt the
convention that cyclic order is always to be assumed in the absence of any
explicit 'statement to the contrary. Thus, for example, the statement that
XYZ and X'Y’Z’ are triangles in perspective implies that (X, X’), (¥,Y"),
(Z, Z') are the pairs of vertices which correspond, and the statement that the
triangle X’Y’Z’ is inscribed in the triangle XY Z means that YZ, ZX, XY
pass respectively through X’, Y’, Z'.]

1. The coordinates of a general point are (2,¥,z) in a coordinate system
for which 4, B, C are the reference points and D is the unit point, and they
are (x’,%’,2’) in the system for which D, B, C are the reference points and 4
is the unit point. Find equations which express the ratios of 2", ', 2’ in terms
of z, y, 2.

Find also the equations of transformation from the first coordinate system
to a system in which 4, B, C, D have coordinates (—1,1,1), (1,—1,1),
(1,1, - 1), (1, 1, 1) respectively.

2. The equations of transformation from one allowable coordinate repre-
sentation to another are

a1y 12 = 8x+3y+2z: 3x+4y: 2xr4-22.

Find the three points whose coordinates are the same in both representations.

3. Show that the triangle X’Y’Z’ whose vertices are (1,p,p"), (¢’» 1, 9),
{r,7,1) is in perspective with the triangle of reference if and only if

pgr = p'er.

If XY Z is in perspective with X’Y’Z’ and with ¥Y’Z’X’, show that it is
also in perspective with Z’X’Y".

4. Triangles X’Y’Z’ and X"Y”Z" are respectively circumscribed to and
inscribed in a given triangle XY Z. If each of them is also in perspective with
XY Z, prove that they are in perspective with each other.

5. Two triangles XY Z and X’Y’Z’ are such that XX’, YY’, ZZ’ meet
YZ, ZX, XY in collinear points. Show that the three lines which join
X', Y’, Z’ to the intersections of pairs of corresponding sides of the triangles
are concurrent.

6. The line joining the points U, V, whose coordinates are (1,1, 1) and
(a, b, ¢), meets the sides YZ, ZX, XY of the triangle of reference in L, M, N,
and the harmonic conjugates of these points with respect to U, V are L', M’,
N’. Prove that XL’, YM’, ZN’ are concurrent.

7. What is the geometrical relationship between a point and its harmonic
polar line with respect to the triangle formed by a pair of rectangular axes
0X, OY and the line at infinity ?

8. The vertices of a triangle in the extended euclidean plane are an actual
point O and the two absolute points I, J. Show that the harmonic polar line
of any point A with respect to this triangle lies along the base of the equi-
lateral triangle whose apex is A and whose centre is O.

Deduce, or prove otherwise, that if XY Z is a given triangle in the pro-
jective plane, any general point P is one vertex of a unique triangle PQR
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of which each side is the harmonic polar of the opposite vertex with respect -
to XY Z.

9. Four points 4, B, C, D and four lines a, b, ¢, d in the plane are such that
the points b, ca, ab, ad, bd lie respectively on the lines AD, BD, CD, BC, CA.
Prove that cd lies on 4 B.

10. If three triangles are in perspective, two by two, with a common vertex
of perspective, prove that the three axes of perspective are concurrent.

State the dual of this result, and interpret it in the case when the common
axis of perspective is the line at infinity.

11. If (P) and (P’) are homographic ranges on two lines which meet in O,
prove that the cross axis of the ranges passes through O if and only if the
ranges are in perspective.

12. A homographic correspondence between two ranges (P) and (P’) on
the same line ! is determined by three pairs (U, U), (4,4"), (B, B’). Show
that there exists, on any other line m through U, an intermediate range
which is in perspective with (P) from a vertex X and with (P’) from a
vertex Y.

Show that XY meets ! in the second united point of the correspondence,
and that the correspondence is an elation if XY passes through U.

13. If L and I’ are two lines which meet in a point O, and a range (P) onl
is projected from two different vertices V;, V; into ranges (P,), (£;) on v,
show that a necessary and sufficient condition for the correspondence
between P, and F, to be an involution is that OV, and OV, should be harmom-
cally conjugate with respect to [ and /'.

14. Desargues’s Theorem for two triangles in perspective fails when one
of the triangles is replaced by a triad of concurrent lines. If A BC is a proper
triangle and @, b, ¢ are three lines which are concurrent in a point O, prove
that a, b, ¢ meet BC, CA4, AB in collinear points if and only if the pairs of
rays (a, 04), (b,0B), (¢, 00) are in involution. [Hins. Let a, b, ¢ meet
BC; CA, ABin L, M, N, and let AO meet BC in X. Then L, M, N are
collinear if and only if O(L,M,N,A)~ A(L,M,N,0); and the result
follows at once when we observe that

A(L,M,N,0)~ (L,C,B,X)~ O(L,C,B,A) X 0(4,B,C, L).]

15. If ABC is a proper triangle and 4’, B’, C’ are three points lying on &
line 1, prove that 4A4’, BB’, CC’ are concurrent if and only if / meets BC,
CA, AB in points U, V, W, such that (4’, U), (B, V), (C’, W) are pairs of
an involution.

Deduce the theorem on the concurrence of the altitudes of a triangle.

16. If a fixed line ! meets the sides of two triangles ABC and A’B'C’
in the triads of points L, M, N and L’, M’, N’, prove that the lines AL/,
BM'’, CN’ are concurrent if and only if the lines A’L, B’M, C'N are con-
current.

What does this theorem become when 1 is the line at infinity ?

17. A fixed line ! is met by the pairs of opposite sides of a quadrangle
ABCD in the pairs of points (L, L’), (M,M’), (N,N’). Prove that the
three pairs belong to an involution on /.
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18. If XY Z and X'Y’Z’ are two given triangles, prove that there exist in
general two solutions to the problem of constructing a triangle PQR which
is both inseribed in XY Z and circumscribed to X'Y’Z’.

Show also that if XY’ 2’ is itself circumscribed to XY Z the problem has an
infinity of solutions, each point of ¥ Z being the vertex P of a triangle PQR
which fulfils the required conditions.

19. XY Z is the triangle of reference, and X’Y’Z’ is another triangle whose
vertices have coordinates (x;,¥;,2;) (¢ = 1,2,3). If there exists only one
triangle which is inscribed in XY Z and circumscribed to X'Y’Z’, prove that

X+ Y3 Y3 +23 23— 2y Y25 Zy— 223 Zy 0y Xy — 22, X, 4, Yy +4X, Y, Z, = O,

where
X, = Ya23—Ys % Y, = 232 —2, %5, Zy = 2, Y3—23 Y.

20. A range (P) on & line /; is projected into a range (@) on a line I, from
a vertex V},, and (Q) is projetted into a range (R) on a line I, from a vertex
Vzs. The lines joining P and R to two further points ¥V, and V,, respectively
meet in . Show that the locus of S as P varies on [, is a line if and only if
Vi1 Vse meets I, and 7, respectively in points whose joins to ¥;, and V;4 meet
on l,.

If this condition is satisfied, and the locus of § is /;, describe the relation
of the quadrangle V;;V;3 V3, V,, to the quadrilateral I, 1,1, 1,.

21. ABCD is a square of side a and A’B’C’D’ is a similarly situated con-
centric square of side b. If a = (1++2)b, prove that any general point P
of A B is one vertex of & quadrangle PQRS such that P, @, R, S lie respec-
tively on AB, BC, CD, DA and PQ, QR, RS, SP pass respectively through
B,C,D A"

22. If A denotes the expression

X, % 1
X, Y, 1),
X, Y, 1

prove that A is a relative affine invariant, i.e. that any affine transformation
of the coordinates X, ¥ multiplies it by a constant which depends only
on the transformation.

Show that the affine transformations of determinant +1 form a group,
and that area, in the ordinary sense, is an absolute invariant for this group.

23. In a given allowable (projective) coordinate system, the absolute
points I, J have coordinates (0, 7, — 3) and (4, 5, — 5) respectively. Find the
modulus of the angle between the lines y+4z == 0 and 2¢—3y = 0.

Find also the equations of the bisectors of the angles between these lines,
and the moduli of the angles which the bisectors make with the line

y+4z = 0.
24, Show that the transformations of the form
X; = ¢(X,cosa+X,sina)+ta,
X; = +e(—X,sina+X;cosa)+b,
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are the only affine transformations which leave the distence function
(X,—Y,)*+ (X ,—Y,)? relatively invariant, i.e. which multiply it by the same
constant factor for all pairs of points (X, X,), (¥, Y,).

25. A real line ! lies in a real plane , and = is & homographic correspond-
ence between variable points P, P’ of I. If w has conjugate complex united
points, show that there are two possible choices for a point A of 7 such that
the pairs P, P’ are cut on ! by the arms of a variable angle, fixed in magni-
tude and sense, whose vertex is 4.



CHAPTER V
CONIC LOCI AND CONIC ENVELOPES

§1. ALGEBRAIC LocI AND ENVELOPES

In this chapter we begin a systematic study of the conic locus and
its dual figure the conic envelope. It is convenient to give, first of
all, general definitions of the concepts of algebraic locus and
algebraic envelope, of which conic locus and conic envelope are
particular cases.

DEFINITION. An algebraic curve or locus of order » in 8§, is the
totality of points whose coordinates in some assigned allowable
representation % satisfy a fixed homogeneous equation of the nth

degree: S(@o, @y, 25) = 0.

Dually, an algebraic envelope of class n in 8§, is the totality of
lines whose coordinates in some assigned allowable representation .
Z satisfy a fixed homogeneous equation of the nth degree:

é (%o, Uy, Uy) = O.

Since the change from one allowable representation to another
is equivalent to a non-singular homogeneous linear transformation
of coordinates, the order of a locus and the class of an envelope
are projective properties.

We have already seen, in Chapter IV, that a locus of order 1is a
line and an envelope of class 1 is a point.

THEOREM 1. A locus of order n meets a general line of the plane in
n points, distinct or cotncident. An envelope of class n has exactly n
lines, distinct or coincident, through a general point of the plane.

Proof. Consider a locus of order », whose equation is
f(x(): 1, "”z) = 0.

A general point of the line joining the fixed points represented by
y and z is given by y+-8z, and this point belongs to the locus if

and only if FWo+629, 1102, y,+-02,) = 0.

Since this is an equation of degree » in 8 there are exactly = points
of intersection. The only possible exception is when the equation
for 0 is an identity, and in this case the line forms part of the locus.
The second part of the theorem follows by duality.
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DEFINITION. The locus f(zg, #;, ,) = 0 is said to be irreducible
if the polynomisal f(z,, 2,, z,) is irreducible over the ground field K,
i.e. if it has no non-trivial factor with coefficients in K. An irredu--
cible envelope is defined dually.

§ 2. Conic Loci axp CoNic ENVELOPES

DEFINITION. An algebraic locus of the second order is called a
conic locus; and it is said to be proper or degenerate according as it
is or is not irreducible. Dually, an algebraic envelope of the second
class is called a conic envelope; and it is said to be proper or degener-
ate according as it is or is not irreducible.

There are three distinct kinds of conic locus:

(i) the proper conic locus, given by an irreducible quadratic
equation;
(ii) the pair of distinct lines, glven by a quadratic equation with
distinet linear factors;
(iii) the repeated line, given by a quadratic equation whose left-
hand side is the square of a linear form.

Dually, there are three distinct kinds of conic envelope: (i) the
proper conic envelope; (ii) the pair of distinct points; (iii) the
repeated point.

A conic locus is represented, in terms of any chosen representa-
tion Z of S, by an equation of the second degree in z,, z,, x,, and for
different purposes it is convenient to write the general equation
in different forms.

(i) Using suffix notation, we may write it as

S_i zaikxxk""o

im0 k=

It is no restriction to impose the symmetry condition a,; = a,,
(¢, £ = 0,1,2) and we shall always suppose this done; the coeffi-
cients in the quadratic form on the left-hand side are then uniquely
determined by the form itself. The quadratic form will always be
denoted by 8 or, if we need to be more explicit, by 8(z,, z,,z,) or
8(z;).

(ii) Using matrix notation, we may write the same equation as
S(x) = xTAx = 0.
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In this equation, A is the symmetric 3 X 3 matrix (a,,) and x stands
as usual for the column-vector with components (xo, 4, %,).

(iii) In solving specific problems it is often an advantage to
revert to the more elementary usage, in which the coordinates are
denoted by z, y, 2. Then the equation of the conic may be written as

8(x,y,2) = ax®+by*+cz*+2fyz+ 2922+ 2hay = 0,
_or, in Cayley’s abridged notation,
(@,b,c,f,9,h{x,y,2)? = 0.
The general quadratic form in line-coordinates will regularly be

denoted by X, and we have the following ways of writing the
equation of the general conic envelope:

2 2
(@) S(uy) = «;go kzoAikuiuk =0,
with 4, = A, (i,k = 0,1,2);
(id) I(u) = u’%Yu = 0;
(i) Z(u,v,w) = Au?4 Bv*+ Cw?+-2Fvw+2Gwu-+2Huy = 0,
or (4,B,C,F,Q,Hju,v,w)? = 0.

The equation of a glven conic locus, referred to any allowable
representation whatever, is necessarily of the form

iz % aikxixk = O,

but if the representation is specially related to the conic the equa-
tion may be correspondingly simplified. We have a number of
standard equations in projective geometry, arising from special
ways of choosing the triangle of reference, which may be compared
with the standard cartesian equations used in the elementary
coordinate geometry of conics.
Suppose, for instance, three points of a

Xo given conic locus S are chosen as vertices
of the triangle of reference. Then, since
(1,0,0) is a point of S, we have gy = 0. -
Similarly a,;, = a,, = 0, and the equation
reduces to

12 %3 Tp+ 8o Ty Tg+ 8oy Zo %y = 0.

This is the general equation of & conic which circumscribes the

triangle of reference. We shall come across other special forms of
the equation of the conic later on (see Chapter VI, § 1).

Xt X-z\



(105)

§3. Tue FrEEDOM OF THE CONIC

The general equation S = 0 contains six coefficients. If we
require a conic S to pass through a given point this imposes one
linear condition upon the coefficients; and if five independent
conditions of this kind are imposed, the ratios of the coefficients
are uniquely determined. This suggests the following fundamental
theorem:

There is a unique conic locus that contains five general points; and
dually, there is a unigque conic envelope that contains five general lines.

When, in enunciations such as this, we refer to a ‘general’ point
or a ‘general’ figure, we mean one that is chosen so as to avoid any
special configurations to which the theorem does not apply. In
any particular case the reader can discover what the postulated
generality amounts to by looking into the details of the algebra
used to prove the theorem and seeing in what circumstances the
argument breaks down. In the present instance it is sufficient to
exclude cases in which two of the points coincide or four of them are
collinear. There is an additional complication, however, in that
the linear condition imposed upon the a,, by making the conic pass
through a fixed point is not the most general linear condition on
these six quantities, and it is not quite clear that even if the five
points are ‘general’ the five linear conditions will be linearly inde-
pendent. In view of the basic character of the theorem, therefore,
we shall restate it more precisely and give a rigorous proof of it in
the new form.

THEOREM 2. There 18 a unique conic locus that contains five given
distinct points, no four of which are collinear. Dually, there 1s a
unique conic envelope that contains five given distinct lines, no four
of which are concurrent.

Proof. Since no four of the points are collinear, we may select
three which are the vertices of a proper triangle, and take this
triangle as triangle of reference. Then the equation of any conic
through the three points is of the form

Q12 %y Tyt-Cog Ty Ty+8oy To %y = 0,

and we have to show that requiring the conic to pass through two
further points, which do not both lie on the same side of the triangle
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of reference, determines the ratios a;,:a,:@,, uniquely. Let the
points be (y,,y,,¥,) and (2,2;,2,). Then

12 Y1Y2t20Y2: Yo+ 00 Yoy = 0
and 1221 29002529+ By 292, = 0.

If the point y does not lie on a side of the triangle of reference,
these conditions on a,,, @,, a, are certainly independent. If,
however, y, = 0, then y, 7 0 and y, 7 0, and the first equation
becomes a,y,y, = 0, which gives simply a,, = 0. The second
equation cannot also reduce to a,, = 0, since z, # 0 by hypothesis.
Thus the ratios a,,:a,,:a,, are uniquely determined in every case,
and this proves the theorem.

The conclusion of Theorem 2 can be expressed in slightly differ-
ent terms by saying that both the conic locus and the conic envelope
are geometrical entities with five degrees of freedom. We also say
sometimes that the plane contains co5 conic loci and 0o® conic
envelopes. ’

Since a conic locus is an entity with five degrees of freedom we
can specify it, if we so choose, by means of a set of five non-homo-
geneous coordinates or a set of six homogeneous coordinates.
The simplest way of doing this is to take as coordinates of the
conic (as we have already taken as coordinates of a line) the
coefficients in its equation. -In terms of a fixed allowable representa-
tion Z of the plane, every conic locus is then represented by its six
coordinates (@gy, @1y, Gag) Tz, g, Tgy).

The number of degrees of freedom of a conic locus in S, is the
same as the number of degrees of freedom of a point in S;, and we
may therefore represent the system of all conics in 8, by the system
of all points in §;. If we choose arbitrary allowable representations
of 8, and S;, the equations xy = agy, ¥y = ay,, x5 = Ay, 23 = ay,,
Zy = @y, T5 = ag, define a one-one mapping of the conics in S,
on the points of S;. :

§4. GENERAL PROPERTIES OF THE ConNic Locus

We come now to a number of fundamental properties of the conie
locus which serve as a foundation for the whole theory of the conie.
We shall at first consider only the ‘general’ case, which in fact
means the case of a proper conic locus. It will become clear in due
course in what way the assumption of generality comes in, and



V,§4 GENERAL PROPERTIES OF CONIC LOCUS 107

which of the results remain valid, either as they stand or with
suitable modification, when the conic breaks up.

Consider ‘a fixed conic locus S, whose equation in the chosen
representation % is

S(x) = ; g %% =0 (G = i’c)'

If @, R are two points of the plane, represented by y, z respectively,
a variable point of the line QR is given by y--0z, and this point lies

on 8 if and only if S(y+62) = 0 1)
This equation, which is known as the Joachimsthal equation for

@ and R, is quadratic in 6; and its roots 0, and 6, are the parameters
of the points 4, and A, in which @R is met by the conic.

Equation (1) may be written:
; ; @ie(Ys+02,) (Y4 02) = 0,
ie

21: ; Y Y0 21: g @u(Yi 2+ 2:Yp)+ 02 ; g @22 = 0,

ie. 8,,+268,,+628,, = 0,
where 8, = 8(y), 8, = 8(z),
and s, —

%(gg @Y%t ; Z aikykzi)
%(; g CirYi%et ; g @i Ys zk)
= ; ; Qi Y%

sice Qp; = Q.

S,, and §,, are simply the quadratic form 8, evaluated for the
vectors y and z respectively, while S, is an intermediate expression.
S, is & symmetrical bilinear form in y and z which reduces to S,,
when z is put equal to y, and these characteristics define it uniquely.
It is called the polarized form of the quadratic form §,,. We shall

“have much to do with polarized forms in this and subsequent
chapters.
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8§, has a neat expression in terms of partial derivatives, which
may be obtained as follows:

6.75 6x Z Z Fin Ti T
= Z Z az‘k(xia“if‘}‘xk 6(%:)

= g g aik(xi 8kp+xk Sip)

and hence 6 S,y

= 28,,.
We have, therefore,
15, 98, _1 a8,
8y = 3 —3% =3 ?/k—a—z;-

DEFINITION. @ and R are said to be conjugate points with respect
to the conic locus § if they are harmonic with respect to the points
4, and -4, in which QR meets 3. v

Since A4, is represented by y+-6,z, 4, and 4, are harmonically
separated by @ and R if and only if 6,6, = 0. But 6§, and 6, are
the roots of the quadratic equation

8,,+268,,4- 638, = 0,
and so we have as the condition for conjugacy
8, = 0.

Since this equation is linear in 2, 2,, 2,, the locus of a variable
point that is conjugate to a fixed point @ is a line. This line is called
the polar line or polar of @, and its equation may be written

5=32 5%

v __ Q.
%,
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The conic locus § thus defines a transformation of the points of
the plane into the lines of the plane, which is given algebraically by

or, in matrix notation,

x->u = Ax.
This transformation is known as the polarity defined by S. If
|@,,| # 0 (which means, as we shall show on p. 112, that S is a
proper conic locus) each line is the polar of a unique point.

THEOREM 3. If the polar of @ passes through R, then the polar of R
passes through Q.

Proof. The condition for conjugacy, §,, = 0, is symmetrical in ‘
y and z.

Exercise. The derivation of the Joachimsthal equation (1) is only
significant when Q and R are distinct points. What becomes of the con-
dition for conjugacy when Q and R coincide?

If @, is a general point of the plane, all points conjugate to @,
with respect to S lie on the polar line ¢, of @,. If, now, @, is any
point of g,, the polar ¢, of @, passes through @, (Theorem 3). If ¢,
meets ¢, in Q,, then @, is conjugate to both @, and @,, and the
three points Q,, @,, @; are such that the polar of each is the line
joining the other two. Three such points are said to form a self-
polar triangle for 8. Since @, has two degrees of freedom in the
plane and @, then has one degree of freedom on the line ¢,, the conic
locus 8 has c0? self-polar triangles.

THEOREM 4. If A, B, C, D are four poinis of the conic locus S,
the diagonal triangle of the quadrangle A BCD is self-polar for S.

Proof. Let XY Z be the diagonal triangle, and let YZ meet A B,
CD in L, M respectively. Then, by Theorem 9 of Chapter 1V,

Z{X,Y; A, B} = —
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and hence {X,L; A,B}={X,M;D,C} = —1.

The pairs of points X, L and X, M are both conjugate for S, and
the polar of X is therefore LM, i.e. YZ. The theorem now follows
by symmetry.

' DEFINITION: A line ¢ is said to be a tangent to the conic locus S
at a point @ of 8 if the two points in which ¢ meets S both coincide
with Q.

THEOREM 5. If Q 8 a point of the conic locus S, there is one and
only one tangent to S at Q, namely the polar of Q.

Proof. Let I be a line through @, and let R be any point of [
other than ¢. The points in which [ is met by S are then given by
the Joachimsthal equation

8,,+268,,+628,, = 0. ‘
But, since @ lies on §, §,, = 0, and one root of the equation is
zero. The roots are therefore coincident if and only if the second
root is also zero, i.e. if §,, = 0. Thus/is a tangent at @ if and only
if the coordinates (2, 2,, 2;) of every point on it satisfy the equation
§,, = 0; in other words, there is a unique tangent to S at @, and its
equation is §, = 0.

When the points 4,, 4, in which @R meets 8 both coincide
with @, the parameters of the pairs (4,,4,) and (Q, R) are (0, 0)
and (0,0), and these satisfy the relation

(01+02)(03+04) = 2(0,05+0,6,).
Thus the two pairs of points are harmoniec, and R is conjugate to @

with respect to S. It follows from this that the tangent at @ is the
polar of @, which completes the proof of the theorem.

THEOREM 6. Through any point Q of the plane there pass exactly
two tangents (distinct or coincident) to a given conic locus S, and their
points of contact are the points in which S is met by the polar of Q.

Proof. The tangent to S at a point 4 is the polar of 4, and it
therefore passes through @ if and only if A is conjugate to @, i.e.
if 4 is one of the two points in which 8 is met by the polar of Q.

THEOREM 7. The two tangents from @ to S coincide if and only if
Q lies on S. , ,
Proof. The tangents coincide if and only if the polar of @ meets

8 in coincident points, at 4 say. But then the polar of @ is the
tangent at 4, i.e. the polar of 4, and Q therefore coincides with 4.
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THEOREM 8. If @ has the coordinate vector y, the joint equation of
the pair of tangents from @ to S is
S8;—88,, = 0.
Proof. Let R, with coordinate vector z, be any point on either
of the tangents from . Then QR meets 8 in coincident points,
and therefore 82,8, 8, = 0.

Replacing z by a variable vector x, we at once have the equation
of the pair of tangents in the form required.

The matrix and rank of a conic locus
If a conic locus § is represented by the equation

> Z %%, =0 (ag; = ay),
?

the matrix A = (a,,) is called the matrix of S. When once the
coordinate representation # has been chosen, this matrix is deter-
mined apart from an arbitrary scalar factor. If the representation
is changed from # to %’ by the substitution x = Px’, |[P| £ 0,
the matrix of § is changed in a simple manner. For the equation
of the conic may be written both as

xTAXx = 0
and as (Px)TA(Px’') = 0,
ie. X'TPTAPX' = 0,

and the new matrix A’ is therefore PTAP.

This matrix is in general different from A, but.A and A’ have
some essential features in common. Since [A’| = |P|2.|A|, |A]|
and |A’| are both zero or both non-zero. The determinant [A] is
called the discriminant of S in the original representation. Its
vanishing is a projective property of the conic locus, whose geo-
metrical interpretation will be obtained shortly.

Not only is the vanishing or non-vanishing of |A| an invariant
property, but the rank p[A] of the matrix A is an invariant number.,
For, since A’ = PTAP, every r-rowed minor of |A’| is a linear
combination of r-rowed minors of [A|, and hence p[A’] < p[A].
But A = P-17A'P-!, and therefore by the same argument

p[A] < p[A].

It follows that p[A’] = p[A]. The number p[A] is called the rank
of the conic locus S.
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THEOREM 9. If the rank of the conic locus S is greater than 1, then
the totality of tangents of S s a conic envelope . Ifthe equation of S is
.LZ g Qi Xy Xp = O,
then the equation of X, referred to the same representation &, is
. ;%Amu@'“k= 0,
where A, is the cofactor of a,, in the determinant |a,|.
Proof. Let the line u be a tangent to 8, with point of contact y.
Then, since the polar of y is u,
;aikyk =My (1=0,1,2)
and further, since y lies on u,
; UpYp = 0.
Eliminating y,, %1, ¥,, A from these four linear equations, we have
Qo g1 Bz Uy | =0,
Qo G Gy U
Bgo Qg Ggy Uy
Uy U; Uy O
and this equation may be expressed in the required form
Agu;u = 0.
33 duu

If p[A] = 1, all the A4, are zero, and there is no condition on u.
If p[A] = 2 or 3, the coordinates u,, u,, %, of every tangent to S
satisfy the equation of a certain conit envelope X; and, by the
reversibility of the algebra, every line of this envelope is a tangent
to 8.
~ THEOREM 10. A necessary and sufficient condition for the comic
locus 8 to be degenerate i3 the vanishing of its discriminant |a,,|.
Proof. (i) Let S consist of two lines, distinct or coincident.
Then there is at least one point y that is common to the two lines,
and this point is conjugate to every point of the plane. Thus

QY = 0
z': % ik i Yk
identically in z,, x;, z,, and therefore

% @Y =10 (#=0,1,2).
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Since y,, ¥;, ¥, cannot all be zero, it follows that
.| = 0.
(i) Now suppose, conversely, that |a,,| = 0. Then there exists
a point y such that

1o
By ga,kyk—() (t=0,1,2)

2y,
1 aS
and hence S, W — (.
1/11 2 63/1,
. If, now, z is any point of S, we ha.ve
S, =0,
1 8, _
and also 8, = SO %4 rm = 0.

Thus, for all values of 6,

S(y+0z) = 8,1 268,,4-6%S,, = 0.
This means that if z is any point of S every point of the line joining
y to z belongs to S; and S is accordingly degenerate.

ExerciseE. Show that if Sis a pair of distinct lines its rank is 2, and ifitis
a repeated line its rank is 1.

§5. GENERAL PROPERTIES OF THE CONICc ENVELOPE

The properties of the conic envelope follow at once by duality
from the properties of the conic locus, and we shall merely sum-
marize the main results.

Let Z be a fixed conic envelope, whose equation in a given co-
ordinate representation # is

S(u) = 2 ;Aﬂ,uiuk =0 (A =A4dy),

and let ¢, » be two lines of the plane, represented by the coordinate
vectors v, w. A variable line through the point ¢r is given by
v+0w, and it belongs to the envelope X if and only if

Z(v4+-6w) = 0.
This equation is called the Joachimsthal equation for ¢ and r,
and its roots 6,, 8, are the parameters of the lines a,, a, through
gr which belong to . It may be written

Bt 20%,,+ 022, =

where T, is the polarized form of the quadratic form Z,,.

5304 1
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The lines ¢ and 7 are said to be conjugate lines with respect to =
if they are harmonically separated by the two lines of the envelope
which pass through their point of intersection; and the algebraic
condition for conjugacy is =, = 0.

The envelope of & variable line which is conjugate to g is the

point given by
Z‘U = il' ui%—v = Oo
2 Zi 3v£

This point is called the pole of ¢ with respect to Z.
The conic envelope X determines in this way a transformation
of lines into points, the associated polarity, with equations

’
xi - Z Aikuk.

The polarity is non-singular if |4,,] # 9, and when this is so it has
a well-defined inverse. Every point is then the pole of a unique line
of the plane.

The dual of the tangent to a locus at one of its points is the point
of contact of a line of an envelope. We accordingly say that &
point 7' is a point of the conic envelope X if the two lines of X
which pass through it are coincident. If the repeated line is ¢, we
say that 7 is the point of contact of the line g with the envelope.

THEOREM 11. If q is a line of a conic envelope X, there is one and
only one point of contact of q, namely the pole of q.

THEOREM 12. On any line g of the plane there lie two points of a
given conic envelope T, and they are the points of contact of the lines
of X which pass through the pole of q. ‘ :

THEOREM 13. The two points of Z which lie on q coincide if and
only if q 13 a line of Z.

If the equation of a conic envelope X in a given representation
Ri .
1 > g Agugu, =0 (Ay; = Ay),

the matrix % = (4,,) is called the matrix of . The determinant
|4,,] is called the discriminant of X, and the rank p[%] the rank
of Z. The rank of a conic envelope is a projective invariant, and
its value determines the nature of the envelope. X is a proper conic
envelope, a pair of distinct points, or a repeated point according as
the value of p[¥] is 3, 2, or 1.
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THEOREM 14. If the rank of X js greater than 1, the totality of
points of T is a conic locus S. If the equation of X is

; ; Aikui’uk = 0,
then the equation of S, referred to the same representation X, is
; g @y 2% = 0,

where a,; 18 the cofactor of A, in the determinant [A,,].

§6. THE CoNIC AS A SELF-DUAL FIGURE

We have seen above that with every conic locus of rank 2 or 3
there is associated a conic envelope, namely the assemblage of its
tangents, and with every conic envelope of rank 2 or 3 is associated
a conic locus, namely the assemblage of its points. We can now go
farther than this and show that a proper conic locus and its asso-
ciated envelope are, in a natural sense, one and the same figure,
80 that a proper conic is a self-dual system of points and lines.
In the case of degenerate conics, the self-duality is only partial.
We now establish the fundamental connexion between the proper
conic locus and its envelope.

THEOREM 15. If 8 is a proper conic locus and X is the associated
envelope, then I 18 a proper conic envelope. Furthermore, the conic
locus associated with the envelope X is the original locus S.

Proof. Let the equation of the proper conic locus S be
S = A% % = 0.
| ; ‘Z’ ki Ty
Then the associated envelope is represented by
= A =0,
iz z 1k Ug U
where A4, is the cofactor of a in |a,,|. But then

|4y = @, [% # 0,
and T is therefore proper. The locus associated with the conic
envelope is now given by the equation

S= T X2y, = 0,
;;aikik

where a,; is the cofactor of 4, in |4,,]. But, by a known theorem
on determinants, @, = |a,,|a;, and therefore S = |a,|S. Since
|@,,] # 0, the equations S = 0 and S = O represent the same
locus; and this completes the proof of the theorem.
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Theorem 15 establishes the fact that proper conic loci and proper
conic envelopes go together in pairs, being reciprocally associated
with each other. The next theorem will show that a proper conic
locus S and its associated envelope T determine the same (non-
singular) polarity of the plane. ‘

THEOREM 16. If S is a proper conic locus and Z is the associated
conic envelope, then a line p is the polar of a point P with respect to
S if and only if P is the pole of p with respect to X.

Proof. If the equation of § is

xTAx =0 (|A|#0),
the equation of X may be written as
‘ u’A-lu = 0.
If, now, P and p have coordinate vectors x and u, the condition
for p to be the polar of P for S is :

u = Ax,
and the condition for P to be the pole of p for T is
X = A-luy;

and these are the same condition.

From now on we shall regard a locus and an envelope such as S
and X above as forming a single figure, the proper conic s = (8,X).
This conic has both a point-equation

and a line-equation .
2 = ; % Aikuiuk = 0,
and each of these equations determines the other. The conic gives

rise to a polarity of the plane, a (1,1) correspondence between
points and lines given by

U; = ;a’ikxk (¢=0,1,2),

and a point and its polar line are incident if and only if the line is a
tangent to s and the point is its point of contact.

Alternatively, we may begin with a polarity—i.e. a non-singular
point-line correspondence

Uy = %aikxk (t=0,1,2)

whose matrix (a,,) is symmetric—and use it to define a conic s.
The points of s are the points which lie on their polar lines, and the
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lines of s are the lines which pass through their poles. This approach
to the projective geometry of the conic has been adopted in some
standard treatments of the subject. We shall leave it to the reader
to show in detail that such a definition of the proper conic is
equivalent to our definition.

§7. DEGENERATE CoNICS

When we try to extend Theorems 15 and 16 to cover degenerate
as well as proper conics we find that the situation becomes more
complicated, and only partial generalizations are possible.

THEOREM 17. If 8 is a pair of distinct lines, the associated envelope
= is the point of intersection of the lines, taken twice. If S is a repeated
line, the associated envelope is indeterminate.

Dually, if T is a pair of distinct points, the associated locus S is the
line joining the points, taken twice. If T is a repeated point, the
associated locus is indeterminate.

Proof. Choose the coordinate representa,tion X so that the
equation of S assumes the form x;z, = 0 or 23 = 0, as the case
may be. It is then found, on Workmg out the cofactors, that in the
first case the equation of X is u3 = 0 and in the second case every
coefficient in the equation of X vanishes.

COROLLARY. A conic locus of rank 2 determines a conic envelope
of rank 1, but a conic locus of rank 1 determines no conic envelope at all.

We have now discovered two kinds of degenerate conic, which are
dual to each other:
(@) a locus consisting of a pair of distinct lines, with a repeated
point as the associated envelope;
(b) an envelope consisting of a pair of distinct points, with a
repeated line as the associated locus.

@) (b
In the case of a degenerate conic of type (a) the point-rank
(rank of S) is 2, while the line-rank is 1. The point-equation deter-
mines the line-equation, but not vice versa. The conic gives rise
to a linear transformation of points into lines

Uy = Zaikxk (1‘ - 0’ 132)’
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but this transformation is singular (|a,,] = 0) and has no inverse.
Thus the degenerate conic does not define a proper polarity
of the plane. '
These results may be dualized for the degenerate conic of type (b).
There is yet a third type (c) of degenerate conic—the repeated
line and repeated point—which may be regarded as a specialization
of both (a) and (b).

()

Both the point-rank and the line-rank of such a conic are 1, and
neither of the two equations § = 0 and £ = 0 determines the
other.

EXERCISES : ‘

(i) If s is a degenerate conic of type (a), consisting of two distinct lines
meeting in a point V, show that every point P of the plane, other than V,
. has a unique polar, namely the harmonic conjugate of VP with respect to
the lines of s, and that the polar of V is indeterminate. Show further that
every line of the plane which does not pass through V has V for its pole,
and that the pole of a line through ¥ can be taken to be any point of the
harmonic conjugate of this line with respect to the lines of s.

Dualize these results for a degenerate conic of type (b), and examine also
the third type (c) of degenerate conic from this point of view.

(ii) If the equations

= ;%:Aiku‘uk = 0, S = izga{kz,;xk =Q

represent respectively a conic envelope of rank not less than 2 and a pair of
lines, show that a necessary and sufficient condition for the lines of S’ to be

conjugate for X is 0= ; E Agaly = 0.

§8. AFFINE GEOMETRY OF THE CONIC

When we turn to the study of the affine and euclidean properties
of the conicin the real plane we need to limit the choice of coordinate
representation to the ‘cartesian’ coordinate systems, in which the
line at infinity has an invariable equation. For simplicity, we shall
now denote the point-coordinates and line-coordinates in the
chosen system by (z,y,2) and (%, v,w), and we shall suppose that
the equation of the line at infinity ¢ is z = 0.
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Consider, first of all, a proper conic s, whose point-equation is
S = (a,b,¢c.f,9,h{x,y,2)? =0,
all the coefficients being real numbers.

The curve cuts the line at infinity in two points H, K, its points
at infinity, and their coordinates are given by

ax?4-2hxy4-by?: = 0 = 2.

H, K are real and distinct, coincident, or conjugate complex
according as h2—ab is greater than, equal to, or less than zero; and
in the three cases s is said to be a hyperbola, a parabola, or an ellipse
respectively.

The line at infinity has a pole C with respect to s, and this point
is called the centre of s. C is conjugate to every point of ¢ and hence,
provided it is a finite point, it is the mid-point of every chord that
passes through it. We may accordingly refer to it as a centre of
symmetry of s. Since both the ellipse and the hyperbola have
centres of symmetry, these conics are known as central conics. In
the case of the parabola, for which H and K coincide, the line at
infinity touches the curve, and its pole C is a point at infinity.
The parabola therefore has no finite centre.

The coordinates of the pole of the line (0,0,1) with respect to
the general conic are (G, F, C), and these are therefore the coordi-
nates of the centre. If the conic is a parabola, C = ab—h? = 0,
and the centre of the general parabola is the point at infinity
(G, F,0).

The tangents to s at H and K are called the asymptotes of s, and
they are the lines CH, CK. The hyperbola has real asymptotes,
whereas the asymptotes of the ellipse are two conjugate complex
lines. The asymptotes of the parabola both coincide with the line
at infinity.

ExERCISE. Show that the equation of the pair of asymptotes of s may
be written in each of the following forms:

(i) S(z,vy,2)8(G, F,C)~{S(z,y,2; G, F,C)}* = 0,
where S(z,y,2; G, F,C) is a polarized form;

i) a(x—3) yor(x-G)(r- L) 45(v-F)" = o;
(iii) S+Xzt = 0, where A is given a suitable value.

Any line through the centre of s is called a diameter of s. The
diameters form a pencil of lines; and since the polars of the points
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(1,0,0) and (0, 1, 0) are both diameters, the equation of a general
diameter may be written

o8 .08

@ty ="

The diameters of a parabola are all parallel.
If two diameters of s are conjugate lines with respect to s, they
are called conjugate diameters.

THEOREM 18. Every diameter of a central conic s bisects all chords
parallel to the conjugate diameter.

Proof. Let CD, CD’ be a pair of conjugate diameters, meeting
1in D, D', and let 4 B be a chord parallel to CD’. Then AB passes
through D’. Now D’ is conjugate to C, since it lies on the polar of C,
and also conjugate to D, since g '

(D,D'; H,K} = O{D, D'; H,K} = —1;
and the polar of D’ is therefore CD. If CD meets ABin E, E is

conjugate to D', and therefore {E,D’; A, B} = —1. Thus E is
the mid-point of 4 B.

Exercise. Show that the mid-points of all chords of a parabola which are
parallel to a fixed line lie on a diameter of the parabola.

If OD, OD’ are conjugate diameters of a central conic s, and if we
take C, D, D' as vertices of the triangle of reference in an allowable
representation %, (i.e. if we take CD, CD’ as oblique cartesian
axes) the equation of the conic may be written non-homogeneously

in the form aX24bY? = 1.

For since the origin is a centre of symmetry the equation can con-
tain no linear terms, and since each axis bisects all chords parallel
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to the other axis there can be no term in XY. The signs of @ and b
are the same or different according as s is an ellipse or a hyperbola.
ExErcisE. Show that if s is a parabola, and we take as axes of reference

a diameter and the tangent to & at the unique finite point where it is met
by the diameter, the equation of s assumes the form Y2 = 4aX.

§9. EvcLIDEAN GEOMETRY OF THE CoONIC

We now restrict the class of allowable representations still
farther, by admitting only those affine representations %, in which
the absolute points 7 and J (which lie on the line ¢) have the
coordinates (1,7,0) and (1, —%,0) respectively. The allowable
euclidean representations %5 which are thus obtained may for
convenience be called rectangular cartesian coordinate systems,
and we may use the ordinary language of coordinate geometry in
order to describe our present abstract system of euclidean geometry.

It is often desirable to treat the absolute point-pair as a de-
generate conic Q, for which the envelope is the pair of points and
the locus is the line at infinity taken twwe The line-equation of
the absolute conic is then

Q= y240v2 = 0.

Since two lines are perpendicular if they are harmonic with respect
to the isotropic lines through their point of intersection, perpen-
dicular lines are simply lines that are conjugate with respect to Q.
Let us now consider a central conic s. In general s has a unique
pair of perpendicular conjugate diameters, namely the common
pair of the involution of conjugate diameters (defined by its self-
corresponding rays CH, CK) and the orthogonal involution at C
(defined by its self-corresponding rays CI, CJ). These special
diameters are called the principal azes or simply the azes of s.
The axes of s may be taken as axes of reference for a rectangular
cartesian coordinate system, and s then has an equation of the form
aX?4bY?2 = 1. (1)
The axes are uniquely defined except in the one case in which
the two involutions at C are identical. In this case any two con-
jugate diameters of s are perpendicular, so that the axes of s are
indeterminate, and we then say that s is a circle. Since the line-
equation corresponding to the point-equation (1) is
Ve

U2
aTE=b
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the conic represented by (1) is a circle if and only if the conditions

AN
o T =0
and U, Uyt V¥, = 0

are equivalent; i.e. if @ = b. Thus the equation of every circle,

referred to two perpendicular diameters as axes, is of the form
X24Y2 = k2.

The right-hand side must be positive if the circle is to have real

points.

Exercise. Prove that (i) all the points of a circle are equidistant from the
centre; (ii) a central conic is a circle if and only if it passes through the
absolute points.

The conic s represented by the equation
aX?4bY2 =1

- is a circle when the coefficients are equal. When these coefficients
are equal but opposite in sign we get another special conic with
interesting properties, the rectangular hyperbola.

Exgrcise. Show that (i) a hyperbola is rectangular if and only if its
asymptotes are perpendicular; (ii) the general equation
(a,b,¢,f,9,hfz,y,2)* = 0,

referred to an arbitrary rectangular cartesian frame of reference % y, repre-
sents a rectangular hyperbola if and only if a+b = 0.

THEOREM 19. The locus of a variable point from which two per-
pendicular tangents may be drawn to a fixed central conic s is a circle
concentric with s.

Proof. The theorem may be derived from equation (1) above as
in elementary coordinate geometry, but we prefer to give the
following proof because it yields a useful form of the equation of
the circle.

Let the equation of s, in some representation %5, be
S = (a,b,¢,f,9,h{x,y,2)? = 0.
The equation of the pair of tangents from (z’,%’,2’) is then
S(z,y,2)8(x",y’,2')—{S(z,y,2; ', y’,2")}> = 0.

The condition for the lines represented by this equation to be
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perpendicular is that the sum of the coefficients of 22 and y® is
zero, and this gives
(@+0)8(z',y', 2’ ) —(ax'+-hy'+g2'— (ha' + by’ +f2')? = 0.
Introducing the cofactors 4, B, C, F, G, H, we may write this equa-
tion as C(z'?4-y'?)—2G2'x' —2Fy'z’ + (44 B)2'2 = 0,
and the locus of the point (z',y’,2’) is therefore the circle whose
non-homogeneous equation is
C(X24-Y%)—2GX—2FY+A+B = 0.
The circle just obtained is known as the director circle of s.

DEFINITION. A point F is called a focus of a conic s if the isotropic
lines FI and FJ are tangents to s. The polar of a focus of s is
called the directriz associated with that focus.

THEOREM 20. A central conic has four foci, two of which are real
and two conjugate complex. The real foci lie on one axis and the
complex foci on the other.

Proof. There are two tangents to s from I and two from J; and,
since I, J are conjugate complex points and s has a real equation,
the first two lines are the complex conjugates of the second two.
The two pairs of lines meet in four points other than I and J
—two real points F, F’ and two conjugate complex points G, G,
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By the dual of Theorem 4, the diagonal trilateral of the quadri-
lateral formed by the four tangents is self-polar for s. Thus, in the
figure on p. 123, the triangle CXY is self-polar for s. It follows that
C is the pole of 1J,i.e. the centre of s, and CX, CY are conjugate
diameters. Further, by the harmonic properties of the quadrangle
1JG'Q,{X,Y;1,J} = —1,and CX,CY are therefore perpendicular.
These two lines are consequently the axes of s; and this completes
the proof.

The properties of the parabola are unsymmetrical compared
with those of the central conics, in consequence of the fact that the
parabola touches the line at infinity. The relation between the
parabola and the central conics is grasped most easily if we regard
the parabola as a limiting case of a variable central conic, in which
the points H and K coincide. Insaying this, we are not introducing
limiting processes into our formal system; for when once we have
arrived at properties of the parabola by a continuity argument
we can interpret them as algebraic specializations of the more
general properties of the central conics. In the limit, then, as H
and K tend to coincidence:

(i) C coincides with H and K;

(ii) one real focus F remains finite, the other real focus F’
coincides with C, and the complex foci @, G’ coincide re-
spectively with I, J;

(iii) the axis CX remains finite, but CY coincides with . Thus
the parabola has only one axis, and only one (real) focus F,
which lies on this axis. The point at infinity on the axis is
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the centre O, and the axis cuts the curve in one finite point
V, which is called the vertex.
ExERCISE. Prove that the axis of the parabola and the tangent at the
vertex are perpendicular.
If we take the axis and the tangent at the vertex as axes of
reference, the equation of the parabola becomes
Y2 = 4aX.
From this equation we may deduce, by familiar reasoning, many
standard properties of the parabola. Among these is the useful
result that perpendicular tangents to the parabola-always meet on
the directrix. This is useful because it enables us easily to locate a
parabola, in relation to the axes of reference, when its equation is
given. If the equation is (a,b,¢,f,9,h{x,y,2)> =0, with C = 0,
the equation of the directrix is, by Theorem 19,
20X +4+2FY—A—B=0.

The focus is then the pole of this line (2@,2F, —A— B), and its
coordinates may at once be found.

"EXERCISES ON CHAPTER V

1. Express each of the following quadratic forms as XTAX, where A is a

symmetric matrix:

8y = g} tal+ai— 22, 2, — 22, T+ 2%, %y 5

Sy = 4aj+6a}— 223z, 2, — T2, To+ 1420 24 5

Sy = a4 33— b — T, ¢y — 132, 7+ 8%y 2.
Show that the ranks of the three forms are 1, 2, 3 respectively.

Exhibit the locus S; = 0 as a repeated line and the locus §; = 0 as a
line-pair; and find a new allowable coordinate representation in which
the conic S; = 0 has the equation y3+32+y3 = 0.

2. Find the equation of the conic locus determined by the five points
(1,0,1), (2,0,1), (0,1,1), (0,2,1), (A,A, 1), and the equation of the conic
envelope determined by the five lines with the same coordinates. Discuss
the cases, arising for particular values of A, in which the locus is a line-pair
or the envelope a point-pair. Draw rough sketches to illustrate your results.

3. Find the combined equation of the pair of tangents from the point
(1, 1, 1) to the conic x2+ 2y2+ 22+ y2+ 3zz+ 2y = 0, and obtain the separate
equations of the tangents and the coordinates of their points of contact.
Give also the dual interpretation of the algebra in terms of line-coordinates.

4. Show that, for all values of A, the conic whose line-equation is

202 — (2A+ A2 )2 —wk -+ 2 wu = 0

passes through the point (1,1,1) and through three further fixed points.
Find the coordinates of these points.



126 CONIC LOCI AND CONIC ENVELOPES v

5. With the usual notation, prove that the coordinate vectors of (2) the
polars of the vertices of the triangle of reference and (b) the poles of the
sides of this triangle for the general conic are the rows of the matrices

a h g A H @
(hbf)and(HBF)
g f ¢ G F C
respectively.
Show that the point-equation of the conic can be written as
(4,B,C,F,G,H}z',y’,2')? = 0,
where &' = ax+-hy+gz, ¥ = hx+by+fz, 2 = gx+fy+ca.

6. Prove that the lines (%, v, w) and (v’,’,w’) intersect in a point of the
conic (a,b,c¢,f, g, h}z,y,2)? = 0 if and only if

a h g u wi=0.
B b f v v .
g f ¢ w v

v v w 0 O

w v w 0 0

7. Given three linearly independent linear forms L; = w;z+v,y+w;z
(i = 1,2,3), prove that any conic locus for which the lines L; = 0 form a
self-polar triangle has an equation of the form A, L3+A, L3+4+A; L2 = 0,
and, conversely, that any equation of this form (in which none of the A, is
zero) represents a proper conic for which the lines form a self-polar triangle.

8. Find the equation of the conic envelope for which the points (1,0, 1),
(0,1,1), (1,1,1) form a self-polar triangle and which touches the lines
z=2zand y = 2z. '

9. If k is a proper conic and XY Z is a given triangle, show that there
exist, in general, two triangles, inscribed in XY Z, which are self-polar for k.

Find a condition that must be satisfied by the coefficients in the line-
equation of k (with XY Z as triangle of reference) in order that there shall

_ exist only one such triangle..

10. The lines joining a point P to the vertices of a triangle XY Z meet
YZ, ZX, XY in L, M, N; and the harmonic conjugates of P with respect
to the pairs of points (X, L), (¥, M), (Z,N) are U, V, W. Show that the
triangle UVW is circumscribed to XY Z, and that there exists a conic
which touches VW, WU, UV at X, Y, Z respectively.

11. A conic touches the sides YZ, ZX, XY of a triangle XYZ at L, M, N.
Show that the three points MN.YZ, NL.ZX, LM .XY lie on a line, If
the lines joining X, Y, Z to any point of this line meet MN, NL, LM at
L’, M’, N’, prove that the triangle L’M’N" is self-polar for the conic.

12. The line joining the points @ and R, whose coordinate vectors are
y and z, meets the conic S = 0in 4, and 4,. If {4,,4,; @, R} = k, prove
that ‘ 4582, = (1-+k)S,y Sa-

If the point @ and the constant k are fixed, show that the locus of R is a conic
which touches the given conic at the points of contact of the tangents from Q.

Give a euclidean interpretation of this result when the points of contact

are the absolute points I, J.
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13. Obtain the projective generalization of the theorem that a circle is
transformed by radial expansion about its centre into a concentric circle.
14. If k is the conic envelope whose equation is

(4,B,C,F,G,Hju,v,w)® = 0,
show that the equation
Hz24 Cxy—Gyz— Fzx = 0

represents the locus of a point whose joins to the reference points X and ¥
are conjugate lines for k. Under what conditions does this conic break up
into a pair of lines?

Give a euclidean interpretation of your results in the case when X, Y
are the absolute points I, J.

15. Find the centre, asymptotes, and principal axes of the hyperbola
whose equation in rectangular cartesian coordinates is

2X2—13XY 4 15Y%45X—11Y 47 = 0.

16. Find the coordinates of the centre of the conic whose rectangular
cartesian equation is X2®4+4AXY 44Y2—2\X+4Y—3 = 0, and find the
equation of the locus of the centre as A varies. Discuss the nature of the
conic for all values of A.

17. If T = 0Ois the equation of a line-pair, show that 7' can be written as &
homogeneous quadratic expression in two of the linear forms 0T /oz, 0T /oy,
oT [oz. ,

If 8§ = 0is the equation of a conic in homogeneous cartesian coordinates,
find a homogeneous quadratic equation in 9.8/9x and 5/0y which represents
the asymptotes of the conic. '

18. Show that the chord of the conic aX?+b¥? = 1 whose mid-point is .
(X, Y,) is given by the cartesian equation aX X, +bYY, = aX3+bY3. Obtain
a similar result for the conic (a,b,¢,f,¢,h,§X,Y,1)? = 0.

19. Show that the chords which join any point of a conic to the ends of
a diameter are parallel to conjugate diameters of the conic. Give the modi-
fied form of this theorem appropriate to the case when the conic is a parabola.

20. If the coordinates are rectangular cartesian, show that the line-
equation of any conic for which the origin O is one focus is of the form

A(ut+0?)+2FPvw+2Guwu+ Cuw? = 0;

and find the equation of the directrix of this conic which corresponds to the
focus O.

Obtain also, for the same conic, the equation of the locus of the foot of
the perpendicular from O on to a variable tangent (the auxiliary circle of
the conic). Discuss the case when the conic is a parabola (C = 0) showing
that the locus in question is then the tangent at the vertex.

21. Obtain the equation of the line at infinity in trilinear coordinates
and also in areal coordinates.

If the lengths of the sides of the triangle of reference for trilinear co-
ordinates are a, b, ¢, and the angles of the triangle are A, B, C, show that the
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equation of the circumecircle of the triangle is ayz-+bzr+cxy = 0. Deduce
that the equation of the point-pair (I, J) in trilinear coordinates is

Q = w2412 4-w?—2vwecos A — 2wucos B—2uvcos C = 0,

and obtain the corresponding equation in areal coordinates.

22. XY Z is the triangle of reference for a system of areal coordinates, and
a conic k touches XY, XZ at Y, Z respectively. If the line uz+vy+wz = 0
is an asymptote of k, prove that 2vw = wu+wuv; and show that the equation
of the other asymptote is 2z/(v+w)+y/v+2/w = 0. Show that the asymp-
totes of all conics such as k envelop a parabola which touches the sides of the
triangle of reference, and that the point of contact of the parabola with YZ
is the mid-point of Y Z.

23. If the absolute points I, J are given, in terms of a general system of
projective coordinates, by the equations

@yt 2 = 0 = prigy+rz,
find the condition for the lines (u,v,w) and (u’,v’,w’) to be perpendicular.
If & rectangular hyperbola passes through the mid-points of the sides of a

triangle 4 BC and meets the sides again in P, @, R, prove that AP, BQ, CR
are concurrent in a point of the circumcircle of the triangle.



CHAPTER VI
FURTHER PROPERTIES OF CONICS

Ix Chapter V we laid the foundations for a systematic treatment
of the projective geometry of the conic, and showed also how the
affine and euclidean properties of conics find a natural place in the
scheme. In this chapter we shall develop the theory in greater
detail, and it will be part of our purpose to prove a number of well-
known geometrical properties of conics, such as, for example,
Pascal’s Theorem.

The reader should by this time be fully conversant with the
relationship between the different geometries of the projective
hierarchy, and he should be able from time to time to change his
point of view without losing sxght of the logical structure of the
system as a whole. Our principal object of study, he will under-
stand, is projective geometry over the complex field; but by con-
sidering only real points as actual and properly complex points
as ideal, and by suitably restricting the class of allowable coordi-
nate representations, we can treat affine or euclidean space as a
specialization of complex projective spacé. Up to the present we
have been careful to maintain a clear separation between the
different kinds of space, but from now on we shall allow ourselves

‘greater freedom, dealing for the most part with projective space,
but permitting digressions into more special spaces whenever these
seem appropriate or illuminating.

Let us turn back again now to the complex plane, i.e. to a pro-
jective space S, over the field K of complex numbers.

§1. SpeciaL Forums oF THE EQuaTtioN OF A CoNIC

We saw, on p. 104, how the equation of a conic may be put in &
simple form by taking an inscribed triangle as triangle of reference.
There are several standard ways in which the representation of the
conic may be simplified by special choice of the frame of reference,
and it will be convenient to collect these together at this point.

Case 1: when the triangle of reference is an inscribed triangle.

The point-equation of the conic, as we have seen, takes the form

@y Ty Tyt Ty Loty To %y = 0.
5304 4
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The corresponding line-equation, found by evaluating the various
cofactors, is
afy u3-+adoui+af, u— 200 Goy Uy up— 206, @15y Uy~
—20,5 AypUgu; = 0.
Case 2: when the triangle of reference is a circumscribed triangle.

Case 2 is dual to Case 1, and the equations are therefore of the
forms

Abyaf+ ARy 23+ A3, 23— 2459 Aoy 2, 2y — 24 6y A1y 74—
, —24,, Ay 702, = 0,
and Ay uy Uyt Agguy ug+Agy ugu, = 0.
Case 3: when the triangle of reference is self-polar.
The point-equation is easily found to be

2 2 _
Goo Tg+1y 23+ 25 = O,
and the corresponding line-equation is
2 2 2
A1y Qgp Uyt Gop oo U1+ Ao By U3 = 0.
If ayy, ayy, ay, are all non-zero, the latter equation may be written

% g
@11 Qg .

The familiar equation aX2+4-b6Y2 = 11is of this type, and we have
already seen directly that the corresponding triangle of reference
is self-polar.

Case 4: when the triangle of re-
Xo ference consists of two tangents and
their chord of contact.
The point-equation reduces to the
% Xi form \
2} = ka,z,,
and the corresponding line-equation is
kuf = 4u,u,. (Note the factor 4.)

Special instances of this are the equation of the parabola in the
form Y2 = 4aX and the equation XY = ¢? of the hyperbola re-
ferred to its asymptotes as cartesian axes.

Case 5: The canonical equation.

Suppose that in addition to choosing the triangle of reference
as in Case 4 we also choose some point of the conic as unit point.
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Then & = 1, and the point-equation assumes the canonical form

22 = 2,7,

This form gives rise to a most important parametric representa-
tion of the conic locus. The equation may be written

%) %o
2y @
and hence if z,/z, = 0 then z,/r, = 02. Thus

. . — f2-0-
Zy: %1%y = 62:0:1.

This is the canonical parametric representation of the proper conic,
and it is especially easy to handle since it involves only polynomials
in the parameter—indeed the simplest possible polynomials that
can be linearly independent. The reader may compare the repre-
sentations (a2, 2at) for the parabola and (ct, ¢/t) for the rectangular
hyperbola. The real importance of the canonical representation
retides, however, not so much in its ease of manipulation as in its
theoretical significance. This will become clear very shortly; but
before taking up this question we shall obtain one or two useful
algebraic results.

Let (6,), (6,) be two distinct pomts of the conic. Then the
equation of the chord joining them is

Ty T Ty| =0,
62 6, 1
63 6, 1

ie. zo—(0,+0,)x,+6,0,x, = 0, since §,—80, = 0.
Letting 6, tend to 6,, we obtain the equation of the tangent at
(8y) in th.e form 2,—26,2,+ 032, = 0.

This equation is obtained here by a limiting process, but we may
now verify at once that the line represented by it does in fact meet
the conic in the point (6,) taken twice.

In the canonical parametric representation, the coordinates of a
general point of the conic are proportional to quadratic polynomials
in the parameter 6, and these polynomials are chosen as simply as
possible—namely as 62, 6, and 1. If, however, we were to take a
curve represented by general quadratic polynomials in the para-
meter, we should still obtain only a conic.
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#y = @102 +ay, 0+ay,

. x2 = azo 02+a21 9—|—tt22

be parametric equations of a curve c, the three polynomials being
linearly independent. Then |a,,] # 0, and we may solve the three
equations for the ratios 2:0:1, obtaining the result

62:0:1 = (Agg@o+A10%1+Az0%s): (Ao To+A 1y %1+ A2, 7p):
H(Aog %o+ A1y + Ay 7,).
Since |4,,| = |a,|? # 0, the three linear forms on the right are

linearly independent, and may be taken as new coordinates
Zy, 21, 2. The curve ¢ tlien has the parametric representation

Xy xyixg = 62:0:1.
The canonical representation (62,6, 1) of the proper conic is a
proper parametric representation of the curve, in the sense that it

sets up a (1,1) correspondence between the points of the curve
and the values of the parameter. A representation such as
Xy %y, = Pri2:1,

for example, would not satisfy this requirement, since there would
be two values of ¢ corresponding to each point. When a curve
admits of a proper parametric representation by polynomials with
coefficients in the ground field K, it is said to be rational; and it
has the property that its points can be put into (1, 1) correspon-
dence with the points of a line by means of polynomials (or, if the
coordinates are non-homogeneous, by means of rational functions).
The proper conic is therefore a rational curve.

§2. Tae ProPER CONIC AS A ONE-DIMENSIONAL
PrOJECTIVE DoMAIN

We return in this section to the theoretical significance of the
canonical parameter . As we shall now see, a proper conic locus
a} = z,, has the structure of a one-dimensional projective domain
8,, and 0 is an allowable parameter for this domain. In order to
show this, we need to consider certain homographic correspondences
that are associated with the conic.

THEOREM 1. The pencils which project the points of a proper
conic 8 from any two fixed points of s are homographically related.
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Proof. Take the fixed points as X, and X, in a canonical repre-
sentation of s, so that § = o0 at X, and 6 = 0-at X,. Let P be a
general point (62,6, 1) of s. :

The equations of X, P and X, P are respectively

‘ z;—0z, =0 and x,—0r, =0,
- and the two lines therefore describe homographic pencils as 6
varies.

THEOREM 2 (Chasles’s Theorem). If P,, F,, Py, P, are four points
of a proper conic 8, and V is any fifth point of s, then the cross ratio
V{P, By; P,, P} is the same for all positions of V.

Proof. Theorem 2 is an immediate consequence of Theorem 1.

DEFINITION. The cross ratio V{P,, P;; B, P} is called the cross
ratio of the two pairs of points (P, B,) and (B, Fy) on the conic,
and it is denoted by {P,, Ps; F;, Py}.

Since 6 is a projective parameter for the pencil Xo(P), we have

(P, By Py, P} = Xo{Py By B, P} = {61,053 62,0,

. where 6, is the parameter of P; (i = 1,2,3,4). Thus the cross ratio
. of any four points of s, taken in a definite order, is equal to the cross
ratio of their parameters.

THEOREM 3. Any three distinct points Xo, X,, E of s define a unique
canonical representation (62,0, 1) in which they have the parameters
0, 0, 1 respectively.

- Proof. If X, is the pole of X,X,, the four points X, X;, X,,
E define a unique representation Z of the plane, and in this repre-
sentation the equation of s has the canonical form 2} = x,,.
We thus obtain a parametric representation (62, 6, 1) satisfying the
stated conditions.

COROLLARY 1. If 8 1s the parameler of a variable point P of s, in
the representation just defined, then 0 = {E, P; X, X,} on s.

For {E, P; Xy, X,} = {1,6; 0,0} = 6.

COROLLARY 2. If 8 is represented parametrically by equations
xo N xl : xa ‘

= (o 02+ gy 0+gg) : (31002401, 0401,): (a0 62+ay, 0+0ay),
where |a,,| # 0, and if P; has parameter 8; (i =1,2,3,4) then
{B,, By; Py, Py} = {0;,05; 05,04}



134 FURTHER PROPERTIES OF CONICS VL §2

For, as has been shown on p. 132, § is a canonical parameter in a
suitably chosen representation. .

THEOREM 4. The projective geometry of S, induces a subordinate
one-dvmensional projective geometry on every proper conic locus s.

Proof. Let X,, X,, E be three chosen points of s. These points
define a canonical representation of s; i.e. a representation of the
points of s in terms of a single non-homogeneous parameter 6 or a
pair of homogeneous parameters (A, u) with A/u = 6. Since

0 = {E, P; X, X,}

on s, the assignment of the values of the parameter is invariant over
any change of the underlying allowable representation % of S,,
and it therefore forms part of the projective geometry of S,. We
have only to show, then, that the class of canonical representations
of s is the full class of allowable representations of a one-dimensional
projective domain.

Suppose a second canonical representation is defined by the
points Xg, X5, E’. Then, in this representation,

0" = {E', P; Xo, X3} = {0z 0; 0x;,0x,};

and ¢’ is therefore related to 8 by a bilinear transformation. This
transformation must be non-singular, since 8’ is variable with 6.

Now suppose, conversely, that a new parameter 6’ is defined
algebraically by the transformation

, 0 '
o= oj;g («8—By # 0).

Then there are three points X, X;, £ whose new parameters 6’
are respectively oo, 0, 1; and, since cross ratio is invariant over non-
singular bilinear transformation,

{E', P; Xo, X5} = {0, 0p; Ox;, 0x;}
= {0k 0p; bx;, Ox,}
= {1,0p; 0,0}
= Op.

Therefore 6’ is the parameter in the canonical representation
defined by X;, X3, E’. This completes the proof of the theorem.
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It will be observed that our definition of cross ratio on the conic
is related to the canonical parameter 6 in such a way that the cross
ratio we have defined is the cross ratio that occurs in the subordinate
one-dimensional geometry just referred to.

The results which have been obtained for the proper conic locus
on the preceding pages may all be dualized, and we have the
following theorems for the proper conic envelope.

THEOREM 5. The ranges which are intercepted by the lines of a
proper conic 8 on any two fixed lines of 8 are homographically related.

THEOREM 6. If p,, pa, Ps, P, are four lines of the proper conic s,
and v i3 any fifth line of s, then the cross ratio v{p,, ps; Ps, s} 18 the
same for all positions of v.

DEFINITION. The cross ratio v{p,, p,; ps, 0} is called the cross
ratio of the two pairs of lines (p,, p,) and (p, »,) on the conic, and

it is denoted by {p,, P;; D3, Pa}-

THEOREM 7. Any three distinct lines z,, x,, e of 8 define a unique
canonical representation uy:u,:u, = 62:0:1 of the conic envelope,
in which they have the parameters oo, 0, 1 respectively.

THEOREM 8. The projective geometry of S, induces a subordinate
one-dimensional projective geomelry on every proper conic envelope 8.

Every proper conic s gives rise to two subordinate one-dimen-
sional geometries, one for the locus and one for the envelope. As
might be expected, these two geometries are linked together;
and we now establish the linkage by means of the three theorems
which follow.

THEOREM 9. If (P) 18 a range of points and p 18 the polar of P with
respect to 8, then, as P varies, p generates a pencil of lines, and the
range (P) and the pencil (p) are homographically related. Dually,
if (p) 18 a pencil of lines and P is the pole of p with respect to s, then,
as p varies, P generates a range of points, and the pencil (p) and the
range (P) are homographically related.

Proof. Let P, P, have coordinate vectors x®, x®. Then, by the
linearity of the condition for conjugacy of two points, if the polars
of P, and P, are represented by u® and u®®, the polar of the general
-point P, given by xM--0x®, is represented by uW4-0u®; and this is
sufficient to prove the theorem.
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THEOREM 10. If P is a variable point of s and p is the tangent at P,
then there is a homographic correspondence (P) 7 (p) between the locus
and the envelope of s.
b

Q
. v v N
Proof. Take a fixed point ¥ of s, and let v be the tangent at V.
If p meets v in the variable point @, then
(P) R V(P)
~ (@) (Theorem 9)
R~ (p).

THEOREM 11. The cross ratio of any four poinis of s, taken in a
definite order, is equal to the cross ratio of the four tangents at these
points, taken in the same order.

Theorem 11 is an immediate consequence of Theorem 10. Taken
in conjunction with Theorem 2 and Theorem 6, it gives a more
complete form of Chasles’s Theorem.

§ 3. PROJECTIVE GENERATION OF THE CoNIC

THEOREM 12 (Steiner’s Theorem). The locus of the point of inter-
section P of corresponding rays of two homographically related pencils
A(P) and B(P) is a conic s which passes through A and B.

If the homography is not a perspectivity, s is a proper conic, and
1ts tangent at A i3 the ray through A which corresponds to the ray
BA through B.

If the homography s a perspectivity, 8 i3 a degenerate conic, made
up of the axis of perspective and the line AB.

(X X C

(Xo) ¢ (Xz.)

A O
Prdof. (i) Suppose the pencils are not in perspective. Then AB
* does not correspond to BA,and the ray through B which corresponds
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to AB through 4 and the ray through A which corresponds to
BA through B meet in a point C' which does not lie on AB. We
may therefore take A BC as triangle of reference. The equations
of a general pair of corresponding rays may then be written as

2,—0z, =0 and z,—0r, =0,
and, since (0, 0) and (0c0,00) are corresponding pairs of parameters,
the relation between 8 and ¢’ is of the form 6’ = k. Eliminating
0 and 6’ between the three equations just given, we have the
equation of the locus of P in the form

kx} = z,,. ;

The locus is therefore a proper conic through 4 and B, which
touches AC at 4 and BC at B.

(i) Suppose the pencils are in perspective. Then AB is a self-
corresponding ray, and every other pair of corresponding rays meet:
on the axis of perspective. Since every point of AB is a point
of intersection of the pair (4B, BA), the complete locus consists
of the axis of perspective and the line 4 B.

EXERCISES

(i) Verify the second part of Theorem 12 algebraically, by taking 4B
as one side of the triangle of reference and a pair of corresponding rays as
the other two sides. .

(ii) Deduce Theorem 19 of Chapter V from Theorem 12 by taking I and J
as A and B.

(iii) A variable triangle is drawn so that its sides YZ, ZX, XY pass
respectively through three fixed points 4, B, C. If Y and Z lie on fixed
lines, show that the locus of X is, in general, a conic. When does this locus
reduce effectively to a line ?

THEOREM 13 (Dual of Theorem 12). The envelope of the line p
which joins corresponding points of two homographically related
ranges a(p) and b(p) 18 a conic 8 which touches a and b.

If the homography is not a perspectivity, s i3 a proper conic, and its
point of contact with a 18 the point of a which corresponds to the point
ba of b.

If the homography s a perspectivity, 8 is a degenerate conic, made
up (as an envelope) of the vertex of perspective and the point ab.

§4. HoMoarAPHIC CORRESPONDENCES ON A CONIC

The existence of a one-dimensional projective geometry on every
proper conic locus and conic envelope makes possible an immediate
application to the conic of all the results obtained in Chapter III.
In particular, we have a theory of homographic correspondences
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on the conic. In this section we shall deal only with the conic locus,
leaving to the reader the formulation of the dual properties of the
conic envelope.

The one-dimensional projective geometry on a conic locus 8 is,
of course, identical (or at least isomorphic) with the one-dimen-
sional geometry of 8}, and if we were considering the two systems
in isolation there would be little point in stating the same results
over again. The situation is quite different, however, when we
think of the conic or the projective line as embedded in the pro-
jective plane S,, with its geometry subordinate to the two-dimen-
sional geometry of §,. The projective properties of the submanifold
are bound up with the projective properties of the whole plane,
and this connexion gives them increased significance. We have
already seen that there are interesting incidence constructions
involving homographies on the projective line, and we shall soon
see that there are constructions of a similar nature for homo-
graphies on the conic. In many cases the latter constructions turn
out to be simpler than the former, so that, in a sense, projective
geometry on a conic (in the projective plane) is simpler than
projective geometry on a line.

Involutions on a conic

The above remarks are illustrated in a striking manner by the
following construction for the general involution on & conic.

THEOREM 14. If s is a proper conic and V is a point which does
not lie on s, the lines of the pencil whose vertex is V cut an involution
on 8. Conversely, every tnvolution on 8 is generated by chords which
pass through a fixed point.

Proof. Take a canonical representation of s, and consider a
general pair of points P, P’, with parameters 6, 6.

The condition for PP’ to pass through a fixed point V(«y, oy, o),
which does not lie on s, is

200" —a, (046 ) g =0 (B—oyay # 0);
and the condition for (P, P’) to be a pair of a fixed involution
may be written
afd’' +-b(6+6')+d = 0 (ad—b2 £ 0).

These conditions are of exactly the same form, and there is there-
fore a (1, 1) correspondence between points of concurrence ¥V and
involutions 7.
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Remarks

(i) The point V is called the verfex of the involution r. The united
points of = are the points of contact of the tangents from V to s, i.e.
the points in which s is met by the polar of V.

(ii) It follows at once from Theorem 14 that two involutions on s
have a unique common pair, the pair of points in which s is cut by
the line joining their vertices. Thus the second part of Theorem 16
of Chapter III is trivial for involutions on a conic. This illustrates
the way in which homographies on a conic are often simpler to
deal with than homographies on a line.

COROLLARY 1. Two chords of s are conjugate if and only if they
meet 8 in harmonic pairs of points.

Proof. Let AB and CD be conjugate chords of s. Then the pole
of AB lies on CD, and therefore (C, D) is a pair of the involution
whose united points are 4 and B. Hence {4, B; C,D} = —1 ons.
The converse follows by reversing the argument.

COROLLARY 2. Two tnvolutions on s commute if and only if their
vertices are conjugate points.

Proof. Let 7; (i = 1,2) be an involution, with united points
M;, N; and vertex V.

Then, by Theorem 18 of Chapter III, 7,7, = 7,7, if and only if
{My, N;; M,, N} = —1, i.e. if and only if M, N, and M, N, are con-
jugate lines. Since M, N, and M, N, are the polars of ¥; and ¥,
thisis equivalent to the condition that ¥; and ¥, are conjugate points.

COROLLARY 3. If 1, 7,, 74 are three involutions on s, related in the
manner described in the corollary to Theorem 18 of Chapter III—
1.. 80 that the product of any two of them, in either order, is the third—
then the triangle formed by their vertices is self-polar for s.

COROLLARY 4. If A BC s a triangle, inscribed in a proper conic s,
then any line through the pole of BC meets AB and AC in points
conjugate with respect to s.
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Proof. Let a line through A’, the pole of BC, meet AB, AC in
U, V respectively and sin X, Y. Since the line is conjugate to BC,
‘ {B,C; X,Y}= —1lons,
and therefore
{U,V;X,Y}=4{U,V;X,Y}={B,C; X,Y} = —1L.
U and V are thus conjugate points.

ExERcISE. Interpret Corollary 4 as a euclidean theorem by taking B
and C as absolute points I and J.

From the general theorems that have now been proved many
standard properties of conics may be deduced. In order toillustrate
the method we shall establish the following well-known property
of the parabola: T'angents to a parabola, drawn at the ends of a focal
chord, meet at right angles on the directriz.

_—C

Let k be the given parabola, with focus F and directrix f, and let
Sfmeet kin D and D’. Let PQ be a focal chord, and let the tangents
at P and @ meet in 7. Then since P passes through F, the pole
of f, PQ and f are conjugate lines; and f therefore passes through
the pole of PQ, i.e. T. Thus the tangents at P and ¢ meet on the
directrix f.

Now let the polars of all points be denoted, as usual, by the
corresponding small letters, and let the points in which p and ¢ are
met by ¢ be denoted by P’ and @'. Then, since P@ and DD’ are
conjugatelines, {P, Q; D, D’} = —1onk (Theorem 14, Corollary 1).
It follows that {p,q; d,d’} = —1 on k (Theorem 11); and hence,
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taking the section by the tangent ¢, {P’, Q’; I,J} = —1. We have,
therefore, T{P’,Q’; I,J} = —1, and the tangents TP’ and T'¢’
are accordingly at right angles.

The Cross Axis Theorem for the conic

THEOREM 15. If w is a homography on 8, the point of intersection
P, P,. P, P of a variable pair of cross joins lies on a fixed line, namely
the line joining the united points, distinct or coincident, of w.

Proof. (i) Suppose = has distinct united points M and N. If
we take these as X, and X, in a canonical representation of s, the
equation of @ becomes 6’ = kf. The lines joining the pairs (6,, k0,)
and (,, k0,) are then given by

xo— (0, +kbp)x, + k6, 0,2, = 0
and 2o—(0,+k0,)x, +k0, 052, = 0.
Subtracting the first of these equations from the second, we have
(6,—0)(1—k)z, = 0;

and the point of intersection of the cross joins thus lies on the line
2, = 0,ie. MN.

(ii) Suppose = has coincident united points M. If M is taken as
X, in a canonical representation of s, the equation of = becomes

0 = 0+a.
The lines joining the pairs (6,6,+a) and (6,,6,4-«) are then
givenby (6, 40,4a)z,+6,(6p4a)ry — O
and #o— (0, + 05+ )2, +-05(6, + )z, = 0.
Subtracting, we have  «(f,—0,)z, = 0;

and the point of intersection of the cross joins thus lies on the line
zy = 0, i.e. the tangent at M.

Remark. In view of the results just obtained, the line joining
the united points of = is called the cross axis of .

COROLLARY. If (4,A4') s a fixed pair of corresponding points of
w and (P, P’) is a variable corresponding pair, then the pencils
A(P’) and A'(P) are in perspective, with the cross axis of w as axis of
perspective.
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Some incidence constructions

Like the Cross Axis Theorem (Theorem 15) of Chapter IV, the
theorem that we have just proved gives rise to a number of interest-
ing incidence constructions, and we shall now consider a few
typical problems that can be solved with its aid.

PROBLEM 1. Given three pairs of points on a conic s, to find the -
united points of the homography which they determine.

Using the three given pairs, we have only to put in two pairs of
cross joins and join their points of intersection. The line so obtained
cuts ¢ in the required united points. (If the construction is actually
carried out in the euclidean plane it need not, of course, lead to real
points of intersection.)

Having constructed the cross axis of the
homography determined by the three given

. pairs, we may now use it to find the point
that corresponds to any arbitrary point of
the conic.

PROBLEM 2. Given two pairs of points on
the conic s, to find the united points of the
involution which they determine.

Ifthe given pairsare (P, P;)and (5, P3), we
need only apply the previous construction to
the three pairs (P, Py), (B, Py), and (P, F))
(see figure).

PROBLEM 3. To construct the polar of a given point V.

The polar of V is the cross axis of the involution whose vertex
is V. We accordingly draw two chords P, P} and P, P; through V,
and then apply the previous constructipn to the pairs (B, P)
and (B,, P;). It will be seen that this amounts simply to using the
quadrangle construction to find two points that are conjugate
to V with respect to s.

Remarks

(i) The above constructions involve three geometrical operations
only: (a) drawing a line through two given points, () finding the
point of intersection of two given lines, (¢) finding the two points of
intersection of a line with a conic that is supposed to be already
drawn. In the euclidean plane the constructions can be carried out
with the straight-edge alone; but since (¢) is a quadratic operation,
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constructions which involve it do not necessarily lead to real points
of intersection—i.e. they may fail.

(ii) If we require to find the united points of a homography on a
line, we can proceed as follows. We first draw an arbitrary conic
(in the euclidean plane a circle will do) and, choosing an arbitrary
vertex V. on it, we project the line on to the conic from V. After
finding the united points of the homography on the conic—a.
problem of type 1 above—we have only to project back on to the
line.

The problem of finding united points is a quadratic problem,
and we cannot solve it for the line by means of the straight-edge
alone, since this only allows us to perform linear operations. When
we are given & conic, however, we have a quadratic locus at our
disposal, and the quadratic problem is then soluble by means of
the straight-edge, as we have seen.

Pascal’s Theorem
THEOREM 16 (Pascal’s Theorem). A conic can be drawn to pass
through the vertices of a given hexagon if and only if the points of
intersection of the opposite sides of the hexagon are collinear.
Proof. Let 4,, A,, A,, 4,, A, Ag, in

this order, be the vertices of the given o X

hexagon. S
(i) Suppose the hexagon is inscribed in
a conic s. Then the three pairs (4,,4,), & 78

(45, A,), (43, Ag) determine a homography - A:
w on 8; and the three pairs of cross joins
(4,445, A, A4;), (A;A44,A4,4,), (A, A4,, Ag 4,), which are simply the
pairs of opposite sides of the hexagon, meet on the cross axis of =.
(ii) Suppose, conversely, that the three points 4,4,.4,4;,
AgAg. Ay Ay, A3 A . Ag A, all lie on a line I. A,, A,, A,, 4,, 4,
determine a unique conic s, which meets 4 4, in Ag, say. Then, by
(i), the three points 4, 4,.4,4;, A; Ag. A, Ay, A3 A,. A5 A, lie on
a line I’. But the first and the third of these points already lie on [,
and I’ therefore coincides with I. A A4, and A, Ag then both meet
A, Az onl, and hence Ag coincides with A;. The six vertices of the
hexagon therefore all lie on the conic s.
COROLLARY (Brianchon’s Theorem). A conic can be drawn to
touch the sides of a given hexagon if and only if the lines joining the
pairs of opposite vertices of the hexagon are concurrent.
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EXERCISES

(i) Investigate what becomes of Pascal’s Theorem in the following special
cases:

(@) when the vertices of the hexagon coincide in pairs;

(b) when the circumsecribing conic is degenerate.

(i1) If 4, B, C, D, E are five general points in the plane and [ is a line
through 4, show how to construct, by use of the straight-edge alone, the
second point in which ! is met by the conic determined by 4, B, C, D, E.

Generation of a homography on a conic

THEOREM 17. If w i3 a homography on a conic 8, with distinct
united points M, N, it may be resolved into a product of two involutions
Ty, Ty With vertices V;, V, on MN. V, may be chosen arbitrarily on M N,
and V, 18 then uniquely determined.

o Proof. The theorem follows im-
M “mediately from Theorem 17 of
Chapter III. It may also be proved

M\ Vi V> /N

independently as follows.

Choose some pair (P, P’) of w.
Then w is determined by the three
pairs (M, M), (N, N), (P P’). Now choose a point V] arbitrarily
on MN, and let PV, meet s a second time in P,. Let P, P’ meet
MN in V,. Then, if 7, 7, are the involutions on s who'se vertices
are ¥, and V;, 7,7; is a homography which has (M, M), (N,N),
(P, P’) as corresponding pairs, i.e. the homography .

COROLLARY. With the notation of the theorem, {M,N;V,,V,} 8
equal to the modulus of w.

For  MNV %= RN VT
v = {M,N; P,P'}ons.

THEOREM 18. If (P, P’) i3 a variable pair of a homography w
on a conic 8, the envelope of the line PP’ is a conic which touches s at
the united points of w (or has four-point contact with s if the united
points are coincident).

Proof. (i) Suppose = has distinct united points M, N. If we
take these points as X, and X, in a canonical representation of s,
a general pair (P, P’) of w is given by (6, k0); and the coordinates
of the line PP’ then satisfy the relations

Ug _ ‘ . S
1 —(0+k0) k6%

P
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Eliminating 6, we have

Yy _ {.,_lx__}”

kuy (L+kyuol ’

(1+4-k)?
k

ie. ul = Ug Ug;
and this is the condition for PP’ to envelop a conic which touches
X,X, and X, X, at X, and X,, i.e. a conic which touches s at
M and N.

(ii) Suppose = has united points which coincide at M. Then,
using the canonical form ' = 64« for =, we obtain as the line-
equation of the envelope of PP’ '

azuo—'u1+4u2 Uy = 0.
The associated point-equation is
4x¥+a2xg—4x2 Lo = o,

2
. o
i.e. : x{—-x,xo+zx§ = 0;

and this represents a conic haﬁng four-point contact with s at M
(see p. 160). '

THEOREM 19. If s’ i8 a conic, having double contact with s at M
and N, there exists a homography w on s, with M, N as united points,
such that if a tangent to 8’ cuts 8 in P and Q, then either Q = wP
or P = w().

If 8’ has four-point contact with s at M, then there exists a homo-
graphy w on 8, with zts untted points coincident at M, having a
similar property.

~ Proof. We prove the first part of the theorem only, leavmg the
second part to the reader.

Taking a canonical representation of s, with M, N as X,, X 2
we can put the point-equation of s a.nd the hne-equa.txon of ¢’ in
the forms

S =ai—2,20=0, Z'=ui—Aduyu,=0.
If 6, 8’ are the parameters of the'ends of a chord of s which touches
#', then (—0—@)—A.1.60' =0,
ie. 0’24 (2—2)060'+6% = 0,

8304 L
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ie. (0'—#0)(a'~ ’_1;0) — o0,
for a suitable value of u.

Thus either @ = wP or P = w{), where w is the homography on
8 whose equation is §’ = u#.

Theorem 18 and Theorem 19 together characterize completely
the generation of homographies on a proper conic. The reader
should examine how the earlier results concerning involutions
(Theorem 14) fit into this more general scheme.

§ 5. APPLICATIONS OF THE THEORY OF HOoOMOGRAPHIC
CORRESPONDENCES ON A CoNIcC

The theory of homographies on a conic and their geometrical
generation is interesting in itself, and in addition it provides a
powerful means of proving well-known theorems in the projective
geometry of the conic. We shall now establish some typical
results of this kind. In this section the term ‘conie’ will continue
to be used, for the most part, to mean ‘proper conic locus’.

THEOREM 20. If the six vertices of two triangles all lie on a conic,
then the six sides of the triangles all touch a conic, and conversely.

Proof. Let ABC, A’B’C’ be two triangles, both inscribed in

the same conic s; and let A’B’, A'C’

meet BC in P, @, and AB, AC meet

B'C’in P, Q'. Then

(P,Q,B,C) x A'(P,Q, B,()

~NA(B,C',B,C)
~A(B,C,B,0C)
~(B,C,P,Q),

and the four joins PB’, QC’, BP’, CQ’ therefore all touch a conic

which touches B’C’ and BC. This proves the direct theorem, and
the converse follows by duality.

Exercise. Deduce that if a tﬁangle is circurnseribed to a parabola its
circumcircle passes through the focus of the parabola.

THEOREM 21. If one triangle exists which is inscribed in a given
conic s and circumscribed to a second given conic 8', then an infinity of
such triangles exists, and one vertex may be chosen arbitrarily on s.
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Proof. Let ABC be the given triangle, inscribed in s and circum-
scribed to &'. Take a point P arbitrarily on s, and draw the two
tangents from P to &', cutting s
again in @ and R. Then, since the
triangles 4 BC and PQR are both
inscribed in 8, their six sides all
touch a conic. But five of these
sides touch &', which must there-
fore be the conic so defined. Thus
@R also touches s'.

The problem of constructing proper triangles that are both in-
scribed in one given conic s and circumscribed to another given
conic &' has, in general, no solution; but if s and s’ happen to be
suitably related it has an infinity of solutions. If the conics are
related in this special way, 8 is said to be triangularly circumscribed
to s’, and s’ triangularly inscribed in s. A problem of this kind which,
instead of having a finite number of solutions in every case (as
consideration of degrees of freedom would lead us to expect) has
either no solution at all or else an infinity of solutions, is said to be
poristic. Theorem 21 is the simplest case of Poncelet’s Porism
(Theorem 4 of Chapter VIII).

THEOREM 22, If two triangles are both self-polar with respect to a
given conic, then their six vertices lie on a second conic and their six
stdes touch a third conic.

Proof. Let ABC, A’ B'C" be two triangles, both self-polar for the
same conic s, and let A’B’, A’'C’ meet
BCin P, @,and AB, AC meet B'C’ C’
in P’, Q'. Then, by Theorem 9,

(P,Q,B,C) x A(C", B',C, B) o <
~(C,B,Q,P) 8 c\
~(B,CL,P,Q), v .

since {C',B;Q,P}={B,C; P'hQ'}

The four joins PB’, QC’, BP’, CQ’ therefore all touch a conic

which touches B’C’ and BC. This proves the first part of the

theorem, and the second part follows either by duality or by
applying Theorem 20.

P S B’
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Exxeroise. Deduce the following porism from Theorem 22. If one triangle
exists which is inscribed in a given conic & and self-polar for a second given
conic 8’, then an infinity of such triangles exists, and one vertex may be
chosen arbitrarily on s.

If & conic s has inscribed triangles that are self-polar for a second
conic ¢, ¢ is said to be harmonically circumscribed to 8’. Dually, if
has cireumscribed tria.ngles that are self-polar for s’, s is said to be
harmonically inscribed in s'.

The two relations ‘s, is ha.rmomcally circumscribed to s,” and

‘s, is harmonically inscribed in s,” are thus only connected by
duality, whereas the terminology suggests that they are the same
relation looked at from two points of view. In actual fact there is
no confusion on this account, since, as we now show, the two rela-
tions are equivalent.

LEMMA, If s and 8’ are two proper conics of general position, there
exists a conic k such that s and 8’ are transformed into each other by
the polarity determined by k, i.e. a conic k for which 8 and s’ are
reciprocal,

Proof. Since s and s’ may be represented by quadratic point-
equations, they have four common points; and these points are,
" in general, the vertices of a proper quadrangle. The diagonal
triangle of the quadrangle is self-polar for both conics, and if it is
taken as triangle of reference, the equations of the conics may be

written as S = axl+bal+tcxl =0,
T = beud+caud+abul = 0;
and S = a'zi4+bad+c'ad =0,

Y = bcuit-cauit+a’b'ui = 0.
Now if the polarity determined by % transforms s into s, the
uniquet common self-polar triangle X, X; X, of the conics must be
transformed into itself; i.e. it must also be self-polar for k. The
~ point-equation of £ may accordingly be written

K = pajtgqritrai = 0.
Since the polar of the point (o, ¥;,ys) With respect to k& then has
line-coordinates (py,, ¥y, 7Y,), the following equations must be

equivalent: ayd+byd+cy: = 0,
and B¢’ (pyo)2+c'a’(gy,)*+a'b (ryy)? = 0;

t See the exercise on p. 158, below.
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and it follows that
: b'c'p?  ca'g® a'b'r?

a b ¢

ie. p?:q*:r2 = aa’ :bb :cc'.
There are thus four possible conics &, given by
V(aa')x3 £/ (Bb") 2t 1/ (cc') 23 = O,

each of which defines a polarity which transforms s and s’ into each
other,

THEOREM 23. If 8, and s, are two proper conics which meet in four
distinct points, 8, is harmonically circumscribed to 8, if and only if s,
18 harmonically inscribed in sy.

Proof. If k is a conic defining a polarity which transforms s,
and 8, into each other, the polarity transforms any triangle inscribed
in 8, and self-polar for s, into a triangle circumscribed to s, and
self-polar for s,, and vice versa.

THEOREM 24. If two pairs of opposite vertices of a quadrilateral
are each conjugate for a conic 3, then the third pair is'also conjugate
for s.

Proof. If (4,A"), (B, B'), (C, C")
are the pairs of opposite vertices
of the quadrilateral, as shown, we
may take ABC as triangle of re-
ference and A’B’C’ as unit line.
Then A4 is the point (1,0,0) and
A’ the point (0,1, —1); and the
condition for these points to be conjugate for the conic

g gaﬂcxixk =0

is @y —ay = 0. But, of the three conditions a,y, = a4, @y = @45,
and a,, = a,, any two entail the third, and this proves the theorem.

COROLLARY. If two pairs of opposite sides of a quadrangle are
conjugate for a conic 8, then the third pair is also conjugate for s.

THEOREM 25. A triangle and its polar triangle with respect to a
conic 8 are in perspective. Conversely, if two triangles are in perspec-
tive, there exists a conic with respect to which they are polar.

Proof. (i) Let ABC be the given triangle, and let 4’B’C’ be
its polar triangle, the sides of A’ B’'C’ being respectively the polars

78 c\

e
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of A, B, and C with respect to s. Let BC, B'C’ meet in P and BB’,
CC' in O. Then the pairs of points (B, C’) and (B’, C) are each
conjugate for s, and therefore, by Theorem 24, O and P are con-

jugate for s. Thus the polar 44’ of P passes through O; i.e. the
triangles are in perspective from O.

(ii) The algebraic conditions imposed on the coefficients in the
equation of a conic s by making (a) a given point to lie on s, and
(b) two given points to be conjugate for s, are of the same general
form; and it follows from Theorem 2 of Chapter V that there is a
unique conic for which five general specified pairs of points are
conjugate. This enables us to deduce the converse of the first part
of the theorem by reductio ad absurdum argument.

Remark. Although Theorem 24 and the first part of Theorem
25 look so different, they are essentially the same proposition,
usually referred to as Hesse’s Theorem. In the above treatment we
first proved Theorem 24 algebraically and then deduced Theorem
25 from it; but we could equally well have begun with a direct
algebraic proof of Theorem 25 and then inferred Theorem 24 as a
corollary. [Exercise. Do this.] It follows that the two theorems
are equivalent, in the sense that each is deducible from the other.

THEOREM 26. From a general point A in the plane of a ceniral
conic 8, four normals can be drawn to s. Their feet lie on a rectangular
hyperbola h, which passes through A and through the centre C of s, and
has its asymptotes parallel to the axes of s.

- Proof.7 Let(d,d’) be a variable pair of conjugate diameters of s,
and let the perpendicular AN from 4 to d’ meet d in P. Then

C(P)= (d)R(d')RAN) = A(P),
and the locus of P is therefore a conic & through C and 4. When d
' t Chasles, Sections coniques (Paris, 1865), § 219.
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is an axis of 8, d’ is the other axis, and AN is parallel tod. Pisthen
at infinity on the axis d. The conic & therefore passes through the
points at infinity on the axes of s, i.e.
its asymptotes are parallel to the axes
of s.

It is easily verified that P lies on s if
and only if A P is the normal to s at P.
Since & cuts 8 in four points, there are
four normals from A to s, and their feet
lie on A.

The hyperbola 4 is called the hyperbola of Apollonius for the
point 4.

EXERCISES ON CHAPTER VI
1. If ¢ is the eccentric angle of a variable point P on the ellipse
X2/a*+Y2/b = 1,
show that ¢ = tan 3¢ is a projective parameter of P on the curve.

Another projective parameter of P is the gradient m of the line joining it
to the point (@, 0). Find the fixed homographic relation which connects the
two parameters ¢ and m.

2. The variable line x+2z = §(y—3z) passes through the fixed point
(—1,3,1) of the conic ¥ whose equation is 3z?-+y*—5z2—2yz+2z2 = 0, and
its other intersection with k is the variable point P. Show that § may be
taken as a projective parameter of P on k, and that the coordinates of P are
(20 —40—1, 96%+450—1, 36%+1).

Four points 4, B, C, D of k have coordinates (—1, —1,1), (—3,13,4),
(5,3,4), (6, —5,7). Show that the cross ratio of C, D with respect to 4, B
on k has the value 3/2.

3. Verify by direct substitution that the transformation of coordinates

given by iyiz =2 —4y —2' : 9’6y —2' : 3z’ +2
reduces the equation of the conic % in the preceding exercise to the form
-yt = 27,
4. Being given a system of cartesian coordinates (X, Y) in the real plane,
prove that any hyperbola admits of a real parametric representation of the

form X = a,0+b,6-1+¢c;, Y = a,0+b6+cs
Find the centre and asymptotes of the conic with this representation, and
show that its line-equation is
(i u+cyvt+w)—4(a, u+agv)(byutbyv) = 0.
5. Prove that the equation of the tangent at the general point (2, %o, 2o)

to the conic whose equation is fyz+gzz--hay = 0 may be written in the
form fx/x3+gy/y3+hz/z3 = O.
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Show also that the equations of any projective parametric representation
of the same conic can be written in the form

z = af(@—a), y==>0/(6-P), z= c/(0—y),
where a(B—v):bly—a):c(x—B)=f:g:h.

6. Thesides A B, BC, CD, DA of a quadrilateral A BCD touch a parabola
k, and lines through B and D, parallel to DC and BC respectively, meet in 7',
Prove that AT is parallel to the axis of k.

7. Two triangles XY Z and X’Y’Z’ are inscribed in a conic. Two further
triangles are formed, the first having XX’, YY’, ZZ’ as its sides, and the
second having the points (YZ.Y’Z’), (ZX.Z'X"), (XY .X'Y’) as its vertices.
Prove that these two triangles are in perspective. [Hint. Apply Pascal’s
Theorem to the hexagon XY'ZX'YZ'.]

8. 4 BC is a triangle inscribed in a conic 8. Prove that an infinite number
of triangles can be found which are inscribed in .4 BC and self-polar for s,
and that all these triangles are circumseribed to the triangle formed by the
tangents to s at 4, B, C.

9. Being given a conic s and a triangle 4 BC whose vertices are not on s,
prove that there exist in general two triangles inscribed in s which are
circumscribéd to A BC. Show how to construct these triangles.

Show also that if 4 BC is self-polar for s, then there exist infinitely many
triangles inscribed in s which are circumseribed to 4 BC.

10. If two triangles 4 BC and A’B’C’ are such that A BC is in perspective
with the polar triangle of 4’B’C’ for a conic 8, prove that 4’B’C’ is in per-
spective with the polar triangle of A BC for s. Discuss the limiting case in
which s degenerates as an envelope into the absolute point-pair (I, J).

11. Two conics s, 8" have four-point contact at a point 4. The ends of
a variable chord of s which touches 8’ are projected from 4 on to a line
parallel to the common tangent of the conics at 4. Prove that the distance
between the projections is constant.

12, Two conics s and s’ pass through a point 4, and chords XY and X'Y’
of the curves are such that XX’ and YY" both pass through 4. If XY passes
through a fixed point P, show that X’Y" passes through a fixed point P’.
What is the locus of P’ if P moves on a given line ?

State the dual theorems.

13. A variable tangent to a parabola k meets the sides of a fixed circum-
scribed triangle in points L, M, N. Prove that theratio LM : MN is constant.

14. Investigate the validity of Theorem 20 in the special case in whlch
one of the given triangles has two of its sides coincident. ‘

Prove that if a triangle is circumscribed to a parabola there exists a rect-
angular hyperbola which passes through the vertices of the triangle and
has the tangent at the vertex of the parabola as one asymptote.

15. Prove that, if a circle is triangularly circumscribed to a conic and has
its centre on the conie, then it touches the director circle of the conic.

Show that any circle through the focus of a parabola is triangularly circum-
scribed to the parabola, and hence deduce the focus-directrix property of
the parabola as a special case of the preceding result.
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16. Show that chords of a conic 8 which subtend a right angle at & fixed
point A of s all pass through a fixed point F on the normal to s at 4. [F is
called the Frégier point of A with respect to s.]

If s is a rectangular hyperbola, show that F is the point at infinity on the
normal at 4.

17. Prove that through any general point there pass three normals to a
parabola k.

Through any point P of k there are drawn the two lines, other than the
normal at P, which are normal to k. Prove that the line joining the feet
of these normals passes through a fixed point on the axis of k.

18. Prove that a general point in the plane of a conic %, given by the
equation aX?4bY? = 1, lies on four normals to k; and that, if the line
uX +vY +w = 0 joins the feet of two of these normals, the feet of the other
two lie on the line aX/u+bY jv—1jw = 0.

If Q, R, S are the feet of the other three normals to k from a variable
point T on the normal at a fixed point P, prove that the sides of the triangle
QRS are tangents to a fixed parabola, which touches the axes of k and the
lines joining the vertices of k on each axis to the image of P in that axis.

19. Find the equation of the homography on the conic z:y:z = §%:6:1
which has the line ux+vy-+wz = 0 as its cross axis and which carries the
point 6 = « into the point §’ = B.

Two homographies on a conic k have cross axes a,, a, respectively and a
given common pair of corresponding points X, Y. Show that they have no
further common pair of corresponding points if and only if @, and a, intersect
on XY (it being assumed that one at least of the homographies is not an
involution).

20. Two cobasal involutions 71, T3 have united points 4, B and C, D
respectively, and the mate E of 4 in 7, is also the mate of Cin ;. Prove that
the homography w = 7,7, is cyclic of period three, and hence show that the
mate of B in 7, is the mate of D in 7,.

A triangle A CE is inscribed in a conie¢ k, the tangentsat 4, Cmeet CE, AE
respectively at T', U, and the polars of 7', U meet k again at B, D respectively.
Prove that TD, UB intersect in a point F of k, and that the tangent at F
meets BD in a point of T'U.

21. If w, o are homographies on a line, show that wo is an involution if
ow is an involution. If o is an involution, prove that wo is an involution if
and only if the united points in = correspond in o.

A variable triangle PQR is inscribed in a conic s, and QR touches a conic
& which has double contact with 8. If PQ meets the chord of contact of 8
and s’ at a fixed point, prove that PR passes through one or other of two
fixed points on the same chord of contact.

22. If (4, A’), (B, B’) are two given pairs of points on & conic k, prove that
there exist in general two elations on k which transform 4, B into A’, B/,
and that the united points in these elations are mates in the involution on &
in which (4, 4’) and (B, B’) are pairs.

Show how to find a point P on k such that the chords A4’, BB’ are pro-
jected from P into segments of equal length, with the same sense, on a given
line,
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23. If two homographies on a conic % have no common united point, prove
that there exist involutions 7, 7, 7, such that the first of the homographies
is 7,7 and the second is 77,.

"Two elations w;, @, on k have united points M and N respectively; and
N, is the transform of N by w;, while M, is the point which is transformed
into M by ;. Prove that w, w, is an elation if and only if the harmonic
conjugate of M with respect to IV, N, is the same as that of N with respect
to M, M,.

24. The lines joining a variable point P of a conic k to three fixed points
4, B, C meet k again at Q, R, S respectively. Prove that, in general, the
envelopes of the chords RS, SQ, QR are three different conics, each of which
touches k at its intersections with one side of the triangle 4 BC.

If 4, B, C all lie on a line, show that any general point A’ of this line is
one member of another fixed triad of points 4’, B’, ¢’ of AB such that
A’Q, B'R, C’S concur at a point of k for every triad QRS.

25. A circle ¢ is rotated about its centre through a given angle in a given
sense. If a variable point P of ¢ is displaced in this way to P’, prove that the
correspondence between P and P’ is homographic, with the absolute points
I, J as its united points. Show, conversely, that any real homographic
correspondence on ¢, with I and J as united points, is given by a rotation of
the circle about its centre.

26. A circle cis given and also a fixed point O, not the centre of c. Through
any point P of ¢ a line p is drawn, making a fixed angle «, in the positive
sense, with OP. Prove that, as P varies, p envelops a conic, with O as focus,
which has double contact with c.

What special relation does ¢ have to the conic when a = §x?

[Hint. If p and PO meet ¢ again in @ and R respectively, then (Q) % (R)
and (P)7 (R) on ¢, so that (P)7 (@) on ¢.]



CHAPTER VII
LINEAR SYSTEMS OF CONICS

WE have already seen (p. 79) that if /, = 0 and [, = 0 are the

equations of two distinct lines of the plane, the equation
L+A,=0

represents a pencil (co! linear system) of lines, the set of all lines

which pass through the unique common point of 7, and 7,.

If we were to take three non-concurrent lines we could use them

to define an co? linear system

L4+AN,+ul; =0,
but to do this would be of little interest. Since, in fact, the linear
forms 1, l,, I, are linearly independent, and a line is uniquely deter-
mined by two of its points, the co? system is simply the totality of
all the lines in the plane.

If, now, we consider conics instead of lines, the situation is
somewhat different. The totality of all conics in the planeisanoco® -
linear system, and it contains proper co’ linear subsystems for
every value of 7 from 1 to 4. We shall discuss in some detail the
oo! gystem or pencil of conics, and then we shall refer more briefly
to the co? gystem or net.

When we say that the conics (or more precisely the conic loci)
of the plane form an 0o® linear system we mean simply that the
equation of the general conic, referred to a fixed representation Z,
is a homogeneous linear equation in the six coefficients ay,, @yy, @5,
@19, Qgg, Gy As we have seen on p. 106, these coefficients may be
taken as homogeneous coordinates of the conic, and this representa-
tion of conics by coordinates is analogous to the representation of
lines by line-coordinates (%, %,, %,). We say that the condition of
passing through a fixed point or of having two fixed points as
conjugate points is a linear condition on the conic locus because it
imposes a linear condition on its coordinates a;;,. Having a fixed
line (vg, v;, v;) 88 & tangent, on the other hand, is a quadratic con-
dition on the conic locus, since it leads to an algebraic relation
z g A v;v;, = 0, in which the 4, are all quadratic in the coordi-

nates of the conic locus.
Dually, a conic envelope may be represented by its coordinates
(Ao A1, Agg, Aga, Agg, Ayy). Touching a given line or having two



156 LINEAR SYSTEMS OF CONICS VII

given lines as a conjugate pair are linear conditions on the conic
envelope, but passing through a given point is a quadratic condition.
It will be seen from this that we cannot refer significantly to a linear
condition on a conic unless we specify whether the curve is to be
treated as a locus or as an envelope.

§1. PEncIiLS AND RANGES oF Conics
ELEMENTARY PROPERTIES

DEFINITION. A pencil of conics is a simply infinite system of
conics given as loci by an equation of the form S+A8’ = 0, where
8, 8’ are quadratic forms in ,, #;, #, and A is a variable parameter.

A range of conics is a simply infinite system of conics given, as
envelopes, by an equation of the form

Z4AT =0,

where Z, I’ are quadratic forms in u,, ;, 4, and A is a variable
parameter.

We shall now develop the theory of pencils of conics, leaving it
for the most part to the reader to supply the dual properties of
ranges. Weshall, however, state explicitly some of the more funda-

mental results for ranges.
~ Consider, then, the pencil defined by

S48 = 0. 1)

Since the equations § =.0 and S8’ = 0 are both quadratic, the two
base conics s, s’ have either four common points (which need not
all be distinct) or an infinity of common points. This latter case
occurs if and only if either s and s’ coincide, or they are degenerate
conics with a line in common. Both these cases are trivial, and we
shall exclude them from consideration.

Suppose, then, that the four common points of s and s’ are
distinct. No three of them can be collinear (since, if they were, the
line joining them would form part of both conics), and it follows
from Theorem 2 of Chapter V that there is a unique conic through
these four points and a fifth general point of the plane. But thereisa
unique conic S+AS" = 0 through the fifth point, and it also passes
through the four common points. It follows that the pencil deter-
mined by s and s’ is simply the system of all conics through the four
common points of s and 8’. Dually, there is a unique conic of a given
range that touches any general line of the plane; and the range
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consists of all conics that touch the four common tangents of the
two defining conics.

ExERrcISE. Show that if the pencil S+AS’ = 0 is defined by means of
two new base conics, chosen arbitrarily from among the conics of the pencil,
the new parameter A of a general conic of the pencil is derived from the old
parameter A by a bilinear transformation A = (aA+B)/(yA+3), ad—By # 0.

We shall assume from now on, except when there is an explicit
statement to the contrary, that the four common points 4, B, C, D
of the pencil (1) are distinet; that is to say, we shall confine our
attention to the general pencil.

The pencil clearly contains just three degenerate members, the
line-pairs (4B, CD), (AC, BD), (AD, BC). Their parameters are
the roots of the cubic equation obtained by equating to zero the
discriminant of the quadratic form S+AS’.

It follows at once from Theorem 4 of Chapter V that the diagonal
triangle of the quadrangle 4 BCD is a common self-polar triangle .
for all the conies of the pencil. The vertices of this triangle are, of
course, the vertices of the three line-pairs of the pencil. If the
triangle is taken as triangle of reference, the equation of the general
conic S4AS’ = 0 assumes the form

(@o+Adp)z3+-(a,+2ay)ai + (ap+Adg)ag = 0.
The equation may be simplified still further by taking advantage
of the freedom of choice of the unit point.

(i) Let us change the unit point by applying the non-singular
transformation of coordinates (always possible in the complex
projective plane)

Vayzy =z,  Veyz =2],  VaE, = 2.
Then the equation may be written
(Bo-t+N)ab+ (by+-A)at+ by +-A)af = .

(ii) Let ustake 4 as unit point. Then, as may be verified directly,
the coordinates of the four common points are all of the form
(1,41, +1). The equation of a general conic of the pencil is now

ayxita,zi+a,28 = 0,
where a,, a,, a, have to satisfy the single symmetrical linear con-
dition ay+a;+a, = 0.

Dualizing the above results, we see that a general range of conics
has associated with it a quadrilateral, the sides of which are lines
of every conic of the range. The pairs of opposite vertices con-
stitute the three point-pairs of the range; and the diagonal trilateral
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of the quadrilateral is a common self-polar trilateral for all the
conies.

Exrrcise. Prove that, in general, two conics have a unique common self-
polar triangle, which is both the diagonal triangle of their quadrangle of
common points and the diagonal trilateral of their qua,dnlaberal of common
tangents.

§ 2. PossiBLE TyPES OoF PENCIL AND RANGE
Corresponding to the possible modes of coincidence of the four
common points, we have a number of special types of pencil, and
dual to each of theseis a special type of range. We shall discuss these
in turn, obtaining the various special cases from the general case
by successive specialization, and at the same time supplying a

dual treatment of the corresponding special types of range.

(i) The general pencil (i) The general range

Taking as base conics one proper conic and one degenerate conic,
we may represerit the systems by the equations

S+Mm = 0, Z4ulM =0
respectively. '

Each system, as we have already stated, possesses a unique
common self-polar triangle, the diagonal triangle of the funda-
mental quadrangle or quadrilateral,

An important euclidean specialization of (i) is the coaxal system
of circles, or set of all circles through two finite fixed points 4, B
(real or conjugate complex). Let s be a circle, with equation § = 0
referred to rectangular axes, and let { be the line AB. If m is the
line at infinity, represented by z = 0, the equation of the coaxal
system with [ as radical axis and 4, B as common points is

S4+-Az = 0,
or, in non-homogeneous coordinates,
S+M = 0.

The three degenerate members of the system are the line-pairs
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(AB,1J), (A1, BJ), (AJ, BI); i.e. the line-circle AB (the radical
axis) and two point-circles (the limiting points).

A euclidean specialization of (i’) is the system of all conics con-
focal with a given central conic. If s is & central conic, the foci of &
are the points of intersection of the tangents from I with the
tangents from J. The conics confocal with 8 are simply the conics
which touch these four tangents, and they make up the range

Z+MJT = 0.

(ii) The simple-contact pencil (ii’) The simple-contact range

L

T

We obtain (ii) as a limiting case of (i) by letting m become a
tangent ¢ to s. The equations of (ii) and (ii’) are accordingly
S+t = 0, Z+4plT =0,
where ¢ is a tangent to 8;  where 7T is a point of s.
No common self-polar triangle exists for either system.
Parabolas with parallel axes and passing through two common
points form a pencil of type (ii); while parabolas with parallel
axes and touching two common tangents form a range of type (ii’).

(iii) T'he three-point contact pencil  (iii’) The three-line contact range

T L

S+t = 0, Z+pLlT =0,
where ¢ is & tangent to sand lis  where T is a point of s and L is
a line through its point of con- a point on the tangent at 7'.
tact; :

These systems are special cases of (ii) and (ii’).
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It may be verified analytically that two conics have three-point
contact at 7' if and only if they have three-line contact, with the
tangent ¢ at T’ counting three times as a common tangent. Thus
three-point or three-line contact is a self-dual condition; and (iii)
and (iii") are distinguished from each other only by the remaining
condition of having either a fourth common point or a fourth com-
mon tangent.

Neither system has a common self-polar triangle.

(iv) The pencil-range with four-point and four-line contact

This is a self-dual system, and it may equa.lly well be represented
by either of the equations

S+M2=0 and Z+uT?=0, .
where T is a point of s and ¢ is the tangent at this point. Once
again there is no common self-polar triangle.

(v) The pencil-range with double contact

I

This is another self-dual system (a special case of (ii) or (ii’)) and
its equation may be written in either of the forms

S+A2 =0 and Z4uL®:=0,
where I does not touch s and L does not lie on s.
Unlike all the other types of pencil and range, the double-contact

system has a simple infinity of common self-polar triangles.. To
obtain such a triangle, we must take as vertices the point L and
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any two points of ! which are harmonically separated by the two
points in which ! is met by every conic of the system.

The system of all hyperbolas which have two given lines as
agymptotes is a pencil-range of type (v); its cartesian equation,
referred to the common asymptotes as axes, is :

xy+AZz = 0.

Again, a system of concentric circles is a system of the same
kind; its equation, referred to arbitrary rectangular axes, may be
written as - S+Az? = 0

Concentric circles constitute, in facf;, a special kind of coaxal
system.

Exercise. Verify algebraically the statements made in § 2 about self-
polar triangles for the special types of pencil and range.

§3. GENERAL PROPERTIES OF PENCILS AND RANGES

Having seen what types of pencil and range are possible, we shall
now go back to the discussion of the properties of pencils and
ranges, establishing a number of fundamental results. These will
be proved for the general pencil, and the reader will be left both to
supply the duals and also to look into the modifications that are
required in gpecial cases.

THEOREM 1 (Desargues’s Theorem). The pairs of points in whick a
Jized line i3 met by the conics of a pencil are pairs of an involution.

Proof. If y and z represent two fixed points of the given line,
a general point of the line is represented by y-60z; and if this point
lies on the conic S+AS’ = 0,

S(y+62)+AS'(y-+62) = 0,
ie. 8, +268,,4-628,,4-A(S;,,+208,,+628,,) = 0.
The parameters of the points determined by the conic S+AS’ = 0.
are therefore given by this quadratic equation in 6; and hence, by

Theorem 15 of Chapter III, the pairs of points corresponding to
different values of A are pairs of an involution.

COROLLARY, In particular, any line is met by the three pairs of
opposite sides of a quadrangle in three pairs of points in tnvolution.

THEOREM 2. There are two conics of a pencil which touch a given
line. 4
5304 M



162 LINEAR SYSTEMS OF CONICS VIL §3

Proof. By Desargues’s Theorem, the conics of the pencil cut an
involution on the line; and this involution has two united points,
which are necessarily distinct. Thus two conics of the pencil touch
the line, their points of contact being the united points of the
Desargues involution.

We see here once again that although the pencil is a linear
system of conic loci it is a quadratic system of conic envelopes.
The line-equation corresponding to the point-equation

S+A8" =0
is, in fact, 242D 4225 = 0,

where X and X’ correspond in the usual way to S and S’, and ®
is the polarized form of Z, regarded as a quadratic form in the a;.
In full
. 2 = (@y; Bp—a3,)ud ...+ 2(@g0 By — Boo Byg) Uy Us ...
an

— ’ ’ l'
20 = (ay; 03,101 Gy — 201 a1, U5+ +
’ ’
+2(59 %o, 30 Qo100 12— %00 Qyp)tty Ugt-o. -
Exercise. Explain how it comes about that the two types of pencil-
range can be self-dual. '
THEOREM 3. A given pencil of conics makes correspond to a general

point P of the plane a unique point P* that is conjugate to P for every
conic of the pencil. '

Proof. ‘Let the polars of P with respect to the base conics s, s
of the pencil be p, p’, meeting in P*. Then P and P* are conjugate
points for both s and s'.

Now the conics of the pencil cut an involution on PP*; and
since P, P* are harmonic with respect to the two pairs cut by
s and ¢’, they are the united points of the involution. They are
therefore harmonic with respect to all pairs of the involution,
i.e. conjugate for all conics of the pencil.

Remarks

(i) A general line of the plane contains just one pair (P, P*),
namely the pair of united points of the Desargues involution cut
on it.

(ii) From the fact that the equation p = 0 of the polar of a given
point P with respect to s is linear in the a,,, it follows at once that
the polars of P with respect to the conics of a pencil S4-A8" = 0
form a pencil of lines p-+Ap’ = 0—a pencil with vertex P*.
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(iii) We can express Theorem 3 rather differently by saying
that the envelope of polars of a general point P with respect to the
conics of a pencil is a point P*, i.e. the envelope is of the first class.
Since, from the dual point of view, the pencil is a quadratic system
of conic envelopes, we should expect the locus of poles of a general
line p to be a locus of the second order. That this is so is asserted
in the next theorem.

THEOREM 4. The locus of poles of a general line | with respect to
the conics of a pencil is a conic k; and this conic is also the locus of the
point P* which corresponds, in accordance with Theorem 3, to a
variable point P of I. The conic k passes through the vertices of the
line-pairs of the pencil.

l

Proof. Take two points P, @ of I. Then the pole L, of I with
respect to §+4-AS8’ = 0 is the point of intersection of the polars
P @ of P, @ with respect to this conic. But, as A varies, p, and g, -
describe homographic pencils p+Ap’ = 0 and ¢4+’ = 0 with
vertices P* and Q* respectively; and the locus of L, is therefore a
conic k& through P* and @*.

Since P is an arbitrary point of /, k& contains the pomts P*
corresponding to all points of I.

Finally, the pole of I with respect to a line-pair is the vertex of
the line-pair, and & therefore passes through the vertices of the line-
pairs of the pencil.

The following argument enables us to prove ana.lytlcally that
the locus of L, is a conic, and at the same time to exhibit the equa-
tion of the conic as a covariant of s, s’, and I. (See Chapter VIII
for the notion of covariant.)

Let I and L) have coordinates (v,,v,,v,) and (z,,z,,z,) respec-
tively. Then

A(S+AS") 0wy _ A(S+AS")/om, _ H(S+AS")/ox, _

) " Vg

—p, 88Y;
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ie. + a—S—-{-pvi =0 (t=0,1,2).
8x¢

Eliminating A and p, we have

_?.‘g _6§f ) =0,
ox, oxy °
o8 o
ox, Ox;
28 o
ox, Oox,
a8, 8',1)

ie. it St Andi A7 Y|
‘ (o, Ty, %3) ’

(21

’02'

where =3 vy,
<

The equation just obtained is quadratic in zy, ,, ,, and the locus
of L, is therefore a conic k.

ExErcisE. When the equation of the pencil is written in the form

ay23+a, a3 +a323 = 0,

with ay+a,+a, = 0, show that if P has coordinates (y,,¥;,ys) then P*
has coordinates (1/y, 1/y;5 1/y;). Obtain the equation of the conie k derived
from the line (vy, ¥4, v3), and verify directly that & passes through the vertices
of the line-pairs of the pencil.

§4. THE CENTRE-LOCUS OF A RANGE orR PENCIL

The centres of the conics of a given range or pencil constitute a
simple infinity of points lying on a curve, the centre-locus of the
system. Since the centre of a conic is the pole of the line at infinity,
we can find out the nature of this curve by applying the theorems
that have just been proved.

Consider first the range. By the dual of Theorem 3, the locus of
poles of a general line with respect to the conics of & range is & line,
and therefore the centre-locus of a general range is a line. This line
contains the centre of the unique parabola of the range; i.e. it is
parallel to the axis of the parabola. It also contains the centres
of the three point-pairs of the range, and this gives us at once the
following well-known theorem.

THEOREM 5. The mid-points of the three diagondla of a quadri-
lateral are collinear.
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Turning now to the pencil, we can conclude from Theorem 4
that the centre-locus of a general pencil is a conic. This conic
contains the centres of the two parabolas of the pencil; i.e. its
asymptotes are parallel to the axes of the parabolas. It also passes
through the vertices of the three line-pairs of the pencil; i.e. it
circumscribes the common self-polar triangle.

In the particular case in which the pencil of conics is a coaxal
system of circles, the line at infinity is a side of the basic quadrangle.
In this case the locus of poles breaks up into the line at infinity
itself and another line, and we thus arrive at the familiar result
that the centres of the circles of a coaxal system are collinear. The
line of collinearity must, of course, contain the centres of the two
point-circles of the system.

THEOREM 6. The director circles of the conics of a mnge Jorm o
coazal system.

Proof. The theorem follows at once from the fact that, when
rectangular axes are used, the equation

C(x2+4y?)—2Fyz—2Gzr+(A+ B)z2 = 0

-of the director circle of a general conic s is linear in the coefficients of
the line-equation of s. The following alternative proof, by means
of Desargues’s Theorem, is also instructive.

Consider a range determined by two conics s, 8’, and let the
director circles of these conics be k, %', meeting in the finite points
P, Q. Then the pairs of tangents from P to the conics of the range
belong to an involution; and since two pairs (given by s and s’)
are orthogonal, the involution is the orthogonal involution. The
two tangents from P to any conic of the range are therefore per-
pendicular, and all the director circles thus pass through P, and
similarly also through Q. The circles accordingly form a coaxal

" system.

COROLLARY. The three circles on the diagonals of a quadrilateral
as diameters are coaxal.

Theorem 5 is, of course, an immediate consequence of this
corollary.

ExEercrse. What are the radical akis and the lumtmg points of the coaxal
system of Theorem 6?
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§ 5. ConrocaL CoNICS

In this section we shall be concerned with conics in the euclidean
plane, and the term ‘conic’ will be restricted to mean real proper
conic. .

A conic s has four foci, two of which are real and two complex.
Ifsis a central conic, all its foci are finite points; but if it isa parabola
one of the real foci is finite and the other three foci fall on the line
at infinity, at I, J and the centre of s. A second conic s’ is said to be
confocal with s if s and s’ have the same four foci, and it is clearly
sufficient if the conics have one pair of opposite foci in common.
If s is & central conic, every conic confocal with it is central, and if s
is a parabola every confocal conic is a parabola.

The system of all conics confocal with a given conic is called a
confocal system. There are thus two distinet kinds of confocal
system, one consisting entirely of central conics and the other of
parabolas. Since, for real proper conics, the relation of being con-
focal is an equivalence relation, a confocal system is determined
uniquely by any one of its members. The conics confocal with &
are simply those conics which touch the four tangents from I and J
to s, and the confocal system determined by s is therefore the
range X+XQ = 0, where Q = 0 stands as usual for the line-
equation of the absolute point-pair (Z, J).

If s is a central conic, with foci F, F', Q, G', we have a figure like
that on p. 123, and it is clear from this that C is the centre and
CX, CY are the axes of every conic of the confocal system. If the
common axes of the system are taken as rectangular axes of
reference, the equation of the system assumes a very simple form.
Referred to these axes, the point-equation of s is of the form

S = ax?+-by?*—22 = 0,
and the line-equation is therefore

_u? 0? -
= -J+—b-—-w = 0.

Since Q = 4?2442, the line-equation of & general conic of the con-
focal system is 1 1
(--}—A)u2+ (—5—|-A)vz——w2 =0,

a

and the associated point-equation is then

Yy —
ot e ="
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2 Y2
In particular, the conics confocal with the ellipse % +—§2— = 1 are

iven by th 4 X? Y2
given by the equation m+m =

ExgeRcISE. Show that, by suitable choice of axes, the equation of a general
system of confocal parabolas may be put in the form ¥? = 4A(X+A).

THEOREM 7. Through any point P of the plane there pass two conics
of a given confocal system, and they cut orthogonally. The tangents
at P to these conics bisect the angles between the tangents from Pt
any other conic of the confocal system.

Proof. The pairs of tangents from P to the conics of the confocal
system are pairs of rays in involution. The involution has two
united rays, which are the tangents to the two conics of the system
which pass through P. The united rays are separated harmonically
by every pair of the involution, in particular by the pair (PI, PJ),
and they are therefore perpendicular. The two conics through P
therefore cut orthogonally.

Since the united rays are both perpendicular and also harmonic
with respect to the pair of tangents to an arbitrarily chosen conic
of the system, they are the bisectors of the angles between these
tangents.

COROLLARY. If F, F' are the real foci of the system, the lines PF
and PF' are equally inclined to the two tangents from P to any one
of the conics.

For the angles TPT' and FPF’ (see fig.)
have the same bisectors.

Consider the confocal system

X2 Y2
e TR | 2 p2
and suppose that P has coordinates (X, ¥;).
Then the parameters of the two conics of the
system which pass through P are given by the equation

Q) = (@42 (024+2)—X3(b2+A)—Yi(e*+A) = 0,
ie. A2 (a2 402 — X2 —Y2)+a2h?—b2X3—a?Y} = 0.
Since f(c0) > 0, f(—b2%) < 0, and f(—a?) > 0, the roots of f(A) = 0
satisfy respectively the conditions —a? < A < —b% and —b% < A.
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It follows from this that of the two conics through P, one is a hyper-
bola and the other is an ellipse.

The appearance of a system of confocal central conics is as shown
below.

Exercise. Show that the appearance of a system of confocal parabolas
is as follows.

The locus of poles of a line

Since every confocal system of conics is a range, the locus of poles
of a line 7 is a second line /', and the relationship between I and '
is easily characterized geometrically. In order to fix I’ we need two
points on it, and so we have to find the poles of ! with respect to
two particular conics of the system. The simplest conics to take
are Q and that conic which touches I. Since I’ passes through the
pole of I with respect to Q, it is perpendicular to /; and since it
passes through the pole of ! with respect to that conic which



VIL§5 CONFOCAL CONICS : 169

touches J, it contains the point of contact of this conic with I. Thus
V' is the normal, at the point of contact, to that conic of the confocal
system which touches 1.

b1
] L

J

v \
It will be noted how in virtue of the orthogonality property of
the confocal system (Theorem 7) the relation between I and V'

is symmetrical.

The envelope of polars of a point

The envelope of polars of a given point P is a conic k; and in
order to fix this conic we need to find five of its tangents, i.e. the
polars of P with respect to five particular conics of the confocal
system. The simplest conics to take are the three degenerate ones
and the two which pass through P, and the corresponding polars
are IJ, FF’, @ (assuming the conics are central conics), and the
two tangents at P to the confocal conics through P. The envelope
k is therefore a parabola which touches the axes of the confocal system
and these two tangents. Since the axes of the system and the two
tangents at P are both orthogonal pairs of lines, the centre C and
the point P both lie on the directrix of k; i.e. the parabola has CP
as directriz. ,

If £ = 0 is the line-equation of any one of the confocal central
conics, the line equation of k is

aZ.Q,P)
a(u,v,w)

Determination of the axes of a conic

An interesting application of the theory of confocal systems is to
the following problem: given the equation X = 0 of a conic,
referred to an arbitrary rectangular cartesian frame of reference,
to find the axes of the coniec.

Let (u’,v',w’) be an axis. Then its pole with respect to the conic
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Z4-2Q = 0 is the point

(z'+m')+v o (' +2Q) = 0,

where Z’ = Z(w,v,w') and Q' = Q(u v, w’) = u'240"2. But
when A has the value correspondmg to the point-pair consustmg
of the two foci on the axis (u’,v’, w’), the pole of this axis is indeter-
minate, and hence

X Q 60' oz | Y
aul = I "{'A = I+A%_; = 0.

Since the value of Alds nelther zero nor infinity, we can write the
relatlons as iz—/ a_q . )3 3.0' s 20’
ow'fow " v [ov T aw/ew’

and these equations are sufficient to determine u’:v':w’.

Exgercise. How is it that we only obtain two solutions, and not four, as
the degree of the equations would lead us to expect ?

§6. NETS oF CoNics

Let s, s', s” be three conics in 8, which do not belong to the same
pencil. Ifthe point-equations of the three conics, in some allowable
representation &%, are § = 0, 8’ = 0, §” = 0, then the quadratic
forms 8, §’, 8” are linearly independent; and the equation

S4+A8 +uS" = 0,
in which A, p are variable parameters, defines an co? linear system
ornetof conics. The same net is defined by any three of its members
which do not all belong to a pencil.

If we pick out any two conics of the net, say s and s’, they define

a pencil S+A8" =0,

and this pencil is an co! linear subsystem of the net.

The general conic 8+AS8’+-pS” = 0 is degenerate if and only if
its discriminant vanishes; and since this restriction imposes a single
algebraic condition on the pair of parameters }, u, the degenerate
conics of the net form a simply-infinite system. This system,
however, is not linear. It is selected from the net by an equation
of degree 3 in A and pu.

If we use the mapping of conic loci in 8, on points of S;, introduced
on p. 108, the conics of a pencil are represented by the points of a
Line in S;, and the conics of a net by the points of a plane. The points



VIL §6 NETS8 OF CONICS 171

which represent the degenerate conics of the net are the points
of a cubic curve in this plane.
A given net of conics will in general contain no repeated lines,
. and each degenerate member will therefore have a well-defined
vertex. We thus obtain a simply infinite system of points in the
plane, the vertices of the line-pairs of the net, and these points form
a curve. The equation of the curve is easily found. Suppose, in
fact, that S4+AS8’4-uS” = 0 represents a line-pair, whose vertex
is P. Then the coordinates of P make all the partial derivatives of
S+A8’4uS” vanish, and they therefore satisfy the equation

o8 a8 a8"|=0.
oz, bz, oz
o8 a8 a8"
ox, oy o
o8 a8’ aS8”
vy ow, o,

Conversely, if (z,, x;,2,) satisfy this equation, values of A and u
can be found such that the three partial derivatives of

S+AS +pS”

are all zero. Thus the point (x,, #;,%,) is the vertex of some line-
pair of the net if and only if

as,8,8")
a(xo: Ty, xz)

This is therefore the equation of the locus of vertices of line-pa.irs
or Jacobian of the net. This Jacobian j is a curve of order 3,ie. a
plane cubic curve.

THEOREM 8, The polars of a point P with respect to all the conics
S+AS8'4u8” = 0 are concurrent if and only if P lies on the Jacobian
j. If this condition is satisfied, the point of concurrence P’ of the
polars is also a point of j, and the relation between P and P’ is sym-
metrical.

Proof. The polars of P with respect to all the conics are con-
current if and only if the polarswith respect to s,s’,8” are concurrent,
and these three lines have coordinates

9 08 08\ (o8 08’ 08\ L. (05" 08" oS"
ory ox,’ ox,)’ \oxy ox,’ ox, ox,’ ox,’ oxy)
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We thus have the condition
o(8,8,8")

=0,
oZg, 2y, ,)

which means simply that P must lie on j.

If, now, the polars of P are concurrent at P’ then P and P’ are
conjugate for all conics of the net, and the polars of P’ are therefore
concurrent at P. Thus the relation between P and P’ is sym-
metrical.

Exgrcige. It can be shown that the equation of a general net of conics
-can be reduced to the canonical form

Ao — Foxy 25) + Ay (2 — e o)+ Ag(%3 — kg ;) = 0.

Find the Jacobian of this net. Prove also that the lines of line-pairs of the
net envelop & curve of class three, and find the equation of this envelope.

EXERCISES ON CHAPTER VII

1. Show that all conics which pass through the vertices and orthocentre
of a given t,riangle are rectangular hyperbolas, and that the locus of their
centres is the nine-point circle of the triangle. How do these results need
to be modified when the triangle is right-angled ?

2. If A BCisatriangle and H is its orthocentre, prove that any rectangular
hyperbola through 4, B, C passes also through H.

By reciprocating the figure with respect to a circle with centre H, or other-
wise, prove that if the sides of a triangle all touch a parabola, then the
orthocentre lies on the directrix of the parabola.

3. If a line meets a central conic in P, @ and its asymptotes in P’, Q’,
prove that PP’ = QQ’.

4. The coordinates being rectangular cartesian, find the values of A which
correspond to the parabola, the rectangular hyperbolas, and the point-pairs
of the range of conics whose equation is

w24 034w A(ud 4 202 - 2uv — 2wu) = O.

Show that the centres of all the conics of the system lie on the z-axis.
Distinguish on this line {for real values of A) the intervals in which lie the
centres of (@) hyperbolas, (b) non-virtual ellipses, and (c) virtual ellipses
of the system.,

5. A variable conic has a given point F as one real focus and touches two
fixed lines which meet in 7. Show that its centre lies on a fixed line I through
the mid-point M of FT, its other real focus describes a line parallel to [,
and its conjugate axis envelops a parabola.

Show that the two portions of [ which contain the centres of hyperbolas
and non-virtual ellipses are separated by M.

6. Four points 4, B, C, D, of which no three are collinear, are such that
A, Blieon agiven conic s and C, D donot lie on 8. If a variable conic through
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A, B, C, D cuts s again in P and @, prove that P and Qarematesinaﬁxed
involution on 8, and find the vertex of this involution.

Show that if a circle cuts a parabola, in points 4, B, P, @ then AB and PQ
are equally inclined to the-axis of the parabola, and also that if a circle cuts
ahyperbola in points 4’, B’, P’, Q' then A’ B’ makes the same angle with one
asymptote of the hyperbola as P’Q’ makes with the other.

7. IfU; = 0 (i = 1,2, 3, 4) are theline-equations of four points 4, B, C, D,
of which no three are collinear, prove that the line-equation of a variable
conic & which touches 4B, BC, CD, DA is of the form U, U+ kU, U; =
~ If s is met by a fixed line through 4 in P and @, prove that the tangents
to ¢ at P and Q envelop a conic ¢ which touches BC, CD, DB, and the line
which joins the points AB.CD and AD. BC.

Show also that the tangents at P and @ are mates in a fixed involution
of tangents to ¢. '

8. Two conics k, &’ touch at two points, and the pole of the common chord
of contact is P. If F is any focus of k, prove that F P is one of the bisectors
of the angles between the tangents from F to &’

9. A variable conic passes through two fixed points 4, B and has double
contact with a fixed conic k. Prove that the chord of contact passes through
one or other of two fixed points, namely the two points on 4B which are
harmonically separated by 4, B and also conjugate for k. Deduce that if &
circle has double contact with a central conic, then the chord of contact is
parallel to one or other of the axes of the conic. ‘

10. Show that any pair of lines through the four points in which a conic
is met by a circle are equally inclined to the axes of the conic.

11. Show that two parabolas have their axes parallel and in the same
sense and also their latera recta equal if and only if they have three-point
contact at infinity. Show further that two such parabolas have the same
axis if and only if they have four-point contact at infinity.

12. The locus of centres of a given pencil of conics is a conic ¢, and the
asymptotes of a variable conic s of the pencil meet ¢ at the centre of s and in
two further points X, ¥. Show that XY passes through a fixed point.

13. Three line-pairs (a, b), (¢, d), (e,f ) are such that @ and b are tangents,
at their intersections with a line p, to a conic through the intersections of
(c,d) with (e,f). Prove that there is also a conie, through the intersections
of (¢,f) with (a,b), touching ¢ and d at their intersections with p.

State the dual of the above theorem. Prove that any two points 4, B
on a parabola k with focus F are opposite foci of a hyperbola which passes
through F and has a diameter of k for one asymptote; and that the pole of
A B for k is the centre of a circle which touches FA4, FB, and the diameters
of k which pass through 4 and B.

14. EFQ@ isthe diagonal triangle of a quadrangle A BCD, and Pisa general
point in the plane. Prove that the harmonic conjugates of EP, FP, GP
with respect to the pairs of opposite sides of the quadrangle through E, F, G
respectively concur at a point Q. Show also that, when P describes a line
which does not pass through E, F, or G, then @ describes a proper conic
through E, F, and G.
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15. If ¢, and ¢, are two of the common tangents of a pair of conics s, &,
prove that the point of intersection of the two chords of contact is also the
point of intersection of two of the common chords of s and &’, and that the
two pairs of lines form a harmonic pencil.

Deduce that if two conics have a common real focus, then the two direc-
trices corresponding to this focus and two of the common chords of the conics
all meet in a point. Show also that two of the common tangents of the
conics meet on the line joining the remaining real foci. .

16. Show that the condition for the general conic

S= (a,b,c,f,g,h}.vc,y,é:)a =0
to have four-point contact with some conic for which the triangle of reference
is self-polar is FGH +fghA = 0, where A denotes the discriminant of S.

17. Show that the line-equation of the parabola which has four-point

contact with the rectangular hyperbola XY = ¢? at the point (ct, c/t) is
dctuv— w4+ (uct+veft+w)? =

and that the focus of the parabola is the point whose homogeneous co-

ordinates are (ct}(t8+5), ¢(5t44-1), 2t(¢4+1)).

18. 4 and B are points of a conic %, and s and ¢ are conics which have four-
point contact with & at 4 and B respectively. If P, @ are two of the common
points of s, ¢, prove that either PQ is conjugate to 4B for k or PQ meets
the tangents at 4 and B in points conjugate for k. Show further that in the
first case P and @ lie on a conic which touches &k at 4 and B.

19. Show how to find the axes and foci of a conic whose rectangular
cartesian line-equation is given.

Find the locus of foci of conies inscribed in a given rectangle; and prove
that the polars of a fixed point P for all such conics envelop a parabola whose
focus is the inverse of P in the circumcircle of the rectangle.

20. Show that the envelope of polar lines of a fixed point P with respect
to the conics of a confocal system is a parabola, and that if @ is the focus
of this parabola the relation between P and @ is symmetrical.

If P describes a circle, show that @ describes either a circle or a line, and
distinguish between the two cases.

2]1. Tangents are drawn from a fixed point V to the conics of a confocal
system, and the locus of their points of contact is a curve k. Prove that if V
lies on an axis of the confocal system then k is & circle through the two foci
on the other axis, and also that if V lies on the line at infinity then k is a
rectangular hyperbola concentric with the confocal conics.

22. If U and V are two opposite vertices of the quadrilateral formed by
the common tangents of a given conic 8 and a given circle whose centre is P,
prove that U and V lie on a conic confocal with s and that the tangents to
this conic at U and V are PU and PV. .

23. If two conics s, 8’ cut orthogonally at all four points of intersection,
show that the locus of a point whose polars with respect to s and s’ are
perpendicular is a conic of the pencil determined by s and #’.

If s is a central conie, prove that &’ is either confocal with & or belongs to
one of three fixed pencils of conics.



CHAPTER VIII

HIGHER CORRESPONDENCES, APOLARITY,
AND THE THEORY OF INVARIANTS

So far we have treated the geometry of the conic in a compara-
tively elementary manner, making use only of the simplest notions
of projective geometry and often arguing directly from the defini-
tion of the curve. In this chapter we shall show how the theory can
be extended by applying more advanced methods, and how the
introduction of a more general concept can sometimes unify a
large number of apparently disconnected theorems. We shall
indicate three separate directions in which such advances are
possible, touching successively upon higher correspondences, the
relation of apolarity between conics, and the classical theory of
invariants.

§1. HiGHER CORRESPONDENCES

A very useful concept in projective geometry, as has already
been made abundantly clear, is that of homographic correspon-
dence between one-dimensional forms; and it owes its usefulness
to the fact that we can often generate a homography by geometrical
construction, and then carry over the formal properties of homo-
graphies into geometrical properties of the figure concerned. Now
the homography is a very special kind of correspondence indeed,
and we may wonder whether there are more general correspon-
dences, with reasonably simple formal properties, which can also
be set up by geometrical construction. Such correspondences do in
fact exist—namely algebraic correspondences—and in this section
we shall try to give some idea of their place in projective geometry.

The simplest correspondence of the family is the homography
itself, and we may conveniently look upon algebraic correspon-
dences as furnishing a natural generalization of the homographic
correspondence. To see this we need to reconsider the definition
of homography and formulate it in different, though equivalent,
terms.

A correspondence between two one-dimensional forms is homo-
graphic if the parameters 6 afd 6’ of any two corresponding ele-
ments, referred to two arbitrarily chosen allowable parametric
representations, are connected by a fixed equation of the form
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a60’+-b8+c0'+d = 0. Instead, however, of requiring § and ¢’
to satisfy a bilinear equation, we need only require them to satisfy
an algebraic equation f(6,6’) = 0, in which f(6, §’) is a polynomial
of unspecified form, as long as we also insist that the correspon-
dence is (1,1). The algebraic theorem involved in this assertion
(Theorem 1 below) implies that any (1, 1) algebraic correspondence
between 6 and 6’ can be represented by an equation of the form
al8’'+b0--¢c0'4-d = 0. This purely algebraic result allows us to
redefine a homography as a (1,1) correspondence that can be
represented by an algebraic relation between projective parameters;
and when we do this, we see at once how to generalize the concept
of homography by introducing (m,n) algebraic correspondences
between one-dimensional forms.

DEFINITIONS. We say that two variable numbers 6, 6’ of the
ground field K (extended by the ideal number co0) are in (m,n)
algebraic correspondence if they are associated in such a way that:

(i) to every value of § correspond at most » distinct values of 6,
and to some value of § correspond exactly n distinct values
of §';

(ii) to every value of 8 correspond at most m distinct values of
0, and to some value of 6’ correspond exactly m distinct
values of 6;

(iii) all the pairs of corresponding values of § and 0’ satisfy a
fixed equation f(f, 8’) = 0, where f(, ') is a polynomial in @

.and @ with coefficients in K (and every pair of values
which satisfies this equation is a corresponding pair).

Two one-dimensional forms are said to be in (m,n) algebraic
correspondence if there is a correspondence between them which is
such that, when allowable parametric representations are intro-
duced arbitrarily, the parameters of corresponding elements are in
(m,n) algebraic correspondence.

The theory of algebraic correspondences is based on the following
algebraic theorem. : '

THEOREM 1. If variable numbers 6, 6’ of a fieldt K are in (m,n)
algebraic correspondence, then there exists a polynomial ¢(9,d'),
of degree m in 8 and n in 0', such that «, o’ are corresponding values
of 0, 0’ if and only if g(a,a’) = 0.

t It is assumed that the characteristic of K is zoro; i.e. that r.1 3 0 for any
positive integer 7.
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Although it is not at all difficult to give a convincing plausibility
argument for the truth of this theorem (making use of the fact
that an equation of the nth degree in one unknown has at most
n roots), to prove it rigorously demands rather more knowledge
of algebra than we wish to presuppose in this book. We therefore
refer the reader for the proof to G. T. Kneebone: ‘On Algebraic
Correspondences’ (Journal of the London Mathematical Society,
18 (1943), 133-7).

It follows at once from Theorem 1 that our new definition of
homography, as a (1,1) algebraic correspondence, is equivalent
to the original definition. The new definition, of course, provides
us with an alternative means of showing that a correspondence
set up by a specified geometrical procedure is homographic. We
first show that it is (1, 1)—and this merely involves showing that
each step of the construction, forward or backward, leads to a
unique result—and then we prove that it is algebraic. To this end,
we suppose that the two forms are represented by allowable para-
meters and then show that by carrying out a series of eliminations
we could, in theory at least, arrive ultimately at a polynomial
relation between the parameters of corresponding elements. Thus,
for example, to prove that the correspondence between the points
P, P’ in which a variable conic through four fixed points meets a
fixed line is an involution, we need only point out that the corre-
spondence, which is obviously (1, 1) and symmetrical, is algebraic
in virtue of the fact that the relation between the parameters of the
two points is derived from the algebraic condition for six points
to lie on a conic. Or again, if a conic ¢ is quadrilaterally circum-
scribedf to a conic &', each point P of s being one vertex of a quadri-
lateral PQRS inscribed in 8 and circumscribed to s’, it follows in a
similar way that the correspondence between P and E on s is an
involution—and hence that the diagonals PR, @8 always meet
in the same fixed point as P varies on s.

Critical points and united points

In developjng the theory of algebraic correspondences we need
to introduce a number of special terms, and this we now do. Let
us consider an (m,n) algebraic correspondence between two given
one-dimensional forms—which we may for definiteness take to be
ranges (P) and (P’)—and let us suppose it given by an equation

t See Theorem 4 below.
5304 N -
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f(6,8') = 0, of degree m in § and nin §’. We also take the field of all
complex numbers as ground field. Then to any assigned point F,,
with parameter ,, correspond the » points whose parameters 6’
are the roots of the equation f(6,, §') = 0; and similarly an assigned
point Py, with parameter 6, is a point arising from each of the m
points whose parameters 8 are the roots of the equation f(8, ;) = 0.
In general the » points arising from a given point P, will be distinct,
but for special choice of P, two or more of them may coincide.
Such a special point F, is called a critical point of the range (P);
and in a similar way we define critical points of (P’).

The parameters of the critical points of (P) are given by the 6'-
discriminant of the equation f(#,6’) = 0. For if 6, is a critical
value of 6, and 6; occurs multiply in the set of corresponding values
of ¢, then

F (0, 65) = 5%; f(6,,60;) = 0, and conversely.

The critical values of 6 are therefore the roots of the equation
obtained by eliminating 6’ between f(0,6’) = 0 and fy(0,6") = 0.

If the ranges (P) and (P’) are cobasal, having the same line as
axis, it is possible for P to be a self-corresponding or united point.
We call P a united point if at least one of the # corresponding points
P’ coincides with P. Thus the parameters of the united points are
the roots of the equation f(6,6) = 0; and it follows that, when
multiplicities are allowed for and infinite roots are taken into
account, every (m,n) algebraic correspondence has exactly m-+n
united points. ‘

An (m, n) correspondence between cobasal ranges may be such
that whenever (P, P’) is a pair (P’, P) is also a pair. This clearly
entails m = n. If f(#, 6') = O defines such a correspondence, the
conditions f(6, #’) = 0 and f(#', ) = 0 are equivalent, so that

either
f(6',6) = f(6,0)
or f@6)=—f,86),

i.e. the polynomial f(6, #') is either symmetric or skew-symmetric.
If (6, ¢') is skew-symmetric, then f(8, 6) = 0, so that f(6, 6')
has #'—0 as a factor, the residual factor being symmetric. Every
point P is a united point of the correspondence.
If f(0, 6') is symmetric, we say that the equation f(6, 6') = 0
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defines a symmetrical (m;, m) correspondence. It follows then, by a
well-known algebraic theorem that f(f, ') may be written as a
polynomial in the elementary symmetric functions 646’ and 66’ of
6 and . In the particular case given by m = 1 the correspondence
is an involution, and its equation is of the farm

a0’ +-b(0+6')+d = 0.

Examrpre. Let ¢, 8" be fixed proper conics meeting
in four distinct points 4, B, C, D, and let the polar
p with respect to &’ of a variable point P of s meet
gin P; and Pj. Then the two points P}, P; are re-
lated to P by a symmetrical (2, 2) algebraic corre-
spondence on s, namely the correspondence between
pairs of points (P, P’) of ¢ which are conjugate with
respect to &’

When P is at 4, p is the tangent to 8’ at 4; and .
this line meets s in 4'and one other point. Thus the four united points of
the (2, 2) correspondence are 4, B, C, D.”
~ For P to be a critical point, the polar of P with respect to 8" must touch s.
Now the polars with respect to &’ of the points of 8 envelop & conic §, the
reciprocal of s with respect tc §’, and 8, § have in general four common
tangents. The points of s which have these common tangents as their
polars for 8’ are the four critical positions of P.

Symmetrical (2, 2) correspondences on a conic

The above example illustrates the way in which higher corre-
spondences, as well as homographies, can sometimes be set up by a
simple geometrical construction. The symmetrical (2, 2) correspon-
dence is associated especially closely with the geometry of the
‘conic. Its equation is

a,(0+460')2+-a,(00')2+-as(01-6')00' +a,(0+-60")+a5 00" +ag = 0,
and the number of coefficients in this equation is the same as the
number. of coefficients in the equation of the general conic. This
makes it possible (in more than one way) to set up a one-one
connexion between the co® symmetrical (2, 2) correspondences and

the oo® conics of the plane. Two fundamental connexions of this
kind are established by the following theorem.

THEOREM 2. If the points P and P’ correspond in a symmetrical
(2, 2) algebraic correspondence on a given proper conic 8, then

(@) P, P’ are conjugate for a fixed conic 8,, and

(b) PP’ envelops another fixed conic 8,:
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Conversely, pairs of points of s which are conjugate for a fixed conic,
or whose joins touch a fixed conic, correspond in a symmetrical (2, 2)
algebraic correspondence on s.

Proof. If a canonical representation (82,8,1) of s is taken, the
coordinates of the line joining the points P, P’, whose parameters
are 6, 6’, are given by

U UyiUy = 1: —(0+0’) 06,
Then P, P’ are conjugate for a general conic
: (@,b,¢,f,9, b xg, 2y, 25)% = 0
if and only if

ad%0'2+-b06'+c+f(0+6')+g(6%-+0'2)-+-h66' (646') = 0;
and .PP’ touches a general comc (4,B,C,F,Q, Hug, u,u,)2 = 0.
if and only if
A+ B(6+0')*4C6%0'*—2F066'(0+6')+-2G06'—2H (6+6') = 0.

Since, by giving suitable values to the coefficients, we can make

each of these conditions coincide with any given condition of the
form

a, (646 )2+a2(00')2+a8(0+0’)00’+a4(0+0’)+a5 06’ +ag = 0,
the theorem is completely proved.

COROLLARY. T'he symmetrical (2, 2) algebraic correspondence cut on
8 by tangents to s, breaks up into a homography and its inverse if and
only if 8, has double contact with s. If s, coincides with s, the corre-
spondence 18 the identical correspondence taken twice.

The non-trivial part of this corollary follows at once from
Theorems 18 and 19 of Chapter VI.'

EXERCISES .

(i) Show how it is possible to regard the generation of an involution on &
by chords through a fixed point as a degenerate case of the above theorem.

(ii) Examine the way in which the united points and critical points arise
when a symmetrical (2, 2) correspondence on g is cut by tangents to a general
conic &,.

THEOREM 3. The envelope of a variable line which is cut harmons-
cally by two given conics s and 8’ i3 another conic k. The eight tangents
to s and 8’ at their common poinis all touch k.

Proof. Let I be a variable line, cutting s in P and Q. Then [ is
cut by s and 8’ in harmonic pairs of points if and only if P and @
are conjugate for s’. If this condition is satisfied, it follows by
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Theorem 2 that P, @ correspond in & certain symmetrical (2, 2)

algebraic correspondence on 8, and consequently that PQ is a
tangent to a fixed conic k. .

If I touches s or &’ at one of the | M
common points of these conics, % )
three of the four points of inter- '
section coincide, and the condition
for a harmonic range is then satis-
fied (cf. p. 49).

The conic k, just defined, is usually known as the harmonic
envelope or ®-conic of 8 and 8’. Dually, the locus of a point which
moves in such a way that the pairs of tangents drawn from it to
s and &' separate each other harmonically is also a conic, the
harmonic locus or F-conic of s and s'.

Exercise. By taking s’ to be the absolute point-pair Q, obtain the difector
circle of s as a harmonic locus: '

THEOREM 4. (Poncelet’s Porism). If 8 and 8’ are proper conics
and if, for some fixed integer n exceeding 2, one proper n-gon exists
which is both inscribed in s and circumscribed to &', then an infinity
of such n-gons exists; and there is one of the n-gons with any general
point of 8 as one of its vertices.

Proof. Let AgA,...A,_, be the given
inscribed-circumseribed z-gon, and sup-
pose we try to construct another such
n-gon, beginning with an arbitrary point
P, of 8 as the first vertex. From F, we
can draw two tangents to s’, meeting s
again in P, and P}, say; but when one of
thesepoints hasbeen chosenasthesecond
vertex, the rest of the construction can be carried out in only one
way, unless at some stage we double back. Thus, after n+-1 steps,
we arrive finally at one or other of two points P,, P,, and what we
have to prove is that at least one of these points always coincides
with F,. Suppose that this is not true. The correspondence
between F, and F, must then be symmetrical (2, 2), and algebraic,
so that F, P, envelops a fixed conic £ with the property that the
two tangents from F, to k are always the two joins Fy P, and F, P,

If, now, F, falls at a vertex 4, of the given n-gon 4, 4, ... 4, _,,
both P, and P, also fall at A;. The two tangents from 4, to k then
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coincide with the tangent to s at A, and k therefore touches s at
A;. Since this happens at at least three distinct points 4, 4,, 4,,
k and s are the same conic. F, and P;, thus coincide with P, for every

- position of F,, in contradiction to our hypothesis that there exist
positions of F, for which neither P, nor P, coincides with F,. This
proves the theorem.

Exeroise. If @y, @, are two fixed points in the plane of a proper conic
8,and @, @, meets sin A, and 4,, prove that proper 2n-gons can be inscribed
in & with their sides passing alternately through @, and @, if and only if
{Q1, Q4; A;, 4,} is a primitive nth root of unity. What does this result
become in the case n = 21

The method of false position

Theorem 4 brings out the poristic character of the problem of
inscribing n-gons in a given conic in such a way that their sides
all touch a second given conic—a phenomenon that we have already
discussed in the special case of inscribed-circumscribed triangles
(Chapter VI, Theorem 21). The possibility of such porisms brings
to our notice a danger that is latent in the use of correspondence
arguments in order to prove theorems about geometrical con-
structions; and we shall conclude this section by examining the
safeguards that are required when arguments of this kind are
employed.

With every problem in projective geometry that asks for the
construction of a point or figure satisfying certain stated conditions
is associated an existence theorem, which states that the problem
has a specified number of solutions—e.g. the theorem that there are
in general two conics which pass through four given points and
touch a given line—and a powerful method of proving such exist-
ence theorems by means of correspondences is the so-called ‘method
of false position’. Suppose, for example, we are given a conic s
and three general points @,, @,, @; in its plane, and we wish to
investigate the possibility of constructing a triangle, inscribed
in 8, whose sides pass respectively through @,, @,, and @,. If we
were to take an arbitrary starting-point P on ¢ and try to construct

an inscribed triangle by drawing chords successively through

@y, @5, and Q, weshould expect the attempt to fail, the reason for its
failure being that P was selected at random. If P had been chosen
suitably the third chord might have passed through P, so com-

pleting the required triangle; and our problem, therefore, is to find -
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the right starting-point. We can solve this problem by observing
that, whether the attempted construction solves the original
problem or not, it sets up a homographic correspondence on s
between P and P’, the free point of intersection of the third
chord with s, and that the favourable positions for P are simply the
united points of this homography. In this way we prove the
existence theorem which states that the problem under considera-
tion has in general two solutions (which need not, of course, be real)
and, in addition, we are able to find the solutions in any given case;
for we need only determine three pairs of the correspondence, by
taking arbitrary ‘false’ positions P,, F,, F;, and then construct the
united points in the usual way by drawing the cross axis.

Now suppose we were to apply the method of false position to
the problem of finding n-gons that are both inscribed in s and
circumscribed to &'. With our earlier notation, F, and P, are
connected by a symmetrical (2, 2) algebraic correspondence; and
since such a correspondence has four united points, we naturally
infer that there are four solutions to the problem. How, then, is
this conclusion to be reconciled with the established fact that the
problem is poristic? The explanation is that in general, when the
conics are not specially related, the four united points arise from
degenerate n-gons which double back on themselves. We leave the
reader to work out the details, guided by the following figures:¥

Before arguing, then, by the method of false position that a
certain construction problem always has so many solutions (of
which an even number may be unreal) we need to satisfy ourselves
that the solutions given by the united points of the correspondence
are in fact proper ones.

t See Zeuthen, Abzihlende Methoden der GQeometrie (Leipzié, 1914), 77, and
van der Waerden, Einfuhrung in die algebraische Geometrie (Berlin, 1939), 139.
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§2. APOLARITY

In this section we propose to introduce a new concept, that of
apolarity, which provides a powerful means of unifying much of the
projective geometry of the conic. It enables us, for example, to
bring together under a common head such apparently diverse
relations as those which hold between a conic and a pair of con-
jugate points, a conic and a pair of conjugate lines, and a conic
and a second conic to which it is harmonically inscribed or circum-
scribed. We may conveniently introduce this general notion by
going back to the idea of self-polar triangle, by reference to which
the relations of harmonic inscription and circumscription were
defined in Chapter VI, and trying to see how this idea can be
generalized.

A triangle PQR is said to be self-polar for a proper conic s when
it stands in a certain self-dual relation to s, both its vertices P, Q, R
and its sides p, g, r being conjugate in pairs with respect to s. If the
point-equations of the sides of a self-polar triangle of s are respec-
tively p = 0, ¢ = 0, r = 0, and the line-equations of its vertices
"are P =0,Q = 0, R = 0, the point-equation and line-equation of
8 may be written in the forms

8 = Ap*+pgiurt = 0
and X =NPHu'Q*vR2 = 0.

This is plain if PQR is taken as triangle of reference. The expres-
sibility of § as a linear combination of p?, ¢2, 72 is a necessary and
sufficient condition for the triangle PQR to be self-polar, and it
therefore furnishes an algebraic counterpart of the geometrical
relation of self-polarity. The algebra, however, admits of obvious
generalization, and this leads us to define the new concepts of polar
k-side and polar k-point as follows.

DEFINITIQN. A set of £ lines (p,,p,,..., p;), where k may be 3,
4, or 5, is said to form a polar k-side for a given proper conic s if the

" point-equation of s is expressible in the form S = ZA, ;p7 = 0.
Dually, a set of k points (B, B,,..., B,) is said to form a pola.r k-point

for s if the line-equation of s is expressible in the form

S=33Pi=o.

i=1
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We need only consider values of k up to 5; for since the conic has
five degrees of freedom, the equation of any arbitrary conic can be

expressed in the form z APt = 0, (py, Pygs---» Pg) being a given set

of six general lines.

It will be observed further that it is only in the case k= 3 that
the polar k-side is a self-dual entity. When % exceeds 3, a set
of k lines does not determine an associated set of k& points in any
simple way.

~ So far the polar k-side, for k£ equal to 4 or 5 is connected with
the self-polar triangle only by algebraic analogy, and we have still
to look for properties that make it geometrically interesting. We
may remark, first of all, that there are certain trivial polar k-sides
which it is often convenient to leave out of account. Suppose
(91, Pgs--s Pg-1) 18 & polar (k—1)-side, and p,, is an arbitrary line.

Then 8 = NPt Nes pha 022,

and (p;, Ps,..., py) counts as a polar k-side. Such polar k-sides will
be called special. Thus, for example, the sides of a self-polar triangle
together with an arbitrary line make up a special polar 4-side.

The question that interests us is how non-special polar 4-sides may
be characterized geometrically, and we shall now show that the
answer is suggested by Hesse’s Theorem (Chapter VI, Theorem 24).
In virtue of this theorem, if two pairs of opposite vertices of a
quadrilateral are conjugate for s, then the third pair is also con-
jugate for s; and we have here a special relationship that is possible
between a quadrilateral and a conic. When the relationship holds,
we may call the quadrilateral a Hesse quadrilateral for the conic—
and Hesse quadrilaterals can now be identified with polar 4- sldes

THEOREM 5. Four lines, no three
of which are concurrent, form a
polar 4-side for a given proper conic
8 if and only if they are the sides of
a Hesse quadrilateral of s.

Proof. Let the four given lines
be taken as the sides of the tri- /% xz\ X
angle of reference and the unit line,
and let the unit line meet the other lines in Xj, X3, X, respectively.
(i) If the conic is given by

(@,b,¢,f,9,h{ 2o, 21, 2,)% = O
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and the lines form a Hesse quadrilateral, then, since X;, X; are
conjugate for ¢ = 0, 1, 2, we have f = g = h.
The equation of s may accordingly be written

8 = aaf+bat+cal+2f() 2y +2, %9420 2,)
= @—f)aZ+O—F 22+ (c—f)3+f @+, +2,)?
=0,

and the four lines form a polar 4-side.
(ii) If, conversely, the lines form a polar 4-side, the equatlon of s
may be written

A0 xg""\l x?'{")\z x§+Aa(xo+x1+x2)2 = 0;

and it is immediately verifiable that X;, X; are conjugate points
(Gi=0,1,2).

COROLLARY. If p,, p,, Ps are three given lines which are not con-
current and which do not form a triangle that is self-polar for a given
proper conic 8, then there exists a fourth line p, such that (py, P,, D3, Py)
18 a polar 4-side for 8. In general, p, i3 the axis of perspective of the
triangle p, p, ps and its polar triangle.

ExErcise. Show that the following is a complete enumeration of all
possible types of polar 4-side for a proper conic:
(i) the Hesse quadrilateral;
(ii) the special polar 4-side, consisting of the sides of a self-polar tna.ngle
together with an arbitrary line;
(iii) a line and three arbitrary lines through its pole.

We have already seen in Chapter VI that the problems of in-
scribing in a given conic ¢ and circumscribing about s triangles that
are self-polar for a second conic 8’ are poristic. This fact may now
be generalized, polar k-points or k-sides being taken in place of
self-polar triangles. The general problem of inscribing in ¢ &-points
that are polar for &’ is covered by a single comprehensive porism,
which involves a certain relation, known as apolarity, that can hold
between two conics.

If the two conics ¢ and s’ are given, we can in any case choose ool
pairs of points of s which can each be augmented by a third point
(not necessarily on 8) to a 3-point that is polar for &', and we can
choose c03? triads of points of s, each of which can be augmented
by a fourth point so as to make it into a polar 4-point for s’. The
question is whether the augmenting point does or does not fall on s.
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THEOREM 8. Let 8, 8' be a conic locus and a conic envelope, repre-

sented respectively by the equations
8 = (a,b,¢,f,9,h{z,y,2)>= 0,

and X =(4B,C,F,G¢ Hjuv,w)?=0;
and let Ly=ad'+bB'+cC'+2fF'+29G'+2hH'.
Then if k—1 points of any k-point polar for 8' (k = 3, 4, or 5) lie on
8, and the k—1 points do not themselves form a polar (k—1)-point,
the kth point either always falls on s or never falls on s, acoordmg as
Ly=0o0rl,+#0.

Furthermore, if k—1 lines of any k-side polar for s (k = 3, 4, or 5)
touch &', and the k—1 lines do not by themselves form a polar (e—1)-

side, the kth line either always touches s’ or never ttmche.s &', according
as I l - 0 or I 8.8 # 0

Proof. Let P; = (2;,¥;,2,) (@ = 1,2,...,k) be the vertices of a
k-point polar for s’; and let the points Pl, B,,..., B_;, which do not
constitute a polar (lc— 1)-point, lie on s. Then there exist Ay, Ay,..., A,
such that k
x’ Eigli\i(uxi-l-”%-"wzi)z;

and, since (B, B,..., B,_,) is not a polar (k—1)-point, A, # 0. We
therefore have

A" =3 N, B =3 Nyt C'=3 N4,
1 [} 3

‘ F = ;Aiyizi’ ¢’ =§Aizz‘xi’ H'=§)‘¢”i?/:';
and hence
as’ —zglai (@,b,¢ f githi’yb 2} = ZM i1
Now 8y = 8 = ... = 8_14-1 = 0, by hypothesis, and the con-
dition L, = 0 therefore reduces simply to S = 0. This proves
the first part of the theorem.
The second part follows at once when we notice that the condition

aA’'4-bB'+cC'+-2fF'+4-29G'+2hH’ = 0
remains unaltered when the whole situation is dualized and, at the
same time, s and s’ exchange roles.
We may remark, incidentally, that since the equation [, = 0

represents a projective relation between the two conics, if it holds
in one coordinate representation & it must hold in all.
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DEFINITIONS. A conic locus 8 and & conic envelope s’ are said
to be apolar if I, , = 0

A conic k is said to be outpolar to a conic k&’ if k, regarded as a
locus, is apolar to %', regarded as an envelope; and in this case we
say also that %’ is inpolar to k.

It is customary and often convenient to associate outpolarity
and inpolarity separately with the two aspects of apolarity indi-
cated in the first and second parts of Theorem 6. If we do this, the
connexion between the two aspects—a fact of obvious geometrical
importance—is that if % is outpolar to &', then %’ is inpolar to k.
The theorem (already proved by reciprocation in Chapter VI)
that if s is harmonically circumscribed to s’ then s’ is harmonically

_inscribed in s, is a special instance of this connexion.

We may now summarize the geometrical interpretation of the
relation of apolarity between proper conics as follows: If s is out-
polar to &, it contains 00! 3-points, co? 4-points, and c0® 5-points,
all polar for s’; and, since s’ is then also inpolar to s, it contains
ool 3-sides, co® 4-sides, and co® 5-sides, all polar for s.

Properties of the relation of apolarity

(i) The first property of the relation Z , = 0 that we should note
is its linearity, both in the coefficients of the point-equation of s
and also in the coefficients of the line-equation of ¢’. It follows at
once from this that if s, and s, are each outpolar to s; and s; then
every conic of the pencil determined by s, and s, is outpolar to
every conic of the range determined by s; and s;.

Even more important is the fact that I, , = 0 is a general linear
condition on the coefficients of the point-equation of s. When a
conic s is made to pass through an assigned point of the plane, a
condition of the form

ax1+by1+cz1+2fy1 214292, 2+ 2hx, y; = 0

is 1mposed upon the coefficients in its point-equation. But while
this is a linear condition, it is not the most general linear condition
that can be imposed, for the quantities a3, 43, 2%, y,2,, 2, %1, %, ¥,
are interconnected. Outpolarity to an assigned conic s’ is, however,
a general linear condition, since an arbitrary linear condition

A'atBb+C'c+2F f+2G'g+2Hh = 0
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ona,b,¢,f, g, h can be interpreted as outpolarity to a conic envelope
4',B,C',F',G',H §u,v,w)? = 0.

We can therefore assert straight away, for example, that there is &
unique conic locus that is outpolar to five given linearly indepen-
dent conic envelopes. If the conic loci of the plane are represented,
as described on p. 106, by points of §;, the condition on a conic s
of being outpolar to a fixed conic envelope becomes the condition
on the corresponding point of S of lying in a fixed prime (i.e. S).

(ii) A conic locus s is outpolar to a point-pair (P, @) if and only if
P and @ are conjugate points for s. For we may choose the co-
ordinate representation in such a way that the line-equation of the
point-pair is vw = 0; and the condition I, = 0 then reduces to
f =0, which is the condition for the points (0,1, 0) and (0,0,1)
to be conjugate for s.

(iii) A conic locus ¢ is outpolar to a repeated point (P, P) if and
only if it passes through P. ‘

(iv) A line-pair (p,q) is outpolar to a conic envelope s’ if and
only if p and ¢ are conjugate lines for s’; and a repeated line (p, p)
is outpolar to s’ if and only if p touches ¢'.

(v) If two conic loci s; and s,, both outpolar for the same conic
envelope s’, meet in four distinct points, then these points form a
polar 4-point for s’. For we can take three of the points and
augment them to a polar 4-point for ', and, by Theorem 6, this
additional point must then lie on both s, and s,.

We see, then, that the relation of apolarity covers a number of
the projective relations between two conics (one or both of which
may be degenerate) which we have already learned to handle by
more elementary methods, and in this way it proves to be a valuable
unifying concept. In addition to this, however, it also admits of -
some striking euclidean interpretations; and to these we now turn.

Apolarity in the euclidean plane

THEOREM 7. A circle ¢ is outpolar to a conic envelope 8’ if and only
if 4t cuts the director circle of 8’ orthogonally.

Proof. There exist circles outpolar to ', namely the circum-
circles of triangles self-polar for s’. If ¢, and ¢, are any two such
circles, every circle of the coaxal system (i.e. the pencil of circles)
which they determine is also outpolar to s’. In particular, the two
point-circles L, L’ of the system are outpolar to &', and this means
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that the pairs of lines (LI, LJ) and (L’I, L'J) are both conjugate
for's’. Thus the tangents from L to s’ are perpendicular, and so also
are the tangents from L’. The director circle of s’ therefore passes
through L and L', and so belongs to the conjugate coaxal system.
This means that the director circle is orthogonal to ¢;, and since
¢, was any circle that is outpolar to s, the director circle of s’ is
orthogonal to every outpolar circle.

To prove the converse part of the theorem we proceed as follows.
Let ¢ be a circle which cuts the director circle of s’ orthogonally, and
let an arbitrary diameter of ¢ cut the director circle in L and L’.
Then, by reversing the previous argument, we can show that the
circles of the coaxal system with L, L’ as its limiting points
—of which ¢ is one—are all outpolar to s'.

COROLLARY 1. If a triangle is self-polar for a conic &', its circum-
circle cuts the director circle of 8’ orthogonally.

COROLLARY 2. If a triangle is circumscribed to a conic &', its polar
circle cuts the director circle of s’ orthogonally.

COROLLARY 3. If a circle is outpolar to a parabola, its centre lies
on the directriz of the parabola.

COROLLARY 4. If a circle is outpolar to a rectangular hyperbola,
it passes through the centre of the hyperbola, and conversely.

COROLLARY 5. A rectangular hyperbola is outpolar to a circle if
and only if it passes through the centre of the circle.

Corollary 5 is projectively equivalent to Corollary 4, the roles
of the pairs of points in which the two conics cut the line at infinity
merely being interchanged.

A condition for six points to lie on a conic

There is one further theorem which it is convenient to insert
here although, strictly speaking, it has nothing to do with apolarity.
It is concerned, however, with linear combinations of the squares
of the equations of points or lines, and it gives useful criteria
for six points to lie on & conic and for six lines to touch a conic.

THEOREM 8 (Serret’s Theorem). If the equations
P, =ur vy twz; =0 (e=1,2,..,6)
represent six points Py, a necessary and sufficient condition for the siz
points to lie on a conic i3 that the siz polynomials P} in u, v, w should
be linearly dependent. Dually, siz lines p;, = 0 are all tangents to a
conic if and only if the polynomials p? in z, y, z are linearly dependent.



VIIL § 2 APOLARITY 101
Proof. The polynomials P? are linearly dependent if and only if
there exist numbers A}, A,,..., A, not all zero, such that

§A1P§EO

i=1
identically in u, v, w, i.e. if and only if the following equations for
Ayseees Ag aTE consistent:

;A;zg=o, e} gz\,yizi= 0,...
A necessary and sufficient condition for this is

22 22 . . . 2 [=0;

Y123 Ya%za - . . Y%

and this is just the familiar condition for the six points (z;, ¥;, 2;)
to lie on a conic.

COROLLARY 1. If two triangles are self-polar for a conic, their six
vertices lie on a conic. ’

For if 8 = A, P}+4-), Pi+-)q P},
and . 8= 2Pl Pi-2, PR,
then A, Pi4-d, Pi+-APi—), Pi—), P2—) P = 0.
We thus have an alternative proof of Theorem 22 of Chapter VI.

COROLLARY 2. If two triangles are both inscribed in a conic k,
there exists a conic for which they are both self-polar.

COROLLARY 3. If a polar k,-point and a polar ky-point for a conic
have k,-k,— 8 points in common, then their siz vertices lie on a conic.

§3. THE THEORY OF INVARIANTS

In the previous section we expressed in algebraic form I,, = 0
a projective relation that may possibly hold between two conics,
and we inferred (p. 187) that if the algebraic relation holds for the
equations of s and &' in any one coordinate representation it must
hold for the equations in every allowable representation. This
suggests the possibility of a general algebraic investigation of
invariant relations of this kind, of which the aim would be, on the
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one hand, the systematic construction and classification of such
relations and, on the other, their geometrical interpretation.

We can only give here a very brief introduction to the subject.
The algebra has been worked out fully in the classical theory of
invariants, where a technique is developed for handling invariant
algebraic relations symbolically; and for the full development we
refer the reader who is interested to the following standard works—
Grace and Young, Algebra of Invariants (Cambridge, 1903);
Elliott, Algebra of Quantics (Oxford, 1895); Weitzenbock, Invari-
antentheorie (Groningen, 1923).

The discriminant of a quadratic form

As a first example of an invariant relation we may take the con-
dition that a quadratic form should factorize. Consider the form

S = (a,b,¢,f,9,h]2,y,2)* = xTAX.

The condition for the form to factorize, i.e. for the conic S == 0
to be degenerate, is of course |A| = 0. If, now, we change the
coordinates according to the scheme

x=Px (P|#0),
8§ is transformed into the quadratic form
8 = XTPTAPx = XTAX,

where A = PTAP. Clearly, then, |A| = |P|2.|A|; and the two
discriminants |A| and |A| are either both zero or both non-zero,
as we should expect,.

The typical features of this example, from the present point of
view, are the following:

(@) a geometrical condition is expressed by the vanishing of a
certain polynomial in the coefficients of a form;

(b) when the variables in the form are subjected to a linear
transformation, the value of the polynomial with the new
coefficients substituted for the old is equal to the original
value multiplied by a power of the determinant of the trans-
formation. '

If we now replace the single form by two or more forms in the
same set of variables, we have a useful indication of what may be
looked for in_other cases.
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Invariants of a pair of quadratic forms

Let 8 = xTAx and 8’ = xTA’x be two quadratic forms in -

#, y, z, which transform respectively into the forms § = XTA% and
8§’ = XTA’X. The general linear combination of S and §' may be
wiitten 88 g = AS+uS’ = XTOA+pA')X,
and this form transforms into

8 = XTPTMA+pA")PE = XT(\A+pA")X.
It follows that

NA+pA’| = [P[2. AA+pA'], (1)
and this holds for arbitrary values of A and p, i.e. identically in
A and p.

Now

AA4pA’| = | da+t-pa’ Ah+ph’ Ag+pg’ |
| Mbph’ Apb’ Aftuf
Atpg' Aftuf’ Aetpc
= AXHOA+0O'Aul4A'pd,
where A = |A|, A’ = |A’|, and ®, @’ are certain intermediate
expressions. We have in fact
3A = aA+bB+cC+2fF429G+2hH,
@ = a'A+b'B+c'C+-2f'F+2¢'G+20H,
@' =ad'+bB'+cC'+2fF'+29G'1-2hH’,
3A’ = aIAl+bIBI+cIGI+2fIFI+2gIGI+2hIHI.

Since (1) is an identity in A and u, we have at once A = |P|2A,
® = |P|?20, ® = |P|20’, A’ = |P|*A’. Thus not only A and A,
but also ® and @', which are mixed polynomials in the coefficients
of S and 8’, transform in the special manner described in (b) on
p- 192, They also have, as it happens, a geometrical interpretation
as demanded by (a); for © and ©' are the expressions I, and I, ,
and their vanishing means that the conic S = 0 is inpolar or out-
polar to the conic 8’ = 0 as the case may be.

The four expressions A, @, @', A’ are the four fundamental
invariants (or relative invariants) of S and 8’. Each of them is
homogeneous both in the coefficients of S and in the coefficients
of 8’; and since in each case the factor |P| occurs to the second
power .on the right-hand side of the equation giving the law of

transformation, all four invariants are said to be of weight 2.
5304 o
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More generally, we say that a polynomial ®(a, b,..., &; &', b’,..., A’)
in the coefficients of S and 8’ is an invariant of weight w of the two
quadratic forms if

(i) @ is homogeneous in a,b,...,» and in a’,¥’,..., %', and
(ii) ©@,b,...,k; @', ¥,.... k') = |P|*.®(a,b,...,h; a’,¥,..., k).

A polynomial in the four fundamental invariants, with constant
coefficients, say
Q= 3 A, APOQQOTA",
p,a,r,8

will satisfy (ii) if and only if it is homogeneous, of degree n say, in
A, 0,0, A’. When this is the case p{g+r-+s = n for every term
of the above expression, and clearly ® = |P|2*.®. The function ®
will not satisfy (i), however, unless 3p+2¢+r (and consequently
also ¢+-2r-+3s) is constant for all the terras. When this condition
is not satisfied, we can write @ as a sum Y @, of proper invariants
®;, all of weight 2n, by collecting together in one term ®; all the
terms of ® for which 3p+42¢-r has the same value. If ® satisfies
(ii) but not (i), we call it a pseudo-invariant of 8 and §’; and any
pseudo-invariant may thus be expressed as a sum of proper in-
variants.

We may now extend the concept of invariant by admitting not
only polynomials ® in the coefficients of § and 8’ but also rational
functions ®/¥. If ® and ¥ are invariant polynomials, of weights
w, and w, respectively, we say that the rational function ®/¥" is an
invariant of weight w,—w, of 8§ and §’. The weight of such an
invariant (which must be integral) can be positive, negative, or
zero. If it is zero, @/ is called an absolute invariant.

Invariants of a pair of conics

The algebraic results just obtained may now be interpreted
geometrically in terms of the projective geometry of a pair of conics.
Let us consider two given conics s and 8’, represented in some chosen
representation # by point-equations § = 0and 8’ = 0. It should
be noted first of all that the conics are associated in this way, not
with uniquely defined quadratic forms S and §’, but with classes
of forms (kS) and (¥'S’), where k, k' are arbitrary constants. The
projective properties of the pair of conics may be expected, there-
fore, to be reflected in invariant properties of these two classes of
forms.
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The projective properties of the pair of conicsare of two different
kinds. In the first place we have projective relations of s to s, of
which the relation of apolarity is typical; and in the second place,
there are numerical invariants or geometrical moduli of the two
conics, such as, for example, the cross ratio (or some symmetric
function of the six cross ratios) of the range of four points cut on
8 by ¢'.

The vanishing of any invariant of S and S’ clearly corresponds
to some projective relation between s and ¢’, for since an invariant
of S and 8’ is homogeneous in the coefficients of the two forms
separately, it is also an invariant of kS and k'S’ for arbitrary k
and k’. No such meaning, nor indeed any meaning at all in terms
of the two conics, attaches to the vanishing of a pseudo-invariant
of S and §'. _

The numerical value of any absolute invariant of S and &’
‘corresponds in a similar manner to a geometrical modulus of s
and &', provided that numerator and denominator are of the same
degree in the coefficients of § and also in the coefficients of §’.

Applying these results to the known invariants of 8§ and §’,
we have:

THEOREM 9. Any algebraic equation F(A,0,0’,A’) = 0represents
a projective relation between the conics 8 = 0 and 8’ = 0, provided
that F is homogeneous separately in a,b,...,h and in a’, b,...,.», or,
what comes to the same thing, provided that F is (a) homogeneous in
A, ©, 0, A, and (b) homogeneous also when weights 3, 2, 1, 0 are
assigned to A, ©, O', A’. ,

Any rational function F(A,0,0',A")/G(A,0,0,A") represents a
projective modulus of the two conics provided that (a) numerator and
denominator are of the same total degree.in A, ©, @', A’, and (b) they
are both homogeneous and of the same degree in a,b,..., h and also in
a,b,..,h.

The two simplest absolute invariants of s and s’ are

AQ’ A'O
o = —62—’ B = ‘m ’
and it can be shown that any other absolute invariant which is.
derived from the four fundamental invariants is & rational furiction
of « and B, and also that any irreducible invariant relation (other
than ©® = 0 or ® = 0) derived in the same way can be expressed
in the form ¢(x, B) = 0, where ¢ is a polynomial. All such relations
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may therefore be regarded as algebraic relations between the two
basic moduli of s and s’. The proof of these statements is left to
the reader. It is worth noting, incidentally, that there appear to
be no immediate geometrical interpretations, based on cross ratios,
- of « and B themselves, although many of the obvious moduli of
8 and s’ can be expressed easily enough in terms of these two.

Examples of invariant relations

We have now, in Theorem 9, the means at our disposal for con-
structing infinitely many types of invariant relation between two
conics ¢ and s’. Unfortunately we have no systematic way of
interpreting them geometrically, and we might be inclined to say
that the algebra has suddenly out-distanced the geometry. What
we can do, however, is to select those geometrical relationships
between s and &’ which interest us and try to express them, by a
systematic procedure, in invariant algebraic form. The procedure
is as follows. Having settled upon a geometrical relation, we take
two conics s and s’ which we assume to be connected by this relation
only. We then choose a system of reference in which the conics have
simple equations, compute for these equations the values of
A, 0,0, A’, and search for a relation between these quantities which
satisfies the homogeneity conditions of Theorem 9. If the assumed
geometrical relation between s and s’ is in fact one which imposes
only one condition on the coefficients, and if an invariant relation
is found which is irreducible, then this latter is the required alge-
braic equivalent of the original condition, valid in every coordinate
system. The two examples which follow will make the procedure
clear. ~

Exampre 1. Let 8 be triangularly circumscribed to 8. In this case, by
suitable choice of the frame of reference, the equations of s and s’ can be
taken to be 8 = 2fyz+2gzz+2hay = 0,

8 = 2ty +22—2yz—2222— 22y = O,
respectively. Then the values of 4, B,..., H are —f3, —g®, —h3, gh, hf, g
and those of 4, B’,..., H' are 0, 0, 0, 2, 2, 2; and hence

A = 2fgh, O = —(f+g+h)’, O =4(f+g+h) A =—4
The only relation between these quantities which is homogeneous both for
weights 1, 1, 1, 1 and for weights 3, 2, 1, 0 of A, 0, @/, A’ is

02—4A’0 = 0,
i.e. B = }; and this is therefore the required invariant relation, valid for
every frame of reference.
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ExaMPLE 2. Let s and 8’ be such that two of their common tangents intersect
on a common chord. When this relation holds, the conics are projectively
equivalent to a pair of equal circles; and their equations may be written
non-homogeneously as X2+Y? = 1 and (X—d)*+Y? = 1. Then

(a,b,..., h) = (1,1, —1,0,0,0),
(o', b,...., n") = (1,1,d*—1,0, —d,0),
(4, B,...,.H) = (—1,-1,1,0,0,0),
(4, B',..., H') = (d*—1,—1,1,0,d,0);

and hence .
A=—1, 0 =d*-3, @’ = d?*-3, A= —1.
To pick out a relation between these quantities which satisfies the necessary
homogeneity conditions, it is perhaps simplest to replace them by A = —&2,
@ = (d*—3)k?, ©’ = (d*—3)k, A’ = —1, and then to seek a homogeneous
relation between these new values which is independent of k. In this way we
obtain the relation  A@B_A@ — 0

or, in terms of the absolute invariants, « = B.

The general theory of invariants

It may be useful at this stage to refer to some more general con-
cepts and results which throw light on what has been said so far,
and to indicate very briefly the scope of the general theory of
invariants.

We need to define an invariant of a set of forms (i.e. homogeneous
polynomials) in n--1 indeterminates x,,...,z,, where the forms
are not necessarily assumed to be of the same degree. Now & form
of specified type is essentially an array of coefficients, ordered
according to the terms to which they belong; and this is what
Weitzenbock calls a tensor. We may regard the coefficients in the
form as themselves indeterminates, treating the original x,...,,
as suxiliary quantities which serve merely as a device for trans-
forming the given form into another form of the same degree; for
the original transformation x = PX induces a linear transformation
of the coefficients of the form, and the coefficients in this trans-
formation depend only upon the elements of the matrix P. To take
a simple example, let S be the quadratic form xTAX, i.e.

n n
2 D a2 %, (B = Ay)-
1=0 k=0

This form defines the symmetric tensor (,;), and the induced linear
transformation of the components is given by A = PTAP, i.e.

A = P-7AP-.,
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We may say then, in general terms, that every form S (with
indeterminate coefficients) defines a tensor or array (a) of coeffi-
cients, and that the group GL(n-1) of all non-singular linear
transformations x = PX gives rise to a group Gy of linear trans-
formations of the array (). Aninvariant of a set of forms 8®,..., §®
may now be defined as a polynomial ®(a®,...,a®) in all the coeffi-
cients of all the forms which has the following properties:

(i) it is homogeneous in the coefficients of each form separately;
(ii) when 8®,..., 8® are transformed into S®,..., S” by any given
transformation x = PX of z,,...,z, then

d(@m,...,a") = Ko(a",...,a"),
where K is a quantity which depends only on the matrix P.

It may be proved algebraicallyt that if ® is such an invariant
then K = |P|*, where w is a non-negative integer. ® is accord-
ingly referred to as an invariant of weight w of the » given forms.
Similar definitions apply also to invariant rational functions ®/¥".

The fundamental theorem on invariants is the Basis Theorem,}
due,to Gordan. This asserts that if S®,..., S®) are arbitrary forms
of any assigned degrees in z,,...,z,, then there exists a finite set of
invariants I,,..., I, such that every invariant of the forms is expres-
sible as & polynomial in 1,,..., ],

For a single quadratic form Sin z, y, 7, the invariant A is itself the
basis. In the case of a pair of such forms, S and §’, it can be shown§
that A, ©, ®’, A’ form a basis; and this means that the invariants
constructed from these, as described on p. 194, are all the in-
variants of § and §’.’

We refer finally to the formal algebraic operation of polarization,.
which is a simple but extremely powerful instrument for deriving
new invariants from those that are already known. The operation
may be applied to any homogeneous polynomial ¢(ay,...,a;), of
degree n, say, in & set of indeterminates a,,..., a,, and it is defined
as follows. We take a second set of k& indeterminates, aj,...,aj,
and then convert ¢ into the polynomial

’ , 1 , 0
*(Ayseee, Oy Oy, @) = = z a; %

1 Grace and Young, p. 21; Weitzenbdck, p. 11.

1 The original proof of Gordan, later simplified by Hilbert, is discussed by
Weitzenbéck, pp. 143-8.

§ Weitzenbock, p. 61.
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by means of the polarizing operator

14,0
= ; Z a/,i—é—&-i .
) i=1

The usefulness of this operation in the theory of invariants arises
from the fact—which the reader should have little difficulty in
verifying—that if ¢ is an invariant of r forms of which one, say 8§,
has a,,..., a,, as coefficients, and if 8’ is a new form derived from S
by replacing the coefficients a,..., a, respectively by aj,..., ai, then
$* is necessarily an invariant of the 71 forms obtained by adding
S’ to the original set of » (or of the original set, if this already
includes §’).

An example of this process lies ready to hand, for polarization of
" theinvariant A of the quadratic form S(z, y, z) gives us the invariant
30 of the two forms § and §8’. The invariant © is itself quadratic
in a,b,...,h and linear in a’,b’,...,h’, and if we now polarize ©®
(with respect to the pair of forms 8, §’) we change it into an in-
variant that is linear in @,b,...,» and quadratic in a’,b’,..., %,
namely ©’. Finally, polarization of ®’ gives the invariant 3A’.
From the single invariant A of S, therefore, we can obtain by suc-
cessive polarization all the four fundamental invariants of §
and S’. The same procedure also gives us a new invariant ® of
three quadratic forms S, 8, §”, obtained by polarizing ©® with
respect to the pair of forms 8, §”. @ is linear in the coefficients of
each of the forms.

Covariants and contravariants

We have now seen how it is possible to define and manipulate
algebraically the invariants of a set of forms, and we have also
given some examples of the application of this general theory to the
projective geometry of conics. In the applications so far envisaged,
the conics have been regarded primarily as loci; but it would be a
simple matter to give a dual treatment of properties of conic
envelopes, simply by applying the same algebraic theory to
quadratic forms in u, v, w instead of z, y, z. Unfortunately, how-
ever, the self-duality of the projective plane, with properties of
points and properties of lines symmetrically related to each other,
cannot readily be exhibited by means of the theory of invariants,
In applying this theory we have to begin by taking either point-
coordinates or line-coordinates as the primary variables, and this



200 HIGHER CORRESPONDENCES, APOLARITY VIIL § 3

choice gives a bias to the whole of the subsequent development.
If we regard z, y, z as primary, all the transformations @ > @ of
coefficients are defined in terms of the one basic transformation
x = PX.
This transformation of point-coordinates induces an associated
transformation of line-coordinates, represented algebraically by
the so-called contragredient transformation
u = P-17q, :
but the elements p,; of P enter differently into the two equations,
“and in consequence the algebra fails to reflect the symmetry of the
geometry. We do not wish, however, to go into this question here,
but rather to look for & moment at a generalization of invariant
theory that is possible in a different direction.

In projective geometry we are often interested in studying not
only properties of given figures but also new figures that are pro-
jectively related to given ones, or possibly derivable from them by
projective construction. The harmonic locus and harmonic en-
velope of two conics, for instance, are cases in point. A derived
figure of this kind will have an equation which involves point-
coordinates or line-coordinates as well as the coefficients in the
equations of the original figures, and this equation will of necessity
be related in some invariant manner to the original equations.
The question is how to exhibit algebraically the invariant relation
—and this brings us to the notion of concomitants.

Roughly speaking, a concomitant of a set of forms

8Dz, ..., 2,);e00, 8O(,,..., ,)

is an ‘invatiant’ which involves not only the coefficients in the
8% but also point-coordinates and dual coordinates as well. It has
the property that when the coefficients in the S% are replaced by
the corresponding coefficients in the §®, and z,,..., 2, and ..., u,
by the quantities Z,,...,%, and 4,,...,%, defined by the equations
x = PX, u = P-174, its value is unaltered except possibly for
multiplication by some power of |P|. If the concomitant involves
Zgy..s &, but not uy,..., u, it is called a covariant of SW,..,, 8®; and
if it involves w,,..., %, but not z,,...,z, it is called a contravariant.
If it involves neither set of variables it is, of course, an invariant
in the sense previously defined.

In order to make these ideas more concrete let us now consider a

single form  g(¢;,y,2) = (a,b,¢.f,9, bz, ,2)".
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The transformed coefficients @, b,..., & are defined by the condition

- (@,5,6,f,3, R %,7,2)? = (a,b,¢.f,9, bz, y,2)%,
and this means that S is itself a covariant of S of weight zero.
We write the line-equation associated with the point-equation
S=0as
S(u,v,w) = (4,B,C,F,G, H{ju,v,w)* =0,
or, in matrix notation,
T =|Al.uTA-lu = 0.

" Then, if X denotes the form obtained by putting 4, %, and @ a, vl
mplaceofu,v w and a,b,...,.h in X,

T = [K|.GTA-'G
= |P[2.|A|.(PTu)T(PTAP)-}(PTu)
= [P|2.|]A|.uTA-lu
= |P[2.Z;

and X is therefore a contravariant of S of weight 2.

If, now, we begin with two conics 8, s, represented by point-
equations S = 0, 8’ = 0, they serve to define a pencil of conics;
and the general conic s, of this pencil has point-equation )

S4+A8 =0
and line-equation Z-2AP+A%X’ = 0. X may be regarded as a
quadratic form in a,b,...,» whose coefficients involve u,v,w, and
® is obtained from this quadratic form by polarization with respect
to a',b’,....,h". If fixed values are given to u,v,w, the roots A;, A,
of the quadratic equation X420 A2X’ = 0 are the parameters
of the two conics of the pencil which touch the line (u,v,w); and
since when the linear substitutions x = PX and u = P-17{i are
made simultaneously the parameters of the conics which touch
the line remain unaltered, the equations T42AQ+A2Z’ = 0 and
T 4228 +A%Z’ = 0 have the same roots. We have already shown,
however, that = = |P|2Z; and therefore ® = |P|2d—i.e. @ is &
contravariant of weight 2 of S and §’. Thus the line-equation
® = O represents a conic envelope that is projectively related
to s and s’. This envelope is actually the harmonic envelope of
s and &', as we may show by the following argument. ’

Let (u,v,w) be a line, selected once for all, and let the matrix

|P| be chosen in such a way that the transformed coordinates
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(@,%,%) of this line are (1,0,0). Then, in the new coordinate
representation, the pairs of points of intersection of the line with
8 and &’ are given by the equations

byt 4-2fjit-ést = 0 = %,
and b+ 2f iR = 0 = &,
respectively. The pairs are therefore harmonic if and only if
bé'++b'6—2f]’ = 0,

i.e. if and only if ®(1,0,0) = 0; and, in view of the contravariance
of @, this condition is equivalent to ®(u,v,w) = 0.

By duality, the point-equation of the harmonic locus of s and s’
is F = 0, where S-+2uF+p28’ = 0 is the point-equation associ-
ated with the line-equation Z+4uX’ = 0.

What has been said on the preceding pages may serve as an intro-
duction to the classical theory of invariants, with particular
reference to its application to the projective geometry of conics.
The theory admits of immediate extension to quadrics, and the
invariants which play a central part there are analogous to those
which we have met above. We shall not give details of this exten-
sion, but refer the reader who is interested to Chapter VII of Todd,
Projective and Analytical Geometry, where a full account is to be
found.

EXERCISES ON CHAPTER VIII

1. Show that the equation of any (2, 2) algebraic correspondence between
parameters § and 6’ can be written in matrix form 6’7A0 = 0, where 6 and
0’ are the column-vectors whose components are 62, §, 1 and 0’3, ¢, 1 respec-
tively, and A is a fixed 3 X 3 matrix. Show also that the correspondence is
symmetrical if and only if A is a symmetric matrix.

If A is symmetrie, and 6 and 0’ are interpreted as the coordinate vectors
of points P, P’ of the conic 2? = z,z,, show that P and P’ are conjugate
with respect to the conic xTAXx = 0.

2. A triangle is circumscribed to a fixed conic 8, and two of its vertices lie
on another fixed conic 8’. Show that the locus of the third vertex is a conic,
and find the equation of this conic when the equations of 8 and 8’ are

234+y*+22 =0 and axr’+byl+te?=0
respectively.
3. If the normals at points P, P’ of a central conic meet in a point of the
conic, different, in general, from P and P’, determine the nature of the
correspondence between P and P’, and prove that PP’ envelops a conic.
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4. A variable conic through three fixed points 4, B, C meets a fixed conic
in P, Q, R, S. If PQ passes through a fixed point, prove that in general RS
envelops & conic inscribed in the triangle 4 BC. :

5. The tangents to & conic ¢ from a variable point P of a conic s meet &
again at Q and R. Prove that QR envelops a conic k, that & touches the
second tangent to ¢ from a point of contact of 8 with a common tangent of
s and ¢, and that k passes through the intersections of s and 7.

State the duals of these results. )

6. A variable chord PP’ of a conic s envelops a second conic s’ and is such
that P and P’ are conjugate for a third conic s”. Show that sis quadrilaterally
circumscribed to & if and only if s” is a line-pair, and that in this case s” is &
pair of tangents to &' whose intersection has the same polar for s as for &.

Give a euclidean interpretation of this result when &’ and s are a conic and
its director circle.

7. Show that the harmonic envelope of two orthogonal circles consists
of the two pencils of lines whose vertices are the centres of the circles. Show
also that the harmonic locus is a pair of lines perpendicular to the line of
centres.

8. If A, B, O, D are concyclic, show that the focus of the parabola which
touches AB, BC, CD, DA is the foot of the perpendicular from the inter-
section of BD and A C on to the line joining the other diagonal points of the
quadrangle ABCD.

9. If P, Q correspond in & symmetrical (2, 2) algebraic correspondence
on a conic k, prove that PQ touches a fixed conic s and P, Q are conjugate
with respect to another fixed conic &.

If T is the pole of PQ for k, prove that the point of contact of PQ with ¢
is the harmonic conjugate, with respect to P and @, of the intersection of
PQ with the polar of T for ¢. ’

10. If the variables 8 and ¢ are connected by a (2, 2) algebraic correspon-
dence, show that the four critical values of § and the four critical values of ¢
are homographically related when they are paired together suitably.

11. Two conics %, k’ are such that k is outpolar to k’. Prove that the
points of contact of tangents to &’ from any point of k are conjugate with
respect to k.

12. Show that a parabola is outpolar to a circle if and only if the diameter
of the circle which is perpendicular to the axis of the parabola is divided
harmonically by the parabola.

13. Show that the harmonic locus of two conics s and &’ is a rectangular

'hyperbola if and only if the director circle of s is outpolar to &’

14. Being given a quadrilateral abed, prove that the orthocentres of the
four triangles abe, abd, acd, bed and the circumcentre of the diagonal triangle
of the quadrilateral lie on a line perpendicular to the line joining the mid-
points of the three diagonals. ‘ '

Show that two rectangular hyperbolas can be inscribed in the quadri-
lateral, and that they intersect in the incentre and the three excentres of the
diagonal triangle.

15. If two conics k, k&’ have double contact and are each outpolar to the
same conic £, prove that their chord of contact touches ¢. ‘
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16. Two conics 8, 8’ touch a conic k at the same point 4, and both are
outpolar to k. Show that s and s’ have three-point contact at A.

If a conic is required to have three-point contact with k£ at A and also to
be outpolar to k, show that it must break up into the common tangent at A
and another line through A.

17. Show that if a conic % is both outpolar and inpolar to a conic %’ then
it is also triangularly circumscribed to k’.

18. A circle ¢, whose centre is C, is outpolar to a central conic k. If T
is the point of contact of ¢ with a common tangent to ¢ and k, supposed
distinct from the point of contact of this tangent with k, prove that CT lies
along & principal axis of any conic that is outpolar to k and has three-point
contact with ¢ at 7'

19. If two of the common tangents of two conics divide a third common
tangent harmonically, prove that they also divide the fourth common
tangent harmonically. Show that, for two conics which are related in this
way, AA’ = ©0’. Show, further, that two conics which are related in this
way are also related in the dual way.

20. If a conic s is quadrilaterally circumscribed to a conic s’, show that
their mutual invariants satisfy the relation 8AA2—4060'A’+0" = 0.

21. If two vertices of a triangle which is self-polar for the conic S = 0
lie on the conic S’ = 0, show that the locus of the third vertex is the conic

08—AS" = 0.

22. Show that, with the usual notation, the point-equation of the har-
monic envelope of the conics whose equations are S = 0 and S’ = 0 is

08 +0’'S—2F = 0.
23. Show that the polar reciprocal of 8 with respect to s’ has the covariant
equation O8'—2F = 0.



. CHAPTER IX
TRANSFORMATIONS OF THE PLANE

‘ §1. PLANE COLLINEATIONS
WE have seen already, in Chapter II, § 7, that a set of algebraic

equations N
:t; == za‘kxk (i - 0, l, 2),
k=0

which defines a non-gingular linear transformation, admits of two
distinct geometrical interpretations:

(i) as a transformation of coordinates from one projective
system to another;

(ii) as a projective transformation of points, referred to a fixed
frame of reference.

In the development of the formal theory we have concentrated so
far upon the first interpretation, and have treated equations (1) as
specifying the transformation from one allowable representation £
to a second such representation #’. In the present chapter we shall
turn to the second interpretation, and see how projective trans-
formations of points—or collineations, as we shall now call them—
also have an important place in the formal system.

Let #, Z' be allowable representations in two distinet projective

planes S, S;, and let
2

x; =kz a”‘xk ('i = 0, 1, 2)
0

or x' = AX,

be a fixed transformation, making correspond to the point x of
S, the point x’ of S;. Such a transformation will‘be called a
collineation.

We may also consider self-collineations of the single plane S,,
obtained by letting S; coincide with S,. In this case it is usual to
take the same representation as both Z and #'.

If |A| # 0, the transformation X’ = AX has an inverse

X = A-1x/,
and every point of S; then arises from a unique point of S,. The
collineation thus sets up a (1, 1) correspondence between the two

planes. Although singular collineations are not without geometrical
interest and significance, it is desirable at this stage to avoid making
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the theory more complicated than is absolutely necessary, and for
this redson we shall confine ourselves exclusively to non-singular
collineations. Whenever we use the word ‘collineation’ without
qualification it is to be understood as meaning ‘non-singular col-
lineation’.

When a collineation = is represented by an equation X’ = AX,
the matrix A defines the collineation uniquely, but the collineation
only defines the matrix to within a scalar factor; i.e. A; and A,
define the same collineation if and only if A; = AA, for some value
of A.

Collineations between S, and S;, as we have defined them, are
the simplest generalization of homographic correspondences be-
tween lines S, and 8} ; but they are not, as it happens, the only
simple generalization that can usefully be considered. The trans-
formation )
Xy Xy Ty = Xyt XX Loy,
for example, is not a collineation; but it is algebraic, and it is
(1, 1) everywhere except for points on the sides of the two
reference triangles (cf. the characterization of homographies on
p. 176). Transformations of this kind—to be considered in § 3—
are said to be (1, 1) in general, i.e. except on certain specified
curves. The principal geometric’ property that distinguishes
collineations inside this wider class of transformations is that they
transform lines into lines.

To show this we consider a general collineation =, given by

x—> X' = Ax (|A| # 0).
- If the point x describes a fixed line u, then

u?’x =0,
ie. uZA-1x’ = 0,
ie. u?x’ =0,

where u’T = u?A-1and hence u’ = A-7u. Thus the collineation
transforms the line u, regarded as the locus of a variable point,
into the line u’, and the transformation x’ = Ax.of points into
points induces the contragredient transformation u’ = A-Tu of
lines into lines. By duality, a transformation

u'=Bu ([B]#0)
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of lines into lines induces a transformation

. x' = B-1Tx
~ of points into points; and so we have the important result:

THEOREM 1. Every collineation = is a self-dual transformation,
which transforms points into poinis and lines into lines. It is repre-
sented, in terms of arbitrary allowable representations & and X', by
equations of the form

x' = AX, u’ = A-1Tu (|A] # 0),
each of which determines the other.

It follows, therefore, that a necessary. condition for a (1,1)
correspondence between two planes to be a collineation is that it
makes lines correspond to lines. To give an adequate discussion
of the sufficiency of this condition would take us too far out of our
way, but it is worth referring to a form of argument that has
played an important part in the historical development of pro-
jective geometry. This argument applies only to real projective
geometry,t and it does not belong to the systematic development
of our present theory because it is not purely algebraic. Let o bea
(1,1) correspondence between two real planes S, and S, which is
representable analytically by continuous functions and which has
the further property of making lines correspond to lines. Then,
in virtue of the quadrangle construction for harmonic conjugates,
the range corresponding to any harmonic range is also harmonic.
If, now, we select three distinct points 4, B, C, of a line lin S,, and
take them as reference points and unit point in a parametric
representation of I, and if we take all points of 7 that can be obtained
by repeated application of the quadrangle construction to the
three initial points or to points already constructed, the set of all
these points (called a Mdbius net or net of rationality) is simply
the set of all points whose parameters are rational numbers. Every
point of the line may then be obtained as the limit point of a
sequence of points of the Mtbius net. Now suppose o transforms
linto I, and A4, B, Cinto 4’, B, C'. Then, by what we have said,
the parameter of any point P on ! is equal to the parameter of the

+ Indeed the condition is not sufficient when the ground field is unrestricted.
In the complex plane, for example, we have the anti-collineation x> X, which
transforms every coordinate vector into its complex conjugate. The transforma-
tion is (1, 1) and it transforms lines into lines, but it is not a collineation. It does
not, in fact, belong to the projective geometry of the complex plane.
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corresponding point P’ on ', referred to 4’, B’ as reference points
and C’ as unit point, and the cross ratio of any ordered set of four
points of ! is therefore equal to the cross ratio of the corresponding
points of I'.

To complete the proof, we need only take an arbitrary representa-
tion Z of 8, defined by X,, X,, X,, E, and the particular repre-
sentation #’ of S, that is defined by the corresponding points

o> X1, X3, E’. Then, in virtue of the invariance of cross ratio, if
(P, P’) is a general pair of corresponding points,

Xo{E, P; X,,X,} = Xo{E', P'; X3, X3}, ete.
Thus the coordinates of P and P’ are connected by the relation
» TEy 1y =g 1 X Xy,
and o is a,ccordjngly a co]]meatlon.
We now return to the general collineation w, defined by the

equation X' = AXx. Let new coordinates be introduced in S, and
83 by means of the transformations

x=P% and x — QX
Then, from the equation x’ = Ax, we have
‘ Q%' = AP%,

ie. X' = Q-lAPxk.
Thus if the matrix of o referred to Z and %' is A, the matrix of the
same collineation referred to the new representatlons Z and &

is Q-1AP.

If 8 is distinct from §,, we can introduce new coordma.tes in' S

by the transformation X — AR’

while retaining the original coordinates in S,. In this case the
equation of = reduces to

X' = A-AIK,
ie. % =%
In other words, by adapting the coordinate representations to a
given collineation between distinct planes we can arrange matters
8o that two points correspond if and only if they have the same
coordinates. This is a consequence of the twofold interpretation
of the algebraic transformation x' = Ax, to which we referred
at the beginning of the chapter.
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When 8; coincides with S,, and the same representation Z is
used twice over, the reduction of the equation of = to the simple
form &’ = X is not possible. If % is changed to # by the trans-
formation x = PX, the transformed equation of = is

' X' = P-1APXk.

Thus the matrices which represent a given self-collineation of S,
in the different allowable representations # are all similar. By
choosing the representation (that is to say, the transforming matrix
P) suitably, we can obtain any one of a set of similar matrices. In
particular, we can obtain various simple canonical forms, as will
be shown later in this section. The reduction of the equation of a
self-collineation to canonical form should be compared with the
corresponding reduction of the equation of a homographic corre-
spondence between S, and itself.

General properties of collineations

Before going into the classification of the possible types of
collineation, we shall first enumerate a few theorems that are
valid for collineations in general.

THEOREM 2. There 18 a unique collineation which transforms four
given points, no three of which are collinear, into four given points, no
three of which are collinear. Dually, there is a unique collineation
which transforms four given lines, no three of which are concurrent,
into four given lines, no three of which are concurrent.

This is, of course, Theorem 1 of the Appendix once again.

THEOREM 3. If a collineation = transforms two points P, @, into
P’, @', then it transforms the line PQ into the line P'Q’. If w trans-
forms two lines p, q into p', ¢', then it transforms the point pq into
the point p'q’.

THEOREM 4. A collineation w transforms a variable point P of a
fized line p into a variable point P’ of a second fixed line p’, and the
ranges described by P and P’ are homographically related.

Proof. If X = XW4-0x®, then Ax = AxM{HAx®,

COROLLARY. If w is a collineation between S, dhd itself, and m is @
self-corresponding line for w, every point P of m is transformed by
w into another point P’ of m, and (P) KX (P’); t.e. w induces a homo-
graphy on every self-corresponding line of the plane.

ExEercisE. Dualize Theorem 4 and its corollary.
5304 P
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Since a collineation is a linear transformation, it transforms any
locus into a locus of the same order and any envelope into an en-
velope of the same class. In particular, conics are transformed into
conics. Quite generally, every projectively generated figure goes
over into an equivalent projectively generated figure.

If ¢, ¢’ are two curves which touch at P, two of the points of
intersection of the curves coincide at P. After transformation,
therefore, ¢ and ¢’ become two curves which intersect twice in the
point = P. This means that the collineation preserves tangency.

Self-collineations of the plane

When we restrict the theory of collineations to transformations
of one plane into itself two important developments take place.

(i) Two collineations =, and =, now have a product =, =, which
is also a collineation, and the matrix of w, @, is the product A, A
of the matrices of w, and =,. In fact the set of all (non-singular)
self-collineations of S, is a group, isomorphic with the projective
group PGL(2).

(i) If = is a self-collineation of S, there may possibly be united
points, which are left invariant by w. If = is the identical trans-
formation ¢, every point of S, is a united point; and whatever
collineation is taken as = there is always at least one united point.
We shall find that the properties of = and the canonical form of its
equation are closely connected with the united points of =, as was
the case with homographies in Chapter IT1.

Consider a self-collineation = of §,, with equation x’ = AX.
If the coordinate vector x represents a united point of =, then
X' = Ax for some A, and therefore

Ax = Ax.
In order to determine z,:z, : 2, we have to solve the three equations

2 -
kgo(aik—hsik)xk =0 (?’ = 0: 1’ 2):

and this is only possible if |a,,—AS,,| =0, i.e. [A—AI| = 0. In
other words, A must be a characteristic root of the matrix A, and
the coordinate vector X must be a characteristic vector corre-
sponding to this root.

To find the united points of =, then, we first obtain the character-
istic roots Ay, A;, A, by solving the cubic equation |[A—AI| = 0.
To each of these roots there corresponds at least orie characteristic
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vector X (or, more precisely, at least one set of proportional
characteristic vectors), and every such vector gives the coordinates
of a united point. The number of linearly independent vectors X
which satisfy the equation

Ax = \;X,

where ), is a given characteristic root of A, depends upon the rank
of the matrix A—),I. If this rank p[A—A; I] is denoted by p(A;),
the number of linearly independent vectors is 3—p(A;).
There is a well-known connexion between the rank p(};) and the
" multiplicity of A, as a characteristic root of A, given by the algebraic
theorem: If A is an nXn matriz and p[A—X;1] = n—p, then the
multiplicity of A, as a characteristic root of A is at least p. In our
special case, therefore, the multiplicity p(A;) of A; is not less than
3—p(},), and so there are six cases which can arise.

(i) A, is a simple root. Then p = 1, and p can only be 2.
(ii) A; is & double root. Then p = 2, and either (@) p = 2, or
) p=1.
(iii) A; is a triple root. There are then three possibilities:

@p=20B)p=11()p=0.

In cases (i), (iia), (ilia) there is only one linearly independent
vector X, and A gives rise to an isolated united point. In cases
(iid) and (iiid) there are two independent vectors X, and A; gives
rise to & line of united points. Finally, in case (iii c) there are three
independent vectors, and every point of the plane is a united point.
In the last case, = is the identical collineation ¢, and so we have
only five non-trivial cases to consider. We shall now take these
one by one.

1. The general collineation

. In the general case, the characteristic roots Ay, Ay, A, of A are all
different, and each is therefore a simple root. They give rise to
three isolated united points, which are distinct since Ax = A;x
and Ax = A, xwould give (A\,—A;)x = 0,i.e. x = 0. Furthermore,
the three united points are not collinear, for if they all belonged
to a line ! the collineation would induce on ! a homography with
three distinct united points (Theorems 3 and 4) and every point of
! would then be self-corresponding. The united points may there-
fore be taken as vertices of the triangle of reference, and when
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this is done the equations of = assume the form

2y = oy g,

7y = 01 Zg,

2:’2 = az xzo

Since the matrices A and P-AP have the same characteristic
roots, oy, oy, &y are proportional to Ay, A, Ay; and we may accordingly
write the equations of the general self-collineation of the plane
in the canonical form

. o = Ao %y,
7 = YEN
xz = Az xz.
This form may be compared with the canonical equation 6’ = kg
for a homography with distinct
united points.

The collineation w is completely
characterized by its three united
points and the ratios A,:A;: A, and
these ratios admit of a simple

/x. X\ geometrical interpretation. Let

P, P’ be corresponding points,
with coordinate vectors y, y’ respectively. Then the equations
of X, P and X, P’ are

xl-?ﬁx2=0 and wl-—g—}%:o,

Y2 2
and the parameters of Xy P and X P’ in their pencils are

’

& and ?/_'1 = ﬁ&.
Y2 Y2 Y
Thus X, P and X, P’ are corresponding rays in a homography with
X,X,, X, X, as united rays and A;/A, as modulus. The ratios
between Ay, A;, and A, may thus be interpreted geometrically as
moduli of certain homographies, and they are therefore projectively
invariant—a result which can also be inferred algebraically from
the theorem that similar matrices have the same characteristic
roots.
We see, then, that if (P, P’) is any corresponding pair of =,
X, P and X, P’ correspond in the homography just discussed and
X, P and X, P’ correspond similarly in a homography with united
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rays X, X,, X, X, and modulus A/Ay; and it follows at once that the
point P’ corresponding to any assigned point P can be found by
geometrical construction.

Exzercrse. If 4 and B are two fixed points in the plane, p and p’ are
variable rays through 4 which correspond in a homography w;, and g and ¢’
are variable rays through B which correspond in a homography w,, the ray
A B being self-corresponding in both homographies, show that the points
pq and p’q’ are connected by a collineation.

II. The collineation with two united points

If the characteristic roots of A are Ay, Ay, A,, and p[A—A,I] = 2,
then = has only two united points. If these points are taken as
X, and X,, the matrix of A may be written in the form

(AOB 0)
0 A O)
0 vy A

If P, P’ are general corresponding points, with coordinate vectors
y, y’, the equations of X, P and X, P’ are

Y2 ‘)’?/1"‘32 Y2,
Z, = i z, and uz, Thw
and the equations of the homography =, which relates them may
be written as
0 = A00+Ao where 8—!7;
Similarly the equation of the homography w, which relates X, P
and X, P’ may be written as

0 = 8+£, where 6 = %0.
: Ao Y1
~ Since A;/A, # 1, the united rays
of w, are z, = 0 and another
line distinct from z, = 0. If we
take this other line as the side
z, = 0 of the triangle of refer-
ence, then y = 0. The united
rays of =, both comclde with 7% X2\

the line x;, = 0.

We may look upon this type of collineation as a specialization of
type I, in which two of the united points happen accidentally to
coincide at X, while their. join X, X, remains a determinate line.

Xo
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By the above choice of the triangle of reference, the matrix A
has been put in the form

N B O
(oaoo,
0 0 A

and it can be simplified still further by suitable choice of the unit
point. We have (0,1, 0) - (B, A, 0), and if we choose the unit point
so that the point wX, has coordinates (1,A,,0) we can make 8
equal to 1. Then the equations of = assume the canonical form

’

Ty = AgTo+2y,
’

= Aoy,

’
xz == Az xz-

II1. The collineation with one united point

If the characteristic roots of A are Ay, Ag, Ay, and p[A—2A 1] = 2,
= has only one united point. This case arises from the previous
one by further specialization. It leads to the canonical form

’
Ty = Ay o+,
zy= ATyt

x; == Ao x2.

IV. The plane homology

If the characteristic roots of A are Ao, Ag Ay, and p[A—X I] = 1,
= has an isolated united point and a line of united points. The
isolated point cannot lie on the line of united points, as it would
then arise from two distinct characteristic roots.

If the isolated united point is taken as X, and two points of the
line of united points as X, and X, the equations of w may be

written as ’
xo = Ao xo,

- 7
z; Aoy,

I

x; = Az Z,.
The same transformation of points is equally well given by
zy = Zo,
x) = Zy,
xp = kx,,
where k& = ),/A,, and we shall take this as the canonical form.
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If P is the point (y,,¥,,¥,), then the corresponding point P’ is
(Yo» ¥1> y2), and X, P, X, P’ are the same line. This line X, PP’
meets X, X, in the united point
-M’ given by (?/o, Y 0), a'nd

{Xo, M; P, P} =F. Xz

P and P’ therefore correspond in
the homography on X, M which Xo P X,

has united points X, M and M
modulus k. / . / \

The collineation may accord- P
ingly be characterized geometri-
cally as follows: Let P be a general point of the plane, and let X, P
meet X, X, in M. Then P’ is the unique point such that (i) P’
lies on X, M, and (ii) {X,, M; P, P’} = k.

In this case w is said to be a plane homology with X, as vertex,
X, X, as axis, and k as modulus. The vertex, axis, and modulus are
sufficient to determine it completely. In the special case in which
the modulus k is —1, = is called & harmonic homology. It is then
involutory, i.e. w? =e.

V. The special plane homology
If the characteristic roots of A are Ay, Ay, Ay, and
p[A=X 1] =1,

= has a line of united points and no other united point. A collinea-
tion of this type, called a special homology, may be looked upon as

arising from the general homology by the accidental incidence of

the vertex with the axis. For suppose we take two of the united

points as X, and X,, and an arbitrary point which is not collinear

with them as X,. Then the equations of = may be written

’
Tp = AgZo +@g2 25,
’
z = AoZy+0yp T,
!’
Xy = onz,
or, alternatively,
’
Zo =2 tax,
2 = Z,+bx,,
Xy = Z,.

If P is the point (yo,9y1,Ys), P’ is (Yo+aY2, Y1+bY2 4), and PP’
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therefore passes through the point (ay,, by,, 0), i.e. the fixed united
point (@, b,0). This point is the vertex of the special homology.
The homography induced on any line through the vertex has
coincident united points, and there is therefore no modulus in this
case. The collineation may be defined geometrically by means of
its axis a, its vertex 4, and one general corresponding pair (F,, Py).
The point P’ corresponding to any given point P is found by
joining PF, to meet a in M, and then joining M P; to meet APin P’,

ExEercise. Prove this construction.

Real collineations

- When the ground field is the field of real numbers every collinea-
tion has a matrix whose elements are all real, and the characteristic
roots of this matrix are either (a) all real, or (b) one real and two
conjugate complex. In case (b) the characteristic roots, and hence
also the associated united points, are necessarily distinct; and of
these points one is real, while the remaining two, being conjugate
complex points, are joined by a real self-corresponding line.
The coordinates (z,y,z) of the conjugate complex united points
can be changed by a real transformation into (1, 7, 0) and (1, —1, 0)
respectively, and hence any real collineation of type (b) is pro-
jectively equivalent to a collineation which leaves invariant the
absolute points Z, J and one real (finite) point.

We consider now various elementary euclidean transformations
of the extended euclidean plane, with the object of characterizing
them projectively as collineations of the real projective plane.

A translation is a special homology with the line at infinity  as
axis. For if the vertex V of such a homology is (a, b, 0), the equa-
tions of the homology are of the form

' =z +az,
Y= ytbz
2= 2,
and these represent a general translation.
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A radial expansion or dilatation (in an obviously extended sense)
from a centre O is a homology with O as vertex and i as axis. If the
homology is harmonic, the collineation reduces to reflection in the
point 0. From this can easily be deduced (by Menelaus’s Theorem,
for example) the projective theorem that if two (real) homologies
4, 7, have the same axis a and distinct vertices 0,, O,, then 7,7,
is in general a third homology whose axis is a and whose vertex is
some point Oy of 0, O; but it may reduce (if the moduli of ; and
7, are reciprocal) to a special homology whose vertex is at the point
of intersection of 0, O, with a.

A rotation about a centre O is a collineation with O, I, J as united
points and with characteristic roots in the ratios 1 :¢¥9: e~ where
0 is real. In fact the equations of the most general real collinea-
tion with O, I, J as united points can be written in the form

z' = c(z cos §-+ysind),

y’ = c¢(—xsinf+ycosb),

2=z,
where c is real and positive. (Compare Theorem 17 of Chapter IV.)
The characteristic roots are 1, ce®®, ce-%, and the collineation is a
rotation if ¢ = 1. If ¢ 5 1, the collineation is a combination of a
rotation and a radial expansion from O; and every real collineation
of the type (b) referred to above is projectively equivalent to such
a collineation.

Reflection in a line a is a harmonic homology whose axis is @
and whose vertex is the point at infinity in the perpendicular
direction. More generally, a homology whose axis is @ and whose
vertex is the point at infinity in the direction of some other line d
is a rabatment on a in the direction of d.

' The above analysis provides a basis for the projective generaliza-
tion of many theorems of euclidean geometry. We see, for instance,
how our almost intuitive perception and use of the symmetry of a
euclidean figure, or of similitude between figures, can be translated
into statements concerning the existence of certain collineations
which transform a projective figure into itself, or one such figure
into another.

EXERGISES

- 1. Interpreting the plane collineation = as & transformation of lines into

lines, work out the details of the dual classification of collineations into

five types. Show that the types of collineation obtained are the same as
before, and that each type is self-dual.
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2. Deduce the self-duality of the five types of collineation algebraica.ily
from the fact that if w is given by X’ = AX, w! is given by u = ATw".
3. w is a collineation of the plane with itself, (4,4’) and (B, B’) are
fixed corresponding pairs, and (P, P’) is a variable corresponding pair;
and = is resolved into the pair of homographies
A(P) X A(P’),  B(P) X B(P),

with A’B’ corresponding to AB in each of them. Show how the united
points of = may be found as points of intersection of two conics, one through
4 and A’ and the other through B and B’. Examine further how these
conics are related when w is one of the special collineations.

4. By reversing the order of the argument used in the previous question,
show how any two conics may be used to define a collineation.

Cyclic collineations

If = is a self-collineation of the plane and P is any point, we may
construct the sequence of points: P, wP, w?P,.... We may also
extend the sequence backwards, so that we have

w.w 2P, w-1P, P, wP, wiP,....

There are now two' possibilities: (i) all the points of the sequence
are distinct, and (ii) some point occurs twice in the sequence. Inthe
latter case, the sequence consists of a finite cycle of points, say
Fy, B,,..., B,_,, recurring again and again,

woBoegy By Boy Byevs Bgy By

ie w"™P = F,, where p is the residue of m modulo 7.

The points w™P may recur either because P is a special point
for = or because the collineation w is itself special. The first
alternative occurs, for example, when P is a united point of w;
and then the cycle generated by P consists of one term only. If,
on the other hand, we take as w a harmonic homology, every
point of the plane is either a united point or else generates a cycle
of two points. If = issuch that a general point of the plane generates
a cycle of length 7, we say that = is cyclic with period r. A cyclic
collineation of period 2—a harmonic homology for instance—is
said to be involutory. ‘

THEOREM 5. If a collineation w has two involutory pairs of corre-
sponding points which do not lie on the same line it is a harmonic
homology. :

Proof. Let (P, P'), (@, Q') be involutory pairs of =, lying on lines
p,qwhich meetin 4. Then, since P and P’ transform intq P’and P,
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p is a self-corresponding line. Similarly g is self-corresponding, and
A is therefore a self-corresponding point. Now = induces on p a
homography with an involutory pair (P, P’), i.e. an involution.

The united points of this involution are 4 and another point M.
If N is defined similarly on Q@Q’, then
{AsM; P)P'} = {A’N; Q’Q’} = —19

and the ranges (4, M, P, P’) and (4,N, @, Q') are in perspective.
Thus MN passes through the common point 7' of PQ and P'Q".
But PQ and P’'Q’ are transformed into each other by =, and T is
therefore self-corresponding. The line MN now contains three
distinct united points M, N, T, of =, and the homography induced
on it by w is consequently the identical homography. Every point
of MN is therefore a united point of =, and = is a homology with this
line as axis and A as vertex. Since {4,M; P,P'} = —1, the
homology is harmonic.

COROLLARY. The only kind of involutory plane collineation is the
harmonic homology. ’

THEOREM 6. If a collineation has one cyclic triad of non-collinear
" points, it is a cyclic collineation of period 3.

Proof. Let w be a collineation with a cyclic triad (Fy, By, ;)
of non-collinear points. The collineation must have at least one
united point, M say; and M cannot lie on a side of the triangle
P, P, B, for if it were to lie on Fy P,, this line P, M = P, M would be
self-corresponding, and P, could not transform into F,. But the
collineation w® now has the four pairs (P, Fp), (P, B), (£ F),
(M, M) in common with ¢, and so, by Theorem 2, w® = e.

If P, P, P, is taken as triangle of reference and M as unit point,
the equations of w are .,

o Xy Xy
z, @ %



220 TRANSFORMATIONS OF THE PLANE - IX, 81

The united points of = are M and the two points (1, w, w?) and
(1, w?, w). :

A special case of such a collineation is a rotation through an angle
" 2m/3 in the euclidean plane.

If a collineation w has a cyclic tetrad (B, B, B, B;), forming the
vertices of a proper quadrangle, it necessarily has three isolated
united points. In order to show this let us suppose that the figure
is labelled in the manner indicated.

Since F, P, and P, P, are transformed into each other, Z is a united
point. Also, X and Y are transformed into each other, and XY is
therefore a united line. The points U and V in which this line is
met by B, F; and F, P, are transformed into each other. The homo-
graphy induced on XY is therefore an involution with (X,Y) and
(U, V) as two pairs, and the united points of this involution are the
remaining united points of .

If XY Z is taken as triangle of reference and F, as unit point, the
coordinates of the four points F; are a]l of the form (1, +1, 4-1),
and the equations of w are

T _ ¥ _ T

W —n e
It may be seen from these equations that = is cyclic of period 4.
This could be inferred, of course, by an argument similar to that
used in proving Theorem 6,

THEOREM 7. If RyP, P,F, P, 18 a given proper peniagon in the
euclidean plane, there exists a collineation w with (F,, P,, P,, B, P,)
as a cyclic pentad if and only if the given pentagon is projectively
- equivalent to a regular pentagon.

Proof. (i) Suppose the given pentagon can be transformed
projectively into a regular pentagon by a collineation 0. Then a
rotation through 2#/5 about the circumcentre of the regular
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pentagon is a collineation w’ with the vertices of the regular
pentagon as a cyclic pentad. The collineation w = o~lw'o is
then cyeclic of period 5, since w® = o-1w'’¢ = ¢, and it transforms
(P, P, B, B, P,) into (B,, B,, P,, P,, ).
(ii) Suppose, conversely, that = is a collineation with
(Fo, By, By, By, Fy)

as a cyclic pentad. If k is the unique conic through the five points,
o transforms k into itself and induces a homography on it;} and
since the homography is cyclic it has distinct united points M, N.
These points are then united points of =, and the pole of M N with
respect to k is also a united point of w. If, now, ¢ is a collineation
which transforms M, N into I, J, the pentagon is transformed by o
into a pentagon inscribed in a circle; and since this cyclic pentagon
is transformed into itself by the rotation cwo-1, which is cyclic of
period 5, it is regular.

Collineations which leave a conic invariant

The set of all self-collineations of the plane is & group, and the
set of all those collineations which have a given set of invariants is,
of course, a subgroup of this group. We have already seen, for
instance, that those collineations of the euclidean plane which leave
invariant a finite point O and the two absolute points 7, J make
up the group generated by the radial expansions and rotations about
0. We now come to another important type of subgroup of the
full group of self-collineations of §,, the group of collineations
which leave a fixed conic invariant.

Let k, be a fixed proper conic, and let = be a collineation which
transforms k, into itself. If V is a fixed point of k, and P a variable
point of k,, transformed respectively into ¥’ and P’, then

(PYRV(P) RV (PR (P).
The points P and P’ are thus related by a homography =, on &,,
subordinate to the collineation .

Not only is =, uniquely determined by =, but conversely w is the
only collineation which transforms %, into itself and induces =,
on it. For if w, is given and F,, P,, P,, P, are four points of k,, no
three of these points and no three of the points wy Py, w, P,, wo B,
w, P, can be collinear; and = is uniquely determined by the four
corresponding pairs (P, wy F;). We shall now show that there is a

+ See the section immediately below for the proof of this.
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simple algebraic connexion between the equation of = and that
Of Wy

THEOREM 8. If k, is the comic x,:x,:x, = 62:0:1, and w, is a
homography on ky whose equation is §' = (x6-+4-B)/(y0-+3), the matriz

equation @ 2=C 9 =26

defines a collineation w which transforms k, into itself and induces
the homography =, on it.

Proof. When we multiply out the product of the three matrices
on the right-hand side we find that the given matrix equation is
equivalent to the three equations

zy = o2+ 2082, 1+ B%,,
@) = ayZot+(ad+By)z, 4 Bo,,
and it therefore defines a collineation =r (necessarily non-singular).
By taking determinants of both sides of the original matrix
equation we see immediately that = leaves k, invariant.

Now the general point (62,6, 1) of k, is transformed by wr, into
the point ((a0-+B)?, (af-+B)(¥8+3), (y6+9)2), ie.

(2624 2080+ B2, cey82+ (a8 By)0+B8, Y202+ 286 +-52),

and this is the point into which it is transformed by =. The theorem
is therefore completely proved.

There are two types of collineation which can transform a given
conic k, into itself, corresponding to the cases in which the united
points of the induced homography are distinct and coincident
respectively.

(i) Let =, have distinct united points. If we take these points
as X, X,, and the pole of X X, as X,, then, since the tangents
at X, and X, transform into themselves, X, is also a united point
of w. The equations of = are then of the form

‘ zp _ x'l — )
Ty oz oy’
where « is arbitrary.

In the particular case in which « = —1, o is an involution with
vertex X, and = is the harmonic homology with X, as vertex and
X, X, as axis.
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(ii) If =, has coincident united points at X,, the equation of
w, is 0’ = 6+« and the equations of w are

Ty = T+ 202, + o,

= . Z,+ oy,

xy = Z5.
The characteristic equation is (1—A)® = 0; and there is only one
characteristic root 1, with p[A—I] =2 (unless « = 0). Thus,
unless w, is the identical homography, = has only one united
point, namely X,.

The above collineations admit of non-euclidean interpretation

when k, is taken as absolute conic (cf. p. 97).

Homologies which transform one conic into another

We have seen that there exist collineations, and indeed even
harmonic homologies, which transform any given proper conic
into itself. In this section we shall examine the possibility of trans-
forming one given conic into another by a suitably chosen homo-
logy. It is convenient to begin with the converse problem of seeing
how a given conic behaves when it is transformed by a given
homology.

Let & be a given conic and w a non-special homology whose
vertex A does not lie on k and whose axis @ does not touch k. The

homology transforms % into another proper conic &', which passes
through the points in which & is met by @ and which touches the
tangents from A to k. The chords of contact UV and U’V’ of
these tangents with the two conics meet in a point 7' of a.
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Exercise. How are the above conclusions modified (a) when o is a
special homology, and (b) when k passes through 4, or touches a, or does
both at once?

We can now turn to our original problem of determining = when
k and %’ are given, and we have the following existence theorem .

THEOREM 9. If k and k' are two proper conics of general position
there exist twelve homologies each of which transforms k into k'.

Proof. We first prove that if UU’ and V'V’ (figure as on p. 223) are
- two common tangents of £ and %’, meeting in 4, then the chords of
contact UV and U’V’ are concurrent with two of the six common
" chords of k and %'. ,

Let UV, U’'V’ meetin T'. Then 4 and T are conjugate points for
both conics. If, further, UV’, U’V meet in X, AX is the harmonic
conjugate of AT with respect to AU, AV, and is therefore the polar
of T for each conic. Now the conics of the pencil determined by
k and &’ cut an involution on 4X, with united points M, N, and
these points are then conjugate for every conic of the pencil. TMN
is therefore a common self-polar triangle for k and %', and it is
consequently the diagonal triangle of the quadrangle formed by
the four common points of the conics. Thus two of the common
chords of k and k&’ pass through each vertex of the tnangle, and in
particular two of them pass through 7.

The homology = with 4 as vertex, one of these two common
chords as axis a, and (U,U’) as a corresponding pair, clearly
transforms % into a conic which touches AU and AV at U’ and V'’
respectively and which passes through two of the common points
of k and &, i.e. into the conic &’. Since there are six possible choices
of 4, and for each of these there are two choices of @, we have in all
twelve homologies which transform k into &’.

ExErcIsES

(1) Examine the special cases which arise when the common points of

k and k" are not all distinct.

(ii) Obtain euclidean specializations of the various results by taking 4
or a at infinity.

§ 2. PLANE CORRELATIONS

The collineation, as we have seen in § 1, is a linear transformation
of points into points and lines into lines, and it has the property of
transforming every figure into a projectively equivalent figure,
leaving all its projective properties invariant. We now turn to a
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different kind of transformation which, instead of leaving pro-
jective properties unaltered, systematically dualizes them. This
transformation is known as the correlation.

DEFINITION. A correlation is a transformation of the points of
a plane S; into the lines of a plane S; which is represented, in terms
of arbitrary allowable representations # and %’ of the two planes,
by an equation of the form
u’ = AX,

In what fellows we shall assume always that |A| 7 0, so that by
‘correlation’ we shall always mean ‘non-singular correlation’. Leé
us consider, then, the correlation « given by

x> u =Ax (JA|#0).
To any point P of S, corresponds a unique line p’ = « P of 8;, and
conversely, any line p’ of S arises from a unique point P = «~1p’
of S,.
. If P describes a line p of S,, whose equation is u”x = 0, then p’
envelops the point P’ of §) whose equation is uTA-'u’ = 0, i.e. the
" point X’ = A-1Tu. We say then that « carries p into P’; and this
means that the original point-line correlation carries with it an
associatedt line-point correlation, given by

u->x = A-7u.

Both correlations are uniquely reversible, and each determines the
other (cf. Theorem 1). We shall regard them as aspects of the same
duality correspondence between S, and S, and the essential con-
nexion between them may be expressed by saying that if a point
and a line are incident in S, then the corresponding line and point
are incident in Sj.

We say that a point P of 8, is conjugate, with respect to «, to
a point P’ of S if P’ lies on the line p’ = « P corresponding to P
—which implies also that P lies on theline p = «~1P’ corresponding
to P’. When this is the case, the coordinate vectors x, x’ of P, P’
are connected by the bilinear relation

W(x,x') = xTATx' = x'"TAX = 0;

and, if either P or P’ is fixed, this relation gives the equation of the
corresponding line «P or «~1P’. The relation W(x, x’) = 0 thus
completely defines «.

+ This associated correlation is called by Hodge and Pedoe the ‘dual correla-
tion’ belonging to x. See Methods of Algebraic Geometry, p. 365.
5304 Q
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In the same way, two lines p, p’ of S,, S; are said to be conjugate
if each passes through the point corresponding to the other; and,
if this is so, their coordinate vectors are connected by the bilinear

relation Q(u,v’) = uTA-lu' = u'TA-1Ty = 0,

which likewise defines « completely.

Up to this point we have treated S, and S, as distinct planes,
and for the sake of clarity we shall continue to preserve the formal
distinction as far as possible, even when 8 is superimposed on S,.
When 8, and 8 are actually distinct, however, there Is very little
to be said, for in this case we are able to apply a transformation
of coordinates X = Ax to S, while leaving the representation %’
of §; unaltered. The equations of « then reduce to

u =X, x' =1,
and the conjugacy relations become
W(x,X') = Ty2y+&, 21+ %25 = 0
and Q(u, W) = gy U+ Ty 2y = O.

We assume, therefore, from now on that S, and S; are coincident,
and that the same coordinate representation Z is used for both of
them. In this case three topics of considerable interest present
themselves for discussion:

(i) the collineation «?, obtained by applying « twice over;

(ii) the coincidence locus W and the coincidence envelope €,
i.e. the locus of a variable point P which lies on the corre-
sponding line « P and the envelope of a variable line p which
passes through the corresponding point «xp;

(iii) the classification of correlations, and the canonical forms to
which their equations may be reduced.

We shall not attempt here to deal in detail with all the problems
which arise, and we refer the reader to Hodge and Pedoe, Methods
of Algebraic Geometry, for a full discussion.

Let us consider first of all the way in which a correlation « defines
a collineation «2. The correlation transforms points into lines and
lines into points according to the equations

X-> u = AXx, u-> x’' = A-1Ty,
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If, now, we apply x twice in succession, every point x is transformed
into a point x” and every line u into a line u”, where
x" = A-1Ty’ = A-1TAx

and , u” = Ax" = AA-1Ty,
But these are just the equations of a collineation

X - X" = Bx, u->u’ = B-17y,
which is non-singular since |B| = |A-1TA| = 1; and we naturally
denote this collineation by «2.

More generally, any two correlations x;, x,, with matrices A,, A,,
define a collineation i, x, whose matrix is A717A,;. We may say,
therefore, that although the self-correlations of the plane clearly
do not form a group, the set of all (non-singular) collineations and
correlations together is a group of transformations of the plane

into itself. The identity element of the group is the collineation e -
given by XX =X, u->u =u;
and the set of all collineations is a subgroup of the full group.
We see here how desirable it is to treat the plane as a single self-
dual system, made up of co? points and co? lines at the same time.
We now turn back once again to the general correlation «, given
by v’ = AX, X’ = A-1Ty, in order to investigate the properties
of its coincidence conics W and Q. A point P belongs to W if it lies
on its corresponding line p’ = «P, i.e. if it is self-conjugate for «,
and the algebraic condition for this is simply
W = W(x,x) = xTAx = 0.
W = 0 is therefore the equation of the coincidence locus of «.
The same conic is also the coincidence locus of «-1, for this corre-
lation is given by X’ - u = ATX’, and its matrix is therefore A”.
In the same way, the equation of the common coincidence en-
velope of x and -1 is seen to be

Q =Q(u,u) = uTA-lu = 0.

If, now, P is a point of W, the two lines kP and «~'P both pass
through P, and it follows that both these lines are tangents to €.
Thus if P lies on W the tangents from P to Q are xP and «~1P;
and dually, if p touches Q the points of intersection of p with W
are xp and «-lp.

In the special case in which the matrix A is symmetric, W and
Q are the same proper conic k, regarded on the one hand as a locus
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and on the other as an envelope. The correlation « is then simply
the polarity defined by £, i.e. the correspondence of pole and polar
with respect to this conic, and it is self-inverse. In general, however,
when A is not symmetric, the two coincidence conics are distinct
proper conics, but they are related in a remarkably simple manner.

THEOREM 10. The two coincidence conics of a general self-correla-
tion « of the plane have double contact.

Proof. We assume that « is general in the sense that W and Q
are distinet proper conics. If P is a variable point of W, xP is one
of the tangents from P to Q, and %P is then the second point of
intersection of P with W. Thus the collineation «2? transforms W
into itself, and it therefore induces a homography on it (p. 221).
Since P and «2P correspond in this homography on W, their join
envelops a conic having double contact with W (Chapter VI,
Theorem 18); but this join is a variable tangent to Q, and the
theorem is therefore proved.

Suppose we choose the triangle of reference in such a way that
X, and X, are the points of contact of W and Q, and X, is the com-
mon pole of the line X, X,. Then clearly both «x and «-! transform
the points X,, X;, X, respectively into the lines X, X,, X, X,,
X, X,. The matrix of « is therefore of the form

0 0 a
0 b 0],
c 0 O

and we may, without loss of generality, represent « by the equations

, ;. 1
Uy = A, To = — U,
a
uy = z,, and 2} = Uy, (A)
’ , 1
ua = cxo ) xg = 'Euo.

The corresponding coincidence conics then have equations
W = 234 (a+c)xyzy = O,
1 1

and since, by suitable choice of the triangle of reference and the
constants a and ¢, the equations of any two proper conics with
double contact can be represented by equations (B), it follows that

(B)
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equations (A) represent a general correlation «. It is easily verified
that the correlation « given by (A) and its inverse «~! are the only
correlations whose coincidence conics are given by (B). Equations
(4), then, give the canonical form to which the equations of a general
_ self-correlation of the plane can be reduced.

" The collineation which is the square of the correlation « defined
by (A) is now easily obtained. When we apply « twice over, the
point (,,2,,7,) is first transformed into the line (az,, x,, ¢z,), and this

line is then transformed into the point ( Zg, Xy, (sz). Thus the

equations of the collineation are

y c
xo = aZo,

R

z,,
%%
c ¥

S8

I

It follows immediately that this collineation leaves the coincidence

conics W and Q invariant. We can infer also from the form of the

equations of 2 that only a collineation whose characteristic roots are

" tn geometrical progression can be expressed as the square of a corre-
lation.

We may note, in conclusion, a euclidean specialization of the
general correlation which is not without interest. If W is a circle
whose centre is O, then the polar line of a point P with respect to W
is obtained by drawing through the inverse point P* a line perpen-
dicular to OP*. If we generalize this procedure by drawing always
through P* a line p, making a constant angle « (in the positive

' sense) with OP*, we may call p, the polar at angle « of P for the
circle. It is easy to show then that the correspondence P — p,
is a correlation, projectively equivalent for general « to the general
correlation, whose coincidence conics are the circle W and a .con-
centric circle Q. For o = }m or « = —}n the correlation is sym-
metrical, and is simply the polarity defined by W.

The reader should follow out, in this concrete case, the general
properties of correlations that we have outlined above.

Our treatment of correlations in this chapter has been essentially
algebraic, but in the older books on projective geometry such
transformations were often introduced in a more geometrical
manner. The polarity determined by a conic k is still sometimes
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referred to as reciprocation with respect to k, and this usage recalls
an interesting chapter in the history of projective geometry. In
the first major treatise on projective geometry—Poncelet’s T'rasté
des propriétés projectives des figures, published in 1822—there is an
important section on the ‘transformation by reciprocal polars’.
Poncelet did not know of the principle of duality, but he saw that
reciprocation provided a method of passing from any projective
theorem involving points and lines to an equivalent theorem in-
volving lines and points; and so he prepared the way for the eventual
formulation, by Gergonne and Steiner in 1832, of the general
principle of duality.

§3. CREMONA TRANSFORMATIONS

The transformations we have considered so far have all been
linear, and for this reason they can be handled conveniently by the
well-known methods of linear algebra and, in particular, by
matrices. A more general class of transformations—of one plane
into another or, more generally, of one algebraic manifold into
another—consists of those algebraic transformations which are
merely (1,1), except possibly at special points. These are the so-
called birational transformations, which are of fundamental impor-
tance in the more advanced parts of the geometry of algebraic
manifolds. To treat them in a purely algebraic manner we would
need more elaborate algebraic technique than is presupposed in
this book, namely the theory of polynomials, and in this section,
therefore, we shall only attempt to indicate one direction in which
the notion of collineation can be generalized.

A rational transformation of a plane into another plane, or into
itself, is a transformation which can be represented by equations

of the form My, = &%y T, 23) (=0, 1,2), (1)

where the ¢; are homogeneous polynomials of the same degree
m > 1in x,, z,, ,. In matrix notation we may write

2y = E(x). (1)

If the equations admit of rational solution in the form
pr = 1Yo YY) (0 =0,1,2), (2)
ie. px = (y), . (2

where the 5, are polynomia.ls of thesame degreen > 1iny,, ¥y, y,, we
say that the transformation is birational. Any such transformation



IX,§3 CREMONA TRANSFORMATIONS 231

of one plane into another, or into itself, is called a Cremona
transformation.

The simplest example of & Cremona transformation—excluding
the collineation, which is to be regarded in this connexion as
trivial—is the so-called reciprocal transformation

Yo:Y1:Ys = %1%3: T3%g : Loy
or, a8 it is usually written,
. 1 . 1 . 1
Yo Y1 ?la—x—o z 7
"The inverse of this transformation is of exactly the same form.
We have already encountered the reciprocal transformation of a
plane into itself, in geometrical guise, when considering the corre-
spondence between points P and P* which are conjugate for all
the conics of a general pencil (p. 164); and the correspondence
between harmonic pole and polar with respect to a triangle was
seen on p. 78 to be a point-line transformation that admits of
equations of the same reciprocal form.
Returning to the general Cremona transformation = of a plane -
p into a plane o, given by equations of the form

Ayi = Ei(xo’ Ty, xz) (7' =0,1,2), : (1)
where z, ,, Z, and y,, ¥,, ¥, are coordinates in p, o respectively, we
note that the solved equations

B = 1Yo Y ¥2) (6 =0,1,2) (2)
represent the Cremona transformation w-! of o into p.

A general line of p, whose equation is
Uy Tyt U X1+ Uy Ty = 0,
corresponds to the curve in ¢ whose equation is
o 1o(Yo> Y1, Y2) +%1 M (Yos Y1, Y2) %3 12(Y0, Y1, ¥2) = 0,
ie. uTy(y) = 0.

When u,, u,, 4, are allowed to vary, we obtain the complete system
of 02 lines in p and, corresponding to them, a linear net or oo? linear
system of curves in o. Thus the transformation w carries the lines of
p into the curves of a linear net () in o; and, in the same way, the inverse
transformation w1 carries the lines of o into the curves of a linear
net () in p.
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Since the correspondence set up by = is (1, 1), except at special
points, and since two lines in p have a unique point in common,
the net of curves (7)) is homaloidal; that is to say, two general curves
of the net have one and only one free point of intersection (not
common to all curves of the net). For a similar reason, the net (§)
is also homaloidal.

A Cremona transformation, as we have remarked, may have
exceptional points, for which the transformed point is not uniquely
defined. Indeed, unless the transformation is a collineation there
must be exceptional points. For, if the polynomials £; are not all
linear, the order of a general £-curve will be greater than 1; and the
net (£) can only be homaloidal if the curves have fixed points in
common, i.e. if the polynomials £, £;, £, vanish simultaneously for
at least one non-zero vector x. If A is a base point of the net (£)—
i.e. a point common to all the curves of the net—the ratios of the
coordinates of the transformed point wA are indeterminate. We
may say that the base points of (£) are fundamental for =, and
similarly that those of () are fundamental for w-. The existence
of fundamental points is thus characteristic of non-trivial Cremona
transformations. ‘

A general line of p and a general £-curve transform respectively
into a general n-curve and a general line in ¢, and the number of
points of intersection remains invariant. It follows, therefore,
that the ¢-curves and the 7-curves are of the same order. This
common order is called the order of the Cremona transformation.

When a Cremona transformation w is given, the associated net
(¢) is uniquely determined as the system of curves obtained by
applying the transformation =~ to the lines of the plane o; but we
are not able to assert that, conversely, = is uniquely determined
by the net of curves. The net defined by the three curves

£i(2o, %y, %) = 0
may, in fact, be defined equally well by any triad of curves
&(xo, xl! xﬁ) =0 (7: = 0, l: 2),

where the ¢; are three linearly independent linear combinations
of the £,. In other words, if we replace equation (1) by the new

equation y = E'(x)

= AE(x) (|A]#0),
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we shall obtain a Cretnona. transformation =’ with the same
generating net (£) as w. We thus arrive at the theorem:

" tHEOREM 11. Two Cremona transformations w, w’ have the same
generating net (€) if and only if

w' = wyw,

where 1w, 18 a collineation.

From this point onwards we shall confine our attention to
Cremona transformations of order 2, which we call quadratic trans-
formations. For any such transformation, (£) and () must both
be homaloidal nets of conics, i.e. systems of conics through three
fixed points; and we shall consider only cases in which the base
points in question are distinct. We shall assume finally, for the
sake of simplicity, that the x-plane p and the y-plane o are the
same, and that x and y are coordinate vectors referred to the same
representation Z.

Suppose, then, that £y, £;, £, are three quadratic formsin zy, z;, 2,,
which all vanish simultaneously at three non-collinear base points
X,, X,, X,. We may take these points as reference points, and the
net (£¢) then has the equation

Aoy Ta+A, 2o 2y H A3y 2 = 0.

One transformation based on this net is the reciprocal transforma-
tion
Yo:Y1: Y2 = &% T3%p - To%y;

and hence, by Theorem 11, any quadratic transformation with three
distinct fundamental points is of the form w w, where w is a reciprocal
transformation and @ is a collineation. In view of this fact, we can
limit our discussion to the reciprocal transformation itself. )

Let us consider, therefore, the reciprocal transformation o just
defined. Clearly, the correspondence which it sets up is involutory.
Itis (1, 1) in general, but we observe that (i) if xisata fundamental
point it has no transform, and (ii) the points of X, X,, except for
X, and X,, all transform into the same point X, and similarly for
the points of X,X, and X, X;. The three lines X, X,, X,X,,
X,X,, which join the fundamental points in pairs, are called
Sfundamental lines of w. ,

If the point X approaches the fundamental point X, along a
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specified curve, we may write,} in terms of a parameter ¢,

Z)/mo = M+o(t), @/ = pt+o(t),
where A and u are constants. Then
Yo : Y11 Yy = Mut?+o(t?) : ut+-o(f) : At+o(t),
and in the limit, as ¢ approaches zero, the point y approaches a
determinate point (0, u,A) of X; X,.

Conversely it is simple to show that if a variable point approaches
any assigned point of X; X,, other than X, or X,, then its transform
approaches X in a definite ‘direction’. Thus we have the following
important property of w.

THEOREM 12. If X, X, X, are the fundamental points of a reci-
procal transformation w, then to points in the first neighbourhood of
X, (i.e. directions of approach to X ;) there correspond homographically
the individual points of the opposite fundamental line; and, conversely,
to points (other than fundamental points) of a fundamental line there
correspond the related directions of approach to the opposite funda-
mental point.

We leave the reader to supply the modifications required in
regard to directions of approach to fundamental points along
fundamental lines.

In considering the transformation of curves by =, we exclude
altogether the fundamental lines. That is to say, we investigate
only proper transforms of curves, i.e. the actual loci of y correspond-
ing to loci described by X, disregarding any factors in the equation
of a transformed curve which represent fundamental lines. In
this sense, a line which does not pass through any fundamental
point transforms into a conic through X, X,, X,, and conversely,
a conic through these three points transforms into a line. A line
through a fundamental point, however, yields another line through
the same fundamental point. The equation Az,+uz, = 0, for
instance, leads to y,(Ay;+puy,) = 0; and the transformed line
meets X, X, in the point corresponding to the direction of the
original line at X,,.

Consider now the transform of a general curve C®, of order =,
which does not pass through X, X,, or X,. Since C meetsa general
£-conic in 27 points, the transformed curve meets a general line in

1 We introduce non-algebraic notions here for simplicity, but the develop-
ments of modern algebra in fact make it possible to handle the problem by purely.
algebraic means.
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2n points, and it is therefore of order 2n. But C™ meets each funda-
mental line in 7 points, and so its transform passes » times through
each fundamental point, i.e. it has an n-fold point at each of
X, X,, X,. We say that the transform is a curve of type
c(X3, X2, X2).

If it happens that two of the points of intersection of C* with
X, X, coincide, two of the nodal tangents of the transformed curve
at X, clearly coincide also.

Now suppose that O™ passes simply through X,, but not at all
through X, or X,. Then a general {-conic cuts C* in the fixed
point X, and in 2n—1 free points, and the transformed curve is of
order 2n—1. This curve now passes only n—1 times through X,
and X,, although it still passes » times through X, and it is in fact
of type C*-1(X3, X3-1, X3-1).

In the general case, in which C* has assigned multiplicities at
the fundamental points of the quadratic transformation, we can
readily establish the nature of the transformed curve by con-
sidering what happens to the equation of C* when the appropriate
substitution is made. In this way we obtain the following compre-
hensive theorem. ;

THEOREM 13. If O"isa curve of type C( X, X{1, X34), its proper
transform by w is a curve of type

C2n-t—o—oa( X p-a—0a X P-0a—0s XN-0e-t1),

Proof. Let the equation of C" be f(zy,%,%,) =0, where
f(Ze, 21, %,) is & polynomial of degree n which does not have z,, z,,
or z, as a factor. Then the equation of the transformed curve is
obtained from the equation

S (@ g, 23, T 2y) = 0
by dropping all factors which are powers of 2, z,, or Z,.

Since C™ has an «,-fold point at X,, we may write
f(xO’ 1 x2) = x('l‘—a‘uozo(xl’ xz) +x8—ao-luu¢+1(xl) x2)+ . +un(x1) xz),
where u(x,,,) is homogeneous of degree ¢ in z, and x, together
(4 = ag,-..,n) and neither w, (x,,%,) nor u,(z,, ,) vanishes identi-
cally. It is immediately evident that the polynomial

J (@1 g, @3 T, To 21)
contains the factor z, to the power o, exactly; and so, by symmetry,

we have
F (@ Zg, Ty 7, 2o 2y) = G2 232G (%05 Ty, z,),
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where g(z,, 2,, %,) is a polynomial, of degree 2n— og— o, —ap, which
has no factor z; (1 = 0,1, 2).

Furthermore, the degree of g(z, z,, 2,) in z, is clearly n—qq, and
the multiplicity of X, as a point of the transformed curve is there-
fore (2n—oay—oy—oy)—(n—0y), ie. n—a;—a, By symmetry,
then, the curve has the stated multiplicities at X, X;, X,; and this
completes the proof of the theorem.

By applying Theorem 13 to various simple curves we are now
able to write down a large number of interesting results, of which
those given immediately below are typical. The reader will find
it a useful exercise to verify each of the statements from first
principles, by direct substitution in the equation of the curve,
and also to show that the converse of each statement is valid.

(i) A conic through X, and X, (but not through X,) becomes a

conic through X, and X,. '

(ii) A conic through X, only becomes a cubic which passes
simply through X, and X, and has a nodet at X,,.

(iii) A general conic becomes a quartic with nodes at X,, X,,
and X,.

(iv) A conic inscribed in the triangle X, X, X, becomes a quartic
with cuspst at X,, X,, and X,.

(v) A cubic through X, and X, becomes a quartic which passes
simply through X, and has nodes at X, and X,.

The reader will now have no difficulty in seeing how to derive
many properties of nodal cubics and trinodal quartics from known
‘properties of conics by applying a quadratic transformation.

To conclude this section, we may point out that the reader already
knows one special type of quadratic transformation, namely inver-
sion with respect to a circle in the euclidean plane. Thissymmetrical
transformation of the plane into itself has an abundance of striking
applications, many of which. will already be familiar.

To see how inversion fits into the general scheme, we first form
the equations, in homogeneous rectangular cartesian coordinates
z, ¥, 2, of the reciprocal transformations whose fundamental points
are the origin O and the absolute points I, J. Clearly the equations

2+  a x'—y
a  ztiy’ a  z—iy'

’
a 1
z'=—
2

t Nodes and cusps are double points -with distinct and coincident nodal
tangents respectively. :
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define such a transformation for any non-zero value of a; and these
equations reduce to

g ok y _ _ 9%z

2 iy 72 iyt
If we now superimpose on this transformation the collineation
2"y =a —y 2,

we obtain the equations

L

.a¥z y a%yz

xa+yz” 2 zi4y?’

which represent inversion with respect to the circle X24Y? = a?.
We have, therefore, the theorem:

&‘l 8

THEOREM 14. Inversion is a quadratic transformation, with the
centre of inversion O and the absolute points I, J as fundamenial
points. It can be generated by a reciprocal transformation based on
0, 1, J, followed by reflection in a line through O (a collineation which
leaves O invariant and interchanges I and J).

The homaloidal net (¢) belonging to the quadratic transformation
is the net of all circles through O. These circles invert, as we know,
into the lines of the plane. Also, from the first of the five properties
of quadratic transformations listed on p. 236, we see at once that
circles not through O transform into circles.

EXERCISES ON CHAPTER IX

1. The coordinates being cartesian, find the equations of the plane col-
lineation that leaves the three points (2, 0), (—1,+3), (—1, —+/3) invariant
and transforms the point (0, 0) into the point at infinity on the X-axis.

2, Find all the united points of the collineations

(i) :y :2 =3x—22:3y:2—y;

(i) 2:y:2’==z:2:9;

(iii) 2’ :9 :2' =y+z:24z:24+y;

(iv) ’:y' 12’ =y —2+2y: —2x4+2y-+z.

Find also, in each case, the equations of the corresponding line-line trans-
formation.

Show that (ii) is & harmonic homology, (iii) is a homology of modulus —2,
and (iv) is a special homology. Find the vertex of (iv).



238 TRANSFORMATIONS OF THE PLANE IX

3. Show that the equations of any homology (general or special) whose
vertex is (X,Y, Z) and whose axis i8 | = uz+vy+wz = 0 are of the form
oy 12 = px+Xl:py+Yl: p24 2Zi,

where p is a constant.

Show also that the homology is special if uX+9Y +wZ = 0, and that if
it is not special its modulus is (¥X +vY +wZ+p)/p.

4. Prove that any collineation which leaves invariant the reference point
Z and the reference line XY has equations of the form

2y 12 =ar+by:cx+dy: 2z,
where ad—bc # 0; and prove that this collineation is a homology, with
vertex on XY and axis through Z, if (a—1)(d—1) = be. Show also that the
collineation is a harmonic homology which interchanges X and Y if
a=d="bc—1=0.

If w is the collineation

iy =2y 2,
where A; A; = 1, prove that @ can be expressed, in infinitely many ways, as
the product 737, of two harmonic homologies 7,, 7, which interchange X
and Y. Interpret this result in the special case in which w, 7,, 74 are all
real collineations and X, Y are the absolute points.

6. The equations in non-homogeneous coordinates of two collineations
o and 7 are

X' = X/Y, Y =1/Y, and X' = 1/X, Y =-Y/X
respectively. Show that o? = 7% = ¢, where ¢ is the identical transformation,
and that o and 7 generate the group of six collineations whose members are
€, O, T, OT, TO, OTOC.

Discuss the character of these collineations, and show that if n is any odd
integer the curve X#—Y® = 1 is left invariant by every transformation
of the group.

6. Show that a (1, 1) correspondence between points P, P’ of the plane
is a collineation if it carries lines into lines in such a way that P and P’
always describe homographic ranges on corresponding lines.

7. A, B, A’, B’ are four fixed points and [ is a fixed line through the inter-
section of AB and 4’B’; and a transformation P — P’ is defined by the
condition that PA, P’A’ meet on !l and PB, P’B’ also meet on I. Show
that when P describes a line P’ also describes a line.

Find the self-corresponding points of the transformation.

8. Show, in each of the following cases, that the correspondence between
P and P’ is a collineation, and discuss in each case the united points and the
geometrical character of the transformation.

(i) the pairs of tangents from P and P’ to a fixed conic k meet a fixed line
a (not a tangent to k) in the same pair of points;

(ii) the pairs of tangents from P and P’ to two given conics k and &’
respectively meet a given cornmon tangent of k and k' in the same
pair of points;

(iii) P and P’ are poles of the same line with respect to two given conics
k and k’.

State also, in each of the three cases, the corresponding dual result.



IX EXERCISES ON CHAPTER IX 239

9. A, B being a given pair of points and a, b a given pair of lines, both of
general position, a correspondence between points P, P’ of the plane is
determined by the condition that AP, BP’ meet on a and AP’, BP meet
on b. Show that the correspondence is a collineation, and find its simplest
equations, using the triangle formed by a, b, and A B as triangle of reference.
Investigate the united points of the collineation.

10. Show that, in the euclidean plane, the product of two radial expan-
sions is either a radial expansion or a translation, distinguishing between
the two cases. Under what condition is the product & reflection in a fixed
point ?

State the general projective theorems which correspond to these results,
and prove that two homologies with the same axis cannot commute with
each other unless they are both special or both have the same vertex.

11. Show that the circles which are transformed into circles by & given
general collineation of the euclidean plane form a coaxal system.

If & coaxal system (c) is transformed into itself by a plane collineation w,
which transforms neither of the absolute points into an absolute point,
prove that =r is either (i) a harmonic homology with one limiting point as
vertex and a line through the other as axis, or (ii) one or other of two collinea-
tions whose squares are each the reflection in the line of centres of (c).

12, If two plane collineations =, o satisfy the condition wo = ow,
prove that ¢ transforms any united point of = into another, or the same,
united: point of w.

If w has only three united points 4, B, C, prove that for o to commute
with w, it is necessary and sufficient that either o has 4, B, C as united
points or each of w, o is cyclic of period three and each permutes the united
points of the other cyclically.

13. A variable line p meets a fixed conic k in U, V, and the lines joining
U, V to a fixed point 4, not on k, meet k again in points U’, ¥V’ whose join
is p’.. Prove that p, p’ correspond in & harmonic homology with A as vertex
and the polar line of 4 with respect to k as axis.

If w4, wp are the two harmonic homologies derived as above from differ-
ent points 4, B and the same conic %, find the united points of the collineation
w4 wg, and prove that this collineation is also a harmonic homology if
A, B are conjugate points for k.

14. Two chords A B, CD of a conic ¥ meet in 0. Prove that there are four
collineations each of which leaves O and k invariant and transforms the line
AB into CD. Show that two of these collineations are harmonic homologies
whose axes meet in O, and that if w;, w, are the other two then o, wi?
is & harmonic homology with vertex O.

15. Two conics k, &’ touch at O, meet in two further points 4, B, and have
two further common tangents u, ». Show that there exist two homologies,
one with O as vertex and A B as axis and the other with uv as vertex and the
common tangent at O as axis, which transform k into k’. Obtain simple
euclidean cases of these results.

16. Show that if there exists a special homology which transforms a conic
k into a conic %’ (these two conics having four distinct common points),
then there exists also a harmonic homology which transforms % into %’
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Show also that in this case & and k’ are projectively equivalent to a pair
of equal circles.

17. If &’ is the transform of a conic k by a specla,l homology , describe
the relation of &’ to k when (i) k is of general position, (ii) k£ passes through
the vertex of w, (iii) k touches the axis of w, (iv) k touches the axis at the
vertex.

If two conics have their asymptotes parallel and possess a pair of parallel
common tangents, prove that one of them can be obtained from the other
by means of & translation.

18. Show that a general plane collineation does not leave any conic
invariant, but that if the characteristic roots of the matrix of the collineation
are in geometric progression the collineation leaves invariant every conicof a
simply infinite family.

19. Show that any (2, 2) algebraic correspondence on a conic is associated
with a unique correlation of the plane, the two points corresponding to any
point P of the conic being those in which the conic is met by the line into
which P is transformed by the correlation. (Cf. Chapter VIII, Exercise 1.)

20. If w, is & non-involutory homographic correspondence between points
P, P’ on a conic k, show that the line PP’ corresponds to P in a fixed correla-
tion with k as coincidence locus. If the joins of two pairs P,, P; and F,, P;
meet in T, show that P{ Pj; is the line corresponding to T in the correlation
in question.

21. Ifkistheconic whoseequationisx®+y2?+2% = 0, write down theequa-
tions of the general correlation whose coincidence locus is k. Find the
associated coincidence envelope k', and verify that k and &’ have double
contact.

22. If a rotation through a fixed angle & about a fixed point O carries any
point P into a point P’, and the polar of P’ with respect to a fixed circle of
centre O is p, show that the correspondence P — p is a correlation; and
investigate its coincidence locus and envelope.

If « is & right angle, show that the correlation is special, having the line
at infinity counted twice as its coincidence locus and the point O counted
twice as its coincidence envelope.

23. Four circles ¢;, ¢;, 5, ¢, cut at O, and c; cuts ¢; a second time at F;.
Show that the pairs of lines which join O to opposite pairs of points Fy;
are in involution.

Show that a second involution has the tangents at O to ¢, ¢, ¢, 88 mates
of the lines OF,,, OF,;, OP,, respectively.

24. Show that the three cuspidal tangents of a tricuspidal quartic curve
meet in & point, and that the curve has a unique double tangent, which is
the harmonic polar of the point of concurrence in question with respect to
the triangle whose vertices are the cusps.

25. Show that a circular cubic curve (i.e. a cubic through the absolute
points) which also possesses & node has two systems of bitangent circles,
and that the circle through the node and the points of contact of any one of
these circles touches one or other of two fixed lines at the node.

26. Show that a nodal cubic curve is of class four, and prove that it has
three points of inflexion, which are collinear.



CHAPTER X

PROJECTIVE GEOMETRY OF THREE
DIMENSIONS

Ir we give n the value 3 in the general definition at the beginning
of Chapter 111, we obtain formal definitions of three-dimensional
projective space S; and projective geometry of three dimensions.
The projective properties of S, can then all be deduced from the
fundamental definition of a three-dimensional projective domain,
for the most part by methods of linear algebra, but in the present
chapter we do not propose to go into all the details of this develop-
ment. Many of the subsidiary definitions and the enunciations and
proofs of theorems are strictly analogous to those already given
for 8, in Chapter IV, and the reader can easily supply them for
himself. We shall accordingly pass quickly over this part of the
theory, merely calling attention to certain features that arise for
the first time when the number of dimensions attains the value 3.

8; is much richer in projective properties than S, or even &S,;
and by the time we are ready to study so complex a geometrical
system we must be able to think in geometrical rather than algebraic
terms. In the informal treatment of projective geometry outlined
in Part I we relied upon geometrical intuition in the naive sense.
Then, as we began the formal deductive treatment of the same
subject in the early chapters of Part II, we found it necessary to
proceed slowly and cautiously by small algebraic steps. Now we
can begin to detach ourselves from the details of the algebra,
making use once more of geometrical intuition, but this time less
naively. We have seen how projective geometry can be provided
with a solid algebraic foundation, and we know how to build it up
in this way, but we do not now need always to be conscious of the
presence of the algebra. We are free, in fact, to think geometrically
once again, going back to algebraic symbols only when added
precision has to be given to geometrical notions.

§1. THE CONSTRUCTION AND GENERAL PROPERTIES
OF THE SYSTEM
Let us now summarize the essential steps in the construction of a
formal system of three-dimensional projective geometry.

The points of S; are represented, in any allowable representation
5304 R
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Z, by tetrads of homogeneous coordinates (z,, z,, %3, Z3) belonging
to the ground field K (which we take once again to be the complex
field); and the different allowable representations are connected
by the complete group of non-singular linear transformations with
coefficients in K. Thus the transformation from one allowable
representation to another may be written as

3
x& =kz Qi T ('l: = 0, 1, 2) 3)’
=0

or X = AX,

where la,s] = |A] # 0.

Linear dependence of points

As in Chapter IV, any relation of linear dependence between
vectors in Vj(K) may be carried over to the points that are repre-
sented by these vectorsin a given representation . More precisely,
& point P is said to be linearly dependent on a set of points

P,P,...P,

if a coordinate vector representing P in some representation Z is
linearly dependent on coordinate vectors representing P,, B,,..., B,
in #. If the relation holds between vectors in Z it also holds
between the corresponding vectors in every other allowable
representation, and linear dependence is therefore an intrinsic
property of points.

Now suppose X, X,, X,, X;, E are five given points of S;, no
four of which are linearly dependent. Then, by Theorem 1 of the
Appendix, there exists a unique allowable representation # in
which the five points have respectively the coordinates (1,0, 0, 0),
(0,1,0,0), (0,0,1,0), (0,0,0,1), (1,1,1,1). We call X,, X;, X,, X,
the reference points of 22, or the vertices of the tetrahedron of
reference, and £ the unit point. Specifying the reference points
and the unit point is, as a rule, the most convenient way of fixing
a representation of §;. We shall now assume that this has been
done, so that we have a definite representation # to work with.

Let P, F,, P, be three given points, represented by coordinate
vectors x®, x®, x® respectively. These vectors may be taken as
columns of & 4 X 3 matrix (z*)), and the rank p of this matrix has a
simple interpretation, for the three points are linearly independent
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if and only if p = 3. If this condition is satisfied, the three sets of
coordinates satisfy one and (eﬁ'ectively) only one linear equation

Eum =0,

i=0
and all the points whose coordinates satisfy this equation, and
only these points, are linearly dependent on B, F,, F,. We call the
set of all such points the plane determined by P, F,, and F;. It
follows at once that a plane is determined by any three of its points,
provided only that they are linearly independent. Four points are
said to be coplanar if they belong to a common plane; and this is
the case if and only if the determinant of their coordinates is zero.

ExEercisE. Write down the equation of the plane determined by the
points P,, F,, P, above.

Now consider a pair of given points P, F,, with coordinate
vectors x, x@, The points are linearly independent if and only if
the 4 X 2 matrix (x{*") is of rank 2; and in this case their coordinates
satisfy two (and not more than two) linearly independent linear

equations 3 3
zuixi= 0, Z’viz,-= 0.
i=0 i=0

The points which are linearly dependent on B, and F, are the points
‘whose coordinates satisfy these two equations simultaneously,
and these points are said to make up the line determined by P,
and P,. Every point of the line is said to be collinear with P, and F,;
and, of course, the roles of P, and P, may be taken over by any two
linearly independent points of the line.

Relations of incidence

A point P is incident with (or belongs to) a plane when its
coordinates satisfy the equation of the plane, and it is incident with
& line when its coordinates simultaneously satisfy the two equations
of the line. We thus have the two fundamental incidence relations

u,:r:1£ 0 a.nd ux__O—- vx,
1Z; i

and from these relations numerous incidence propertles of planes
and lines follow at once by the theory of linear equations. Thus a
line either has a unique point in common with a plane or it lies
wholly in the plane. Two distinct planes have a unique line in
common. Three distinct planes have either a single point or a line
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in common. Two lines either lie in a common plane, when they also
have a unique common point, or they neither lie in a common plane
nor possess & common point; and in the latter case the lines are
said to be skew. .
ExERrocIsE. Prove that through a given point which does not lie on either

of two given skew lines there is & unique transversal line which meets both
of the skew lines.

The representation of planes and lines
A plane may be represented algebraically in two different ways.
(i) If the plane is determined, as above, by three points P,, B, F;,
a general point P in it has a coordinate vector

X = A XD A, XO4 ) XO;

and so we have a parametric representation of the plane by a triad
of homogeneous parameters (A;, Az, A3). ‘
(ii) Alternatively, the plane may be represented by an equation -

3
z 'uix,- - O.
i=0

This equation is determined by its coefficients, which may be taken
as a tetrad of homogeneous plane-coordinates of the plane. If the
column-vector with components (u,, u,,u,,u;) is denoted by u,
the equation of the plane may be expressed in terms of the inner
product of the vectors u and x:

(u,X) =ulx = 0.

A line is fixed by any two of its points P, F,; and the equation
X = A; XA, X, which gives the coordinate vector of a general
point of the line, leads at once to the homogeneous parametric
representation of the line by the pair of parameters (A,, A,). '

Line-coordinates

Not only the points and the planes of S; but also the lines may be
represented by suitably chosen sets of homogeneous coordinates;
and this representation is of some interest because it is different in
kind from any that we have met so far. The coordinates of a line,
ag will shortly appear, form a redundant set and are connected
by an identical relation.

Let p be a general line of space. The line may be fixed by any



X,§1 THE CONSTRUCTION AND GENERAL PROPERTIES 245

two of its points—say the points P, and F,, whose coordinate
vectors in the representation # are x® and x®. If we now put

py = BPdP—af2)  (i,j = 0,...,3)
we obtain a set of numbers which can function as coordinates of
the line p. There are sixteen of the p;, but, since they are clearly
the elements of a skew-symmetric 4 X 4 matrix (i.e. p;; is always
equal to —p,;) their number reduces effectively to six. So we
arrive at the set of six numbers

D23s P315 Pr2s Pors Pozs Pos
which we take to be components of the coordinate vector p of p.
The fundamental property of these line-coordinates is that their

ratios are independent of the choice of the two points F;, F, on p;
i.e. they are a unique set of coordinates of p. To see this it is only
necessary to observe that if

KO = AXO4px®
and X® = X'xW4-p’'x@
then Py = EPEP—IPED = (' —Xp)py.
In this way every line yields a well-defined set of ratios

P23 P31 ° P12 Por * Poz - Pos-

The converse of this statement, on the other hand, that is to say the
statement that every such set of ratios arises from some line of
space, cannot possibly be true. There are co® sets of ratios of the
P, but since a line is uniquely determined by the points in which
it meets two fixed planes there are only co? lines. The coordinates
of every line must therefore be connected by one and the same
identical relation, which reduces their effective number to four;
and this relation is not hard to discover. Expanding the vanishing
determinant

P 2D 2D 2P

2 2P 2P 2@

2D 2D D P

P 2P 2D P

in terms of the first two rows, we obtain the identity
Qpp = P Do tPoePartPosPrz = 0

and this quadratic relation holds between the coordinates p;; of
every line. The six numbers p,;, connected by the relation(,,, = 0,
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are usually referred to as the Grassmann (or Plicker) coordinates
of the line p.

Instead of defining the coordinates of a line in terms of the point-
coordinates of two points on the line we could equally well begin
with the plane-coordinates of two planes through the line, and this
dual procedure leads to the introduction of the dual coordinates

my = uPuP—uPu® (4,5 = 0,...,3).

The same line p now has two distinct representations, by vectors
p and = respectively, but it is easy to show that they come ulti-
mately to the same thing. The points x®, x® both lie in each of
the planes u®, u®, and from the equations

wPad + w4 uPrP 4+ uPad = o,
U@z uPrD -+ 4P + U@z = 0
we have, by eliminating z{V,
oy 2+ 1mop 240+ mga 24 =
Similarly Tor 2+ 710 2§+ moa ¥ = 0,
and from these two equations

o1 o2 __ Toa

Pes P31 Pz

The two sets of coordinates are therefore connected by the relations
oy - Toz * TMo3 - 723 - Ta1 * M1z == Ps3 - P31 * P12 - Por * Poz * Pos-

We shall not make very much use of line-coordinates until we
take up the systematic study of line-geometry in Chapter XV,
but before leaving the subject at this stage it is worth while obtain-
ing the condition for two lines to intersect.

Let p, g be two lines in space, determined by the pairs of points
P, P, and Q,, @, respectively. The lines intersect if and only if the
four points P, P,, @,, @, are coplanar, and a necessary and sufficient
condition for this is

D 2D 2 2P| =0,

P 2D 2P 2P

¥ o oy oy

YR P gD Y
where x®, x®, y, y@ are coordinate vectors of P, F,, @,, Q,.
Expanding the determinant in terms of its first two rows enables
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us to write the condition in terms of line-coordinates in the form

2Q,; = PorZos+Po2 951+ Poa T12+Pos qo1+231 %02+ P12%03 = 0,

Q,, being derived from the quadratic form Q,,, by the process of
polarization.

Subordinate projective geometries

We now consider again the parametric representation of the
plane P,F,P,. The numbers (A;,A,,As) may be regarded as co-
ordinates of a general point P in the plane; and since choosing three
other points @, @,, @, to fix the plane amounts to applying a non-
singular linear transformation to these coordinates, the proj ective
geometry of S, induces a subordinate projective geometry of two
dimensions in the plane. This is true of every plane in S;, and in the
same way & one-dimensional projective geometry is induced on
every line of §;. When looked at from this point of view, & plane is
often referred to as a plane field (set of co? points with the structure
of an S,) and the line as a range of points. An important special
case of the above hierarchy of projective geometries (which, in
virtue of the freedom of choice of Z, is not really special at all)
is the following. The vertices X;, X,, X; of the tetrahedron of
reference determine a plane, the face of the tetrahedron opposite to
X,. A general point of this plane has coordinates (0, 2y, %5, #3), and
&,, %,, T may be identified with the A,, A,, A; of the preceding theory.

‘' We then have an allowable representation of the plane field deter-
mined by the plane X, X, X, the reference points being X, X, X3
and the unit point the point (0,1,1,1) common to the plane and
the line X, E. This point is the subordinate unit point E, of the
face X, X, X, of the tetrahedron of reference.

A general point of the line X, X; is (0,0, x,,z;); and z,, x; are
coordinates in an allowable representation of this line, the reference
points being X,, X, and the unit point the point (0,0, 1,1) in which
X, X, is met by X, E,. This point is the subordinate unit point Eo,
of the edge X, X, of the tetrahedron of reference.

We can treat the one-dimensional projective geometry of X, X,
either as subordinate directly to the geometry of S; or as subordinate
to the two-dimensional geometry of X, X, X, which is itself sub-
ordinate to the geometry of S;, but in the end the choice of point of
view is seen to make no difference. We do not need, therefore, to
keep the origi.na.l three-dimensional geometry separate from its

|
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various subordinate geometries, and we shall think of the full
three-dimensional geometry of S, as comprising all the projective
properties of §; itself and of its linear subspa.ces

A

NN

7N

Congider, for example, the line determined by two points P, B,.
A general point of the line may be represented, using a non-
homogeneous parameter 8, by the vector x = xW++6x®, Then 6
is a projective parameter on the line, and the cross ratio of two
pairs of points may be expressed as usual in terms of the parameters
of the points. In this way the cross ratio of two pairs of points on a
line enters into the projective geometry of S;.

The principle of duality

The fundamental incidence relation between a point and a
plane, expressed in the equation
% u;x; = 0,
i=0
involves point-coordinates and plane-coordinates symmetrically.
This, together with the fact that a non-singular linear transforma-
tion of point-coordinates induces a transformation of plane-
coordinates of the same type, gives rise to a principle of duality in
space. Duality is rather more complicated in space than in the plane
since, in addition to points and planes, which are dual to each other,
we now have an intermediate class of self-dual entities—the lines
of space. The principle of duality may be stated formally as follows:
If T is any theorem, valid in three-dimensional projective geo-
metry, the theorem T' that is obtained from T by changing the word
‘point’ into the word ‘plane’, and vice versa, throughout the enuncia-
tion, and making the appropriate linguistic adjustments, is also valid
in the same geometry.
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To every kind of submanifold of S; corresponds a dual manifold,
and this is true in particular of the range of points and the planefield.

The range of points is the set of co! points which lie on a fixed
line, the axis of the range, and the dual manifold consists of the co!
planes which pass through a fixed line. These planes are said to
form a pencil of planes with the given line as axis. Two planes
7y, 79, With coordinate vectors u®, u®, determine a unique pencil, a
general plane of which is given by u = u®+4-6u®; and 6 is a pro-
jective parameter for the pencil, connected in the usual way with
cross ratio. The cross ratio {m, my; ms, 7y} of two ordered pairs of
planes of the same pencil is defined as the dual of the cross ratio
~ {P,, B,; B, P} for points of a range. It may be verified directly,
and we shall also prove below (corollary to Theorem 4) that the
cross ratio {m;, m,; mg, m,} is equal to the cross ratio of the pairs of
points intercepted on any transversal. In this way we have a
fundamental connexion between the range and the pencil.

A plane field consists in the first instance of the set of co? points
of a given plane, and to these points we may add the co? lines of the
plane in order to make up the complete two-dimensional projective
domain. The space-dual of the plane field is the star of planes and
lines, the system of co? planes and co? lines that pass through a fixed
point, the vertex of the star. Three linearly independent planes
determine a star, a general plane of which is represented by a co-
ordinate vector of the form u = A, u®4-A; u®+A; u®. Two planes
of the star intersect in a unique line of the star, and all those planes
which pass through the line form a pencil of planes in the star.

Some important incidence theorems

We are now in a position to prove a number of incidence theorems
which hold in S;.

THEOREM 1. Let A, A,, A,, Az be four points which form the
vertices of a tetrahedron, and let P be a point which does not lie on any
of the faces of the tetrahedron. Let A; P meet the opposite face in
P, (t = 0,1,2,3) and let p; be the harmonic polar of P; with respect
to the triangle whose vertices are the vertices of the tetrahedron other
than A;. Then the four lines p; lie in a plane.

Proof. Take the given tetrahedron as tetrahedron of reference,
and P as the point (&, £, &5, ;). Then F, is the point (0, §,, &, &3);
and in the subordinate geometry of the plane 4, 4, 4, the equation



250 PROJECTIVE GEOMETRY OF THREE DIMENSIONS X,§1

of the harmonic polar p, of this point with respect to the triangle

of reference is
z

& &

Thus p,, regarded as a line of Sa, has equations

AHE+E

x x
1+ 2+§ "“0=x0’
1 3

and every point of it lies in the plane

Zo
& &

Since this plane has a symmetric equation, it contains all four
lines p;. '

The plane 7 which contains all the lines p, is called the harmonic
polar plane of P with respect to the given tetrahedron, and P is
called the harmonic pole of 7. Since the harmonie polar plane of the
point (£, £, &, &;) is the plane (1/£,, 1/¢;,1/£,,1/£;) we see that, in
particular, the unit point and the unit plane are harmonic pole
and polar with respect to the tetrahedron of reference.

Exercise. With the notation of Theorem 1, show that if P projects from
the edge 4,4, into the point Fy; of the opposite edge 4, 4, (that is to say,
the plane 4,4, P meets 4,4, in Fy,), and Py, is the harmonic conjugate
of F, with respect to 4, and 4,, then P;, and the five similar points Pj,
all lie in 7r.

THEOREM 2. If two tetrahedra correspond to each other in such a
way that the lines joining corresponding vertices pass through a
common point, then the lines of intersection of corresponding faces lie
tn @ common plane, and conversely.

Proof. Take one of the tetrahedra as tetrahedron of reference

X, X, X,X, and the point of concurrence of the joins as unit
point E. Ifthe vertices Y, Y}, ¥,, ¥, of the other tetrahedron have

coordinate vectors y©, y®, y®, y®, we have, using an obvious
notation, ¥y = e+ )\p x® (p=0,1,2,3)
and hence yP—y@ = A xP)—} x©@,

Y, Y, therefore meets X, X, in the point P,, given by A, x®—2,x@,
and thls point lies in the plane = represented by the symmetrlcg/ :
equation 31

‘ — ;= 0.

2%

Ty
+ 1422 +§3
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Since the planes X, X, X, and Y, Y, ¥, both contain the three points
E,, B, P, wluch a.ll lie in r, they meet in & line of #; and this .
proves the direct theorem. The converse follows by duality. "

Remark. Two tetrahedra related as in Theorem 2 are said to be
in perspective from the vertex E, and being in perspective is
accordingly & self-dual relationship. Theorem 2 may be oompared

with Theorem 7 of Chapter IV.

THEOREM 3 (Desargues’s Theorem). If two triangles in S, corre-
spond in such a way that the lines joining corresponding vertices are
_concurrent, then corresponding pairs of sides intersect, and the three
‘points of intersection are collinear. Comversely, if two triangles
correspond in such a way that the three p(m's of corresponding sides
intersect in collinear points, then the lines joining corresponding ver-
tices are concurrent.

Proof. If the triangles lie in a common plane, the theorem
reduces to Theorem 7 of Chapter IV; and we may therefore suppose
that they lie in distinct planes 7 and ="

Let the triangles be ABC and A'B’C’, with AA’, BB', C(C’ all
meeting at V. Then since BB’ and CC’ meet, the points B, B’,
C, C’ are coplanar; and therefore BC and B’'C’ meet in L, say. .
L then lies on the line 7#’, and by symmetry the other two pairs of
corresponding sides also meet in points of this same line.

If, conversely, it is given that the pairs of corresponding sides
of the triangles ABC and A’B’C’ meet, the points B, C, B’, '
are coplanar. Then the pair of lines BB’, CC’ meet, and similarly
the pairs CC’, AA’ and AA’, BB’ also meet. The pairs of joins
then lie in three planes, and since these planes clearly have not a
line in common they have a unique common point V. V is then the
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common point of intersection of the three pairs of lines, and is com-
mon to 44’, BB’, and CC".

Remarks

(i) Theorem 3 can be proved algebraically by an argument similar
to that already used in proving Theorem 2. We have preferred to
give a different proof in order to show how, as soon as a few basic
incidence theorems are known, other theorems may be inferred
by a more geometrical mode of argument.

(ii) Desargues’s Theorem and its converse are not dual to each
other in space, as they are in the plane. The proper three-dimen-
sional analogue of Theorem 7 of Chapter IV is not Theorem 3
but Theorem 2. ‘

(iii) Desargues’s Theorem for coplanar triangles may be deduced
from the theorem for non-coplanar tnangles by constructing a
third triangle, in a new plane, which is in perspective with each of
the given triangles. The reader should do this.

Homographic ranges and pencils

In Chapter III we gave a detailed account of the formal theory
of homographic correspondences, and in Chapter IV we saw how to
apply this theory to concrete correspondences between ranges and
pencils in S,. Homographies are in fact possible whenever there
are one-dimensional forms, i.e. systems of co! geometrical entities
with the structure of an §;. In three-dimensional space we already
have three kinds of one- dlmen31onal form—the range of points, the
pencil of planes, and the plane pencil of lines—and any two forms,
whether of the same kind or of different kinds, may be put in homo-
graphic correspondence. A (1,1) correspondence between two
one-dimensional forms is homographic if, when a projective
parameter is introduced for each form, the parameters of corre-
sponding elements are connected by a fixed bilinear equation

0 = ;g:::g (a8—By # 0).

We now state the basic theorems on homographies in S,, leaving
the proofs to the reader whenever they are sufficiently simple.

THEOREM 4. Ifa and b are fixed skew lines, then the correspondence
between a variable point P of a and the plane bP of the pencil with
axis b is homographic; in symbols, (P) < b(P).



X,§1 THE CONSTRUCTION AND GENERAL PROPERTIES 253

COROLLARY. A pencil of planes cuts homographic ranges on any
two transversals.

Remark. From this theorem we can deduce at once that the
cross ratio of two ordered pairs of planes of a pencil is equal to the
cross ratio of the pairs of points intercepted on an arbitrary trans-
versal. This is the important result alluded to on p. 249.

THEOREM 5. If P is a variable point of a fized line a and B is a
fized point that does not lie on a, then the lines BP form a pencil of
lines, and B(P) X(P). Dually, if = is a variable plane through a
fized line a and B is a fixed plane that does not pass through a, then the
lines Bm form a pencil of lines, and B(w) K ().

THEOREM 6. If P and Q are variable points of two fixed lines a and
b, and P and Q correspond in a given homography w, then it is possible
to find two fixed points V, W and a fixed line c such that, for every
corresponding pair (P, Q), VP and WQ meet in a point R of c.

Proof. Select three corresponding pairs (B, @,), (P, @), and
(B, @5), and take a point V arbitrarily on P, @,. Then VF, and
V P, are coplanar with @,, and a transversal B, R, B, can be found
" as shown, with R, coincident with @,. Since @, Q; and R, R, are
coplanar, @, R, and Q; R, are also coplanar and meet in W, say.
If we now take R, R as the line ¢, the requirements of the theorem
are satisfied; for the product of the perspectivity between (P) and
(R) with vertex V and the perspectivity between (R) and (@) with
vertex W is a homography with three pairs in common with .

THEOREM 7. Every homographic correspondence between two one-
dimensional forms in S; can be generated by a finite sequence of opera-
tions of projection and section.
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Collinear plane fields and stars

In addition to the three kinds of one-dimensional form just
discussed, S, also contains two important kinds of two-dimensional
form, or system of 00? geometrical entities with the structure of
an S,—namely the plane field and the star—and the analogue
for such systems of the homographic correspondence between
one-dimensional forms is, of course, the collineation. A (1,1)
correspondence between two two-dimensional forms is a collinea-
tion if, when an allowable representation is chosen for each form,
the parameters of corresponding elements are connected by fixed
equations of the form

3
A; =k§1am/\k ('l: - 1, 2, 3),

where |«,,| 7% 0. When two two-dimensional forms correspond in
‘this way they are said to be collinear.

We shall meet important applications of collinear stars in
Chapter XII in connexion with the twisted cubic curve and cubic
surface.

§2. AFFINE AND EUCLIDEAN GEOMETRY OF THRER
DiMENSIONS

Just as we were able to construct abstract models of two-
dimensional affine and euclidean geometry by singling out certain
geometrical entities in the projective plane and endowing them with
recognizable individuality, so in a similar manner we can arrive
at abstract models of affine and euclidean geometry of three
dimensions. '

We begin with real projective space S;(R) and adjoin to it ideal
complex points, and then we single out a real plane ¢, to be called
the plane at infinity. To this plane, which is now regarded as an
ideal plane, not properly belonging to the space, is assigned the
invariable equation z, = 0. Thus we obtain affine space with its
associated class (%) of allowable coordinate representations. In
each of these representations the actual points of the space are in
one-one correspondence with the triads (X, X,, X;) of real numbers.

Two planes of affine space are said to be parallel if and only if
they meet in a line of «; and a line is said to be parallel to & plane
or to another line if it meets it in a point of «. We can also define the
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mid-point of a finite segment 4 B in the usual way, as the harmonic
conjugate with respect to 4 and B of the point at infinity on the
line A B.

The affine geometry of space induces a subordinate affine geo-
metry in every plane and on every line. If 7 is a given plane, the
line at infinity in = is the line 7, and if ! is a given line the point at
infinity on ! is the point L.

By selecting a virtual conic Q in ¢ and calling it the absolute
conic, we can pass from affine space to (similarity) euclidean space.
If we require Q to have the equations

ai+ai+ag = 0=,

in every allowable representation, we obtain the class of euclidean
representations (Zz).

The tangent planes from any line ! to Q are called the isotropic
planes through I, and the cone which joins any point P to Q is
called the isotropic cone at P.

Two planes are perpendicular if they are harmonic with respect
to the isotropic planes through their line of intersection—in other
words, if they meet ¢ in a pair of lines conjugate for Q. Two lines
(whether they intersect or not) are perpendicular if they meet ¢
in a pair of points conjugate for Q.

The euclidean geometry of space induces a subordinate euclidean
geometry in every (actual) plane. If = isa given plane, the absolute
points in 7 are the conjugate complex points in which the line at
infinity in the plane meets the virtual conic Q.

Q may be regarded as a disk quadric (see p. 265), and this suggests
the possibility of passing from euclidean to non-euclidean geometry
by replacing this disk quadric by a proper absolute quadric. This
topic will be taken up in Chapter XIV.

THEOREM 8. If %, i8 any one allowable representation of affine
space, then the whole class (%) of allowable representations consists
of all those representations which can be derived from %, by applying
a transformation of the form

3
X; =k§1bikxk+c'i (1: = l, 2: 3)’

where the coefficients are arbitrary real numbers, subject to the con~
dition |b,,| # 0,
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THEOREM 9. If Zy 18 any one allowable representation of euclidean
space, then the whole class (Zy) of allowable representations consists
of all those representations which can be derived from Rz by applying
a transformation of the form

3 .
X‘:'. = ckz eika+a'i (i = 1; 2: 3)’
=1

where a,, a,, ag, ¢ are arbitrary real numbers, with ¢ > 0, and (e,,)
18 any orthogonal matrizx.

Proof. If (X,, X,, X,) and (X3, X3, X3) are allowable coordinates
in two representations #5 and %5, then

3
X; =k21bika+ci ('i = l, 2, 3).
But, since Q has the same equations in Z5 and %%,
3 3
>X2=h> X3+R,
i1 i=1

where R involves only terms of degree lower than the second. By
direct substitution, therefore,

h i Xi= i (i bika)2a (1)
i=1 i=1‘k=1
ie. hE38XX, =3 (g b X 3 bim X,.)
=33 3 bubim X, X

=33 ( 3 bu big) X X,
by changing the dummy suffixes. Therefore

3 - .
kzlbkibkj =hd; (1, = 1,2,3)

But in virtue of (1), A is positive, and we may write & = c2, where ¢

is real. Then the last equation may be written in matrix form as

B7TB = ¢,
and therefore B = cE, where E”E = I,i.e. where E is an orthogonal
matrix.

Thus the transformation from #Z 5 to %y, is of the required form.
The constants a,, a,, a; ¢ may be any real numbers, but we must
restrict the sign of ¢ if each transformation is to appear only once
in the whole set.
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Remarks
(i) The euclidean transformations

3
X.: = C E eika—l—ai ('l: = 1,2, 3)
. k=1

form a group, the euclidean group in three dimensions.

(ii) In ordinary euclidean space, an allowable frame of reference
is simply a rectangular coordinate system. A euclidean transforma-
tion can be interpreted as the transformation from one such
coordinate system to another. :

(iii) In the interpretation just mentioned, the columns of
are the direction cosines of the new axes with respect to the old.
The relation ETE = I gives the familiar orthogonality relations

3
kzlek‘ €y = 8.‘5 (@,j =1, 2, 3)

for the direction cosines of three mutually perpendicular lines.
(iv) Since ETE = I we have, on taking determinants,

|E|?2 = 1.
Thus |[E| = 1 or —1. |E| =1 gives a proper orthogonal trans-
formation and |E| = —1 an improper one. In the second case

there is a reflection, and the axes are changed from right-handed
to left-handed or vice versa.

EXERCISES ON CHAPTER X

1. Given a coordinate representation & of S, for which the tetrahedron
of reference is X, X, X, X,, write down (i) the point-equations of the four
faces and the plane-equations of the four vertices of the tetrahedron, (ii) pairs
of point-equations and pairs of plane-equations for the six edges, (iii) the
equation of a general plane through the vertex X, and that of a general plane
through the edge X,X,, and (iv) pairs of equations which represent a
ge}xeral line through X, and a general line in the face X, X, X,.

Find also the line-coordinates of the six edges of the tetrahedron of
reference.

9. If XY ZT is the tetrahedron of reference, E is the unit point (1,1, 1, 1),
and P is the point (a, b, c,d), prove that:

(i) the equations of the line T'P are z/a = y/b = z/c;
(ii) the equation of the plane ZTP is z/a = y/b;
(iii) the projection of PE from T on to the plane XY Z is the line

(b—c)r+(c—a)y+(a—b)z = 0 = &;
5304 S i N
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(iv) ageneral point of the transversal from P to XY and ZT is (a, b, Ac, Ad);

(v) if EP meets the unit plane (1,1,1,1) in M, and the harmonic con-
jugate of P with respect to B and M is P’, then the coordinates of P’
are (—a-+b+c+d, a—b+c+d, a+b—c+d, at+-b+4c—d);

(vi) the equation of the locus of a variable point which is such that the
‘transversal from it to XY and Z7T meets EP is

(z—t)(bx—ay)—(x—y)(dz—ct) = 0.

3. If f(zy, 2, 2,) and g(2,, 25) are homogeneous polynomials, show that
the equation f(z;,z,,25) = O represents a cone with vertex X, and the
equation g(z,, ¥3) = O represents a set of planes through X, X,.

Show also that the equation of any cone with vertex at the point of
intersection of the three general planes m; = 0 (3 = 1,2, 3) is of the form

F(rry,my75) = 0.
4. A surface ¢, whose equation is f(z,, 2, %y, %3) = 0, is met by the plane

T = Up&o+Uy Ty F Uy Ty +Ug Ty = O in & curve c. Show that the equation
of the cone which projects ¢ from the point (¥y, ¥, ¥4 ¥5) iS

S(@omy—yom, Tymy— Y17, Tymy—Yam, Tymy—ysm) = 0,
where Ty = UgYoT Uy Y1+ U Yy +Us Y.
5. Show that the three planes
3x—3y+2z—5t = 0,
bx+3y—bz+t = 0,
3x+3y—42+2t =0

meet in a line.

Find the harmonic conjugate of the third plane with respect to the
first two.

Find also, in parametric form, the coordinates of a general point of the
common line of intersection of the planes.

6. If XY ZT is the tetrahedron of reference, and X’, Y, Z’, T are four
points whose coordinate vectors are the columns of a non-singular skew-
symmetric matzgix, show that the tetrahedron X’Y’Z’T" is both inscribed in
and circumscribed about XY Z7T.

7. Show that the curve whose parametric equations are

z:y:2:t = af(0—a):b/(6—b):c/(f—c):d/(8—d)

passes through the reference points X, ¥, Z, T, the unit point, and the

point (a,b,¢,d); and that it is met by any general plane in three points.
Find the equations of the four cones which project the curve from the

points X, Y, Z, T, and show that the complete intersection of any two of

these cones consists of the curve and one edge of the tetrahedron of reference.
8. Show that the curve whose parametric equations are

z:y:2:t=0%:0:1:02—041
is a conic, namely the section of the cone y* = zx by the plane
r—y+z—t=0."
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Exhibit in a similar way, as the section of a cone by a plane, the conic
whose parametric equations are

ziy:z:it=02+1:0—1:6%—1:6%430.

9. Three points 4, B, C lie on a line k, and D is any point not on k. A
variable line , which does not meet k, is such that the crossratio l{4, B; C, D}
has a given constant value. Show that I meets a fixed line through D. -

10. ABCD is a given tetrahedron and A’, B’, C’ are three given points,
none of which lies in a face of ABCD. Show that in general it is impossible
to find a point D’, not on a face of ABCD, such that D’A’ meets DA, D'B’
meets DB, and D’C’ meets DC; but that if 4’, B’, C’ are so related that one
such point D’ exists, then there is an infinity of such points, all on a straight
line. Show also that in this case the triangles ABC and A”B”C” are in
perspective, 47, B”, C* being the projections of A’, B, C’ from D’ on to the
plane ABC.

11. Two triads of points in space, (4, B, C) and (4’, B’, C’), are in per-
spective from a point D”; BC’, B’C meet in A", CA’, C’A meet in B”, and
AB’, A'B meet in C”. Prove that 44", BB", CC” meet in a point D’, and
that A’A”, B’B”, C'C” meet in a point D.

Show that any two of the tetrahedra A BCD, A’B’'C’D’, A*B"C"D" are
in perspective in four ways, the centres of perspective being the vertices of

_the third tetrahedron. g

12. Two given planes «, o’ meet in a line I, and a collineation o between
P in « and P’ in « is such that no point of ! is invariant. Show that a
coordinate representation of space can be chosen in such & way that the
coordinates of a general pair of corresponding points P, P’ are (A,p,v,0)
and (0,A, p,v).

Show also that if @ is such that [ is 4 self-corresponding line, and the two
united points M, N of the homography induced on it by = are distinct, then
all the joins PP’ of corresponding pairs for w meet two fixed lines, one
through M and the other through N.

13. Show that the points P, P’ in which two given general planes «, of
are met by the transversal lines of two given skew lines correspond in a
quadratic Cremona transformation of « into o’. Find simple equations for a
transformation so generated, and investigate the fundamental points in
aand o’. [Hint. Let the skew lines meet « in 4, B and o’ in A", B’, and let
AB, A’B’ meet the line af in C’, C. Take (4, B, C) as reference triad in «
and (4’, B’, C’) as reference triad in o’.]

14. The volume V of a tetrahedron in affine space, whose vertices are the
points (X;,Y;, Z;) ¢ = 1,2, 8, 4), is defined by the formula 6V = | XY Z,1].
Show that the value of V depends on the particular choice of the affine
coordinate system, but that the ratio of the volumes of any two tetrahedra
is an affine invariant.

15. Show that, in affine space, the equations of any two skew lines may
be taken to be X=0= Z—c¢, Y=0=Z+c
if the coordinate system is chosen suitably.

Investigate the locus of the mid-point of a variable transversal of two
given skew lines which is parallel to a given plane.
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16. If z, y, 2, ¢ are hornogeneous cartesian coordinates, show that the line
which contains the finite point (a, b, ¢, 1) and the point at infinity (I, m, n, 0)
may be written in the form (z—at)/l = (y—bt)/m = (z—ct)/n.

Show that this line and the line given by

(x—a’t)/l! = (y—b't)/m’ = (z2—c't)/n’

intersect if and only if ¥ (a—a’)(mn’—m'n) = 0, and that the lines are
parallel if L:m:n = V:m/:n’.

Show also that if the coordinates are rectangular, so that the absolute
conic Q is given by 22+4y3+42% = 0 = ¢, the condition for the lines to be
perpendicular is Il’+mm’+nn’ = 0.

If the lines meet the plane at infinity in 4, A’, and the pole of 44’ for Q
is B, show that the transversal of the lines which passes through B is their
common perpendicular; and find the equations of this transversal.

17. The common perpendicular transversal of a variable generator of the
right circular cone X2+ Y2 = Z? and the line X—1 = 0 = Y meets the
generator in P. Investigate the locus of P on the cone.

18. Ifi, I’ are given skew lines in euclidean space, show how it is possible,
by taking their common perpendicular transversal as Z-axis, to define a
rectangular coordinate system in which the equations of the two lines are
Y—mX = 0= Z—cand Y+mX = 0 = Z+c respectively.

A point moves in such a way that the line joining the feet of the perpen-
diculars from it to two given non-intersecting lines subtends a right angle
atafixed point. Prove thatitslocusisahyperbolic cylinder whose generating
lines are perpendicular to each of the given lines.

19. If two pairs of opposite edges of a tetrahedron are perpendicular,
then so are the third pair. Show that thisresult can be regarded as a corollary
to Hesse’s Theorem (Chapter VI, Theorem 24).

20. Show that the altitudes of a tetrahedron ABCD from the vertices
4 and B intersect if and only if the edges AB and CD are perpendicular.

21. If ©, O,, O,, O, are four real quadratic polynomials in 8, of which
three are linearly independent, show that the curve whose parametric equa-
tionsin rectangular cartesian coordinatesare X = 0,/0,Y = 0,/0, Z = 0,/0
is a conic; and find conditions for the conic to be (a) an ellipse, or a hyperbola,
or a parabola, (b) & rectangular hyperbola, and (c) a circle.

Show how to find the plane of the conic, its asymptotes (if real), and its
centre. :

22. A system of homogeneous coordinates z, ¥, z, ¢ in euclidean space is
said to be tetrahedral if the unit point is the centroid of the tetrahedron of
reference. Show that for such & system the plane at infinity is the unit plane.

Show that the tetrahedral coordinates z, y, z, t of & point P are proportional
to the volumes of the tetrahedra PYZT, PXZT, PXYT, PXYZ, the
volumes being given suitable signs.

23. A point P moves in such a way that the feet of the perpendiculars
from it on to the faces of a tetrahedron A BOD are coplanar. Show that it
describes & cubic surface whose equation, in any system of homogeneous
coordinates for which A BCD is the tetrahedron of reference, is of the form
a/x+bfy+c/z+djt = 0, where a, b, ¢, d are constants.



X EXERCISES ON CHAPTER X 261

24. A wire bent in the form of an ellipse rests on a horizontal plane ,
with its own plane vertical and its axes respectively horizontal and vertical;
and a point-source of light is placed at & point P. Find the locus of P when
the shadow cast by the wire on = is (a) a parabola, and (b) a rectangular
hyperbola.

Show that in.every horizontal plane above the wire there are two positions
of P for which the shadow is circular, and find the locus of these points as
the horizontal plane varies.



CHAPTER XI
THE QUADRIC.

In the projective plane the simplest locus that we can consider,
apart from the straight line, is the conic locus, and we have already
seen how to establish its projective properties. In three-dimensional
projective space, on the other hand, where a point has three degrees
of freedom, there are two essentially different kinds of locus to be
considered; and we have two particular loci, each of which is in its
way & proper space-analogue of the conic, namely the quadric
surface and the twisted cubic curve.

A surface is the locus of a variable point of space which has two
degrees of freedom, and it may be defined by imposing a single
analytical condition on a general point. If this condition takes the
form of a quadratic equation S(z,, 2;,%,, ;) = 0, the surface is a
" quadric surface; and it is then clearly analogous to the conic defined
by the equation S(zy, %,,%,) = 0in §,.

A curve, on the other hand, is the locus of a variable point of space
which has one degree of freedom, and it may be defined analytically
by taking as coordinates of the variable point four functions of a
single parameter. In particular, the equations

Xo:ky 12y ky = 03:62:6:1
define a curve known as the twisted cubic; and this space curve is
analogous to the conic given by the canonical representation
' Zo1 2y 1%, = 6%:0:1.

~ In the next three chapters we shall develop the projective geo-
metry of the quadric and twisted cubic, discussing the quadric
in this chapter and the next but one, and the twisted cubic in
Chapter XII. The two manifolds are, however, closely connected
with each other, and we shall not attempt to maintain a rigid
separation.

§1. THE QUADRIC Locus AND QUADRIC ENVELOPE

DEFINITION. An algebraic surface of order n in S, is the totality of
points whose coordinates in sgome assigned allowable representation
Z satisfy a fixed homogeneous equation of the nth degree:

S (@, @y, %3, 75) = 0.
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Dually, an algebraic envelope of class n in Sy is the totality of planes
whose coordinates satisfy a fixed homogeneous equation of the nth
degree: ¢(ug, uy, 4y, ug) = 0.

The surface or envelope is said to be irreducible if the polynomial
f or ¢ is irreducible over the ground field K.

An algebraic surface of order 2 is called a quadric surface or
quadric locus, and an algebraic envelope of class 2 is called a quadric
envelope. ‘

The equation of the general quadric locus may be written in
either of the forms

3 3
S(x, Ty, Tg, T3) = ,Zo kzoaikxi z, =0
i= =

and S(x) = xTAx = 0,
where the matrix A = (a,,) may be taken, without loss of generality,
to be symmetric.

The equation of the general quadric envelope may be written in
the corresponding forms

3 3
(g, Uy, Ug, Ug) Eigo kgoAikuiuk =0

and X(u) = ufu = 0.

The equation S = 0 contains ten essentially different terms, four
involving the squares z? and six involving the products z;z;, and

‘there are accordingly nine effective coefficients. This gives us the
important result:

THEOREM 1. There is a unique quadric locus which passes through
nine given points of general position; and dually, there is a unigque
quadric envelope which contains nine given planes of general position.

Since the equation of the quadric locus is of similar algebraic form
to that of the conic locus, many of the theorems established in
Chapter V remain valid, possibly with trifling modification, for
quadrics, and in many cases it will be sufficient to restate the
results without proof. Thus, for instance, we have the following
theorem on the projective invariance of the rank of the matrix A.

THEOREM 2. If the equation of a quadric locus 8, referred to some
allowable representation &, is XTAX = 0, therank p[ A] is a projective
characteristic of S.

The number p[A] is called the rank of the quadric locus, and we
denote it by r. The introduction of the concept of rank makes
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possible a projective classification of the various types of quadric
locus, with a dual classification of quadric envelopes.

Rank Quadric locus Quadric envelope
4 Proper quadric locus Proper quadric envelope
3 Proper quadric cone Disk quadric
2 Pair of distinet planes Pair of distinct points
1 Repeated plane Repeated point

This classification may be derived, in the following way, from
Theorem 2 of the Appendix. According to this theorem it is
possible, by selecting the representation # suitably, to put the
equation of any given quadric locus S into the form

r—1

z d‘i xf == 0,

i=o
where 7 is the rank of S and each of the coefficients d; is 1 or —1.
If the ground field K is the complex field, all the d; may be made

equal to 1.
Let us now consider the possibilities that arise.

Case 1: r = 4.
The equation of S is
dox3+dy 23+dy 23+ dsaf = 0.
This is the general case, and we shall not discuss it at this stage.

Case 2: r = 3.
The equation of S is

do23+d, 2i+dyaf = 0.

The point X ;, given by (0, 0, 0, 1), lies on the surface; and if P is any
other point of 8, every point of the line X, P is a point of &S.
The surface is accordingly generated by lines through X,, and we
call it a quadric cone with vertex X,. It is sometimes called a proper
cone, to distinguish it from the more special types of quadric which
follow. The section of S by the plane X, X, X, is the conic

doz§+d 2i+dyaf = 0 = x5,

and the cone is generated by the lines which join X to the points
of this conic.
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Case 3: r = 2.
The equation of 8 is dyz3+d, 22 = 0, and this may be factorized
as follows:

{V(@)zo+(—d1)2}{y (do)zo—+/(—d1)21} = 0.
The surface is therefore a pair of planes which meet in the line X, X 5.

Case 4:r = 1.

The equation is dy 2 = 0, and this represents the plane X, X, X,
taken twice.

We say the quadric logus is proper when r = 4 and degenerate
when r < 4. The reasons for this terminology will become clear
below:; but it should be noted that the terms ‘proper’ and ‘irredu-
cible’ are not equivalent for quadrics, as they are for conics. The
cone, corresponding to r = 3, is irreducible, but it is not & proper
quadric locus.

The classification of quadric envelopes is dual to the classification
just considered, and the only type that requires separate discussion
is the disk quadric, the dual of the proper cone. The reduced
equation of this envelope is

dyud+d; ui+dyui = 0.
The plane &,, given by (0,0, 0, 1), belongs to the envelope; and if
is any other plane of the envelope, every plane through the line
£, also belongs to it. The planes of the envelope thus form a
system of pencils of planes with axes in the fixed plane £;.

If, now, = has plane-coordinates (uy, %,, s, u3), the line-coordi-
nates in £; of the line £; 7 are (%, 4,, %,) and the envelope of the lines
£, is therefore the conic dgud-+d, uf+d,uf = 0in £;. The planes
of the quadric envelope are thus all the planes through all the
tangents to this conic—co! pencils each of co! planes, giving co?
planes in all. This is the reason for the name ‘disk quadric’. The
reader may visualize the system by thinking of the tangent planes

to the ellipsoid X2 +Z2 -}-£ = 1 and letting c tend to zero.

The Joachimsthal theory
The polar properties of the quadric, like those of the conic, follow
~ readily from Joachimsthal’s equation
8,,+268,,+6%S,, = 0,
and since the formal algebra is identical with that in § 4 of Chapter
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V, except that the summations are now from 0 to 3 instead of from
0 to 2, we shall not repeat the details.

Two points @ and R, with coordinate vectors y and z respectively,
are said to be conjugate points with respect to the quadric locus S
if they are harmonic with respect to the two points 4,, 4, in which
@R meets S and the analytical condition for conjugacy is there-
fore §,,

If Q isa ﬁxed point, the locus of a variable point of space that is
conjugate to Q is the plane 8§, = 0, and this is called the polar

plane of @ with respect to S.
Now suppose @ is a point of S, and Ris a pomt distinet from @,

that is conjugate to @. Then one of the points 4,, 4, coincides
with @; and, since the pairs (4,,4,) and (@, R) are harmonic,
the second of these points also coincides with Q. Thus any line
which joins a point @ of § to a conjugate point meets S in points
which coincide at @. It is therefore a tangent line to S at Q, and the
polar plane of @ is the tangent plane at @, generated by all the
tangent lines at this point.

If @ does not lie on S, the tangent lines through @ generate a
quadric cone, the enveloping cone
or tangent cone with vertex @; and
the equation of this cone is

8;—88, =
The tangent lines which genei‘ate
Q the cone all touch S at points lying
in the polar plane y of Q. The
,/ plane y cuts § in a conic, and the
enveloping cone has ring contact
with 8 along this conie.

THEOREM 3. If the rank of 8 is 4, then the totality of tangent planes

of 8 is a quadric envelope . If the equation of S is

12 g a.th,;xk = 0,
the equation of T is > ; Aguu, =0,
T

where A, is the cofactor of ay, in the determinant |a,,|.

Proof. As for Theorem 9 of Chapter V.

The properties of the general quadric envelope may be inferred
from the properties of the general quadric locus by the principle
of duality.
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Let T be a general quadric envelope. Two planes x and p are
said to be conjugate planes with respect to T if they are harmonic
with respect to the two planes of £ which pass through the line yp.
The condition for conjugacy is accordingly Z,, = 0.

Every plane x has a pole, a point which is common to all planes

_conjugate to y, and the pole of the plane v is the point %, = 0.

Alinetis called a tangent line of T if the two planes of the envelope
which pass through it coincide. The line of intersection of a plane x
of T with any conjugate plane is necessarily a tangent line of X,
and the pole of y is the point of concurrence of all those tangent
lines of = which lie in . Such a point is said to be & point of the
envelope = (dual to a tangent plane of §).

If x does not belong to X, the tangent lines of £ which lie in x
envelop a conic in y. The equation of this conic, regarded as a disk
quadric, is $I_TY — 0

v v *

If finally the rank of T is 4, the points of X, as just defined, are
the points of a quadric locus S; and if the equation of X is

;;Aikuiuk =0
‘that of S is > %aikx,.xk = 0,
(2

where the a;; are cofactors in [4,,].

Here, then, we have the fundamental polar properties of the
quadric locus and quadric envelope. They are valid without
restriction for proper quadrics, but in the case of degenerate
quadrics they may need suitable modification. We leave it to the
reader to supply the necessary qualifications, guided by what he
already knows of the geometry of quadrics from a more elementary
treatment and also by the analogy with Chapter V.

Like the proper conic, the proper quadric is best looked upon as
a single self-dual figure, comprising both a quadric locus and a
quadric envelope. This is made clear by the following theorems,
which correspond to Theorems 15 and 16 of Chapter V.

THEOREM 4. If S i3 a proper quadric locus and I 1s the associated
envelope, then S is a proper quadric envelope. Furthermore, the
quadric locus associated with the envelope T is the original locus S.

THEOREM 5. If 8 is a proper quadric locus and T is the associated
envelope, then a plane = is the polar plane of a point P with respect
to S if and only if P is the pole of m with respect to .

=
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In virtue of these theorems, we may take S and X together as
a proper quadric . This quadric determines a single polarity of
space, the (1, 1) correspondence between points and planes given
by u = Ax, x = A-lu. The quadric has both a point-equation

S = ;%aikxixk =0
and a plane-equation

2 = ;%Aikuiuk - 0,

each of which determines the other.

ExErcise. Show that, with the two definitions of tangent given above,
tis a tangent line of S if and only if it is a tangent line of Z.

Theorem 4 holds only for proper quadrics, and a degenerate
quadric locus does not necessarily define an associated quadric
envelope at all. Let us consider first the case of a proper cone S,
with vertex V. At any point of S, other than ¥, we have a uniquely
defined tangent plane, generated by the plane pencil of tangent
lines through the point; but every such tangent plane touches
the cone at all points of a generator, instead of at a unique point
as in the case of the proper quadric. Every line through V is, in a
sense, to be regarded as a tangent line to S at V, since it cuts S in
two coincident points there, and every plane through 7" is made up
of tangent lines and counts as a tangent plane. Thus the tangent
planes to S are all the planes through the vertex V. This fits in
with the fact that if we try to derive a plane-equation from

doz§+d a3 +dya3 = 0
by taking cofactors, we get simply
dodydyuf = 0,

i.e. the plane-equation of the point V taken twice.

Nevertheless, we often find it convenient to distinguish between
an arbitrary plane through V and a proper tangent plane to the
cone, which touches it along a generator. The proper tangent planes
form an oo! system only, and this sytem is not, strictly speaking, a
surface (regarded as the envelope of its co? tangent planes) but a
new geometrical entity known as a developable. A developable
may be defined as the dual of a curve in space.

Consider, in fact, any space curve ¢, other than a straight line.
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At every point of ¢ (with the exception of singular points, which
we need not consider in this connexion) there is a unique tangent
line, or line which meets the curve in two coincident points; and
every plane through the tangent line is & tangent plane. Thus ¢
has oo! tangent lines and oo? tangent planes, and the tangent planes
form oo! pencils of planes with the tangent lines as axes. The dual
of the curve c is a developable 3, which has co! planes, co! generating
lines (one in each plane) and co? points, which form co! ranges on
the generating lines as axes. If, now, ¢ is a plane curve, all its
tangent lines lie in a plane; and the dual developable therefore
has the property that all its generating lines pass through a point.
Thus the space dual of a plane curve is a cone.

The quadric cone and the conic are dual to each other in space
in two distinct ways.

(i) The cone is a quadric locus of rank 3, consisting of co? points

lying on oo! generating lines. Dually, the conic is a quadric
. envelope of rank 3 (disk quadric) consisting of co? planes
passing through oo! tangent lines.

(ii) The cone is a developable of class 2. It consists of oot (proper)
tangent planes, two of which pass through a general line
through the vertex. Dually, the conic is a plane curve of
order 2. It consists of co! points, two of which lie on a
general line in its plane. The conic is a quadratic locus in
a plane field, whereas the cone is a quadratic envelope in a
star; and they are thus dual to each other.

If & quadric locus is of rank 2, it breaks up into a pair of planes.
The equation of the locus may be put in the form dya2%+d, 2% = 0;
and since all the cofactors in the matrix of the quadric are zero
we cannot obtain any envelope at all by the usual algebraic pro-
cedure. We can show, however, by a different kind of argument
(p. 278 below) that the quadric breaks up, as an envelope, into two
points which lie on the line of intersection of the two planes. This
type of degenerate quadric may accordingly be called a bifocal
plane-pair. It can degenerate still further, since either the two
planes, or the two points, or both, may be coincident.

ExamrrLe. To find the point-equations of a conic when the plane-equation

is given, and vice versa.
Suppose we are given the plane equation

20+ 6ud + dug ug+ 2ug us — du, uy+6uy ug = 0. 8))
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The matrix of coefficients and its matrix of cofactors are as follows:

0 0 2 1\, —18 12 —6 12
0 2 0 -2 12 -8 4 -8
2 0 0 3 —6 4 -2 4
1 -2 3 5 12 -8 4 -8

Since the original matrix is of rank 3, equation (1) represents a disk quadric
or conic. We require to find two point-equations which represent surfaces
whose complete intersection is the conic, and a convenient pair of surfaces
is the plane of the conic and the cone which joins it to a vertex of the
tetrahedron of reference.

The plane of the conic is the polar plane of any general point of space, X,
for example. It is therefore the plane (—18,12, —6,12), i.e. (~3,2, —1,2).

In the star with vertex X, the plane-equation of the enveloping cone with
vertex X, is obtained by putting #; = 0 in (1), and is therefore

2uf+4ugu, = 0,
i.e. U+ 2uguy = 0;
and the associated point-equation is
a3+ 2x52 = 0.
Thus a pair of point-equations of the given conic is
3zy— 2z, +2,— 22y = 0 = 2342z, 2,. (2)
We may note, incidentally, that the quadratic equation whose matrix is
the matrix of cofactors is '

923+ 4o + a3+ 42— 4, @y + 6y o — 120 2, — 12000 X4+ 8y 23— 4y g = O,
i.e. (3xy— 2, a3 — 22;5) = O.
This represents the plane of the conic taken twice, in accordance with what
we said above in connexion with the plane-equation of the proper cone.

Now suppose, conversely, that we are given a pair of point-equations (2),
representing a conic, and we wish to find the plane-equation of the conic,
regarded as a disk quadric.

If 7 is any tangent plane, it meets the plane of the conic in a tangent line
to the conic; and the plane joining this line to X, must be a proper tangent
plane to the cone 2%+ 2x,x, = 0. Its coordinates must therefore satisfy the
equation ul+42uzu, = 0. Now if 7 is the plane (wug,u,,u,, u3), & general
plane through the line in which it meets the plane of the conic is

3y — 2, + @y — 225 +A(vy g+ 1y 1 + Uy Ty U T5) = 0.
For this plane to pass through X3, —2+Au; = 0. The value of ) is therefore
2/ug, and the equation of the plane is

(2u0+:‘}ua)ar:‘,-f(2141---2u5,)a:1—i—(2u,+u,):¢r:2 = 0.
The coefficients, vy, v;, ¥ say, in this equation must satisfy vi-+2v,v, = 0,

and hence Aty — Uy )+ 220+ Bug)(2ug +u5) = O,
i.e. 4ud+ 1003 + Buy uy+ dug ug— 8u, ug + 12u, uy = 0,
i.e. 203 + Sud -+ dug uy+ 2ug ug— duy Uy 6uy ug = 0;

and this is the original equation (1).
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Polar lines with respect to a quadric

Every proper quadric determines a polarity of space, which
transforms points into planes and planes into points, and we may
ask what effect this transformation has upon the lines of space.
A line may be treated either as the axis of a range of points or as the
axis of a pencil of planes; and with either interpretation it is found
to transform into another line—its polar line with respect to the
quadric.

THEOREM 6. If s i8 a proper quadric and [ is a given line, the polar
planes of all points of I pass through a second line U and the poles of
all planes through 1 lie on I'. The relation between I and U is sym-
metrical.

Proof. Let x, x® represent two points @, @, of I, with polar
planes u®, u® respectively. Then the polar plane of the general
point x®W--Ax® of ! is u®4-Au®, and the polar planes therefore
form a pencil of planes, with axis /', say.

If = is any plane through [, it may be fixed by @,, @, and a point
R not on I. Then the pole of = with respect to s is the common
point of the polar planes of @,, @,, R; and since two of these polar
planes pass through 7, the pole of = lies on .

The relation between ! and I’ is symmetrical because it amounts
simply to the conjugacy of every point of ! with every point of I’
with respect to .

COROLLARY. The polar linel’ is the line of intersection of the tangent
planes at the two points in which | is cut by 1, and it is also the line
which joins the points of contact of the two tangent planes of  which
pass through 1.

In general, a line and its polar line with respect to a quadric
are skew. If ] and I’ meet, in a point P, say, then the polar plane
of P passes through both lines, and therefore through P. This
means that P is a point of , the plane of 1 and I’ is the tangent plane
at P, and / and I’ are tangent lines at P.

If I coincides with its polar line, then the polar plane of every
point of I passes through the point, and ! therefore lies wholly on
the quadric.

If I and m are two lines, so related that [ meets m’, the polar line
of m, then m meets I’, the polar line of /; and in this case [ and m
are said to be conjugate lines with respect to . Their two polar
lines I, m’ are then also conjugate lines.
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Self-polar tetrahedra

Consider a proper quadric . If 4 is a general point of space, it
has a polar plane o with respect to ; and if B is a general point of «,
its polar plane 8 passes through 4. If C is a general point of the
line of, its polar plane y passes through 4 and B, and cuts of
in a unique point D. Then A BCD is a self-polar tetrahedron for i,
and it has the following properties: (i) every vertex is the pole of
the opposite face; (ii) any two vertices are conjugate points for ¢,
and any two faces are conjugate planes; (iii) any pair of opposite
edges are polar lines. There are oo® self-polar tetrahedra for any
proper quadric .
ExERCISES

(i) What becomes of the relation between a point and its polar plane or
& plane and its pole if the quadric is degenerate ? Discuss all possible cases.

(ii) What self-polar tetrahedra exist for each of the types of degenerate
quadric ?

(iii) How must the tetrahedron of reference be related to a quadric locus
in order that the equation of the locus may reduce to the form

r—=1
i=1

§2. PLANE SECTIONS AND GENERATORS

Since every quadric is an algebraic surface of the second order,
it is met by any plane in an algebraic plane curve of the second
order, i.e. a conic.

Consider a proper quadric ¢ and a plane ». We may suppose
that the coordinate system is chosen in such a way that the equa-

tions of = and ¢ are Ty =0

[ G

3
and Y agza,=0.
 ¥=0

i

Then the curve of section is given by
3 3 ‘
2 D G T = 0 = x,,
t=1k=1

and it is therefore a conic in = which is degenerate if and only if

@y Gy G| =0,
Qg Ggp Q3
g31 Q32 Qg3
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i.e. Aoy = 0. We thus have the theorem:

THEOREM 7. Every plane section of a quadric locus 18 a conic locus.
If the quadric is proper, the conic is degenerate if and only if the plane
18 a tangent plane of the quadric.

THEOREM 8. Through every point of a proper quadnc there pass
two distinct lines which lie wholly on the surface.

Proof. Let P be a point of a proper quadric ¢. Then the tangent
plane 7 at P cuts ¢ in a line-pair, and since every line in = which
passes through P cuts ¢ in coincident points at P, P is a double
point of the line-pair. Further, the lines of the pair are distinct;
for if they were coincident, = would be the tangent plane to i at
every point of the repeated line, and this is impossible since = has
a unique pole with respect to the proper quadric .

Remarks

(i) The two lines in which ¢ is met by the tangent plane at P
are called the generating lines or generators through P.

(ii) If ¢ is a proper cone, a plane 7 meets it in a proper conic, a
pair of distinct lines, or a repeated line according as it is a plane
which does not pass through the vertex of i, a plane which passes
through the vertex but is not a proper tangent plane, or a proper
tangent plane.

THEOREM 9. The generators of a proper quadric ys form two systems,
and one generator of each system passes through any assigned point
of Y. Any two generators of the same system are skew to each other,
whereas two generators which are not of the same system necessarily
intersect.

Proof. Choose a fixed point Fy arbitrarily on . Then there are
two generators through F,, which we may call %, and »,. If @ is
any point of %, there are two generators
through @, u, itself and another genera-
tor v. The lines v and v, are skew, since Uy
otherwise their plane would meet ¢ in a Q
cubic curve made up of v, v,, and u,. Po v
Thus » is a generator of ¢ which meets
uq but not v, and we call it the v-genera-
tor through @. In just the same way we can define a u-generator,
which meets v, but not u,, through every point of v,. There are
thus two systems of generators on y)—the u-generators and the

v-generators.
5304 T

Yo
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If P is any point of ¢ which does not lie on %, or v,, the tangent
plane at P cuts  in the pair of generators through P; and since this
plane cuts u, and v, each in a point of i, one of the generators
through P is a u-generator and the other is a v-generator. The two
systems therefore include all the generators of .

Two generators of the same system are necessarily skew, since
if they met we would have a cubic section of ¢ as above.

Finally, let «,, v, be any two generators, one of which belongs
to each system, and let R be any point of v;. Then the plane Ru,

cuts ¢ in a conic, which must break

up into %, and another line. This

residual line is a generator; and since

it meets w, it is the wv-generator

through R, i.e. the generator v;. The

4, conic of section is therefore the line-

\ K pair (u,,v,), and hence u,, v, are inter-

secting lines. :

COROLLARY. A generator of a proper quadric i is a self-dual entity.
1ts points all lie on s, and planes through it all touch .

We remarked on p. 267 that a proper quadric ¢y may be thought
of indifferently as the locus of a variable point or as the envelope
of a variable plane; and we see now that, by virtue of Theorem 9,
the same manifold may equally well be treated as a ruled surface,
swept out by a variable line. The proper quadric may thus be
regarded as (i) a quadric. locus, or assemblage of co? points; or
(ii) a quadric envelope, or assemblage of 0o? planes; or (iii) a regulus,
or assemblage of oo! lines.

The same quadric can be generated as a regulus in two distinct
ways. Alternatively we can say that it gives rise to two comple-
mentary reguli, each of which determines the other as the set of all
its transversals. Since each regulus comprises co! generating lines,
we obtain co? line-pairs by taking one generator from each regulus;’
and in this way we obtain once again the co?® points and the o2
planes of . :

A quadric is uniquely determined by nine general points (or
nine general planes), and this suggests that three generators may
suffice to determine a quadric. More precisely, there is a unigue
quadric which has three given mutually skew lines as generators of the
same system. For, if we take three points on each of the lines,
there is a unique quadric iy which contains the nine points; and sin
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each of the given lines meets this quadric in three points it lies
wholly on it. The quadric must be proper, since neither the cone
nor the plane-pair can contain three mutually skew lines.

If the given lines are v;, v,, v5, & unique transversal can be
drawn to v, and v, from any point of v5. In this way we obtain co!
lines, which each meet ¢ in three points, i.e. the lines of the regulus
complementary to the regulus which contains v;, v,, and v,; and we
can now construct this first regulus by selecting three lines of the
second one and drawing transversals to them. In this way we are
able to construct the generating lines, and hence the points and
planes, of the quadric determined by v,, v,, and v;.

The canonical equation of the quadric

By using two pairs of generators of a proper quadric  to define
the tetrahedron of reference, we obtain a simple representation of
the quadric, analogous in many
respects to the canonical repre-
sentation 23 = z,z, of the proper
conic,

If we take two generators u,, u,
and two other generators v;, v, a8
pairs of opposite edges of the
tetrahedron of reference, as in-
dicated, and a general point of ¢
as unit point E, the point equation of ¢ becomes

Ty Ty— X2y = 0.
The associated plane-equation is

Uy Uy—Ug U3 = 0.
If we now put z, = 03, =, = ¢x,, then

ToZy = T, X, = O3,
ie. xy = O¢x,,
and so we have the parametric representation
| X%y Tpiy = O:0:¢: 1.

This may be called the canonical parametric representation of the
proper quadric locus.
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The points of 4 for which 6 has the fixed value 8, are the points
whose coordinates satisfy simultaneously the two equations

Zg—0px, =0 and x,—0z; = 0.

They are therefore the points of a certain line; and since the co-
ordinates of every point of this line satisfy the equation '

X Xy—2xyxg = 0,

the line is a generator of . Thus the equations 6 = constant and
¢ = constant give the two systems of generators of . The u-generators
are given by ¢ = constant, and the v-generators by 6 = constant.

As 0, takes different values, the planes z,—0,r, = 0 and
#,—0,x; = 0 describe homographic pencils with axes X, X, and
Xo X, respectively. Thus the v-generators of ¢ are the lines of
intersection of two homographic pencils of planes with axes u,
and u,. Since u, and u, can be any two u-generators, we have
proved the theorem:

THEOREM 10. Every proper quadric  may be generated as the locus
of the line of intersection of corresponding planes of two related pencils,
and the axes of the pencils can be any two non-intersecting generators
of . Dually, 4 may be generated as the locus of the line which joins
corresponding points of two related ranges, and the azes of the ranges
can be any two non-intersecting generators of .

COROLLARY. The u-generators of s cut homographic ranges on
any two v-generators.

The corollary may be proved independently as follows. Let
v;, ¥, be fixed v-generators, cut by a variable u-generator w in B, F,.
Then the polar plane of P, is the plane v,w, i.e. the plane v, B,
and hence (P) Rv,y(F,) N (B).

We now give the converse of Theorem 10.

THEOREM 11. The ruled surface generated by the line of intersection
of corresponding planes of two homographically related pencils, whose
axes are skew lines vy, v, s a proper quadric; and v,, v, belong to the
complementary regulus. Dually, the ruled surface generated by the
line which joins corresponding points of two homographically related
ranges, whose axes are skew lines vy, v,, 18 a proper quadric; and
vy, v, belong to the complementary regulus.

Proof. As for Theorem 12 of Chapter VI.
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We now have a projective generation of the quadric determined
by three mutually skew lines (p. 274). Let v, v,, v; be three such
lines. Then, if P is a variable point of v,,

v (P) 7N (P) K vy(P);

and since the planes v, P and v, P intersect in a line that meets
v;, vy, and v,, the quadric generated by these two homographic
pencils is the quadric defined by v,, v,, and v;.

The degenerate quadrics, as well as the proper quadric, can be
generated projectively by means of homographically related pencils
of planes. Suppose, first of all, that we take two homographically
related pencils of planes with intersecting axes a, b. If the axes
meet in V, every two corresponding planes intersect in a line through
V, and the lines of intersection generate a cone with vertex V.
Since the homographic pencils of planes cut a general fixed plane o
in homographie pencils of lines 4(P), B(P), the section of the cone
by this fixed plane is & conic; and the cone is therefore a quadric
cone.

Now suppose we take two pencils of planes whose axes are skew
but which are related by a degenerate homography, that is to say
a correspondence . o8+B

BRYEE N
for which «8—pBy = 0, i.e. a correspondence (6—k)(§'—%') = 0.
Then to all the planes of the first pencil correspond the same fixed
plane = of the second, and to all the planes of the second pencil
correspond the same fixed plane =, of the first. The assemblage
of lines of intersection thus becomes two plane pencils of lines,
one in 7, and one in m,. The vertices A, B of these pencils lie on
the line of intersection of 7, and =;; and the quadric generated by
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the two homographic pencils is a bifocal plane-pair (p. 269). The
second system of generators is derived in a similar way from a
degenerate homographic corre-
spondence between pencilsof planes

with two lines of the first system o o
as axes, m, and m, again being the § é
special planes. These generators A

also form two plane pencils, but § =

they lie in the opposite planes to B —

the first pair of pencils, thus:
regulus I: a pencil in =, with vertex 4 4 a pencil in =y with
vertex B;
regulus II: a pencil in 7, with vertex B + a pencil in 7 with
vertex 4.
If the axes of the pencils are coplanar, and their plane assumes

the roles of both 7, and 7, the quadric is still more special, as its
two planes now coincide.

§ 3. PROJECTION OF A QUADRIC ON TO A PLANE

In the geometry of the conic, as the reader will remember, many
remarkable properties follow from one theorem of fundamental
importance, which states that the projective geometry of the
plane induces a one-dimensional projective geometry on any
proper conic; and this theorem depends essentially on the fact
that the points of the conic subtend homographic pencils at any
two fixed points of the curve. Unfortunately, as we can easily
show, the points of a proper quadric do not subtend collinear stars
at two fixed points ¥}, ¥, of the surface. For, if P is a variable
point of i, the ray ¥, P describes a quadric cone when ¥, P describes
a general plane through V], so that the stars described by the rays
V. P and ¥, P cannot be collinearly related. It follows that the
projective geometry of S; does not induce a two-dimensional pro-
jective geometry on i.

We can, however, project a quadric ¢ from any fixed point V
of itself on to a plane = which does not pass through V; and in this
projection the correspondence between a point P of ¢ and its
projection P’ on 7 is (1, 1) in general. More precisely, if P does not
fall at V, then it projects into a unique point P’, and if P’ is any
point of 7 which does not lie in the tangent plane to ¢ at V, then P’
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is the projection of a unique point P of . The plane representation
of i obtained in this way is of great importance, since it enableg
us to study all the curves which lie on ¢, and the relations which
exist between them, by studying the plane curves into which they
project. We propose therefore to examine the representation in
sufficient detail to show how it may be used for this purpose.

Before discussing the geometrical properties of the projection
we shall first obtain its equations in a simple form. Let the equation
of ¢ be taken in canonical form

xoxa—xlxz = 0

with V as the reference point X; = (0,0,0,1) and = as the plane
x5 = 0. The projection of any point P = (%, %y, %3, Z3), other than
V itself, is then the point P’ = (%, ,,%,,0). It is evident also
that any point (xg,#;, ,, 0), for which z, # 0, is the projection of
the unique point (,, %,, &4, ¥, Z,/2,) of . We have here the required
algebraic representation of the transformation.

In order to use the projection, it is essential to realize that it has
exceptional elements, and to understand the role which they
play. These elements are related in a simple way to the vertex V,
as we shall now show.

Let « be the tangent plane to § at V, meeting = in a line a, and
let u,, vy be the two generators of ¢ through V. Then u,, v, meet =
in two points U, ¥, which lie on a.

The point V of  has itself no single corresponding point in =,
but points of ¢ in its ‘first neighbourhood’—by which we under-
stand directions through V in the tangent plane a—project into the
individual points of a. This means that if P describes a path on ¢,
which passes through V in the direction of the tangent line ¢, then
the path described by P’ passes through that point of @ which
corresponds to ¢; and conversely, if 7 is any point of a, other than
U, and ¥, then as P’ describes a path in =, distinct from @, passing
through 7, P describes a path on i that passes through V in the
direction ¢ corresponding to 7.

Furthermore, all the points of «, project into the same point U,
and all the points of v, into ¥,; but here again we have a state of
affairs similar to that just described, in that directions through
U, correspond to the individual points of u,, and directions through
¥, ta the individual points of v,. To see this, we observe that a
variable point K of u, is homographically related to the tangent
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plane « to ¢ at this point, and hence to the line k£ through U, in
which 7 is met by «; and if P describes a general path passing
through K, then P’ describes a path passing through U, in the
direction of k.

The above results may easily be verified algebraically by the
method used in Chapter IX in the discussion of the reciprocal
transformation. We may accordingly formulate the following
theorem.

THEOREM 12. Any proper quadric § may be represented biration-
ally on a plane = by projecting it from a point V of itself. This repre-
sentation 18 (1,1) in general; but the nesghbourhood of V on i is
represented homographically on a line a of , and the generators of
¢ through V project respectively into two points Uy, ¥, of a, whose
neighbourhoods in = correspond homographically to the generators in
question.

We note particularly the following facts.

(i) If ¢ is a curve on ¢ and ¢’ is its projection in =, then every
intersection of ¢’ with ¢ which is not at U, or ¥}, corresponds to a
branch of ¢ at V. Intersections of ¢’ with a at U, and ¥} correspond
to intersections of ¢ with %, and v, respectively.

(ii) If ¢ does not pass through V, then ¢’ meets a only at U, and
V,; and if ¢ meets %, and v, respectively in sets of « and g distinct
points, remote from V, then ¢’ passes « times through U, and B
times through V.

(iii) If ¢}, cy are two curves in =, passing through U (or V), then
intersections of ¢; with ¢, at U, (or ¥,) do not represent intersections
of the corresponding curves ¢, and ¢, on . The only exception is
when a branch of ¢ touches a branch of ¢; at U, (or 1;).

Properties of the plane representation of the proper quadric

- Since the u-generators of ¢ all meet v,, their projections all pass
through ¥,. Thus the two systems of generators of ¢ project into
two pencils of lines in =, with vertices ¥,, U, respectively.

There are co? planes through V; and the conics in which ¢ is cut
by these planes project into the lines of =.

The sections of i by planes which do not pass through V project
into conics through U, and ¥,; and the residual points of inter-
section of two such conics arise from the two points in which ¢
is met by the common line of the two corresponding planes of
section.
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Let us now consider an arbitrary curve ¢ on ¢, which does not
pass through V. Such a curve may for convenience be called a
‘general’ curve on . If ¢ meets u, in « distinet pointst and v,in B
distinct points, its projection ¢’ passes o times through U, and B
times through ¥;; and since it does not meet @ in any point other than
U, and ¥, its order, as we shall here assume, is a+4-B. We may say,
then, that ¢’ is a plane curve of the type C+B(U3, VB).

Now suppose u is an arbitrary u-generator of i, represented in
by aline u’ through ¥,. Since v’ meets ¢’ B times at ¥;, and ¢’ is of
order a8, w has o free intersections with ¢’. It follows that c is
met by u in’« points; and, by the same argument, it is met by an
arbitrary v-generator in B points. We thus have the theorem:

THEOREM 13. If a curve ¢ on i meets a u-generator u, i o distinct
points and a v-generator vy in B distinct points, then it meets every
u-generator in « points and every v-gemerator in B points. If the
quadyic is projected on to a plane from the point of intersection of u,
and v,, the projection of ¢ is a curve of the type Cx+B(U3, VB).

A curve ¢ of the kind just referred to is called an («, B)-curve on .
Tts order—i.e. the number of points in which it is met by a general
plane—is a+ B ; for since ¢ does not pass through V,its order is equal
to the order of its projection on 7. We may observe also that
any general tangent plane of § evidently meets ¢ in a8 points.

The u-generators of ¢ are, of course, (0,1)-curves, and the v-
generators are (1,0)-curves. Any conic on i, being a plane section
of the quadric, is a (1,1)-curve. We shall see later on (p. 308)
that ¢ contains two families of twisted cubics, which are (1, 2)-
curves and (2, 1)-curves respectively. The quartic curve in which
J is met by any other quadric ¢’ is plainly a (2, 2)-curve on .

The freedom of («, B)-curves on i is the same as that of curves
C*+8(U%, VB) in =, and this may be determined by examining the
form of the equation of such a curve when U and ¥, are taken as
reference points. An unrestricted plane curve of order a+f has
3(a+B)(a+B+-3) degrees of freedom; and since the conditions

a VB reduce this number by }a(a-1) and 38(B+1) respectively,
the number of degrees of freedom remaining is af+a+ B. In other
words, there are co®f+x+8 (a, B)-curves on .

Lastly, in order to find the number of intersections of a general
(«, B)-curve with a general (o', B')-curve we have to find the number

+ ILe., ¢ has only simple points on u, and does not touch it.
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of intersections, not at U, or V,, of two general curves
C*+B(U3, VB) and C°'+ﬂ’(Ug’,yV§’).

If we assume that, in general, the number of common points of two
curves is the product of the orders of the curves, and that, subject
to suitable restrictions, the number of these intersections absorbed
at a common point is the product of the multiplicities of this
point—as is in fact the case if there are no contacts between the
branches—the required number is

(o+B)(«+B)—ax’—ff" = of’+o'B.

§4. AFFINE AND EUCLIDEAN SPECIALIZATIONS

We have been dealing so far with quadrics in projective space
8;, for the most part with the complex field as ground field, but now
we shall turn to the affine and euclidean specializations of the
theory, which are of considerable geometrical interest. The space
that we consider is real affine or euclidean space, with the plane at
infinity ¢ adjoined as an ideal plane. The specializations which
arise are analogous to those considered at the end of Chapter V,
and we shall not need to discuss them in much detail.

We shall confine our attention now to real quadrics, i.e. quadrics
whose equations, referred to any allowable coordinate repre-
sentation, involve only real coefficients. A quadric that is real in
this sense may, of course, be virtual, and have no real points;
for example, the quadric given by 23+2?+2i+a2 = 0.

Affine properties of a quadric i are projective relations between
¢ and the plane at infinity ., and they are therefore closely con-
nected with the section of ¢ by «—the conic at infinity % on .
This conic may be of several different kinds, distinguishable from
one another in the projective geometry of the real plane, and we
have a corresponding affine classification of quadrics:

Case 1: k is a non-virtual proper conic.
In this case ¢ is said to be a hyperboloid.

Case 2: h is a virtual proper conic.
¢ is said to be an ellipsoid (real or virtual),

Case 3: h is a pair of distinct real lines.
¢ is said to be a hyperbolic paraboloid.
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Case 4: h is a pair of conjugate complex lines.
{ is said to be an elliptic paraboloid.

Case 5: h is a repeated (real) line.

y is said to be a parabolic cylinder.

This classification refers, with the exception of case 5, to proper
quadrics. The modifications and additions which are needed in
the case of degenerate quadrics may be left to the reader, since
they are familiar from the elementary geometry of quadrics. Thus,
for example, we call a cone whose vertex is at infinity a cylinder.

The pole of the plane at infinity is called the centre of . In cases
1 and 2 the centre is a finite point, and is therefore a centre of
symmetry. The hyperboloid and ellipsoid are referred to as central
quadrics. Since the plane at infinity cuts a paraboloid in a pair of
lines, it is & tangent plane, and the centre of a paraboloid is therefore
atinfinity. For this reason paraboloids have no centre of symmetry.
Their affine geometry is rather special, just as in the plane the affine

‘geometry of the parabola is special.

A line which passes through the centre of a quadric is called a
diameter, and a plane which passes through the centre is called a
diametral plane. A diameter and a diametral plane of a central
quadric ¢ are said to be conjugate if they meet ¢ in a point and a
line which are pole and polar for the conic at infinity A on J—i.e.
if the diametral plane is the polar plane with respect to i of the
point at infinity on the diameter. It may be verified that a dia-
metral plane bisects all chords parallel to the conjugate diameter,
and a diameter contains the centres of the conics in which is
cut by planes parallel to the conjugate diametral plane.

Three diameters of ¢ are said to be mutually conjugate if they
meet ¢ in the vertices of a triangle which is self-polar for . Each
is then conjugate to the diametral plane determined by the other
two; and the three diametral planes which contain the three pairs
of diameters are said to be mutually conjugate diametral planes.
EXERCISES

(i) If d is a diameter of & central quadric i, show that its polar line d’ lies
in 1, and that planes through d’ are parallel to the diametral plane con-
jugate to d. :

(ii) If ¢ is a proper central quadric, and three mutually conjugate dia-
meters of i are taken as axes of reference for a cartesian coordinate system,
show that the equations of y take the forms aX?+bY34cZ® =1 and

bcU?+caV3+-abW? = abcrespectively. How must the equations be modified
if  is a proper cone with a finite vertex ?
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In order to fit the euclidean properties of the quadric into our
projective scheme, we need to introduce the absolute conic Q, as
explained in Chapter X, § 2. Q is a virtual conic, lying in the
plane ¢, whose equations in every allowable representation % & are

r}tai4ad = 0 = x,.

When we regard the absolute conic as a disk quadrie, its plane-
equation takes the simple form

Q = ui+ui+ul = 0.

If, now, we take any quadric ¢ in euclidean space, we have a
pair of conics in the plane at infinity, namely Q and the conic at
infinity A on ¢, and many euclidean properties of ¥ can be inter-
preted as projective relations between these two conics.

Suppose, first of all, that % coincides with Q. Then i is a sphere,
and it possesses the properties (e.g. complete symmetry with
respect to its centre) that are commonly associated with this special
type of quadric. '

In general, 4 and Q have four distinet points in common, and
they then have a unique common self-polar triangle. If i is a
central quadric, the three diameters whose points at infinity are
the vertices of this triangle are both mutually conjugate and also
mutually perpendicular, and they are called the principal axes
of . It may easily be verified that i is symmetrical with respect
to the three diametral planes determined by the axes, its principal
Dlanes. The axes of y define a rectangular coordinate system
(i.e. an allowable representation %) with respect to which the
Ppoint-equation of i is of the form

aX2-bY?4-c22 = 1.

Exuroise. Consider the various special cases which arise when (a) the
points of intersection of % and Q are not distinct, and (b) the centre of ¢ is
at infinity.

Confining our attention to the general case, in which is a central
quadric and the common points of » and Q form a proper quad-
rangle, we now turn to the problem of finding all the circular
sections of . A plane = will cut ¢ in a circle if and only if the line
at infinity in 7 cuts 4 and Q in the same two points, i.e. if this line
is a side of the quadrangle already referred to. We see, then, that
a general quadric s has six families of circular sections, the circles of
any one family being cut by a pencil of (parallel) planes whose axis
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18 one of the common chords of k and Q. Each of the six pencils con-
tains one diametral plane and two tangent planes. The centres of
the circles lie on the diameter conjugate to the diametral plane,
and the extremities of this diameter are the point-circles cut by the
two tangent planes. A point on a quadric which is the centre of a
point-circle lying on the surface (i.e. the point of intersection of a
pair of isotropic generators) is called an wmbilic; and we may
therefore say that a general quadric possesses twelve umbilics.
EXERCISES

(i) Show that the four common points of & and 0 and the twelve umbilics
of  form a set of sixteen points of b which lie in sets of four on eight gene-
rators.

(ii) If the equation of i, referred to its prihcipa.l axes, is
aX?4bY24+cZ28 =1 (a<b<ec),
obtain the equations of the planes of circular section, and show that only
two of the six pencils contain real planes.

Various special cases arise when the common points of & and Q
coincide in different ways. The most interesting of these occurs
when % has double contact with Q. In this case there is only one
pencil of planes of circular section, the axis of this pencil being the
chord of contact of % and Q. The diameter of s which contains the
centres of the circles is perpendicular to the planes of the circles,
and the quadric is therefore a quadric of revolution. Since h and Q
have oo! common self-polar triangles in this case, the axes of a
quadric of revolution are partly indeterminate.

Transformation to principal axes

The principal axes of a central quadric ¢ define, as we have
already seen, a rectangular cartesian system of reference, and in
terms of this system the equation of the quadric assumes the simple
form aX2+bY2+4cZ2 = 1. If, now, we are given the equation of
¢ referred to an arbitrary triad of rectangular axes, we may wish
to find the principal axes of ¢ and introduce new coordinates for
which these lines are the axes of reference. Not only is the method
of doing this of interest in itself, but the algebra on which the
solution depends is used in solving fundamental problems in various
branches of mathematics.t We shall now discuss the problem of

+ In the language of algebra, the problem is just that of reducing & quadratio
form xTAX to diagonal form by means of an orthogonal transformation x = Px’.

The solution indicated in the text is quite general, and there is no need for x to
be a 3-vector.



286 THE QUADRIC XI, §4

transformation of the equation of a quadric to principal axes, first
explaining the principles involved in the solution, and then
illustrating the method by means of a numerical example. It will
be sufficient to take a quadric which is already referred to rectangu-
lar axes through its centre, since if the origin is not at the centre
- we can begin with a preliminary translation.

PROBLEM. If the equation of a central quadric ¢, referred to

arbitrary rectangular axes through its centre, is
3 3
2 23 X, X =1 (a =ay),
i=1k=1
to find the axes of §f and to transform the equation by taking these
axes as new axes of reference.
Solution. The equation of ¢, written homogeneously, is
3 3 2 ’
2 2 agxm—af = 0.
i=1k=1

If the point at infinity on one of the axes of i is (0,y;,¥s, ¥s), the
conjugate diametral plane is '

i ( i a )z = 0;
AR ik Yx)T: = U5
and since this plane is perpendicular to the axis
3
iglaikyk = Ayi (i = 1: 2, 3)’

ie. Ay = y.

Thus the directions of the axes are given by the characteristic
vectors y of the 3 X 3 matrix A = (a,,). To find these vectors we
have first to solve the characteristic equation

|A—XI| = 0,
ie.
Gy—A G a3 |=0.
Ay Gg—A Qg
a3 Qg2 @y3—A

Suppose the roots A1, Ay, Ag of this equation are distinet. If X is
equal to any one of the characteristic roots };, the three equations

3
a = My, are consistent, and we may solve them for the ratios
ooy dik Yx Y Y

Y1:¥5:¥5. In this way we obtain three non-zero vectors y&, y®,
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¥, correspondmg to A,, Ay, A; respectively; and from these we can

derive three unit vectors e® = y‘) , uniquely determined except

[y®]

for SIgn The components of these vectors are then the direction
cosines of the axes of . That they are in fact the direction cosines
of three mutually perpendicular lines can be seen algebraically
as follows:

Since A — ) e
and Ae? = A,' e )
we have eU)T A i) —e®T Ae) — A“ eWTal@).— A’ e(i)TeU),
ie. 0= (—A)(Ee®,eD).

But X; # A;, by hypothesm, and therefore (e?,e®) = 0.

If, now, e; and €; (i = 1, 2, 3) are the sets of unit vectors along
the old axes and along the principal axes of §, we can write
e; = e®, If €] has components (€, ¢, €;5), and r is the position -
vector of a general point of space,

ZXm
= ; X’i(z €k ek)
=3 (TeaXie

= % X, e
&nd henoe Xk == ; e}kX;; (k S l, 2, 3).
The equations of transformation are accordingly
r = Pr, r' = P-Ir,
where P = (e,).

Remarks ‘

(i) The orthogonality relations (e®,e®) = 0, obtained above,
ensure that P is an orthogonal matrix, in conformity with Theorem
9 of Chapter X.

(i) We have assumed that A, A, A, are all distinct. If two of
them coincide, ¢ is & quadric of revolution, and if all three coincide
it is a sphere. In these cases the unit vectors e® are not uniquely
determined by the equation Ae = Je, and the axes are partly
arbitrary.

(iii) It is a well-known algebraic theorem that, for a real
symmetric matrix A, the characteristic roots A, A5, A; are all real.
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Let us now take a numerical example, transforming the quadric
2X%45Y2%45Z2—ZX = 1 to principal axes.
The characteristic equation is

2-x 0 —}
0

0 5-A
—3 0 5-A
ie. (B={2—N(6—-)—}} =0,
ie. (5—2A)(39—28A4-4A%) = 0;

and its roots are 5, (7-++10).
Three characteristic vectors are (0,1,0), (1,0, —3F+10), and
by normalizing them we obtain the vectors

, 1
el_-:m(l 0, —3—~10),
e = (0,1,0),

, 1
e, m( —3-++10),

corresponding to the characteristic roots in the order $(74+10),
5, 4(7—+~10). They give the orthogonal transformation

1 / 1 .
X = Jmrevio X T zo—evio)2”
Y = Y,
—3—410 , —34-v10 ,,
Z = ¢(20+6«/10)X +J(20—6410)
and the transformed equation of the quadric is

7+“/10X'ﬁ+5Y'2+7 «/10 1L

This example is especially simple, since one of the original axes
OY is already a principal axis of the quadric, as can be seen from
the form of the equation with which we started.

It will be observed that the coefficients in the transformed
equation are the characteristic roots A, A3, A;. This is quite general,
and follows from standard theorems on the reduction of quadratic
forms. Thus the characteristic roots of the matrix A may be
interpreted in terms of the lengths of the axes of the quadric

3 3
a, X, X, = 1.
iglkzlik A=
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ExERCISE. If the axes are rectangular, show that a necessary and sufficient
condition for a real proper quadric, represented by the equation
(a,b,¢,d.f,9,h, 0,4, 7} X,Y, Z,1)%

= aX2+bY2+4c22+2fYZ+29ZX +2hXY +2pX +2¢Y 4 2rZ +d = 0,
to be a quadric of revolution is that, for some value of A, the matrix
a—-A h g
(ot 1)
g f  e—A

is of rank 1. Examine the various ways in which this condition can be
satisfied. -

§5. STEREOGRAPHIC PROJECTION OF A SPHERE
ON TO A PLANE .

In § 3 we discussed in some detail the projection of a proper
quadric ¢ from & point V of itself on to a plane =, and we showed
that plane sections of ¢ project into conics through two fixed
points U, ¥, of = or, if they pass through V, into lines of #. In
extended euclidean space we can obtain some striking specializa-
tions of this representation by arranging matters so that Uy, Vo
are the absolute points I, J of =. If we do this, the projection will
have the remarkable property that the totality of plane sections of
projects into the ‘totality of circles (in the wide sense that includes
straight lines) of =.

The necessary arrangement is quite simple: we take as V any
umbilic of i, and as = any plane parallel to the tangent plane of
¢ at V. Then the generators of y through V, which are isotropic
lines lying in the tangent plane at ¥, meet = in points which lie both
on the line at infinity in = and also on the absolute conic (), and these
points are therefore the absolute points I, J in 7 a8 required.

If ¢ is a sphere, the arrangement is even simpler. Since every
* point of a sphere is an umbilic, ¥V may now be any point of ¢, and
the only requirement is that = shall be parallel to the tangent
plane at V. This kind of projection of a sphere on to a plane, in
which all plane sections project into circles or straight lines, is
known as stereographic projection. We shall now examine some of
its properties.

If P, Q are any two points of ¥, the sections of ¢ by planes
through the line PQ evidently project into circles of the coaxal sys-
tem whose common points are the projections P’, @’ of P, Q. The
two tangent planes of y which pass through PQ cut in line-pairs,

5304 U
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and these project into pairs of isotropic lines in =, i.e. into the
point-circles of the coaxal system. The points of contact M, N of
the tangent planes project into the two limiting points M’, N’
of the system.

The two lines PQ and MN are polar lines for i, and are therefore
symmetrically related. It follows that the sections of ¢ by planes
through MN project into circles of the coaxal system whose
common points are M’, N’ and whose limiting points are P’, Q’,
i.e. the conjugate coaxal system.

If two planes are such that each passes through one of a given
pair of polar lines, the planes are conjugate for ; and conversely,
if two planes are conjugate for , they contain an infinity of. pairs
of lines, one line in each plane, which are polar for . We have
therefore the result: T'wo circles in m are orthogonal if and only if the
corresponding sections of i are cut by planes which are conjugate
Jfor . The extension of this result to a circle and & line (or a pair of
straight lines) cutting orthogonally is immediate.

If ¢ is a circle on ¢, cut by a plane o, and A is the pole of «, the
enveloping cone of s whose vertex is 4 has ring contact with i
along c; and it is plain, from consideration of elementary geometry,
that every plane through A cuts i in a circle that is orthogonal to c.
Thus the result just established amounts to the fact that orthogona.l
circles on ¢ project into orthogonal circles in #. It is, in fact, a
well-known property of stereographic projection that it not only
leaves orthogonality invariant but preserves the magnitudes of
all angles, i.e. stereographic projection is a conformal mapping of
the sphere on a plane.

From the result proved above we deduce that if ¢’ is any circle
in 7, representing the section of ¢ by a plane «, then all circles or
straight lines which cut ¢’ orthogonally represent sections of i
by planes through the pole 4 of «. In particular, all diameters of ¢’
represent sections of s by planes through VA, so that the centre
of ¢’ is simply the projection of A. Hence if a circle ¢’ in m represents
the section of s by a plane a, its cenire is the proyectzon Jrom V of the
pole A of a.

Keeping to the same notation, we may now ask what self-
transformation of y corresponds in = to inversion with respect to ¢’.
Two points P’, Q' are inverse for ¢’ if and only if every circle through
them cuts ¢’ orthogonally, and the corresponding points P, @ of
¥ must therefore be such that every plane through them passes
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through the pole 4 of «. In other words they must be collinear
with 4, and so we have the result: Inversion with respect to a circle
¢’ in m corresponds to the self-transformation of s generated by chords
through a fixed point A that does not lie on the surface; and conversely,
chords through any point A, not on the surface, generate a self-trans-
formation of  which corresponds in m to inversion with respect to
the circle representing the section of s by the polar plane of A.

These results may serve to illustrate the process of translating
the geometry of circles in the plane into geometry on a quadric
with special reference to a fixed point of itself.

EXERCISES ON CHAPTER XI

1. Show that the quadric locus S(z, y,2,¢) = 0is a cone if and only if there
exists a triad of linearly independent linear forms m;, ,, gy in 2, ¥, 2, ¢ such
that S is expressible as a quadratic form in y, 7y, ;. Show further that
when this condition is satisfied the vertex of the cone is the point ¥ which is
common to the three planes 7; = 0, and that S can be expressed as a quad-
ratic form in #§; wj, 5, where #{ = 0 (¢ = 1,2,3) are any three linearly
independent planes through V.

Show that the quadric

23yt 23+ 83+ 2y + 2z 4 2y + 2wt + 2yt — 22t = O
is a cone with vertex (—1, 1,0,0); and write down the general equation of &
quadric cone with this point as vertex. -

2. Find necessary and sufficient conditions for the plane (w,v,w,p) to
touch the cone whose equation is given in Exercise 1. [Hint. The plane
- must pass through the vertex and also touch, for example, the section of
the cone by the plane z = 0.]

3. Investigate the projective character and the singular points (if any)
of each of the following quadric loci:

(i) —y*+2tt+awtaytai—yt+a =0,
(i) z*+y*+2t—yz—zz—zy+it =0,

(iii) 2+ 2y + 24 20y—22¢t = 0.

Find the equation of the quadric envelope defined by the locus (iii).

4. Investigate the projective character and the singular planes (if any) of
each of the following quedric envelopes:

(i) ut—v*—wt4pt—20w—2up = 0,
(i) p*—vw—wu—up—vp =0,

(iii) vw4wutuv—p* = 0.

Find the equation of the quadric locus defined by the envelope (iii).

5. Find the tangent cones from the point (—1,1, 1, 1) to the quadries (ii)
and (iii) in Exercise 3, and explain why the first is a plane-pair and the
second is a repeated plane. Find the planes concerned.

Find also the plane-equations of the sections by the plane z—¢ = 0 of
the quadrics (ii) and (iii) in Exercise 4. Explain why the first of these sections
is & point-pair, and find the points.
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6. Obtain the plane-equations of the cone (ii) in Exercise 3 and the point-
equations of the conic (disk quadric) (ii) in Exercise 4.
7. Find the point-equation of the cone whose plane-equations are

w—p = 0 = ul—4uv—v2—p3,

Find also the plane-equation of the conic (disk quadric) whose point-
equations are z-+¢ = 0 = z¥—y3— 3¢,

8. If 8 and ¢ are projective parameters for the two systems of generators
on a quadric i, prove that the point of intersection of a variable pair of
generators, one belonging to each system, describes & proper conic on i if
and only if the parameters 6, ¢ of the generators are connected by a fixed
non-singular bilinear relation.

9. Two lines I and m meet the quadric (6¢,0,$,1) in the pairs of points
(61, ¢1), (0, ¢2) and (65, ds), (64, $,). Show that I meets m if and only if

{6,,6,; 05,0, = {¢v ¢23 ¢a’ ¢4}

If | meets both m and its polar line m’, prove that each of the two cross
ratios has the value —1.

10. Show that a line is its own polar line with respect to a quadric if and
only if it is a generator of the quadric.

If ABCD is a given tetrahedron and [ is a given line of general position,
prove that there exists & unique quadric for which ABCD is a self-polar
tetrahedron and [ is a generator.

Deduce that the range of points in which I meets the faces of the tetra-
hedron is homographic with the pencil of planes joining ! to the opposite
vertices.

11. A plane 7, meets four generators g, (r = 1, 2, 3, 4) of a quadric at their
intersections g, g, with generators gy of the opposite system, and the inter-
sections g,g;,, lie in a second plane 7, (gn., being defined as g, for all n).
Prove that each set of generators is a harmonic set. :

Prove that the intersections g,g;., and g,g;,s lie in two planes 7y,
coaxial with 7y, and 7,, and that these four planes form a harmonic pencil.

12. Show that the two systems of generators of a quadric ¢ project from
any point, not on i, into the tangents to & conic.

If g,, ga g5 are three generators of one system and gi, g;, g; are three
generators of the other system, show that the three lines g; 95.939s, 93 91-95 91
919391 g, are concurrent, and hence prove Brianchon’s Theorem for a conic.

13. Find the coordinates of the poles X’, Y’, Z’, T" of the faces of the
tetrahedron of reference with respect to the quadric

X =(4,B,C,D,F,G,H,L,M,N{u,v,w,p)? = 0.

If FL = GM = HN, show that XY ZT and X’Y’Z’T" are in perspective
from a point ¥V, and that in this case the form X can be expressed as a linear
combination of the squares of the left-hand sides of the plane-equations of
the points X, Y, Z, T, V. Show further that any four of the five points
X,Y, Z, T, V form a tetrahedron which is in perspective with its polar tetra-
hedron from the fifth point as vertex.



XI EXERCISES ON CHAPTER XI 293

14. Show that the point P, with coordinates (X, ¥;, Z,), is the centre of
the section of the quadric i whose cartesian equation is aX®+4bY?+cZ* = 1
by the plane 7 whose equation is

aX (X —Xo)+bY(Y —Yy)+cZy(Z— Zy) = 0.

15. With the notation of Exercise 14, show that if P describes a plane
whose pole for i is A then 7 envelops a quadric which is inscribed both in the
asymptotic cone of  and also in the tangent cone to ¢ from 4.

Show also that if P describes a line then 7 envelops a cylinder.

16. Show that the normals to a quadric at the points of a generator lie
on a hyperbolic paraboloid.

17. If fgh # 0, show that the conditions for the quadric ¢ whose rect-
angular cartesian equation is (a,b,¢,d,f,g,h,l,m,n}X,Y, Z,1)* = 0 to be
a quadric of revolution are

(gh—af )/f = (hf—bg)/g = (fg—ch)/h.

If fgh = 0, show that for i to be a quadric of revolution at least two of
f» g, h must be zero, and that when g = % = 0 a necessary and sufficient
condition is f? = (b—a)(c—a).

A conic k has equations aX3+4bY2—1 = 0 = Z. Prove that the quadrics
of revolution through k form two families, and that the equation of a general
member of one of these families is

aX24bY?— 14222+ 2,/{(A—b)a—b)XZ+2puZ = 0,

where A and p. are arbitrary constants. Find the centre and axis of revolution
of this quadric.

18. If a line I meets a given central quadric ¢ in U and V, prove that the
following three conditions on ! are equivalent:

(i) ! is perpendicular to its polar line for i ;

(ii) the normals to  at U and V intersect ;

(iii) 7 is a principal axis of some plane section of .

19. If 4 is the conic at infinity on a quadric i, show that (i) if 4 is outpolar
to the absolute conic Q2 then i possesses an infinity of sets of three perpen-
dicular generators of each system, and (ii) if ¢ is & cone and 4 is inpolar to
£ then i possesses an infinity of sets of three mutually perpendicular tangent
planes.

By means of (ii), or otherwise, show that the locus of & point from which
three mutually perpendicular. tangent planes can be drawn to a given
quadric is in general a sphere, but that if the quadric is a paraboloid the
locus is a plane.

20. If A is a fixed point of a quadric ¥, and P, @, R are three variable
points of ¢ such that the lines 4P, 4Q, AR are mutually perpendicular,
show that the plane PQR passes through a fixed point on the normal to
Yat 4.

21. If 4 is a given quadric in euclidean space, and P is a given general
point, show that there are six planes through P each of which cuts $ina
conic with P as one focus.
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22, If two quadrics i, ' touch along a conic k, prove that the tangent
plane 7 to )’ at an umbilic U meets i in a conic for which U is a focus and the
line of intersection of 7 with the plane of k is the corresponding directrix.
Use this result to obtain a construction for the foci of any plane section of a
right circular cone.

23. Show that the sphere X?4Y?4-Z% = a? admits of the parametric
representation

_Ap e .
X_al+)w, _a1+)\ll" Z_al+?(p.’
real points of the surface being given by conjugate complex values of A and p.

Discuss the resulting representation of the real sphere on the Argand
diagram for the complex variable A.

24. Show, by use of stereographic projection of a sphere, that two in-
versions of the plane with respect to circles ¢, and ¢, commute with each
other if and only if ¢, and ¢, are orthogonal.

25. A self-transformation + of the plane is generated as the product of
the inversions defined by two given circles ¢, and ¢,. Show that + can be
generated, in infinitely many ways, as the product of the inversions defined
by two other circles ¢; and ¢; of the coaxal system determined by ¢, and c,.
State precisely how the pairs of circles (¢, ¢;) and (c;, ¢;) are related within
the coaxal system.

Y




CHAPTER XII

THE TWISTED CUBIC CURVE
AND CUBIC SURFACES

§1. Tag Twistep CUBIC

WE come, in this section, to the second of the manifolds in space
which are analogous to the conic in the plane, namely the twisted
cubic curve. In the latter part of the discussion we shall make use
occasionally of results which are not established until Chapter
XIV or Chapter XV. This is quite harmless, as these chapters do
not depend upon the present one, and the reader may refer to the
later results as they are required.

Basic properties of the twisted cubic

DEFINITION. A twisted cubic in S, is a curve which is represented,
in terms of some allowable representation £, by parametric equa-
tions of the form

Ty %giT3 = fow_) :£1(0): £2(8): £3(0),
where the functions f;(6) are linearly independent cubic polynomials
in the parameter 6.

Since the polynomials f;(6) are four linearly independent linear
combinations of 8, 62, 6, 1, say

746) Ekioa,.,, Bk (5 =0,1,23),

their leading coefficients a,, are not all zero; i.e. at least one of the
polynomials is actually of the third degree. Inverting the equations
just given, we have

3
la‘nl g3-* =iZoAik ft(o)1

where [4,,| = |a,,|*> 7 0; and 63, 6%, 6, 1 are accordingly propor-
tional to four linearly independent linear combinations of z,, =,
oy T3t

3
03-" = pigoA.ikxi.

If, therefore, we introduce a new representation &' of §; by the
transformation s
x;c= EAik:L‘i (k = 0,1,2,3),
i=0
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the twisted cubic has the canonical representation
2y %y 2y xy = 63:0%:6:1.

As may be inferred from the form of its equations, the twisted
cubic is an algebraic space curve of the third order, which meets
a general plane of S, in three points. It is, of course, a rational
curve.

The above algebra shows that by a suitable non-singular linear
transformation of the coordinates, which we have interpreted as
a change of representation from % to %', the equations of any
given twisted cubic may be reduced to

Xy &y oy ay = 6%:62:0:1.
Exactly the same algebra, interpreted now in terms of transforma-
tion of points, also shows that by means of a suitable (non-singular)

collineation of space we can transform any given twisted cubic
into the standard twisted cubic whose equations referred to Z# are
Xy Xyily = 03:0%:0:1.

Since the set of all collineations is a group, it follows at once that
any twisted cubic can be transformed into any other twisted cubic by
means of a suitably chosen space collineation. This result may be
compared with the analogous result for proper conics.

Before going any farther, we shall establish a connexion between
twisted cubics and nets of quadrics which will be of considerable
use later on.

THEOREM 1. Through any twisted cubic there pass oo0? quadrics,
forming a net; and the twisted cubic is the common intersection of all
the quadrics of this net.

Proof. Consider the twisted cubic ¢ whose equations are

Ty %y Ty kg = 03:602:0:1.

Since the coordinates of any point of ¢ satisfy the equations
Zy_ 7 _ % /
Z, Xy X3

¢ lies on each of the quadrics

Q) = 2}—Tp %, = 0,
Q, = 2, 2,—7g23 = 0, Qs = 23— 25 = 0,
and therefore on every quadric of the net

Q=201+ Q:+2AQ;=0.
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Now suppose, conversely, that
’ S = a5,%,%, =0
‘ ; g ki vk
represents an arbitrary quadric through ¢. Then
a,, 3-10** = 0;
P32

and, taking account of the symmetry conditions a;; = a;,, we may
replace this identity by the set of equations

g = 0, 2015+5 = 0,
24 = 0, 20,5 = 0,
2ag5+01 = 0, g3 = 0.

2a95+285 = 0,
The equation S = 0 may accordingly be written

gy Q142855 @2+a5, @3 = 0,
and the quadric therefore belongs to the net already defined.

Finally, the residual intersections of @, @5, Q, in pairs are the
lines #, = 0 = @3, &, = 0 = Ty, g = 0 = 2y} and the quadrics of
the net therefore have no common point which does not lie on c.
This completes the proof of the theorem.

The canonical parametric representation of the twisted cubic
is similar to that of the conic, and the two representations lead to
" more or less similar consequences. First we give a few useful alge-
braic results.

(i) Let the coordinate vector u represent the plane which joins
the points of ¢ whose parameters are 0y, 0,, 0;. Then 6;, f,, 65 are
the roots of the cubic equation

Ug O3 +uy 02+uy 0+ uz = 0,
and consequently

U  —U Uy o U
1~ 0,+6,+0, 0,0,+6;6,+0,0, 6,0,6,

The equation of the plane (6, 8,, 85) is therefore
(ii) The plane which meets a twisted curve three times at a point

P is called the osculating plane at P. The equation of the osculating
plane to the twisted cubic at (6,) is therefore

xy— 30, 2,1+ 302 x,— By = 0.
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Since this equation is cubic in ,, there are three osculating planes
of ¢ which pass through a general point of space. We say that c is
of class 3. '

(iii) The chord (6,, 8,) lies in the plane (6,, 8,, §) for all values of 4,
i.e. it is the axis of the pencil of planes

Zo— (0;+6,)z,+0, 6, 2, + O{r— (0, 0,)7, 46, 6, 25} = O.
The chord (8, 6,) therefore has equations
(6, +0y)2,4-0, 0,24 = 0 = z,— (6,4 6,)x,+0, 6, .
It follows from this that through any point P of space, not a point

of ¢, there passes a unique chord of c. For suppose the coordinates
of P are (y,,%,,Y5,¥5). Then the equations

Yo—DY1+9Y: = 0 = y,—py,+qy,
determine p and g uniquely, and the roots of the quadratic equation
62—pf+gq =0
determine the end-points of a unique chord through P.
(iv) The tangent line to ¢ at (6,) is the chord (64, 6,), and it is
accordingly represented by the equations

To—20, 2,402, = 0 = 2, —20, 2,4 P x,.
If we eliminate 6, between these equations, we obtain the equation
of the ruled surface of tangents:

(%0 %3 —2, ) — 4(a] — 7y 2,) (2 — 1, 75) = 0,
ie. Q3—40Q,0Q;, = 0.
This is a quartic surface, and there are therefore four tangents to

¢ which meet a general line of space. We say that c is of rank 4.
Summing up the above conclusions,

J we have:

X
Xo THEOREM 2. The twisted cubic is of

order 3, class 3, and rank 4, and the
£ number of chords of the cubic which pass
through a general point of space is 1.

—# X We can now see how the tetrahedron

: of reference is related to the twisted
cubic ¢ when the representation of ¢ is in canonical form. Let P
be the variable point (62,62, 6,1). When 6 has the values 00, 0,1,
P takes the positions X,, X;, E respectively. Thus ¢ passes
through two vertices of the tetrahedron of reference and the unit
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point. The osculating plane at X, where 6 = o0, is 2; = 0, and the
tangent at this point is z, = 0 = z;. Thus X, lies on the tangent
at X,, and X, X, X, is the osculating plane at X,. Similarly X,
lies on the tangent at X;, and X, X, X, is the

osculating plane at X;. Hence a canonical re- f—fC
presentation of the twisted cubic 18 uniquely de-
fined by taking X,, Xz to be any two distinct
points of the curve, X, X, to be the poinis in
which the tangents at X, X, are respectively met
by the osculating planes at X,, X,, and E to be
any point of the curve other than X, and X.

A second special representation of the twisted
cubic that is often useful is obtained by taking
an arbitrary inscribed tetrahedron as tetrahedron of reference.
Suppose the equations of the twisted cubic ¢ are then

Ty 2y 12,25 = fo(6):£1(0):1:(6) :fa(0),
and the parameter of X is 6; (¢ = 0,1,2,3). Then
Jo(6y) = Jo(6y) = Jol3) = O,
and hence fol8) = co(0—0,)(0—6,)(8—05).
The equations of ¢ may accordingly be written
Lg%y g 2y = Co(0—0g) i, (0—0,)71: Co(0—05)~2:c5(0—05).

Projection of the twisted cubic on to a plane

Suppose a twisted cubic ¢ is projected from a vertex V on to a
plane . It must project into an algebraic plane curve ¢’, and in
order to find out the nature of this curve we need to determine its
order. There are two cases to be distinguished, according to
whether V does or does not lie on c.

Case 1: when V does not lie on c.

The order of ¢’, the number of points in which it is met by & general
line ! in its plane, is equal to the number of points in which ¢ is met
by the plane VI, namely 3. Thus ¢’ is a plane cubic curve. Further-
more, there is a unique chord 4, 4, of c which passes through V,
and this gives rise to a double point A’ of ¢’. If 4, and 4, are distinct
A’ is a node of ¢’, and the nodal tangents are the projections of the
tangents at A, and 4, to c. If 4, and 4, coincide, A’is acuspofc/,
and the cuspidal tangent is the line in which = is met by the osculat-
ing plane to ¢ at 4,. Finally, the class of ¢’ is equal to the number
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of tangents of ¢ which meet the line joining V to a general point
of 7; it is therefore equal to the rank of ¢, i.e. 4. In the special case
when 4, and 4, coincide, V4, is a tangent which meets every line
through V, and in this case the class of ¢’ is reduced to 3.

Case 2: when V lies on c.

In this case the plane VI meets ¢ in V itself and two free points.
The curve ¢’ is therefore an algebraic curve of order 2, i.e. a conic.
We may compare with this projection the projection of a conic
(in 8,) from a point of itself on to a line.

When V lies on ¢, the lines which project the points of ¢ from V
all lie on a quadric cone. This cone is a degenerate quadric of the
net A, Q,4-A, Q,+2; @3 = 0, and there exists such a cone with
any arbitrarily chosen point of ¢ as its vertex.

Fundamental projective properties of the twisted cubic

We come now to the fundamental theorems which provide s
basis for the whole projective geometry of the twisted cubic, and
these are closely analogous to the corresponding theorems for the
conic.

THEOREM 3. If a variable point of a twisted cubic c is joined to two
JSized chords of c, the pencils of planes so defined are homographically
related. '

Proof. Let I be the fixed chord (6,,6,) and m the fixed chord
(41, $2), and let P be the variable point (§). Then the equations of
the planes !P and mP are

To—(0,4-0,),+ 0, 6, x,+0{x, — (6, +0,)x,+-6, 0,25} = O
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and

Zo—($r+$0)7;+ by $o %o+ 0{z; — ($1+$o)xa+ ¢y $o %5} = O,
and therefore U(P) ~ m(P).

COROLLARY. If P,, B, P, P, are four fized poinis of c and l is a
chord of c, the value of the cross ratio YP,, P,; Py, Py} is independent
of the choice of 1.

Remark. The cross ratio {P,, P,; P, P;} may be taken as the cross
ratio {P,, F; Py, P,} on the cubic.

ExercisE. Deduce Theorem 3 from Theorem 1 of Chapter VI. [If ], m
have a common end-point, project ¢ from this point on to a plane; if not,
join an extremity of I to an extremity of m by a third chord 5.]

THEOREM 4. The projective geometry of S; tnduces a subordinate
one-dimensional projective geometry on any twisted cubic c, and the
canonical parameter 0 s an allowable parameter in this geomelry.

This is a theorem of a type that is by now very familiar, and the
details of the proof will be left to the reader. The importance of
the theorem resides, of course, in the fact that it makes possible the
consideration of homographic and other algebraic correspondences
on the twisted cubic; and since some of these correspondences are
associated with simple geometrical constructions, we can use them
in investigating the projective properties of the curve. The
theorems which now follow will establish the main connexions
between algebraic correspondences and geometrical constructions.

Correspondences on the twisted cubic

THEOREM 5. If T is an involution on a twisted cubic c, the chords
which join corresponding pairs (P, P') of v form one system of gene-
rators of a quadric Q, through c. Every generator of the opposite
_system 8 a unisecant of ¢ and is met by all the joins PP’. Any such
generator is sufficient to determine the involution v (of which it i3
said to be a directriz). The involution has a directrix through each
point of c.

Proof. Let PP’ be a chord of ¢, with end-points (9) and ().
Then the coordinates of every point of PP’ satisfy the equations

zo—(0+0),+00'2, = 0,
and x,—(0+6')x,+ 00y = O,
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and these equations give

1 b6+ 6
Ty Ty—23 - LoTy3— L1 Xy - xoxz—-x%'
ie. 00':604+0":1 = Q,:Q,:Q,.

The point (z;) therefore lies on & line joining a common pair of the

involution given by
- abf'+-b(0+-6')4d = 0

if and only if Q, = a@Q,+bQ,+dQs = 0,

and there is thus a one-one correspondence between involutions =
on ¢ and quadrics @, through c.

The joins PP all belong to the same system of generators of .,
since if two of them belonged to opposite systems they would be
coplanar, and their plane would cut ¢ in four points.

If ¢’ is a generator of Q, of the opposite system, it meets every
generator of the first system, i.e. every join PP’. Ifgis such a join,
g and ¢’ are coplanar, and their plane meets ¢ in three points, which
lie on'@,. Two of these points are P, P’, lying on g, and the third
point must therefore lie on g’. Thus ¢’ is a unisecant of c. The uni-
secant directrix g’ determines r uniquely, because there is a unique
chord of ¢ which passes through any general point of it.

Finally, one generator of @, of the second system passes through
every point of ¢, and 7 therefore has a unisecant directrix through
every point of the twisted cubic.

COROLLARY. Two quadrics which pass through a twisted cubic
inlersect residually in a chord of the twisted cubic.

For the involutions which they determine have a unique common
pair. -

Remarks

(i) The united points of the involution = arise from those gene-
rators of @, of the first system which touch e.

(i) If the united points of 7 are taken as X, and X, the equation
of the involution is ¢’ = —#6, and then Q, = @,.

(iii) Among the quadrics which pass through ¢ there are, as we
have already seen, co! cones, each of which projects ¢ from a point
of itself. It may be verified that these correspond to degenerate
(i.e. singular) involutions on c.
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Non-symmetric homographic correspondences on the twisted
cubic are not of much interest, and we shall prove only one theorem
concerning them.

THEOREM 6. Every homography o, on ¢ is subordinate to a unique
self-collineation of Sy which leaves ¢ invariant.

Proof. Suppose the frame of reference is chosen in such a way
that the equation of w, is in canonical form 6’ = k6, and let

z = 2 a2, (1=0,1,2,3) be a collineation w which transforms

c mto 1tself and induces the homography w, on it. Then
pk3-ig3-¢ = 2 a6 (6=0,1,2,3)

ie. p ; 84y k367 = ; ay;6%7;
and hence ay = pdyk*-t (1,j = 0,1,2,3).

Thus the ratios of the a,; are uniquely determined, and = is given by

In general, this collineation has the four united points X,, X,
X,, X,. Inthe particular case in which w,is an involution, however,
k= —1; and w is then a harmonic biaxial collineation} with
XX, and X, X; as axes.

ExERCISE. Examine the case in which the united points of w, coincide
at X, and show that = then has only one united point, namely X,.

Theorem 5 gives & geometncal procedure for generating the
general involution or symmetncal (1, 1) algebraic correspondence
on the twisted cubic, and the next four theorems will be concerned
with procedures for generating symmetrical (2, 2) and (3, 3) corre-
spondences.

THEOREM 7. The symmetrical (2,2) algebraic correspondences on
a given twisted cubic ¢ may be paired off against the linear complexes}
in 8 in such a way that the corresponding pairs in any given corre-
spondence are cut by the chords of c which belong to the associated linear
. complezx.

1 Chapter X1V, p. 351. t Chapter XV, p. 372,
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Proof. Let P, P’ be two points of ¢, with parameters 6, §’. The
Grassmann coordinates of the line PP’ are then given by

Po _ _ P _ Do —Ps___ Pu _ P
620’2 06'(64-6')  624-60'+62 " 1 —(040") ~ 66”

* and it follows that the most general linear relation between the p,,
is equivalent to the most general symmetric relation between 6
and @' that is quadratic in each parameter.

THEOREM 8. If a symmetrical (2,2) correspondence on c has one
cyclic triad (P,, Py, B,), such that each of the points gives rise in the
correspondence to the other two, then every point of ¢ belongs to a unique
cyclic triad.

Proof. The associated linear complex contains the three lines
E, B, P, P,, P, P, which intersect in pairs but are not concurrent,
and it is therefore special. The lines PP’ joining pairs of the corre-
spondence are then the chords of ¢ which meet a fixed line I of
space. If P is any point of ¢, the plané Pl meets ¢ in two further
points P’, P”, and P belongs to the cyclic triad (P, P’, P").

A cyclic correspondence of the type just mentioned arranges the
points of ¢ into co! mutually exclusive triads, cut on ¢ by the planes
of a pencil. If a general plane of this pencil is u7x+Av7x = 0, the
parameters of the points of the corresponding triad are the roots
of the cubic equation

(o 03+, 024wy 04-ug)+A(vy 03+, 0240, 0-+v,) = 0,
ie. FO)+2g(6) = o,
where f(6) and g(6) are two cubic polyno'mials. (Compare Theorem
15 of Chapter II1.) When the points of a rational curve are grouped
in triads in this manner we say that we have a ternary involution
on the curve. A

EXERCISES ,
(i) By projecting ¢ from a point of itself into a conic %, deduce Theorem 21

of Chapter VI from Theorem 8.

(ii) Prove that the chords of ¢ which belong to a given linear complex
(possibly special) generate a quartic surface which passes doubly through c.

THEOREM 9. The symmetrical (3,3) algebraic correspondences w
on a given twisted cubic ¢ may be paired off against the quadrics i,
wn S3 in such a way that the three points of ¢ which correspond in w to
any given point P of ¢ are the points in which ¢ is met by the polar
Plane of P with respect to i,
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Proof. Take & quadric ; ;% %, = 0 (ay; = ay,) and let the

points (8) and (6') of ¢ be ::onjugate with respect to this quadric.

Then h) g 43 (63-16"3-% - g3-%g'3-%) = 0,

ie.

Qoo 030'3+ay, 020'2 -y, 00' +agst+a,, 00 (0-+60)+a,y, 06 (6+-6"%)4-

+@gy 026"(0+-6") g (65 +0"%) +@13(07+-6%)+a55(6+ ') = O,
and this is the most general symmetric equation that is cubic in

6 and also in . The united points of w are, of course, the six
points in which c is met by .

THEOREM 10. If the symmetrical (3, 3) correspondence w on ¢ has
one proper cyclic tetrad (P,, P,, P;, P,), then w is cyclic, and every point
of ¢ belongs to a unique cyclic tetrad. The tetrads so determined form
a quaternary involution on c, given, for varying A, by an equation
o the form F6)+296) =0,
where f(0) and g(0) are quartic polynomials.

Proof. Since the four points P; all lie on ¢, they are not all in one
plane, and we may therefore take them as vertices of the tetra-
hedron of reference. The equation of i, may then be taken to be

2+ai+ad+ad = 0. |
If, further, the parameter of P, on cis §,, the equations of c are of the
form z; = c(0—6) (i =0,1,2,3).
Two points P, P’, with parameters 6, §', correspond in w if and only
if they are conjugate for ¢, i.e. if

i &% & _g
Z0-6,0-0,

Disregarding the trivial factor —6’, we may write this relation as

c2 3 & 0
—0, Zo'—o,._ ’
i=0

or F(0)—F(0') = 0, say.
If (0,,0,) and (8,,06;) are two solutions of this equation, then
(6, 0%) is also a solution; and it follows that the (3,3) correspon-
dence defined by F(8)—F(6') = 0 is cyclic, in the sense that if P
gives rise to P’, P", P”, each of the four points P, P’, P”, p”

gives rise to the other three.
5304 X
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If the parameters of such a tetrad of points are 8, 8’, 6”, 8”, then
F(f) = F(@') = F(0") = F(9”); and the cyclic tetrads are given,
for varying A, by the quartic equation F(f) = A. If this equation
is cleared of fractions, it assumes the form f(8)+Ag(6) = 0, where
f(0) and g(6) are polynomials in 8, f(6) being cubic and g(6) properly
quartic.

THEOREM 11. If a twisted cubic ¢ has one inscribed tetrahedron
that is self-polar for a quadric i, then it has an infinity of inscribed
tetrahedra that are self-polar for .

"This theorem follows immediately from Theorem 10, and it
gives us a space analogue of the relation of apolarity between conics.
When a twisted cubic ¢ and a quadric ¢ are related as in Theorem
11, we say that c is outpolar to 4. When this is so, the faces of all
the inscribed tetrahedra which are self-polar for ¢ form a cubic
envelope (the reciprocal of ¢ with respect to ) and this envelope -
is said to be inpolar to .

Alternative definitions of the twisted cubic

Just as the conic may be defined in several different ways (for
instance, as an algebraic curve of the second order, or as the locus
of the point of intersection of two homographically related pencils
of lines) so there are various properties of the twisted cubic which
may be taken as defining properties. For some purposes it is
convenient to use one of these alternative definitions in place of the
algebraic definition with which we began, and we shall now discuss
the more important ones, establishing their equivalence with our
original definition. We are led in this way to generalize the defini-
tion of a twisted cubic slightly. The curve, as we have defined it,
is analogous to the plane curve (62,6, 1), i.e. the proper conic, and
we shall now refer to it as the proper twisted cubic, to distinguish
it from certain composite space curves which are also of order 3.
Among the possible kinds of degenerate twisted cubic are (i) a conic
together with a unisecant line, and (ii) two skew lines and a trans-
versal line which meets them both.

THEOREM 12. Every proper twisted cubic may be generated as the
locus of the point of intersection of corresponding plames of three
homographically related pencils; and conversely, the locus of the point
of intersection of corresponding planes of three related pencils is, in
general, a proper twisted cubic.
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Proof. (i) If c is a proper twisted cubic, ?,, l,, I, are any three
fixed chords, and P is a variable point of the curve, then, by
Theorem 3, I;(P) RX1,(P) Rlg(P). The twisted cubic is thus gene-
rated by three homographic pencils as required. :

(ii) Conversely, let three homographic pencils of planes be
given. By suitable choice of the base planes, the equations of the
planes of a general mutually corresponding triad may be written
in the form =;+4-An; = 0 (s = 1, 2, 3); and if we solve these three
equations for the ratios z,:x, : z,:z; we obtain a solution of the form

To:%y:25: 23 = fo(A): /1(A): o) : f5(A),
where the f;(A) are cubic polynomials in A.

Except in the special case in which these polynomials are linearly
dependent, the locus of the point of intersection of a general
corresponding triad is therefore a proper twisted cubic.

Remarks

(i) The axes of the generating pencils are chords of the twisted
cubic, for the homography cut on /;, say, by corresponding pairs of
planes belonging to the pencils with axes I, and I, has two united
points. .

(i) The equations which define the cubic may be written in the
form

M _ Ty __Tg,
o om
and since each of these ratios is equal to
0y Ty 0ty Ty 0tg g
oy 7+ oy mytag
for every choice of oy, a,, a5, Wwe are able at once to write down
equations for the full system of co? chords of the curve.

THEOREM 13. Every proper twisted cubic may be obtained as the
residual intersection of two proper quadrics which have a generator
i common; and conversely, every such residual intersection s a
twisted cubic (possibly composite).

Proof. (i) Thefirst half hasalready been proved, for it was shown
above that the proper twisted cubic ¢ is the residual intersection
of the quadrics @, and Q,, which have the common generator

xo = == xl.
(ii) Let ¢, and ¢, be two proper quadrics with a common gene-
rator g. Take a fixed generator ¢, of 4, and a fixed generator g,
of i, both skew to g. Then any plane , through g, meets , in a
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second generator g, and ¢, lies in a uniquely defined plane =
through g. This plane meets i, in g and a second generator g;,
and ¢} lies in a uniquely defined plane z, through g,. By Theorem 10
of Chapter XI there is a homographic relation (m;) /A (7) 7 (,)
between the three pencils of planes whose axes are g,, g, g,, and the
common point of any corresponding triad of planes is clearly a
point of both quadrics. If, conversely, P is any point which lies
on each of the quadrics, but not on g, there is a generator g} of ¢,
and also a generator g of i,, both of which pass through P, and
these generators determine a triad of corresponding planes =,
@, m, which meet in P.

Remarks

(i) Two quadrics intersect in a quartic curve, but even when they
are both proper this curve can break up in various ways (see
Chapter XIII). When the quadrics have a common generator the
quartic curve breaks up into this line and a residual curve of order 3,
and we find it convenient to regard every such residual intersection
of two proper quadrics as a twisted cubic. If the cubic is proper,
then, by what has already been proved above, the common gene-
rator is one of its chords. Various types of degenerate twisted
cubic are possible, the most important being those referred to on
p. 306. The reader should look carefully into the proof of Theorem
13 in order to see how these special cases arise.

(ii) If ¢ is a generator of a proper quadric ¢, every quadric
through g cuts ¢ residually in a twisted cubic; and in this way we
obtain the two families of twisted cubics on ¢, already referred to
on p. 281, The twisted cubics of the one family are (1, 2) curves,
having every u-generator as a unisecant and every v-generator as
a chord, while the twisted cubics of the other family are (2,1)
curves. This result is connected in an obvious way with Theorem 5,
on the generation of involutions on a proper twisted cubic.

Theorem 12 gives a generation of the twisted cubic by means of
three homographic pencils of planes. A second projective genera-

tion of the curve of a somewhat different kind is also possible, -

namely the generation by collinear stars. Two collinear stars (cf.
p. 254) have oo? pairs of corresponding rays, and although in
general two corresponding rays are skew, there are co! special pairs
which intersect. The co! points of intersection obtained in this way
are the points of a twisted cubic.
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THEOREM 14 (T'he star generation). Every proper twisted cubic
may be obtained as the incidence curve of intersecting pairs of corre-
sponding rays of two collinear stars; and conversely, the incidence
curve of intersecting pairs of corresponding rays of two collinear stars
18, 1n general, a twisted cubic.

Proof. Let ¢ be a twisted cubic, and 4, 4’ any two points on it;
and consider the correspondence between the planes =, 7’ which
join 4 and A’ to a variable chord P, P, of c. Let 4, A’ be taken as
the reference points X ;, X, in a canonical parametric representation
(63,6%0,1) of c. If 8,, 6, are the parameters of P, P,, the equations
of =, n’ are

2, —pry+gqr; =0 and z,—pz;tqr, = 0,
where p = 6,46, and ¢ = 6,0,; and clearly the relation between

7 and =’ is a collineation between the stars (4) and (4’). In this
collineation, corresponding rays are given by

z Ty Xy X
ATe-1 M Y=L T
since 7 passes through the first of these rays if and only if »’ passes
through the second. A necessary and sufficient condition for two
such corresponding rays to meet is u2 = A, and the rays then join
A and A’ to the point of ¢ whose parameter is u. Thus c is the
incidence locus of intersecting pairs of corresponding rays of the
collinear stars (4) and (4°).

Suppose, conversely, that we are given two collinear stars (4)
and (4’). Let m; = 0 (s = 1,2, 3) be the equations of three base
planes of the first star, and let #»; = 0 (z = 1, 2, 3) be the equations
of the corresponding planes of the second star. By replacing
)y, 7y, 73 by suitable fixed multiples of themselves, we can arrange
(cf. p. 317) that a general pair of corresponding rays is given by

ﬁ="_2=3 and "_'1_..;3'2:3;},
I m = I m =

If these rays meet, their point of intersection satisfies the equations

and these are, in general, the equations of a twisted cubic ¢ through
4 and A’. Since any point of ¢, other than 4 or 4’, defines a set of
ratios l:m:mn, it follows that c is the incidence locus of intersecting
pairs of corresponding rays of the collinear stars.
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Remark. It has appeared incidentally in the above proof that
when a twisted cubic ¢ is generated by collinear stars its full system
of 00? chords is generated simultaneously as the system of lines of
intersection of corresponding planes of the stars. This result will
prove useful later (p. 316).

The dual of the twisted cubic

As we have already mentioned on p. 268, the space-dual of a
curve is a developable, or envelope of co! planes. If the curve is a
plane curve, the dual developable is correspondingly special, being
in fact a cone, and this was the case that interested us in Chapter XI.
Now that we are concerned with the dual of the twisted cubic, it is
convenient to describe briefly the nature of developables in general.

A developable is said to be of class m if m of its planes pass
through a general point of space. Any two planes of the develop-
able meet in a line, which is called an axis of the developable,
and in the limiting case in which the two planes coincide, the line
is called a generating line or focal line of the developable. Three
planes of the developable meet in a point, and when they come to
coincide, the point is called a focal point. Thus the axes, focal lines,
and focal points of a developable are dual to the chords, tangent
lines, and osculating planes of a twisted curve.

The osculating planes of a twisted curve constitute a developable;
and dually, the focal points of a developable constitute a curve, the
cuspidal edge of the developable. It may be proved that every
twisted curve is the cuspidal edge of the developable formed by its
osculating planes.

The developable that is dual to the twisted cubic ¢ is the cubic
developable 8. It may be represented parametrically by cubic
polynomials; and by choosing the tetrahedron of reference suitably
we can reduce the representation to the canonical form

Uyt Up Uy Uy = 63:6%:0:1.

The developable 8 may be generated projectively as the envelope
of & plane which joins corresponding points of three homographi-
cally related ranges.

The important feature of the (proper) twisted cubic is, however,
not that it has a dual but that, like the proper conic in the plane,
it is self-dual; the osculating planes of a proper twisted cubic form a
cubic developable. This is an immediate consequence of the fact
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that the osculating plane of ¢ at the point (63,62 6,1) is the plane
(1, — 34, 362, —6°).

Polarity with respect to a twisted cubic

It was shown in Chapter V that every proper conic s defines
a polarity in the plane, i.e. & non-singular linear point-line trans-

formation u=Ax (JA]#0),

with & symmetric matrix. The line corresponding in this polarity
to any point P is the line which joins the points of contact of the
two tangents of s which pass through P. We have already seen
that these results may be extended in a natural way from the plane
to three-dimensional space by replacing the conic s by a proper
quadric ¢, and we may wonder whether any interesting results are
obtainable by using the other space-analogue of the conic, that is
to say the twisted cubic. This curve does in fact define a point—
plane transformation, but instead of being an ordinary polarity the
transformation is of the special kind known as a null polarity. A
null polarity (see p. 361) is a point—plane transformation given by

an equation x->u=Ax (|A|#0),

where the matrix A is skew-symmetric.
From this equation, we have

ufx = xTATx
= Qo Zat ...+ (Bgy+010)To 21+ ...
=0
gince ay = —ay (1,k=0,1,2,3).

Thus the null polarity has the property that the polar plane of a
point always passes through the point.

Let us now see how every (proper) twisted cubic defines a null
polarity.

THEOREM 15. If ¢ is a given twisted cubic, the correspondence
between a general point P of S, and the plane = which joins the points
of contact of the three osculating planes of ¢ which pass through P
18 a null polarity v. The polar plane of every point of ¢ in v is the
osculating plane at the point; and all the tangent lines of ¢ are self-
polar with respect to v.
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Proof. Let P be the point y. Then, if the osculating plane at (6)
passes through P,

Yo— 30y, -+ 30%,— 0%, = 0.

The parameters 6,, 6,, 6; of the points of contact of the three
osculating planes of ¢ that pass through P are the roots of this
cubic equation in #, and hence

6,+6,+0, = 22,

Ys’

8, 83-+646,--6, 0, — Y1,
3/3

0,0,6, — %;
The equation of the plane = is then
Zo— (0,+ 05+ O5), + (05 05+ 05 0,40, 0,)2,— 6, 8, 0,2, = O,
ie. Y3 To— Yo ¥y -+ 3y Ta— Yo &5 = 0.
Thus if P is the point (yy, %1, ¥s, ¥3), 7 is the plane
(¥ —3Y2: 3Y1, —Yo)s

and P and 7 therefore correspond in the null polarity » whose
matrix is

0 0 0 1\.
60 0 -3 0
0 3 0 0
-1 0 0.0

The polar plane of (6%,6%6,1) is (1, —30,36% —63), ie. the
osculating plane at ().

The lines of S; which are self-polar with respect to v form a linear
complex Z (cf. p. 372), the set of all lines I such that / lies in the
polar plane of any one of its points. Since every tangent line of ¢
lies in the osculating plane at its point of contact, it belongs to the
complex .# of self-polar lines.

In addition to setting up & null polarity v, which is a linear
(1,1) correspondence between the points and planes of 8, the
twisted cubic ¢ also sets up a correspondence between points and
points of S;. This correspondence is (1, 1) but not linear. Let P be a
general point of space, not lying on ¢. Then there is & unique chord
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AB of ¢ which passes through P, and a unique point P’ of this
chord which is harmonically conjugate to P with respect to 4
and B. We call two points P, P’, related in this manner, a pair of
harmonic points with respect to c.

P’ is, of course, the point which is conjugate to P with respect
to all the quadrics of the net defined by ¢, and it may be constructed
as the common point of the polar planes of P with respect to three
of these quadrics, say @;, @;, @s.

THEOREM 16. If P describes a line 1, its harmonic point P’ with
respect to ¢ describes a twisted cubic ¢’

Proof. As P describes lits polar planes with respect to @, @, Q3
generate three homographically related pencils, and their point of
intersection P’ therefore describes a twisted cubic ¢’.

Remarks
(i) The twisted cubic ¢’ meets the original twisted cubic ¢ in
four points, the points of contact of the four tangents of ¢ which
meet I. ‘
(ii) Theorem 16 reflects the non-linearity of the relation between
points which are harmonic with respect to c.

The twisted cubic in affine space

Although all proper twisted cubics are projectively equivalent
(see p. 296), it is not possible to transform every twisted cubic into
every other by an affine transformation. Just as, in the real affine
plane, we are able to classify conics as hyperbolas, parabolas, and
ellipses, so in much the same way we can devise an affine classifica-
tion of real twisted cubics. The distinctions which we make are
valid a fortiort in euclidean space.

A twisted cubic ¢ meets the plane at infinity « in three points
H, K, L, and either all three are real or one is real and two are con-
jugate complex. It is also possible for two or all three of the points
to coincide—when ¢ touches or osculates the plane at infinity.

Consider the case in which L is real while H and K are complex.
Then ¢ has one real asymptote ! and one real asymptotic plane A,
namely the tangent and osculating plane at L, and [ lies in A.
Since ¢ already meets A three times at L, it cannot meet it in any
finite point, and this means that it lies wholly on one side of its
asymptotic plane. It consists of a single branch, which approaches
the asymptote ! at each end. Any general plane through / meets
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the curve in a unique finite point; and, if the plane of the paper
is taken ag ), the appearance of the curve is as follows.

N\
| \/

If H, K, L are all real, the twisted cubic has three asymptotes,
each of which lies in an asymptotic plane. In this case the curve
consists of three branches which link the asymptotes together
(cf. the two branches of a hyperbola).

ExErcisE. Give a more detailed discussion of the above types of twisted
cubic, showing by means of sketches how the curve projects from any
point of itself into a conic. Discuss also the types of twisted cubic for which
H, K, L are not all distinct.

A very special kind of twisted cubic that is met with in euclidean
space is the rectangular twisted cubic, whose asymptotes are all real
and mutually orthogonal. This curve is analogous to the rectan-
gular hyperbola in the plane.

Suppose a twisted cubic ¢ in affine space is met by a system of
parallel planes. Each of the planes cuts the curve in three points,
and the triangles so formed have many remarkable properties. The
planes form a pencil whose axis is a line in the plane at infinity,
and by applying Theorem 16 to this line we see at once that the
mid-points of the sides of the triangles all lie on a second twisted cubic
¢’, and ¢’ meets c at the points of contact of the four tangents to c which
are parallel to the planes. The parallel planes also cut the new
twisted cubic ¢’ in triangles, and the mid-points of the sides of
these triangles lie on a third twisted cubic ¢”. Proceeding in this
way, we define a sequence of twisted cubics ¢, ¢, ¢”,...; and since
the triangles in each plane form a nest with a common centroid,
the cubics have as their limit & triple line which passes through
all the centroids. Thus the centroids of the triangles cut on c by the
system of parallel planes all lie on a line.t

Some enumerative problems

THEOREM 17. There i3 a unique twisted cubic that passes through
six general points of space.

Proof. Let four of the points be taken as vertices of the tetra-
hedron of reference. Then the equations of a twisted cubic ¢

1 Foranalgebraic proof of this result see Ex. 14 on p. 325; and see also Ex. 15
for other properties of the triangles.
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through them assume the form

X; = 0{(0—’0{)_1 (i = 0, 1, 2, 3).

Now suppose we apply the reciprocal transformation of space into
itself, i.e. the (1,1) transformation given by

1 .
= — = 0,1,2,3).
x; Z; (1’ y 4y & )
Then the twisted cubic ¢ is transformed into the line

(2=0,1,2,3).
i

In this way we obtain a (1, 1) correspondence between the twisted
cubics through X,, X,, X,, X, and the lines of space. But there
is a unique line through two points, and therefore a unique twisted
cubic passes through X,, X,, X,, X, and two general points.

Theorem 17 may also be proved quite easily from the other
definitions of the twisted cubic, for example from the definition by
three homographic pencils of planes or from the star generation.
Indeed we have a whole series of enumerative problems which can
be solved by using the star generation of the twisted cubic.

The twisted cubic is a space curve with twelve degrees of freedom.
The general twisted cubic may be represented, in terms of an
arbitrary coordinate system %, by equations of the form

3
pz; = 3 a, 3% (i=0,1,2,3).
k=0

There are sixteen coefficients a,;, but since p is arbitrary, and 6
admits of oo® transformations

¢ — de—*—ﬁ

y0+3 _

which leave the curve unaltered, only twelve of the coefficients
contribute to the freedom of the curve.

If the curve is required to pass through a fixed point of space,
the a;;, have to satisfy three independent linear conditions. These -
conditions, however, involve #; and when 6 is eliminated two
conditions on the a,; remain. Thus the condition of passing through
a fixed point is a double (non-linear) condition on the twisted cubic.

Having a fixed line as unisecant is a simple condition, since the
twisted cubic has merely to contain some one of a set of co* points;
but having a fixed line as chord is again a double condition. Suppose

(as_'ﬂy :7é 0)’
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we represent the composite condition of passing through « fixed
general points and having 8 fixed general lines as chords, where
a+p = 6, by the symbol P*CB. Then, corresponding to each
possible choice of « and B, we have an enumerative problem—to
find the number [ P*CF] of twisted cubics which satisfy the con-
dition P*CB. Theorem 17 has already given the result [P¢] = 1.

If the value of « is not less than two, we can take two of the given
points as vertices of generating stars and then make use of the star
generation of the twisted cubic. Instead of working directly with
the stars it is perhaps easier to define collineations between them
by the plane collineations = which they cut on a fixed plane .
Since an assigned point P gives a pair of corresponding rays of the
two stars, and an assigned chord C gives a pair of corresponding
planes (p. 310), the two conditions yield respectively & pair of
corresponding points and a pair of corresponding lines in ». Let
us now consider the separate cases which can arise.

Case 1: P®
- The required collineation = in = has four assigned pairs of
corresponding points, and is uniquely determined. Thus [P%] = 1,
as we have already seen.

Case 2: P5C

In this case, w has three assigned pairs of corresponding points,
which determine three pairs of corresponding lines, and one
assigned pair of corresponding lines. Once again, therefore, w is
: uniquely determined; and [ P5C] = 1.

Ao A \e_8 Case 3: P4C?
\ Here = has two assigned pairs of
a b corresponding points, say (4,4’),

(B, B’), and two assigned pairs of
corresponding lines, say (a,a’), (b,b’).
The problem is poristic. For let AB
meet @, b, in A, B,, and let A'B’
meet a’, b’ in Ay, By. Then, clearly,
no solution is possible unless

{Aq, By; A, B} = {44, By; A’, B'}.
If this condition is satisfied, the four conditions are no longer

independent, and there exists an infinity of solutions. Thus
[P4C?] = 0 or oo.
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Case 4; P3C? and Case 5: P2C*

The conditions to be satisfied by = are dual to those in cases
2 and 1 respectively, and therefore [ P3C3%] = [P204] = 1.

To sum up: the problems P¢, P5C, P3(C3, P2C*each have a unique
solution, while P*C? is poristic.

§ 2. CuBIC SURFACES

In addition to the quadric surface and the twisted cubic curve
we have now to introduce a third locus, the projectively generated
cubic surface, which must be accepted as yet another analogue for
space of the projectively generated conic. This surface, which we
shall denote for brevity by F, is defined as follows:

DEFINITION: F is the surface generated by the point of inter-
section of corresponding planes of three collinearly related stars.

Consider first of all a pair of stars with vertices 4 and A4’. If
m,, Ty, g are three linearly independent planes through 4 and
my, M, m are three independent planes through A4’, a general pair
of planes of the two stars is represented by the pair of equations
Amy+umytvry = 0 and X#y+u'my+v'my = 0; and for these two
planes to correspond in a collineation, X', ', " must be connected
with A, x, v by a fixed non-singular linear transformation. If we
now replace X', u’, v’ in the equation X'ny+pu'my+v'mg = 0 by their
expressions in terms of A, u, v we obtain an equation of the form
A7+ pFy+viy = 0, where 7, 7y, 75 are three fixed linearly inde-
pendent linear combinations of #y, 7y, m;. We may accordingly
take the planes #; = 0, 7, = 0, #3 = 0 as new base planes of the
second star; and when this is done, the equations of a general pair
of corresponding planes of the two stars may be written as

My +umytvry = 0 and  Amyt+umy+vmy = O.

Reverting now to the generation of the cubic surface ¥, we may
suppose that a general triad of corresponding planes of the three
related stars is given by

Amytpmytvmy = 0,
Amry+pmytvmy = 0, (1)
N v = 0.



)
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As A, u, v vary, the point of intersection of these three planes
describes the locus whose equation is

D = =0,

my Ty T3

m Ty T (2)
n ” 4
my Ty T3

and the equation of ¥ is therefore D = 0.

A cubic form in x,, 2,, ,, ; which is expressed, like D, as a deter-
minant of linear forms is said to be a determinantal cubic form. It
can be shown, though we do not prove it here, that any general
cubic form in z,, z,, x,, z; can be expressed, in infinitely many
ways, as a determinantal cubic form; and this implies that any
general cubic surface, given by the vanishing of such a form, can
be generated projectively in the manner defined above.

Consider, then, the surface represented by an equation of the
form (2). Since this equation is equivalent to the set of parametric
equations (1), the surface can be generated projectively. But unless
the three linear forms which make up any given row of D are linearly
independent, the projective relation between the planes given by
(1) will not have the general character that we have had in mind
so far. We shall nevertheless look upon equations (1) as furnishing
a projective generation of the surface as long as the three planes
given by a general set of values of A, u, v meet in a unique point.

Any one projective generation of F leads to an equation (2); and
from this equation we can pass to infinitely many other projective
generations of the same surface by replacing the rows and columns
of D by linear combinations of themselves and also by interchanging
the rows and the columns. This means that, subject to certain
restrictions, the vertices 4, 4’, 4" of a projective generation can be
chosen arbitrarily on F.

The plane representation of the cubic surface F

The projectively generated cubic surface is a rational surface—
i.e. it can be mapped birationally on a plane—and the plane
representation of the surface is of great value in the investigation
of its properties. We shall discuss this representation very briefly;
and what we say here may be compared with what has already been
said about Cremona transformations of the plane in Chapter IX
and about the projection of a quadric on to a plane in Chapter XI.
The quadric is a rational surface, and a birational mapping of this
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surface on a plane is very easily set up by means of the geometrical
procedure of projection from a vertex on the surface. Since the
cubic surface is of order 3, projection from an arbitrary point of the
surface would not yield a (1, 1) mapping, and in this case it is natural
to define a plane representation algebraically. .
Let us consider once again the surface F defined by equations (1).

Since my,..., 73 are linear forms in z,, ,, 2,, 2;, equations (1) may
be rewritten as

ZAthk 0 (t=1,23), (3)

where the ), are all linear forms in A, p, v. If the rank of the 3x 4
matrix (A,,) is 3, these equations may be solved for the ratios of
Zg, &1, T, T, in terms of A, p, v, and we have a solution of the form

Pxi ¢ p,v) (8 =0,..,3). (4)

The ¢,(A, u,v) are cubic forms in A, y, v, being in fact the 3x 3
determinants (with appropriate signs) formed from the matrix (),,).

If the values of A, u, v are such that not all the ¢, are zero, the triad
of parameters (A, u, v) gives rise to a unique point of F'; but if all the
¢, are zero, and (},,) is of rank 2, we have a simply infinite system
of corresponding points, making up a line which lies on F. It will
appear shortly that, for general choice of the coefficients in equa-
tions (1), there are six special triads (A, u, v), each of which gives rise
to a line on F. Thus F contains, in general, six lines yseeey Qg,
arising from triads of parameters (A, p,,v;) (¢ = 1,...,6) for which
the three related planes of the generating stars meet in a line instead
of a point.

If, now, P (x,, 2,, %,, 5) is an assigned point of F, the correspond-
ing values of the ratios A: ;v are given by the three linear equations
(1). Since the point P lies on F, the rank of this set of equations is
at most 2. If it is exactly 2, the ratios are uniquely determined,
but if it is 1 there will be an infinity of solutions. In the latter
case the requirement that the general plane shall pass through
the point P imposes the same condition on ), g, v in each star, and
this means that the three stars have a triad of concurrent corre-
sponding rays (AP, A’P, A"P). This, however, implies the exist-
ence of a special relation between the stars, and we can accordingly
say that in the case of three general related stars a point P of F
always corresponds to a unique parameter triad (, w,v).

We now obtain the plane representation of F, for which we are
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looking, by taking (A, u,v) as allowable coordinates of a variable
point of a plane . We have thus the following theorem:

THEOREM 18. The poinis P of a general projectively generated
cubic surface F can be mapped on the poinis P’ of a plane m in such
a way that the correspondence between P and P’ is (1,1) in general,
and s expressible algebraically in terms of polynomials.

For general choice of the related stars which generate F there are
six fundamental points A4,,...,4¢ in =, to which correspond ex-
ceptionally six lines a,,..., @g on F; but every point of ¥ corresponds
to a unique point of 7. The exceptional lines a,,...,a; on F are of
necessity skew to one another, for if two of them, say a, and a,,
were to meet, the point @,a, on F would correspond to both 4,
and 4, in =.

We have still to prove that the number of fundamental points in
7 is six, and this is easily done by considering the representation
in 7 of the plane sections of F. Since every point P of F is mapped
by a point P’ of 7, a curve C drawn on F must have as its image a
curve (' in 7. If C is the plane cubic cut on F by the plane

3
igo'u»,i x,i == 0,
the coordinates (A, p, v) of every point of C’ must satisfy the equation
3
D Eigoui d(A,p,v) = 0.

Thus €' is a plane cubic. If, now, we take two plane sections C;, C,
of F they meet in three points, namely the points of intersection
of the common line of the two planes with the cubic surface F.
The corresponding curves C;, C; then also meet in three free points
(i.e. points distinct from base points, common to all curves ® = 0
in 7); and since two plane cubics have nine points in common, the
system of ®-curves must have six fundamental points 4,,..., 4,.
We may say, therefore, that in the representation of points of F by
“poinis of m, the oo® plane sections of F are represented by the oo®
cubic curves through the six fundamental points A,,...,Aq of the
representation. ,

Two ®-curves C}, C; meet, as we have seen, in the points 4,,..., 44

and also in three free points P}, Py, Pj, corresponding to the three -
points P,, P,, P, in which the line of intersection of the planes of .

C, and C, meets F. Now any plane in space which passes through
two of the collinear points P,, P,, P; must also pass through the
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third, and therefore any ®-curve through two of the points P}, P,
P, passes also through the third. We say that Pj, P;, P; form with
A,,..., Aq a set of nine associated points, the base points of a pencil
of plane cubics. Thus the three points of intersection of F with a line
are represented by a triad of points forming with A,,...,Ag a set of
nine associated points in . ‘

From the parametric equations (4), by taking 4, to be one of
the reference points in 7 the reader will readily verify the following
result (cf. p. 279): The oo! points P’ infinitely near to a base point
A, (i.e. the directions through A,;) correspond to the individual points
P of the corresponding line a; on F. Thus the curves on F that are .
represented in - by two given curves through 4, meet a,in the same
point if and only if the tangents (or branch tangents) at A, coincide.

Curves on the surface F :

We now indicate very briefly how the plane representation of ¥
can be made to reveal the whole structure of systems of curves on F,
just as in the previous chapter the plane representation of the
quadric surface yielded corresponding information about curves
on that surface.

If C is any curve on F, which we suppose to be represented by
a curve C’ in 7, the order N of C (i.e. the number of points in which

"it is met by a general plane or, what comes to the same thing, by a
general plane section of F) is equal to the number of free inter-
sections (not at A4,,...,4,) of C' with a general ®-curve. Thus if
O’ is a curve O'™(A%,..., A%) of order m, with multiplicities k,,..., kg
at 4,,..., Ag, then N = 3m—k,—...—ks. If we wish, in particular,
to find all the lines on F', other than those of the set a,,..., g which
are represented in = by the neighbourhoods of 4,,..., 44, we must
put N = 1 in this relation. For the curves in = which represent
lines on F we then bave 3m—Fk,—...—ks = 1. This Diophantine
equation yields the following solutions of the problem: fifteen lines
cy; of F, represented in = by the lines 4;4;; and six lines b;, repre-
sented by conics through five of the six points 4,,..., 4¢. We thus
have the well-known result: '

THEOREM 19. The general projectively generated cubic surface F
contains in all twenty-seven lines. Of these, six are represented by the
neighbourhoods of the fundamental points A,,..., A, fifteen by the
lines joining pairs of these points, and siz by conics through sets
of five of the six points.

8304 Y
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The reader may now investigate for himself, by means of the
Plane representation of F, the incidence relations of these twenty-
seven lines. A full discussion of this subject is to be found in
Baker, Principles of Geometry, volume iii, chapter iv.

We mention, in conclusion, a few more results concerning curves
on F that may be obtained in a similar way. Any conic on the
surface lies in a plane through one of the twenty-seven lines. If
we take N = 3, we find that (the plane sections being excluded
from consideration) F possesses no fewer than 72 exactly similar
doubly infinite families of twisted cubics, represented in = by
various systems of curves of degrees 1, 2, 3, 4, and 5. A typical one
of these systems in 7 consists of all the lines of 7; and it may be noted
that any two of the corresponding twisted cubics meet in & unique
point.

Any quadric section of F is represented in 7 by a curve

- C%(4i,..., 43);

and, more generally, any section of F by a surface of order n is
represented by a curve C3*(A4%,..., A?).

Other cubic surfaces

F was defined at the beginning of this section as a surface that is
generated by three collinear stars, but we can now see that, quite
independently of the idea of projective generation, any set of
parametric equations of the form (4), in which the ¢,(A, u, v) are four
linearly independent cubic forms which vanish at six assigned
points 4,,..., 4, of  define, in general, a cubic surface F'; and by
imposing special conditions on the points 4, we can obtain various
special types of cubic surface. In particular, F can be made in this
way to acquire 1, 2, 3, or 4 nodes. ‘

Thus, for example, if we take the points 4, to lie at the vertices
of a complete quadrilateral, then F is a four-nodal cubic surface,
whose explicit equation may readily be obtained from the para-
metric representation in the form

Ty Ty Tyt T3 To+T3 Ko 21+ 20 %1 Ty = 0,
the reference points being the nodes. In this case all the points
of any side of the quadrilateral represent (exceptionally) the same
node of F'.

It should be added, however, that there is another totally
different type of cubic surface, namely the cubic ruled surface or
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cubic scroll, which is more naturally approached in other ways.
The simplest definition of the general cubic scroll is as the surface
generated by a line which joins corresponding points of two ranges,
in (1, 2) algebraic correspondence, whose axes are skew lines. Its
equation may be reduced to the simple form zy 23—z, 23 = 0;
and it admits of a general parametric representation

Loy :%p: 25 = So(A, 1, v): (A, 1, v) : So(A, 1, v) : S(A, p, ),
where the equations S;(A,u,v) = 0 are those of four linearly
independent conics through a common point in = (cf. Exercise 22
below). One of the two skew lines, namely X, X, is a double line
on the surface. '

We shall encounter, in the next chapter especially, important
examples of the natural intrusion of projectively generated cubic
surfaces into the general structure of projective geometry, side

by side with the quadric and the twisted cubic.

For a fuller discussion of cubic surfaces and their properties the
reader should turn to the following more advanced works—Reye,
Geometrie der Lage; Baker, Principles of Geometry, volume iii;
Todd, Projective and Analytical Geometry; Semple and Roth,
Introduction to Algebraic Geometry. -

~~ EXERCISES ON CHAPTER XII

LA twisted cubic curve has parametric equations

ziy:z:t=0:0:0+1:6—1.

Find the equation of the plane through the points whose parameters are
0., 6,, 8,, and deduce that the osculating plane at the point (6) has equation
60z — 68y - (1—6°)24-(1+6%) = 0.

Show that the linex = 0 = y is a chord and theline z = 0 = ¢ is the line of
intersection of two osculating planes, and prove that the curve projects
from the reference point 7' into the plane cubic 3+ y® = zyz in the reference

plane XY Z. »

Find all the quadries which pass through the curve, and select from among
them the two cones whose vertices are on ZT'.

2. Find paramefric equations for the unique twisted cubic which
passes through the four reference points, the point (a, b, ¢, d), and the point
(o, b, ¢, d’).

Find the condition for the pairs of reference points (X,Y) and (Z, T) to
separate each other harmonically on the curve.

3. AB’CA’BC’ is a skew hexagon inscribed in a twisted cubic ¢, and
1, s, g are the three quadrics through ¢ which contain the pairs of opposite
edges (BC’, B’C), (CA’, C’A), (AB’, A’ B) respectively. Prove that i, s, i
have a common generator, and that this line is'a chord of c.
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4. Prove that the four tangents of a twisted cubic ¢ which meet a general

line p also meet the polar line p’ of p, i.e. the axis of the pencil of polar planes
“of points of p in the null polarity defined by c.

If the twisted cubic is ¢ (63, 62,0, 1), and p meets the tangents XY and ZT'
in the points (1, A, 0, 0) and (0, 0, u, 1) respectively, prove that the parameters
of the two remaining points of ¢ at which the tangents meet p are the roots
of the equation 2A02— (3Ax+1)0+2u = 0.

Deduce that a line is self-polar for ¢ if and only if the pointsof contact
of the four tangents which meet it form an equianharmonic tetrad on c.

5. Prove that the points (x,¥,2,t) and (2/,y’,2,t’) are conjugate with
respect to the cubic ¢ (82, 82,0, 1)—i.e. that each lies in the polar plane of the
other—if and only if t'— 2t = 3(yz’—y’2). If two points satisfy this con-
dition, show that the line which joins them is self-polar for ¢, any two of its
points being conjugate to each other.

Show that the only self-polar chords of the curve are the tangents, and the

- only self-polar unisecants are those which lie in osculating planes.

6. Two twisted cubics ¢, ¢’ are given parametrically by the matrix equa-
tions X = A6, x = B6, where A, B are non-singular 4 X 4 matrices and
0 is the 4 X 1 matrix whose elements are (6%,0%2,0,1). If S is the matrix

0 0 01
0 0 -3 0
0o 3 0 o0

-1 0 0 0o

and C=B-!A, prove that ¢ and ¢’ define the same null polarity if and only if

) CTSC =pS,
where p is & scalar.

7. On a twisted cubic ¢, let the pairs (P, P’) of an involution be cut by one
system of generators of a quadric ¢, and let @, Q' be the points in which the
other generators of i through P and P’ meet a fixed general plane 77. Show
that (i) the lines Q@' all pass through a fixed point R, and (ii) when 7 turns
‘about a given line 7, the locus of R is a line which meets the two lines PP’
which meet 1.

8. Find the equation of the quadric through the tangents to ¢ (83, 8%, 6, 1)
at the points whose parameters are 0, 1, co.

Hence, or by using the results of Exercise 4, prove that four tangents
to a twisted cubic have only one transversal if their points of contact form
an equianharmonic tetrad on the curve.

9. Find the equation of the quadric i through the twisted cubic ¢

(03’ 02; os l)

which contains the tangents t0 ¢ at the reference points X and T'.

Show that (i) the osculating planes of ¢ at X and T are the tangent planes
to i at these points; (ii) if 77 is the osculating plane of ¢ at a variable point P,
the locus of the pole Q of = with respect toy is another twisted cubic ¢’ through
X and T'; (iii) the tangent plane to ¥ at P is the osculating plane of ¢’ at Q.
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10. Show that the plane-equation of any quadric which touches all

the osculating planes of the twisted cubic ¢ (62, 62,0, 1) is of the form
) A(v2— 3uwu)+ 2u(vw— Yup) +v(w?— 3vp) = O.

Show that the quadrics of this system which also touch a general plane =
do so at the points of a line g, and that any two of them meet in g and a
twisted cubic k.

Find the equations of g and k when 7 is the plane = = ¢ and the two
quadrics touch 7 at points in the planes y 42z = 0 and y—z = Orespectively.

11. A twisted cubic ¢ and two of its tangents a, b are given, and a trans-
versal p of @ and b varies in such a way that the two remaining tangents
to ¢ which meet it are coincident. If p does not meet ¢, prove that it lieson a
certain fixed quadric through e and b.

12, If p, g are chords and A4, B, C, D are points of a twisted cubic ¢, prove
that p(4, B, C,D) X q(4, B, C, D). Explain how the result is to be inter-
preted when p or g passes through one of the four points 4, B, C, D, and also
when p or ¢ is a tangent to c.

A skew quadrilateral is formed by a chord UV of ¢, the tangents to c at U
and V, and the line of intersection of the osculating planes at these points.
If I, m are the diagonals of the quadrilateral, prove that every chord of ¢
which meets ! also meets m, and that its points of intersection with these
lines are separated harmonically by its end-points on c.

13. Show that any plane cubic curve with a double point can be regarded
as the projection of a twisted cubic, and deduce that it has three points of
inflexion, which are collinear.

Prove that the node and the line of collinearity of the three points of
inflexion are harmonic pole and polar with respect to the triangle formed by
the three inflexional tangents.

[Hint. Represent the plane cubic parametrically by writing its equation
in the form zyz—uy(x,y) = 0, where uy(z,y) is a cubic polynomial, and
putting y = 6z.]

14. A twisted cubic ¢ in affine space passes through the origin of coordi-
nates O and has asymptotes parallel to the axes 0X, OY, OZ. Show that
it has parametric equations of the form X = af/(0—a), ¥ = b0/(6—p),
Z = ¢0/(6—7), and find the equations of its asymptotes.

Prove that the plane uX +vY +wZ = p meets c and its asymptotes in two
triads of points with the same centroid (X,,Y;, Z,), given by

3uX, = p-+(auf+bow)/(B—a)+(auy-+owa)/(y—a)
and two similar equations; and deduce that the locus of c«_ani;roids of triads
of points cut on ¢ by a system of parallel planes is a straight line.

15. A system of parallel planes cuts a system of triangles on a given twisted
cubic. Prove that the circumcentres of the triangles lie on a line and the
orthocentres lie on another line. Deduce that the locus of centroids is also
a line.

16. Show that if there exists one triad of mutually perpendicular chords
QP, 0Q, OR of a twisted cubic ¢, then there exists an infinity of such triads
through O. Prove that, when this is the case, all the planes PQR meet the
normal plane of ¢ at O in the same fixed line.
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17. A twisted cubic ¢ passes through the vertices of a tetrahedron 4 BCD
which is self-polar for a quadric . Prove that every point of ¢ is one vertex
of a tetrahedron inscribed in ¢ and self-polar for .

If P, Q are any two points of a twisted cubic ¢ which has three perpen-
dicular asymptotes, and X, Y, Z are the points of intersection of ¢ with a
plane perpendicular to P@), prove that each of the tetrahedra PXY Z and
QXY Z has three pairs of opposite edges at right angles.

18. Show that a rectangular twisted cubic ¢ (one with three mutually
perpendicular asymptotes) contains an infinity of sets of six points such that
the plane of any three points of a set is perpendicular to the plane of the
other three. [Hint. Take a general quadric @ which meets ¢ in a conic
outpolar for Q, and consider the six points in which it meets ¢. A plane-pair
which contains these six points is a quadric of the system

AL QA QA Q+AQ = 0,

and it therefore meets : in a conic outpolar for Q.]
19. Verify that the (non-singular) cubic surface whose equation is
Zo y(To+1) = Ty ¥5(a+23)
possesses the parametric representation
To @ @y 1%y 1 Ty = (2P —ay) : Y(@P—y2) 1 2(yP—22)  y(2P—wy),
and that the plane sections of the surface are represented in the (z,y,2)
plane by cubic curves through the three vertices of the triangle of reference
and the three points (1, 1, 1), (1, w, w?), (1, w? w), where w is a complex cube
root of unity.

20. By resolving the left-hand side of the equation 234 y3-284¢% = 0
into & sum of products of linear factors in three different ways, obtain the
equations of the twenty-seven lines on the cubic surface which the equation
represents,

21. Show that the four-nodal cubic surface 1/zg+1/2;+1/z;+1/2, = 0
can be transformed into & plane by the reciprocal transformation, and hence
obtain its plane parametric representation.

Show that the surface contains nine lines, of which six are the joins of the
nodes, while the remaining three form a triangle.

22. Show that the cubic scroll whose equation is x, 43 = x, 3 has the plane
representation x,:,:2,:2, = y?:z%:2x:xy, and find the representation in the
(x,y,2) plane of (a) the generating lines of the surface, and (b) the double
line and the simple line on the surface which are met by all the generators.



CHAPTER XIII

LINEAR SYSTEMS OF QUADRICS

THE theory of linear systems of quadrics, as we might expect, is
very similar to the corresponding theory for conics but more com-
plicated. In this chapter we shall present the theory in outline
only, introducing the main ideas but not going into detailed dis-
cussion of all possible special cases. We deal first with the two
oco! gystems, the pencil of loci and the range of envelopes, and then
we say something about the co?linear system, or net, of quadric loci.

§1. PENCILS OF QUADRICS

Let 8, §’ be two linearly independent quadratic forms in z,, z;,
" #,, ¥3. Then the equations S = 0, 8’ = 0 represent two quadric
loci ¢, ', and for every value of A the equation S+AS’ = 0 repre-
sents a quadric ¢, which passes through all the common points of
¢ and ¢’. Such a system of co! quadrics is called a pencil, and it
has the property that there is a unique quadric of the system
through any given point which is not common to ¢ and ¢'.
~ The points which are common to all quadrics of the pencil are
simply the points which make up the curve of intersection of ¢
and ¢, and this curve is referred to as the base curve of the pencil.
Since ¢ and ¢’ each meet a given general plane in a conie, and two
conics have four points in common, the base curve is met by a
general plane in four points, i.e. it is & quartic curve C4. We do
not assert that this quartic curve is proper, and it will soon appear
that it can break up, even in cases which are by no means trivial.
The quadrics ¢ and ' might, for instance, be two proper quadrics
with four generators in common, and then C* would be a skew quad-
rilateral. We do, however, wish to exclude trivial cases—for
example the one which arises when ¢ and ¢’ are plane-pairs with
one plane in common.

A general plane w, then, cuts the base curve C*in four points, and
it therefore cuts every quadric of the pencil in a conic through these
four points. In other words, a pencil of quadrics is cut by a general
plane in a pencil of conics.

For the quadric i, to be degenerate, A must be a root of the quartic
equation |[A+AA’| = 0. If the four roots are distinct, we say that
the pencil is general, and for the present we shall confine our
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attention to such pencils. A general pencil, then, contains precisely
four cones «; (¢ = 1,...,4) with vertices ¥}, say. If i # j, the points
V., V; are conjugate for both «; and «;, i.e. for two quadrics of the
- pencil, and therefore for every quadric of the pencil. Thus the
four points V¥, are such that each is conjugate to all the others, and.
the polar plane of each, for every quadric of the pencil, is the plane
of the other three. It follows that the four points are not coplanar;
for, if they were, their plane would touch every quadric i, at the
four points ¥;. Thus the points V; are the vertices of a proper tetra-
hedron, self-polar for every quadric of the pencil.

ExERcIsE. Prove directly that the four points ¥; are linearly independent.
[Hint. The original quadrics i, ' may be taken to be proper quadrics, and
the equation (A—AA’)X = 0 is then equivalent to A’“!Ax = Ax. Now
apply the algebraic theorem given in Chapter XIV, Exercise 16.]

By taking V, V,V; ¥, as tetrahedron of reference and choosing the
unit point suitably, we can reduce the equation of the general
pencil to the form

(@ +N)z§+(ay+Nat+-(ay+ NG+ (a5-+A)af = 0.
The values of A which correspond to the four cones are —a,, —a,,
—a,, —a,, and the four numbers a, are therefore all different. It
is at once apparent from the above equation that the vertices of the
four cones are the vertices of a common self-polar tetrahedron;
and we see further that the common self-polar tetrahedron of a
general pencil is unique.

The pencil of conics in which the plane z, = 0 is cut by the
quadrics ) is given by '

zy = 0 = (a,+A)z}+ (31223 + (a5--2)73,
and the base points of this pencil are accordingly the four points
{0, J(a;—as), +4/(a5—ay), +4/(a;—a,)}.
In this way we obtain the coordinates of the sixteen points in which
the base curve C4 cuts the faces of the tetrahedron of reference.
Many other properties of C* are equally easy to derive, and we now
give a few examples.

(i) At each of its points, C* has a well-defined tangent line, the
axis of the pencil of tangent planes to the quadrics i, at this point.
If the point is (¥4, ¥y, ¥s, ¥s3), the equations of the tangent line may
be written 3 3

zoai Yom; =0 =~;§oy‘ %
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(ii) Any tangent plane to a quadric , at & point of C* clearly
touches C4. If, now, ¢, is one of the four cones «;, any tangent plane
to «; touches «; all along a generator. But the generator meets C*
in two points (since the plane determined by any two generators
has four points in common with C*) and the corresponding tangent
plane to x; must touch C* at each of these points. Thus C* has four
Sfamilies of oot bitangent planes. This may also be inferred from the
fact that a tangent plane to x; cuts the quadrics ¢, in a pencil of
conics containing a repeated lme i.e. a double-contact pencﬂ of
conics.

(iii) Since C* has the equa.tions

Zuixz =0= Zx.l,
=0

we see that if (y,, ¥y, ¥, ¥s) lies on C* then the eight points
(Yo» Y1, Y2 +Y3)

all lie on C%. This means that C*is invariant with respect to the
group of eight collineations
| To__ % _ T _ T
zy £ tw, Lty

a group comprising the identical collineation e, four harmonic
homologies, and three harmonic biaxial collineations (cf. p. 350).

(iv) Suppose I is a chord of C%, meeting the curve in 4 and B.
If P is a general point of /, there is a unique value of A for which
passes through P, and there is therefore a unique quadric i) of the
pencil which has ! as a generator. Conversely, provided C* is a
proper quartic curve, any generator of a quadric of the pencil is a
chord of C%. For the plane of a pair of generators of , cuts C*in
four points; and unless these points lie two on each generator, one
generator cuts C* in three points and therefore lies wholly on every
quadric of the pencil—which contradicts the hypothesis that the
base curve C* does not break up. We see then that the chords of
C* are the generators of the quadrics 4. It follows immediately
that C* has two chords through a general point of space, namely the
two generators of the unique quadnc ¥, that passes through the

point.

General properties of a pencil of quadrics
We now leave the base curve 4, and pass on to the consideration
of the pencil of quadrics itself. We have first of all four theorems
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which are obvious generalizations of the corresponding theorems
of Chapter VII.

THEOREM 1 (Desargues’s Theorem). A general line of space 18 met
by the quadrics of a pencil in pairs of points in involution.

The proof is formally the same as that of Theorem 1 of Chapter
VII. We have also the corollary that there are two quadrics of a
pencil which touch a given line, their points of contact being the
united points of the Desargues involution.

Since, further, the quadrics cut a general plane in the conics of
a pencil, there are three of the quadrics which touch a given plane.
Their points of contact are the vertices of the three line-pairs of
the pencil of conics.

THEOREM 2. The polar planes of a fixed point P with respect ta
the quadrics of a pencil all pass through a fixed line 9p.

This theorem is an immediate consequence of the linearity in
the parameter A of the equation S48’ = 0.

The lines #» corresponding to the different points P of space are
called the axes of the pencil. Since there are oo* lines of space but
only o0® points, not every line is an axis of a given pencil.}

THEOREM 3. Ifl i3 a fixed line, the polar lines I of I with respect
to the quadrics i and the axes 9p of the different points P of I form the
two systems of generators of a quadric ¢, and this quadric passes
through the vertices of the cones of the pencil ().

Proof. Take two points 4, B arbitrarily on!. Then the equa.txons

of their polar planes with respect to ) may be written

ay = a+Aa’ = 0, B = B+AB = 0;

and, as X varies, the two planes describe homographic pencils with
axes d4, ¥. Their line of intersection I, therefore describes a
regulus, and the axes &,, &5 belong to the complementary regulus.
Since the polar line of 7 with respect to the cone «, passes through
the vertex ¥, of this cone, the quadric ¢, which contains the two
reguli passes through the four points V.

Exzrrcise. Show that an exceptional case occurs when ! is itself an axis
Op,» and that in this case ¢;is a cone with vertex F,.

THEOREM 4. The poles of a fixed plane = with respect to the quadrics
of a pencil all lie on a fixed twisted cubic, which passes through the
vertices of the four cones.

1 The system of co® axes is a tetrahedral complex-—see p. 374,
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Proof. Take three points 4, B, C arbitrarily in . Then the pole
of 7 for ¢ is the common point of the polar planes of 4, B, C,
and as X varies these polar planes describe homographic pencils
with axes &#,,35,%c. The locus of poles is therefore a twisted cubie
curve; and since the pole of 7 for «; is ¥}, this cubic contains the four
points V. '

COROLLARY. The oo? axes #p of the points P of = are the oo?
chords of the twisted cubic.

'Special types of pencil

So far we have had in mind primarily the general pencil. When
the roots of the quartic equation |A4)A’| = 0 are not aH distinct,
the pencil is said to be special; and there are many special types of
pencil, corresponding to different modes of coincidence of the
roots. We do not propose to examine all these types,} and shall
confine our attention to the ones which are of particular geometrical -
interest.

We shall also leave the reader to look into thegaodifications
that have to be made in the preceding general theory when the
pencil concerned is of one of the special types.

Type 1: The simple-contact pencil :

Suppose  and ' touch at a single point A. Any general plane
through 4 then cuts i and ¢’ in eonics which touch at A and have
two further points of intersection. The plane therefore meets C4
in A (twice) and in two other points; and this means that 4 is a
double point of C4.

If we take A as X, and three other points of C* as X,, X,, X,,
then ¢ and ¢’ both circumscribe the tetrahedron of reference. Since
they have the same tangent plane at X, their equations may be
written as

8 = 532, g+ 051 T3 %1+ 0102, Ty +20(Py %1+ Py ¥ +-P3 %) = O
and
8’ = a5y 2, T3+l B3 7, 025 T T+ 7Py %1+ Py %+ D3 T) = 0.
Thus
8—8" = (@y3—3)%, T3+ (@31 — 5, )3 7, + (01— 01,)2, Ty,
and the pencil contains a cone x, with vertex X, i.e. A. If we now
T For an exhaustive classification see Todd, Projective and Analytical Geomelry.
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take this cone in place of the quadric y' and change the unit point
suitably, we can put the equation of the pencil in the form
(@g5+A)Ty X5+ (@5 +-A)3 2, + (31, +A)2, 25+
gy Xy Ty By Xy T+ A3 Ty 23 = 0.
The condition for degeneracy is now
0 Qg Ay, Ggs | = 0.

a0 ap+d ay+A

Gz GptA 0 aytA

Gy B3+ ag+A 0
This is a quartic equation in A with apparent degree 2, and it
therefore has co as a double root. In other words, the cone with
vertex A counts twice in the set of four cones of the pencil. The
pencil has no common self-polar tetrahedron.

If the quadrics ¢ and ' which define a pencil () have two
distinet points of contact 4, B, the base curve C* must have each
of these points as a double point. It follows at once that C* breaks
up in some way; for if P is any point of C%, other than 4 and B,
the plane A BP cuts the quartic curve in five points and therefore
contains a whole component of it. If this component is a conic, the
residual component is also a conic; while if it is a line, the residual
component is a twisted cubic, proper or degenerate. We shall
consider first of all the case in which C* consists of two proper
conics, lying in different planes but meeting in two points 4, B.
Such pencils do in fact exist, for we can obtain one by taking an
arbitrary quadric for i and a plane-pair for ¢'. Since the tangent
lines at 4 and B to both conics touch every quadric of the pencil,
all the quadrics have a common tangent plane at 4 and also at B,
i.e. they have double contact. We have, then:

Type 2: The double-contact pencil whose base s a pair of conics
By taking A, B as X,, X,, the poles of A B for the two conics as
Xy, X3, and a suitable point £ as unit point, we can put the equa-
tions of the two conics in the forms
23—z 2, = 0=z, and 2}—2z,2,=0=g2x,
respectively. A general quadric through these two curves then
has an equation which may be expressed indifferently in the two

forms Te—2, Tyt 2g(ag Xt oy Byt 0y 2y a3 23) = 0

and 23— Ty 2o(Bo Xo+Pr ¥1+Ba %y B3 3) = 0,
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and the equation may therefore be written

23t ai—x, 2+ 2Mxg 25 = 0.

The discriminant 6f the quadratic form is 1(A2>—1), and the de-
generate quadrics of the pencil are accordingly given by A = —1,
A =1, and A = oo (twice). They are the two proper cones

(Xg—x3)2—2,2, = 0 and (xg+25)*—2,2, = 0,

and the plane-pair z,z; = 0 (the pair of planes of the conics) which
counts twice. The vertices of the cones are clearly the points
(1,0,0,1) and (1,0,0, —1), and they lie on X,X; and separate
X, X35 harmonically.

For any non-zero value of the arbitrary constant %, the equation »
of the general quadric of the pencil can be written in the form

(LX) (@o-2a)- (1—A)(o—2a) — o {2+t (2 — ki) = O.

Thus the tetrahedron formed by the four planes z,+z; = 0,
z,+kz, = 0is & common self-polar tetrahedron for all the quadrics
of the pencil. The pencil possesses therefore co! such common self-
polar tetrahedra, each of which has the vertices of the two cones
as two of its vertices, while the remaining two are any pair of points
of the chord of contact which separate 4, B harmonically.

Now suppose we begin with an arbitrary pair of conics k,, k,,
lying in different planes but having two points 4, B in common.
We can make a quadric contain both conics by making it pass
through 4 and B and three further points of each conic—eight
points in all. The quadrics through %, and %, thus form a pencil of
type 2, and so we have the theorem:

THEOREM 5. If two conics in space meet in two poinis, then there
exist two other points from each of which they are in perspective.



334 LINEAR SYSTEMS OF QUADRICS XIIT, § 1

Type 3: The double-contact pencil whose base is a twisted cubic and
one of its chords
As we saw on p. 332, two quadrics which touch at 4 and B may
have as their curve of intersection the line 4B together with a
twisted cubic through 4 and B. That this case can actually arise
has been shown in the previous chapter (p. 307) and it is clear that
the equation of the corresponding pencil may be expressed in the

form Q,+2Q; = 2} —2( T, +-A(2—2, 7) = 0.
The condition for degeneracy gives A = 0 (twice) and A = o

(twice). The pencil therefore has two cones—the quadrics @, and
@;—each of which is to be counted twice.

Type 4: The pencil with a base quadrilateral

If the twisted cubic breaks up into three lines, we obtain & still
more special pencil whose base is a skew quadrilateral. Such a
pencil is the system of all quadrics with two given common u-
generators and two given common v-generators. Its equation may
be written (cf. p. 275)

TgXg— AL, Ty = 0;

and the degenerate members are the plane-pairs xg = 0, 2; = 0
and z, = 0, z, = 0, each counted twice.

Type 5: The ring-contact pencil

Another way in which the curve C* can degenerate is by becoming
a repeated conic k, lying in a plane =, say. In this case, if § = 0is
the equation of any one quadric of the pencil, the equation of a
general member can be written

S+4-An? = 0.

The quadrics all touch at every point of k£, and we say that they
have ring contact along k. If P, is the pole of = for 8, it is conjugate
to every point of 7 for two quadrics of the pencil, namely S and 2,
and therefore for every quadric. If P, P, P, is any triangle self-polar
for k, then P, P, P, P, is clearly a common self-polar tetrahedron for
the pencil, which accordingly possesses co® common self-polar
tetrahedra. If such a tetrahedron is taken as tetrahedron of
reference, the equation of the pencil may be written in the form

| M+ad+ai+ad = 0,
and it follows that the degenerate quadrics are the repeated plane
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n%, counted three times, and the proper cone 23423+ = 0. This
cone is, of course, the enveloping cone of the system.

§.2. RANGES OF QUADRICS
Two distinct quadric envelopes s and ¢/, represented by equa-
tions Z = 0 and X’ = 0, determine an co! linear system of quadric
envelopes, or range of quadrics, the system of all quadrics having a
“plane-equation of the form

ZHAY = 0.

From a general point of space, enveloping cones can be drawn to
i and ¢, and these cones have four common tangent planes. Since
yand §’ are both systems of co? tangent planes, they have co! planes
in common, and these common planes form a developable 8¢ of
class 4, the base developable of the range. The range of quadrics
is, of course, the space-dual of the pencil, and the developable 4
is dual to the base quartic curve C* of the pencil.

A range of quadrics has four degenerate members, in general
four distinct disk quadrics; but in particular cases either one or
two of these disk quadrics may degenerate further, and it then
counts multiply in the set of four degenerate quadrics.

We say that a range is general when the four degenerate quadrics
are all distinct. The planes of the four disk quadrics then form a
proper tetrahedron, which is self-polar for every quadric of the
~ range.

The general properties of ranges of quadrics may be written down
by dualizing the corresponding properties of pencils, and we shall
confine ourselves to a brief summary of the results.

First of all, Desargues’s Theorem states that the pairs of tangent
planes from a given line to the quadrics of a range all belong to an
involution pencil of planes. And with this we may couple the result
that the enveloping cones drawn from a given point P to the
quadrics of a range form a range of cones (in the star with vertex P).

The poles of a fixed plane » with respect to the quadrics of a
range all lie on a line 3,, called an azis of the range.

The polar lines of a fixed line ! form a regulus; and the axes of ,
the planes through ! make up the complementary regulus,

Finally, the polar planes of a fixed point P all belong to a cubic
developable, which contains the planes of the four disk quadrics
of the range. ‘
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Special ranges

Each of the special types of pencil considered above gives rise,
by duality, to a correspondingly special type of range. The pencil
with a base quadrilateral (type 4) and the ring-contact pencil
(type 5) are evidently self-dual systems, as may easily be verified
algebraically. The double-contact range dual to the pencil of type
2 is perhaps worthy of mention. It consists of all quadrics which
touch all the tangent planes of two given cones which have two
tangent planes in common.

§3. AFFINE AND EUCLIDEAN SPECIALIZATIONS

A general plane is touched by three quadrics of any pencil and
by one quadric of any range; and by taking the plane to be the plane
at infinity « we see at once that a pencil of quadrics in affine space
in general contains three paraboloids (of which either one is real
or all three are real), while a range of quadrics contains one (real)
paraboloid. The centre-locus of a pencil is a twisted cubic curve,
while the centre-locus of a range is a line.

In euclidean space we have one very special kind of pencil of
quadrics, namely the coaxal system of spheres, obtained by rotating
a coaxal system of circles about its line of centres. This is a double-
contact pencil of type 2, the two common conics being the absolute
conic Q and the circle (real or virtual) traced out by the common
points of the coaxal circles. This circle meets Q, of course, in the
two absolute points in its plane. :

Confocal quadrics . :

The theory of confocal quadrics is very similar to the theory of
confocal conics, given in Chapter VII. In the present section we
shall state the main results for quadrics, emphasizing the points
of difference between confocal quadrics and confocal conics, and
omitting proofs wherever the reader should be able to construct
them by analogy with what has gone before.

A confocal system of conics can be defined, it will be remembered,
in either of two ways: as the system of all conics which have the
same foci as a given fixed conic, or as a range of conics which has
the absolute point-pair Q as one member. In the case of quadrics
we naturally choose a definition of the second kind, since in elemen-
tary geometry there is no obvious analogue for quadrics of the foci
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of a conic. A confocal system of quadrics, then, is a range
Z4+AQ =0,

where Q represents the absolute disk quadric. It is easily seen that

there are two distinct types of confocal system, one consisting

entirely of central quadrics and the other of paraboloids. It will

be sufficient here to consider confocal central quadrics.

Using non-homogeneous rectangular cartesian coordinates
(X,Y, Z), let us take the ellipsoid ¢ whose equation is

X Y Z®
Stpta=1 @>E>a)

The plane-equation of i is then

a?U4-b2V 24 c2W2 = 1,
and the plane-equation of a general quadric confocal with ¢ is
therefore  (ga 4 \UAL (B34 V(2N W2 = 1.

The confocal system determined by i is thus given by the point-
equation

a’+)\+bz+)\+c2+)\

It may now be shown (cf. p. 167) that if P is a general point of
space, three quadrics of the family pass through P, and the para-
meters of these quadrics are all real. The quadrics are of different
types, one being an ellipsoid, one a hyperboloid of one sheet and
the third & hyperboloid of two sheets.

The values of A which correspond to degenerate quadrics of the
range are —a?, —b2, —c?, co. The value co gives (2 itself, while
the other three values give the three focal conics f,, f,, f;, one of
which lies in each of the three principal planes of 4. The, point-
equations of these focal conics are plainly

Y2 Z2 .
e maa- b =0
X2 VA
Fm A Y=Y
) |
X " 1, z=o;

and the focal conics are respectively a virtual conic, a hyperbola,

and an ellipse.
5304 zZ
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If 1 is a given line, there are just two confocals which touch I,
and their tangent planes at the points of contact are the united
 planes of the involution of pairs of tangent planes drawn from
to the quadrics. Since these two planes are conjugate for Q, they
are perpendicular (cf. p. 167).

Now let P be a general point of space, and let =, m,, 73 be the
tangent planes at P to the three confocals i,, ,, i3 which pass
through P. The line 7,73 is clearly a tangent line to i, and i, s0
that these are the two confocals which touch it. It now follows
from what was said immediately above that m, and , are perpen-
dicular; and hence, by symmetry, m;, 7, m, form an orthogonal
trihedral of planes. This gives us the important orthogonality
property of confocal quadrics: the three quadrics of a confocal system
which pass through a point cut each other orthogonally. The reader

- will eagily verify that, further, the planes =, m,, 7y are the common
principal planes of the range of enveloping cones drawn from P
to the quadrics of the system.

If, finally, we take a general plane =, the poles of 7 for the various
confocals all lie on the corresponding axis ,, and since 3, contains
the pole of 7 with respect to Q it is normal to ». It is, of course, the
normal, drawn at the point of contact, to the unique confocal
which touches =. Conversely, if a line is normal to some confocal
¥y, it is an axis of the confocal system, namely the axis of the
tangent plane to ¢, at its foot. Many geometrical properties of

" the confocal system can be obtained by considering the system
of axes #,. Since this system of lines is a tetrahedral complex,
further discussion of its properties is best deferred to Chapter XV,
where other tetrahedral complexes will be dealt with at the same
time.

Foci of a quadric

As we have already remarked, there is no definition of focus of a
quadric as natural as that of focus of a conic; but it is nevertheless
possible to generalize the familiar notion in various ways. Whatever
method we use, the points that we are led to regard as foci of a
quadric ¢ are all the points of the three focal conics belonging to
the confocal system determined by . A quadric thus has an infinite
number of foci. For a discussion of the properties of these points,
the reader is referred to Sommerville, Analytical Geometry of Three
Dimensions (Cambridge, 1934), chapter xii.
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EXERCISES
(i) A focus of a quadric y may be defined as (a) any point which lies on
one of the focal conies of i, or (b) & point such that the tangent cone from it
to 4 is Fight circular (a cone of revolution), or (c) & point-sphere which has
double contact with c/J Prove that the three definitions are equivalent.
(ii) If F is a focus of a quadric i, show that there exist two planes m, my
and a constant k such that i is the locus of a point P for which

- FP? = kPN, .PN,,
where N, N; are the feet of the perpendiculars from P on to 7, and ;.

§4. Linear NETS oF Quapric Locr

‘We now turn to the net, or doubly infinite linear system of quadnc
loci. If 8, = 0, 8, = 0, 8; = 0 are the equations of three linearly
independent qua.dric loci, the 002 quadric loci with equations of the
forms AS,+uS,+vS; = 0 are said to form a linear net. Since the
three equations S; = 0 are all quadratic in the coordinates z, y, z, ¢
they will in general have eight common solutions; and this means
that the general net has eight base points 4,,..., 43, common to
every quadric of the system. When it is special, of course, a net
may have a different kind of base. Thus the net of quadrics intro-
duced on p. 296 has a twisted cubic curve as base; and there also
exist nets with less than eight distinct base points. That nets do
in fact exist with exactly eight base points is seen at once by con-
sidering the net determined by three general plane-pairs.

Exgrcise. Show that the following systems are nets:

(i) the set of all quadrics through a conic and two general points;
(ii) the set of all quadrics through a line and four general points.

Eight associated points

Consider a net whose base consists of eight distinct points
A,,...,A;. Each of these points, taken by itself, imposes a linear
condition on a quadric which is required to pass through it, but the
eight linear conditions so obtained need not be independent.
Indeed they cannot be; for quadrics subject to eight linearly inde-
pendent linear conditions constitute a linear system with one
degree of freedom only—i.e. a pencil, and not a net. Seven general
points of space, on the other hand, do in general impose seven
linearly independent conditions on quadrics required to contain
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them; and such quadrics therefore form a net whose base includes
the seven given points. We thus have the theorem:

 THEOREM 6. If seven points of space impose linearly independent
conditions on quadrics required to contain them then the set of all
quadrics through them is a net. The quadrics of the net may all pass
through an eighth point, which completes the base, or they may pass
through a curve whick, with those of the original seven points which
do not lie on it, makes up the complete base of the net.

In the general case any seven of the eight points 4,,..., A4 deter-
mine the net of quadrics and, in consequence, the eighth point.
The points are therefore symmetrically related, and we say that
they form a set of eight associated points. We naturally wish to be
able to decide whether eight given points of space do or do not form
such a set, and the following theorem prowdes a convenient
algebraic criterion.

THEOREM 7. A necessary and sufficient condition for k points to
impose less than k linearly independent conditions on quadrics
required to contain them s that the squares of their plane-equations
should be linearly dependent.

. Proof. Let the points have equations
'P‘i = ux,‘-—l—vyi-{—wzi—{—pti =0 ('l: = l,..., k).
The condition for the quadric
8= (a,b,c,d,f,g,h,l,m,nlz,y,2,t)2% =0
to contain P; may be written S; = 0; and the conditions imposed
by the k points fail to be independent if and only if there exist
k
constants A,,...,A;, not all zero, such that > A, 8; = 0, identically
i=1
in a,b,...,n. But this identity is equivalent to the ten equations
2 Naf = 0,..., 3 Nit;z; = 0, and these are in turn equivalent to
i €
the single identity

k )
iz:l)\i(ux¢+'l’?/4+wzi+?ti)2 =0
in u, v, w, p. The theorem is thus completely proved.

COROLLARY 1. If a set of eight points P,,..., P, but no subset of
seven of the eight, is such that the squares of the plane-equations of the
points are linearly dependent, then P,,..., P, are either associated or
lie on a twisted cubic; and conversely.
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COROLLARY 2. If the vertices of two tetrahedra form a set of eight
associated points, there exists a quadric for which the two tetrahedra
are self-polar (cf. Chapter VIII, Theorem 8, Corollary 1).

THEOREM 8. The twisted cubic through any six of a set of eight
associated points has the line joining the remaining two as a chord.

Proof. Let A,,..., A4 be associated, and let B be a general point
of A; A,. Then quadrics through 4,,..., 45 form a net, and quadrics
through 4,,..., 44, B therefore form a pencil. But since all these
latter quadrics have the line 4, 4, B as a common generator, their
residual intersection is a twisted cubic—the unique twisted cubic
through A4s,..., Aq—and this cubic therefore has 4, 4, as a chord.

The mode of argument used here is very general, and it is worth
giving a second illustration of its use. There is, in general, a unique
quadric of the net through 4,,..., A which contains both the lines
A, A, and 4, A,; and the generators of the opposite system of this
quadnc which are drawn through- 4;,...;As meet the first two
generators in related ranges. Hence:

TREOREM 9. If eight points A,,..., A, are associated, the trans-

versals drawn to A, A,and Ag A, (if these are skew) from Ag, Aq, A4, '

Agare generators of a quadric. The four points A, Ag, Aq, Ag subtend
related pencils of planes with axes A, A, and A3 A,

General properties of a net of quadrics

We shall conclude this chapter by discussing briefly some of the
general properties of nets of quadrics. We consider for simplicity
a net (S) with eight distinct base points, given by

S = AS;+uS;+vS; = 0.
The necessary modifications for more special nets are often simple,
" however, and the reader will be able to supply them.

"The parameters (A, u,v) may be looked upon as homogeneous
coordinates of S in the net, and by taking them as coordinates of a
point in a plane  we can define a one-one mapping of the quadncs
of (8) on the points of =.

Any two quadrics of (S) define a pencil of quadrics of the net,
whose members are represented in = by the points of a line. Thus,
for example, the quadrics of (S) which pass through a general fixed
point P form the pencil which corresponds to the line

A(SI)PP‘}'H(Sz)PP’*‘V(Sa)PP =0
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in #; and we see at once that there is a unique quadric of the net
through two general points of space.

The net contains oo! cones, namely all those quadrics S whose
coordinates satisfy the quartic equation |Ad,+pd,4vd,| = 0;
and the cones of the net are accordingly represented in # by the
points of a quartic curve D. The four points in which D is met by
any line in = represent the four cones in the corresponding pencil
of quadrics.

The locus of vertices of the co! cones is a curve, called the Jacobian
curve J of the net. Its equations are obtained by eliminating
A, u, v between the four equations

28, , 08, 88
A-55+M35+V5;——0,

o8, a8, , a8
The points of J are those points which lie on both the cubic surfaces
3(817 S2$ S3) —_ 0 and a(sl’ st Ss) —

= =0,
ox,y,2) o(z,y,t)
but not on all the three quadrics
a(’gu Sj) —_ 0.
ox,y)

Since the three quadrics have as their common intersection a
twisted cubic, J is the sextic curve which, with this cubic, makes
up the complete intersection of the two cubic surfaces. Hence:

THEOREM 10. The Jacobian curve of a general net of quadrics—
the locus of vertices of cones of the net—is a sextic curve J, the residual
intersection of two cubic surfaces through a twisted cubic curve; and
the points of J are in (1,1) correspondence with those of the plane
quartic curve D in m which maps the cones of (S).

The further development of the properties of the net (S) centres
almost entirely, as might be expected, round the Jacobian curve J,
and most of the important properties of the net can be expressed
as properties of J. It is no part of our purpose here to describe
these developments in detail. This has been done, and in a manner
which has ever inspired the utmost admiration, by Reye in his
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Geomelrie der Lage (second edition, Leipzig, 1882: Part II, Lecture
27) and we shall content ourselves with referring to a few of his
methods and results.

The key to Reye’s development is the symmetrical correspon-
dence, defined by the net (8), between points P, P* which are
conjugate for all quadrics of the net. To a general point P corre-
sponds a unique point P*, the common point of the polar planes
of P with respect to 8,, S,, S;; but if P lies on J, so that it is a vertex
of & cone of (S), the three polar planes in question meet in & line /.
This line is said to be an exceptional line of the correspondence,
and P* can be any point of it. If we denote the correspondence
by 7, we may say that = is a (1, 1) involutory self-transformation of
space, with the points of J and their associated lines as exceptional
elements. -

It is easy to see that if P describes a general plane o, P* describes
a cubic surface ¢, the locus of the point of intersection of correspond-
ing planes of three collinear stars. Every such surface ¢ passes
through J, for the plane from which it arises has a point in common
with every exceptional line.

Again, if P describes a general line , P* describes a twisted
cubic ¢, the locus of the point of intersection of corresponding
planes of three homographic pencils; and this curve is evidently
the residual base curve of the pencil of cubic surfaces ¢ through J
which correspond to planes through I. If, however, ! meets J in
one, two, or three points, the curve corresponding to it is reduced
to a conic, a line, or a single point. The point in the last case is a
point of J, and the line is the corresponding exceptional line.
The exceptional lines of the correspondence = are thus identified
as the trisecant lines of J. Three such lines, as may easily be shown, .
pass through a general point of J..

The quadrics of (S) meet a general plane « in a net (s) of conics.
The Jacobian curve of (s), the locus of vertices of line-pairs, is
plainly the locus of points in which « is touched by quadrics of (8),
and it is therefore the cubic curve j in which « is met by its corre-
sponding surface ¢. ‘

The essential properties of the correspondence may be summed
up in the following general theorem:

THEOREM 11. A net of quadrics (8) determines an involutory
(1,1) correspondence T of pairs of points P, P* of space which are
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conjugate for every quadric of the set. In this correspondence, the points
of J correspond exceptionally to lines, such lines being trisecant to J.
To the planes of space correspond cubic surfaces through J, each of
which meets its corresponding plane in the Jacobian curve of the net of
conics tn which the plane is met by (S). Finally, to a line of space
corresponds either a twisted cubic (8-secant to J), or a conic (5-secant
to J), or a line (a chord of J), or a point of J, according as the-number
of points in which the original line meets J is 0, 1, 2, or 3.

In conclusion, we refer again to the representation of the
quadrics of (8) by the points of a plane ». In this representation,
as we have already noticed, the quadrics of any pencil (S’) contained
in the net (8) are represented by the points of a line in 7, the four
cones of (8’) being represented by the points of intersection of the
line with the quartic curve D. Clearly any line which touches D
represents a pencil (S’) for which two of the four cones coincide,
i.e. in general a simple-contact pencil of quadrics of (S). Such a
pencil is formed by all the quadrics of (S) which pass through a
given point of .J.

A double tangent of D, by the same argument, must represent
a pencil (S’) in which the four cones coincide in pairs, i.e. & double-
contact pencil, whose base is either & pair of conics which meet in
two points or a twisted cubic and one of its chords. In general, a
net (S) does not contain any plane-pairs; and when this is the case
it cannot contain double-contact pencils of the first type; but, by
Theorem 8 above, every line which joins two of the base points
4,,...,Ag forms with the twisted cubic through the remaining six
the base curve of a pencil (8’) of the second type. In this way, then,
we arrive at the following result:

THEOREM 12. The quartic curve D has twenty-eight bitangents,
which represent double-contact pencils in (8), each of which has as
base curve the line joining two of the points A,,..., Aq together with the
twisted cubic through the remaining six of these points.

EXERCISES ON CHAPTER XIII

1. Show that the equation =~
a4y 2t~ + 2N yz 2 tay) = 0
represents a pencil of quadrics of type 2 (p. 332). Find the plane-pair, the
two proper cones, and the two base conics of the system.
Find also the co! common self-polar tetrahedra.
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2. Give a dual interpretation of the results obtained in Exercise 1 for the
range of quadrics whose equation is :
ul -+ v wi—p? 4 2\ (vw+wu+tuv) = 0.
3. Show that the equation 22 —y?— 23+ 2A(wt—yz) = 0 represents a pencil
of quadrics with one fixed point of contact. Find the three cones of the
pencil, and prove that the base curve admits of the parametric repre-

sentation ... .. — (1469): 1—64: 20(1462) : 26(1—02).
_ Verify that this curve passes twice through the reference point T, in the
directions of the lines z = 0 = yJ-1z.

4. Find the faces of the common self-polar tetrahedron of the two quadric
envelopes whose equations are

ul+4-20w = 0, u 420t fwl—p? = 0.

Find also the four disk quadrics of the range defined by these two quadric
envelopes. )

5. If two proper quadrics touch along a common generator, show that
they intersect residually in two lines (either skew or coincident) which meet

" the generator of contact.

If two quadric cones touch along a common generator, show that every
quadric of the pencil défined by them is a cone. Show also that (1) if the ver-
tices of the two given cones are distinct the residual intersection of the cones
is, in general, a conic which meets the generator of contact, and every point
of this generator is the vertex of a cone of the pencil, and (ii) if the vertices
are coincident, all the cones of the pencil have the same vertex.

Discuss the pencils whose equations are

(i) at—yz+azt =0;
(i) y—zw+dzt =0.

6. A variable plane 7 touches two fixed conics 8,, 8,, which lie in different
planes. Show that, in general, it touches two other conics 83, 8,, and that its
four points of contact with 8y, 8,, 8, 8, are in line; but that if 5, and 8, meet in
two points then 7 passes through one or other of two fixed points, lying in
planes which are harmonically conjugate with respect to the planes of
8, and 8,. -

If 5, and s, are the circles given by

X=0=Y+2%—a? and Y = 0= 224+X3-03,
find s, and s,. Discuss the special case in which a = b.

7. There are four conics which are touched by all the common tangent

planes of the two quadrics
X3a? Y30 = 22, X314+Y:—-Zt = 1.
Find their point-equations.

8. Two lines I, m are given, and also a quadric i for which Z, m are polar
lines. Variable planes through ! and m respectively meet i in conics s and ¢.
Show that the vertices of the cones through s and ¢ lie on a fixed quadric ¢
which meets i in four lines; and show also that the relation between dand ¢
is symmetrical.
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9. If a general quadric y is met by another quadric §’ in a proper quartic
curve C4, show that C4 is a (2, 2) curve on .

A ocorrespondence between variable generators g, g’ of the two reguli on
¢ is set up by making two generators correspond when they meet in a point
of 04, Bhow that the correspondence is (2, 2) and algebraic, and also that
every (2, 2) algebraic correspondence between the two reguli arises in this
way from a quartic curve cut on i by another quadric. '

By projecting C* on to an arbitrary plane 7 from the vertex of one of the
cones of the pencil determined by i and ¥, show that the cross ratio of the
four critical generators g is'equal to the cross ratio of the four critical gene-
rators g’y when the two tetrads are ordered suitably.

10. Ifcisa plane cubic curve and 4, B are two fixed points on it, show that
the correspondence between rays through 4 and B respectively which
meet on ¢ is (2,2) and algebraic. Deduce the theorem that four tangents
can be drawn to a plane cubic from a general point P of the curve and
their cross ratio is independent of the choice of P. [Hint. Use the result
proved in Exercise 9.]

11. The quadrics of & given net have in common & set of eight associated
points. Show that the centres of the quadrics of the net lie on a cubic surface
through the mid-points of the twenty-eight joins of the eight points.

What special quadrics of the net have their centres at the other points
in which the cubic surface meets the twenty-eight joins?

12. If Q = 0 is the plane-equation of the absolute conic, and P = 0,
@ = 0 are those of two points, show that the equation Q+APQ = 0 repre-
sents a quadric of revolution with P, Q as principal foci, a.nd Q4+APS = 0
represents a sphere with P as centre.

The coordinate system being rectangular cartesian, find the general plane-
equation or equations of

(i) a quadric of revolution whose principal foci are the points (+a, 0, 0) ;
(ii) a quadric which passes through the conic whose plane-equation is
ottt = pt;
(iii) & quadric of which this conic is a focal conic;
(iv) a circle of unit radius in the plane X+Y 4 Z = 0, with its centre at

the origin ;
(v) the asymptotic cone of the quadric vw+wu+uv = ps;
(vi) a quadric inscribed in the cone whose point-equation is

YZ+ZX+XY = 0.
13. If the focal hyperbola of a confocal system of quadrics has equations
2XY+ Z2*+2Z42=0= X147,
show that the focal ellipse of the same system has equations
3X%+2XY+3Y'—4=0=Z+1.

14. Show that a central quadric has six right circular enveloping cylinders,
and that if the quadric is real at most two of the cylinders are real.
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Find the equations of the two real right circular cylinders which envelop

the quadric whose equation is
X?/6+Y%/2+2%1 = 1,
and verify that they are of radius v2.

15. Show that the points of contact of a system of parallel tangent planes
to the quadrics of a confocal system lie on a rectangular hyperbola.

16. If I is the locus of poles of a plane = for the quadrics of a confocal
system, prove that the normals to quadrics of the system which lie in =
envelop a parabola, and that they are the polar lines of I for quadrics of the
system.

Deduce that the points of contact of tangent planes from ! to the confocals
lie on a nodal cubic curve in 7 (namely the pedal curve of the parabola from
the point of intersection of ! with ).

17. Show that the equation in rectangular cartesian coordinates of any
quadric with the point (X, ¥y, Z,) as a focus is of the form

(X=X H (Y =T+ (Z—Zo) = LM,
where L = 0 and M = 0 are the equations of two planes.

Discuss the position of the directriz line L = 0 = M when the quadric
is the ellipsoid X3/a?+Y3/b3+ Z2/c? = 1 and the focus is a point of the
focal ellipse.

18. Show that the polar planes of a general point P for the quadrics of a
confocal system with centre O generate a cubic developable (dual of a twisted
cubic curve) and that the three planes of this developable through any point
of OP are mutually perpendicular.

19. Show that the planes of parabolic section of a central quadric i which
touch a quadric confocal with i all touch a sphere concentric with i.

20. The coordinates being rectangular cartesian, find the plane-equation
of the pair of absolute points in the plane aX+bY +¢Z+d = 0,

If this plane-equation is & = 0 and Z = 0 is the plane-equation of an
ellipsoid ¢, and if & source of light is placed so that y throws a circular
shadow on the given plane, show that every ellipsoid of the system

- ZHAE = '
also throws a circular shadow on this plane.



CHAPTER XIV
LINEAR TRANSFORMATIONS OF SPACE

§1. Space COLLINEATIONS

Ir 8, and S are two projective spaces, in which allowable repre-
sentations # and %’ have been chosen, an equation X’ = Ax
defines a linear transformation of the points of S; into the points
of Sg, and such a transformation is called a space collineation. If
the matrix A is singular, the points of S; transform into points
of a certain proper submanifold of S;, which may be a plane, a
line, or a single point, according to the rank of A. This case is
special and, as usual, we shall use the term ‘collineation’, unless
otherwise stated, to mean ‘non-singular collineation’. We shall
also confine ourselves to self-collineations of a single space S;,
supposing always that S3 coincides with S; and that the same
representation is used as both # and #’'. It will not be necessary
to discuss the general properties of space collineations in great
detail, since many of the results follow directly from the linearity
of the transformation and may be proved by arguments similar to
those already used in Chapter IX.

THEOREM 1. ‘E'very space collineation = i3 a self-dual transforma-
tion, which transforms points inio points, lines into lines, and planes
wnto planes. It is represented by equations

X' =AX and u = A-1Tu (|A[|#£0),
each of which determines the other.

THEOREM 2. The set of all self-collineations of S; is a group,
tsomorphic with PGL(3).

THEOREM 3. There is a untque collineation which transforms five
given points, no four of which are coplanar, into five given points,
no four of which are coplanar; and dually, there is a unigue collineation
which transforms five given planes, no four of which are concurrent,
into five given planes, no four of which are concurrent.

As in the case of plane collineations, we can show that a given
collineation transforms any range of points or pencil of planes into
a homographically related range or pencil, and that it transforms
any projectively generated manifold—for example a quadric or a
twisted cubic—into another manifold of the same kind.
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ExERCISE. If o transforms a plane # into a plane 7, show that it sets up ‘
a plane collineation between 7 and =o',

The united points of the collineation = whose equation is
x' = AX are those. points whose coordinate vectors are charac-
teristic vectors of the matrix A. In general there are four isolated
united points, but in particular cases there may be a line or even a
plane of united points. The nature of the united points of = depends
upon the algebraic properties of A. The various possibilities may
be classified by elementary argument, using the rank-multiplicity
relation p[A—A, I] > 4—pu(A;) as in Chapter IX; or alternatively the
classification may be derived from the general theory of elemen-
tary divisors.} There are considerably more possibilities than in
the case of plane collineations, and it would be tedious to go into
all the details of the classification. We shall accordingly select a
few particularly important cases which are of geometrical interest.
The other types of collineation may all be regarded as specializations
of those which we discuss.

I. The general collineation

In the general case the characteristic equation |[A—AI| = 0 has
four distinct roots Ay, A, Az, A;. Each of these roots, being simple,
gives rise to an isolated united point; and since the four points
cannot be coplanar} we can take them as vertices of the tetrahedron
of reference. The equations of the collineation then assume the
canonical form

Ty = A%,

Ry
l

ALy,
A%y,
= Az .
ExERcIsE. Show that the ratios Ay:A; :A;:A, may be interpreted as moduli

of certain homographies, and also that the point which corresponds to any
assigned point P may be constructed by drawing suitable planes.

k3
I

II. The collineation with a line of united points and two
isolated united points

If the characteristic roots of A are Ay, Ag, Ay, Ag, With

AT =2,
the collineation has isolated united points corresponding to A,

t See Todd, Projective and Analytical Geometry, chapter v.
{1 Cf. p. 211. See also Exercise 16 at the end of this chapter.
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and A; and a line of united points corresponding to A,. The line
joining the isolated points is necessarily skew to the line of united
points [ Exercise. Verify this] and we may take as X, X, X,, X3
two points of the line of united points and the two isolated united
points. The equations of = then become
Xy Xy Xy &y
%o A%y ATy A%y

The same collineation may also be represented Aby‘

x, @ ax, b
where a = X,/A, and b = Ag/A,, and consequently a # b.

An example of this general type of collineation is provided, in
euclidean space, by a rotation, of angle « s n, about a fixed axis I.
The axis / is & line of united points, and two isolated united points
are the points in which the absolute conic Q is met by a plane
orthogonal to I. This follows from the fact that the collineation
induced in any such plane is a rotation about a fixed point. This
space collineation is not projectively the most general one of type
II, however, since the characteristic roots Ay, Ay, A3 are in the ratio

A B
III. The biaxial collineation
If the characteristic roots of A are Ay, Ag, Ay, Ay, With

, p[A—2I] = p[A—2, 1] = 2,

the collineation has two lines of united points, and these lines are
necessarily skew. If we take them as X, X, and X, X,, the equations
of = may be written as .

T _ @ _ % _ %

NZo Ay ATy Ay

- Or as —_— = == = = =

where k = Ay/Ay # 1.

This type of collineation is known as the biazial collineation, or
sometimes the biaxial homography or skew perspective. It is
characterized completely by the two lines of united points—m and
n, say—called its axes, and the number %, called its modulus.
The point P’ corresponding to any given point P may be found by
drawing the unique transversal from P to m and n, meeting them
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in M and N, and then taking as P’ the unique point of M N for which
{M,N; P',P} = k. Forif

P = (Yo, ¥1,Y2Ys) then P’ = (yo, %1, kYa, kys),
and hence
-M = (yo: y],’ 0,, 0) 3nd N = (Os 0: yZ’ yS)’

Thus - {M,N; P', P} = {0,00; k,1} = k.

It should be noted that the modu-
lus £ is associated with the ordered
pair of axes, and that if the axes
are taken in the reverse order the
modulus is changed to 1/k.

In the particular case when
k = —1 the biaxial collineation is
said to be harmonic. It is then an
involutory transformation, and is
sometimes referred to as a skew involution.

A simple example of the biaxial collineation in euclidean space
may be obtained as follows. Take an arbitrary line as m, and let
it meet the plane at infinity in a point 7. Now let n be the polar
line of T with respect to Q, and take an arbitrary real number as
the modulus k. Then the corresponding pairs (P, P’) are such that
PP’ is perpendicular to m and MP’' = kMP. This particular
transformation may be described as a radial expansion about the
axis m; and for the special value & = — 1 it becomes reflection in m.

IV. The space homology
If the characteristic roots of A are Ay, Ag, Ag, A3, With

A—XI=1,
the collineation has a plane of united points and an isolated united
point. If we take the isolated united point as X3 and three points .
in the plane of united points as X,, X, X,, the equations of the
collineation may be written in either of the forms
Ty X Xy T .
A%y ATy Ay Mgy

’
Z, X X Z.
or —2=-—-!=—2=——8

where k= Ay # 1.
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This type of space collineation is known as a space homology or
space perspective. It is characterized completely by its vertex 4,
its axial plane «, and its modulus k. If P, P’ are any two correspond-
ing points, then PP’ passes through 4; and if PP’ meets « in M,
{M,A; P',P} = k. If k = —1, wissaid to be a harmonic homology,
and it is an involutory transformation.

In euclidean space, reflection in a given plane is a harmonic
homology with the point at infinity in the direction of the normal
as vertex, radial expansion from a point is a homology with the
plane atinfinity as axial plane, and reflection in a point is a harmonic .
homology with the plane at infinity as axial plane.

V. The special space homology
If the characteristic roots of A are Ay, Ag, Ag, Ay, With

the collineation has a plane of united points and no united point
outside this plane. It is a special space homology and, like the
special plane homology, it may be thought of as a homology in
which the vertex falls accidentally on the axial plane.

/ If X, X,, X, are taken in the axial plane, the equations of the '
special homology take the form

Ty = T +az,,
= ~+ba,,
Ty = -2y,
x;! = xs:

and from these equations it is obvious that all joins of pairs of
correspontling points pass through the vertex (a,b,c, 0).
A typical example of such a transformation, in euclidean space,
is the translation. :
We conclude this discussion of space collineations by proving
two theorems on involutory collineations which give further insight
into the possible transformations of this kind.

THEOREM 4. If a collineation has three involutory pairs of distinct
corresponding points, lying on distinct lines that are not all in one
plane, then it is an involutory collineation; and every point of space
(if not a united point) then belongs to an involulory pair.

Proof. If (P, P') is an involutory pair of a collineation w, PP’
is a self-corresponding line; and since the homography w, induced
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on this line by = has an involutory pair, it is an involution. Then
every point of PP’ is a united point for w3, and therefore for w?.

The collineation w? now has three lines of united points, which
do not all lie in one plane. But a line of united points that does not
lie in a plane of united points corresponds to a double characteristic
~ root of the matrix of w?, while a plane of united points corresponds
to a triple root. It follows that the characteristic equation of the
matrix is an identity, and w? is accordingly the identical collinea-
tion ¢, i.e. w is an involutory transformation.

THEOREM 5. The only involutory space collineations are the har-
monic biaxial collineation and the harmonic space homology.

Proof.t Let w be a space collineation such that w? = e.' If P,
is any point which is not a united point of =, w induces an involu-
tion on the line joining P, to wPF,, and the united points M,, M,
of this involution are united points of =. If P, is now any point
which does not lie on M, M, and which is not a united point of =,
there are two united points of = on the line joining F, to wPF,.

“If the line is skew to M, M;, we call these united points M, and M,
If it is not skew to M, M, it contains at least one united point M,
which does not lie on M, M, ; and in this case we determine a further
united point M;, not in the plane M, M; M,, by applying the previous
argument to a point P; which is outside this plane. .

In any case, therefore, we are able to choose four united pomts
M,, M,, M,, My, which are the vertices of a proper tetrahedron;
and if this tetrahedron is taken as tetrahedron of reference the
matrix of = assumes the canonical form

A= /A 0 0 0

0 A 0 0
0 0 A O
0 0 0 X

Since A? = M, for some A, we have A3 = A} = A3 = A3. There
are therefore only three essentially different forms which A can
assume:

g/l 0 0 0\, pu/l 00 0\,
01 0 0 010 0
0 0 —1 0 0 0 1 0
o0 0 1 0 0 0 —1
1 See also;Exercise 15 at the end of the chapter.

5304 AB
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and ul. These forms correspond respectively to the harmonic
biaxial collineation, the harmonic space homology, and the identical
collineation, which is, of course, inadmissible.

§2. COLLINEATIONS WHICH LEAVE A QUADRIC
INVARIANT

The o0!® non-singular self-collineations of S; make up a group
isomorphic with the projective group PGL(3), and this group has
many subgroups which it is worth while to single out for closer
study. We might select, for instance, a subgroup which is of special
significance in connexion with one of the geometries of the pro-
jective hierarchy or one which is specially related to some particular
geometrical configuration. The most obvious cases which present
themselves are the groups of collineations which leave invariant
(a) a plane, (b) a conic, (c) & quadric, or (d) a twisted cubic. The
first two of these give, as we have already seen, the affine and
euclidean groups, and we shall show in the present section that the
third gives the group of congruence transformations of a non-
euclidean geometry. The fourth has no such application, but is of
some intrinsic interest. We shall only discuss (c) here in any
detail, but a reference to (d) will be found in the exercises at the
end of the chapter.

Let us consider, then, a proper quadric w, whose equation may

be taken in the form Ty Ty—2, Ty = 0, (1)

and let us denote by G(w) the group of collineations = of S5 which
transform o into itself. Since a collineation cannot transform
intersecting lines into skew lines or vice versa, any collineation =
of G(w) either transforms each regulus on w into itself or else trans-
forms the two reguli into each other. In this way we arrive at two
distinct kinds of transformation, which we call direct transforma-
tions and opposite transformations respectively. The direct
transformations form a subgroup D(w) of index 2 in G(w). The
opposite transformations do not form a group, but constitute the
second coset of D(w) in G(w). If, in fact, 5, is any fixed opposite
transformation, and § runs through D(w), then 7,8 runs through
the full set of opposite transformations. From the point of view
of the theory of groups, the distinction between direct and opposite
transformations of w into itself is strictly analogous to that between
even and odd permutations.
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The group D(w) of direct transformations
Consider now any direct transformation 8. This transformation
permutes among themselves (homographically, of course) the u-
generators of w and also the v-generators. It follows that if P is the
general point (04,0,¢,1) of w its transform P’ has coordinates
(0'¢’,0',¢", 1), where
. | 0+ﬁ1 '’ °‘2¢+ﬂz \
¥ = ‘)’10‘|‘8 ¢ = '}’295",*‘82’ ' @)
&,..., 0 being constants such that

0 8—Byy #0 and apd,—Byy, # 0.
The argument already used in the proof of Theorem 8 of Chapter IX
may now be used in order to show that 8 is represented by the
matrix equation

EA-GHRIEY e

The collineation 8 is in fact determined uniquely by the homo-
graphies (2). For if 3, and §, both induced the same homographies
in the two reguli, 818, would leave every point of w invariant,
and the only collineation which does this is the identical collinea-
tion e.

Equation (3) may conveniently be written as

X' = A, XAT,

where A, and A, are the matrices of the two induced homographies.

If A, = I'wehavea collineation X’ = XAZ, which permutes only
the generators given by ¢ = constant, the v-generators say. Such
a collineation will be called a right translation. In the same way we
have also the left translations X' = A, X, which permute the u-
generators while leaving the v-generators invariant. Every direct
transformation § can now be resolved uniquely into a product of
a right translation X—> XA and a left translation X - A, X;
and we may sum up the results that have so far been obtained in
the following comprehensive theorem.

THEOREM 6. The space collineations which leave a proper quadric
w invariant form an oo® group G(w). This consists of oo® direct
transformations 8, forming a subgroup D(w) of index 2, and oo®
opposite transformations 7. If n, is any fired opposite transforma-
tion, the set of all the opposite transformations is the coset ng D(w)
of D(w) in Q(w). . :
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The right translations, which permute the v-generators among
themselves while leaving the wu-gemerators invariant, form an oo’
subgroup D,(w) of D(w); and the left translations form an co® subgroup
D(w). The only common member of D(w) and D(w) 8 €, and D(w)
18 the direct product of these two groups: D(w) = Dj(w)X D.(w).

The simplest kind of opposite transformation is a harmonic
homology whose vertex and axial plane are pole and polar for w.
Such a transformation is called a reflection relative to w, and a
simple example of a such a reflection is furnished by the equation
X' = X7,

Right and left translations

Consider now the general right translation p, given by X' = XAT,
This transforms every point (8, ¢) into a point (6,4’) of the same
u-generator, and for the two values of ¢ given by

¢ = ag+B
r$+3
we have ¢’ = ¢. We see therefore that there are two v-genera.tors,
in general distinct, which are lines of united points for p; i.e. pis a
biaxial collineation. If we take the two special generators to be
those corresponding to ¢ = 0 and ¢ = co, the equation of the
homography induced among the v-generators assumes the canonical
form ¢’ = k¢ and the equation of p then reduces to

(x}, x’l) _ (xo xl) (Ic 0)
zy x3)  \xa x5/\0 1)
L _ M _ % %
kxy, =z, kxr, =3
We recognize these equations as the equations of a biaxial collinea-

tion, and we see further that the modulus k is the ratio of the
characteristic roots of the matrix A. So we have the théorem:

THEOREM 7. A right translation 1s in general a biaxial collineation.
whose axes are v-generators, and a left translation 18 in general a
biazial collinention whose axes are u-generators.

ie.

Non-g¢uclidean geometry

We‘now propose to indicate as briefly as possible something of
the . slgmﬁcance of the above results in the three-dimensional
non-euclidean geometry obtained by taking w as absolute quadric
in real projective space. This kind of geometry, developed largely
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by Minkowski and Clifford, is in part a straightforward generaliza-
tion of plane non-euclidean geometry; but it has important features
which have no two-dimensional analogues, nor indeed any close
analogues in space of any dimensionality.

We begin by defining some of the basic concepts.

(i) Distance. We say that the distance between two points
P, Qis equal to the distance between P’, @’ if {P,Q; M,N}is equal
to {P',Q'; M',N'}or {P',Q'; N’, M}, where M, N and M’, N’ are
the pairs of points in which w is met by PQ and P'Q'.

(ii) Angle. Equality of angle between two pairs of planes is
defined in the manner dual to (i).

(iii) Orthogonality. A line p is orthogonal to a plane = if it passes
through the pole of = with respect to w. Also two lines p, q are
orthogonal if they are conjugate for w (each meeting the polar line
of the other).

From this it follows that two lines p,, p, have in general two-
common perpendicular transversals, namely the lines which meet
Py, Py and their polar lines p}, ps.

(iv) Parallelism (in the sense of Clifford). Two lines are right

_parallel if they meet the same pair of v-generators of w, and they
are left parallel if they meet the same pair of u-generators.

A system of right parallels (or left parallels) is the system of
lines meeting two fixed generators vy, v, (Or %y, u,).

Through any general point there can be drawn a unique line right
parallel to a given line, and a unique line left parallel to it.

The characteristic properties of Clifford parallels (stated for
definiteness in terms of right parallels) are given in the following
theorem.

THEOREM 8. Two right parallel lines p, q have an infinity of com-
mon perpendicular transversals, which form a regulus of left parallels.
The distances between p and g along all these transversals are equal.

Proof. Let p, ¢ meet the same two v-generators vy, v, and let the
pairs of u-generators met by p, g be u,, u, and u¥, u¥ respectively.
Also let P,; and Q,; denote the points of intersection of v; with u;
and % respectively. Then p, g and their polar lines p’, ¢’ are the
lines P,y Pyy, Q13 Qo0 80d Pyy Py, Q1o @5y Since the four u-generators
cut related ranges on v, and v,, :

(P> Qu1s Pig @12) X (Paa, Qa1 Prgs @ua) 7 (Frpy @any Ps @31)-
Thus p, ¢, ', ¢’ cut related ranges on vy, v,; and therefore the four
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lines are generators of one system on a quadric , v,, v, being
generators of the opposite system. Since the generators », and v,
are common to w and , the complete intersection of these quadrics
consists of v, v, and two u-generators «®, u® of w. On ¢, therefore,
the generators of the regulus which contains v, and v, all meet the

six generators p, ¢, p’, ¢, u®, u®, In other words, this regulus
consists of co! left parallel common perpendicular transversals of
p and g; and since each one of them cuts a range of the same cross
ratio on p, ¢, 4V, 4@, the same distance is intercepted on them all
by p and ¢. This completes the proof of the theorem.

A quadric surface, such as i, which meets the absolute quadric
w in a skew quadrilateral, is called a Clifford surface.

Congruence transformations

The non-euclidean geometry defined by w as absolute quadric
may now be connected with the group G(w) of self-collineations of
space which leave w invariant. Every transformation of the group
preserves all properties of figures that are expressible in terms of
non-euclidean distance or angle or the relation of non-euclidean
orthogonality; and it either preserves the two kinds of parallelism
or else interchanges them, according as it is direct or opposite. In
view of these facts, we naturally call the transformations of G(w)
the congruence transformations of the non-euclidean geometry.
The group G(w) is related to this geometry in much the same way
as the orthogonal group is related to euclidean geometry.

Consider now the meaning, in terms of non-euclidean geometry,
of the two special types of direct transformation that we have
called right and left translations. A right translation p is a biaxial
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congruence transformation with two generators v;, v, of w as axes,
and its united lines (all those lines which meet », and v,) therefore
form a complete system of right parallels. We may say shortly,
then, that the join PP’ of every pair of corresponding points is in
a fixed right parallel direction. By assigning an order to the pair of
generators (v,,v;) we can fix a sense along all the right parallels
- which meet them; and the displacement from P to P’ in this sense
is determined by the cross ratio {P, P’'; M, M,}, where M,, M, are
the points in which PP’ is met by v;, v,. Since this cross ratio is
constant for all corresponding pairs (P, P’) we have the theorem:

THEOREM 9. In any right translation, each point P of space is
moved in a fixed right parallel direction, in the same sense, through a
Jized non-euclidean distance.

There is, of course, a corresponding property of left translations.

Since the most general direct congruence transformation & is
compounded of a left translation and a right translation, it has
just four united points, namely the points of intersection of the
pairs of generators associated with the translations. If the trans-
lations are chosen suitably, however, 8 may be made to have any
general line a as a line of united points, and in this case it is called
a non-euclidean rotation about a. Or again, 3 may be made to have
both a and its polar line @’ as lines of united points, and in this case
it is called a double rotation.

For a detailed analysis of direct and opposite congruence trans-
formations we refer the reader to the excellent exposition given
by Coxeter in his Non-euclidean Geometry (Toronto, 1942).
EXERCISES

1. Show that, with the notation used on p. 355, the direct congruence
transformation X’ = A, XAT is a rotation if and only if either (i) A, and A,
both have coincident characteristic roots, or (ii) A, and A, both have distinct
characteristic roots and the ratio between the roots is the same for both
matrices; i.e. if and only if A, is similar to a scalar multiple of A,.

2. Prove that the equation of any non-euclidean reflection may be written
X’ = AXTA-T, and find the centre and axial plane of this reflection.

3. Prove that any non-euclidean rotation can be expressed, in infinitely
many ways, as & product of two non-euclidean reflections.

§3. SpacE CORRELATIONS
In space, as in the plane, we often have occasion to consider
dualizing linear transformations
X - u = AX,



360 LINEAR TRANSFORMATIONS OF SPACE XIV,§3

which transform points into planes, and we shall call such trans-
formations space correlations. We shall confine our attention to
non-singular self-correlations of space.

If « is such a correlation, every point P is transformed by it
into a plane 7' = «P; and conversely, every point P arises from a
unique plane 7’ by the inverse transformation «.

If P describes a plane =, represented by the coordinate vector u,
then, by an argument similar to that used on p. 225, we see that
xP envelops the point P’ represented by x’ = A-Tu. We write
P’ = km, saying that P’ is the transform of = by the given corre-
lation «, and this enables us to regard « as a dualizing trans-
formation of the whole totality of points and planes of space into
itself.

If P varies on a line I, describing a range of points (P), then
a' = kP describes a pencil of planes homographically related to
(P). If the axis of this pencil is I', we may say that « transforms
linto I’. It may be seen algebraically that the pencil of planes with
axis [ is transformed by « into a range of points whose axis is also
the line I’ = «l. For let y, z represent two points of / and let v, w
represent two planes through I. Then, applying «,

y+4-0z—> Ay+0Az
and V4w > A-1Tv - SA-1Tw,

Thus the axis of the range described by the point y+60z becomes
the line of intersection of the planes Ay, Az, while the axis of the
pencil described by the plane v-{-¢w becomes the line joining the
points A-1Tv, A-1Tw, But (Ay)TA-1Tv = (vTy)T, etc.; and there-
fore if the planes v, w are incident with the points y, z the points
A-1Ty, A-1Tw are also incident with the planes Ay, Az. This proves
the statement made above.

In general a correlation « and its inverse «~! are distinct trans-
formations, for they transform the point x into the planes Ax
and ATx respectively, but in special cases the two transformations
may be the same. A necessary and sufficient condition for this to
be s0 is AT = MA, where A is a scalar. If this condition holds, then
A = ATT = }?A, and hence A? = 1. There are then only two
possibilities, A = 1 and A = —1, and the matrix A must be either
symmetric or skew-symmetric.

If A is symmetric, the correlation is a polarity, namely the
polarity defined by the proper quadric ¢ given by XTAXx = 0.
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The polarity is also known sometimes as reciprocation with respect
to . This case is fully analogous to that of the polarity of the
plane referred to on p. 227. :

If A is skew-symmetric, we have a new kind of correlation,
called the null polarity. This has no analogue in the plane, since a
skew-symmetric 3 X 3 matrix is necessarily singular.

Consider the null polarity v defined by

u’ = Ax, AT = —A.

Since u'Tx = (AX)Tx = xTAx = 0, by the skew-symmetry of A,
the null polarity has the remarkable property that the polar plane
of every point passes through that point. (Cf.thediscussion,on p. 311,
of the null polarity defined by a twisted cubic.)

THEOREM 10. If, in the null polarity v, the polar plane of P passes
through Q, then the polar plane of @ passes through P.

Proof. If x, y are coordinate vectors of P, @, we have

- (AX)Ty =0,
ie. xTATy = 0.
Transposing, yTAx = 0,
ie. (ATy)Tx = 0,
ie. (Ay)Tx =0,

since AT = —A.

If P describes a line /, then its polar plane always passes through
a second line I’, and two lines 7, I’ which are related in this manner
are said to be polar lines with respect to v. Those lines I which
coincide with their polar lines are said to be self-polar. Ifl’isdistinct
from I the relation between the two lines 1s symmetrical, and it may
be expressed very simply by saying that the polar plane of any
point of either line is the plane joining this point to the other line.
[Exercise. Prove that when I’ is distinct from [ it is skew to l]

THEOREM 11. Every line which meets a pair of (distinct) lines 1,V
‘which are polar in a null polarity v is self-polar in v; and conversely,
every self-polar line which meets | also meets l'.

Proof. If p meets I, I’ in P, P’, the polar line of p is the line of
intersection of the polar planes of P and P’. But these are the
planes Pl and P'I, and they meet in p. Further, if p is any self-
polar line which meets [, then its polar line (i.e. p itself) meets the
polar line 7' of I. :
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THEOREM 12. T'he self-polar lines which pass through a given point
A are all the lines through A which lie in the polar plane of A. Dually,
the self-polar lines which lie in a plane « are all the lines in o which
pass through the pole of o.

Proof. Iflis a self-polar line through 4, the polar plane of 4
must be a plane of the pencil whose axis is /. If, conversely, /is any
line which both passes through 4 and lies in the polar plane o’ of 4,
then [ is self-polar with respect to v. For if P is any point of /, the
polar plane of 4 passes through P and the polar plane of P there-
fore passes through A; and since this polar plane necessarily con-
tains P it is a plane of the pencil with axis I. The polar line of [ is
thus [ itself, i.e. ! is a self-polar line, and this proves the theorem.

We see, then, that the self-polar lines of a null polarity » form a
triply infinite system. This system oflines is of the type known as a
linear line complex, and we shall discuss the properties of such
complexes in the next chapter.

The null polarity was studied, first of all, not in geometry but in
statics, where it arises naturally in connexion with systems of
forces in three dimensions. Such a system of forces, acting on a
rigid body, can be replaced by a single force and a couple, the line
of action of the force passing through an arbitrarily assigned point.
Let the force be F, acting at O, and let the couple be G,. Then

—> .
if 4 is any point of space, with position vector OA = a, the
system is also equivalent to a force F at 4 and a couple

GA = G0+FA a.

If, now, ! is any specified line through A, with parametric
representation r = a-+1¢, 1 being a unit vector, the moment of the
system about the line / is given by G ,.1. If this moment vanishes,
the line is called a null line for the system of forces, and the condition

for this is (Go+FAa).l =0,
ie. G,.(r—a)+(FAa).(r—a) = 0,
ie. G,.r—G,.a+(FAa).r =0,

where r represents a general point of I. In cartesian coordinates,
therefore, every point of a null line through the point 4 (¢, 7, {)



X1V, §3 SPACE CORRELATIONS 363

. satisfies the condition ,
Lo+ My+No— Lé—Mn—N{+(Y{—Zn)e+
+(ZE—Xy+(Xn—YE)z = 0,
where F = (X Y,Z)and G, = (L, M,N).

The null lines through A are accordingly the lines through 4
which lie in the plane
(=Zn+Y{+ L+ (Z¢— X€+M)y+( —Y{+Xn+N)z—
—Lé—Mn—N{ = 0.
This plane is called the null plane of A, and it is derived from 4 by
the null polarity whose matrix is
0 —Z Y L
Z 0 - X M
-Y X 0 N
—-L —-M —-N O

EXERCISES ON CHAPTER XIV
1. Discuss in detail the united points, united planes, and geometrical
character of each of the following collineations:
(i) 2:y:2:t' =22—y:2y—x:2: —2—1;
(i) o':y 2 =y:z:7:¢;
(iil) 21y 2 =t:~y:—2:%7;
(iv) z':9:2:¢ = z+al:y+bl:z+cl:t+dl, where
! = wx+vy+wz+pt.
2. Discuss in detail the space collineation whose matrix is
k 1 -1 1\.

L LR !

1k -1 1
1 -1 k1
1 -1 1k

3. Characterize projectively the following types of self-collineation of
euclidean space:
(i) radial expansion from a point;
(ii) radial expansion from a line (perpendicular to the line);
(iii) translation;
(iv) reflection in a point;
(v) reflection in a line;
(vi) reflection in a plane;
(vii) rotation about a line.
4. Find the equations of the biaxial collineation with modulus k and with
the lines x = 0 = y—zand t = 0 = y+2 as axes.
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5. Show that, for any non-zero value of A, the collineation

iy 7 =N Ayt
leaves the twisted cubic ¢ (63, 62,0, 1) invariant.

Discuss in detail the special cases in which (i) A = —1, (ii) A = w, where
w is a complex cube root of unity. Show in each case the special way in which
the collineation is related to the curve.

Find also, in each of the two cases, what quadrics through the curve are
left invariant by the collineation.

6. If w is a general collineation of the type which transforms every
generator of a given quadric ¢ into a generator of the opposite system, show
that there exists on i a skew quadrilateral XY ZT such that w transforms
each of the lines XY, X Z into the other and each of T'Y, T'Z into the other.

If XY ZT is taken as tetrahedron of reference and ¢ has the equation
at = yz, show that = has equations

iy 2t =ax:bz:icy:dt,
where ad = be.

7. The poles of a variable plane 7 with respect to two quadrics  and ¢’
are P and P’. Show that P and P’ correspond in a space collineation w,
and that = is a homology if and only if iy and §* touch along a plane section.

8. Show that any space collineation with a plane of united points is neces-
sarily a homology.

Two space homologies w, w’ have vertices 4, 4’ and axial planes o, «
respectively. Show that, when the lines 44’ and o« are skew, ww’ = w'or
if and only if 4 and 4’ lie respectively in «” and «.

If this condition is satisfied, prove that ww’ is not involutory unless @
and o’ are harmonic homologies.

9. If two biaxial collineations w,, w, have one common axis b, while
their other axes ay, a, intersect in O, prove that w; w, is in general a biaxial
collineation with b as-one axis and a line of the pencil defined by a,, a, as the
other.

In the special case when each of w,y, w, is involutory, show that w, w,
is a space homology whose axial plane is the plane which joins O to b and
whose vertex (which lies in the axial plane) is the intersection of b with the
plane a, a,. .

[Hint. Consider the euclidean case in which Ob is the plane at infinity
and O and b are pole and polar for Q.]

10. A general space collineation = has the reference points X, ¥, Z, T'
as united points, and a pair of corresponding points P, P’ varies in such a
way that PP’ always passes through the unit point £. Show that P and P’
describe twisted cubics ¢ and ¢’ through X, ¥, Z, T, E.

Show that the unique quadric through ¢ and ¢’ has an equation of the form

(a—d)(b—c)yz+at)+(b—d)(c—a)(zx+yt)+(c—d)(a—b)(xy +2t) = 0.
11. A space correlation has equations ‘
wiviw ip'=at:bz:cy:dr.
Find its two coincidence quadrics, and verify that they intersect in a skew
quadrilateral.

’
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Investigate the space collineation which is the square of the given corre-
lation. .

12. Show that the relation between points x and y which are conjugate
with respect to a null polarity is of the form

> Ai@iy—2y) =0,
$J=0....8

and that any equation of this type defines a null polarity (which may be
singular).

Deduce that the line joining any pair of distinet conjugate points is self-
polar in the polarity.

13. If a pair of polar lines in the null polarity are taken as edges X, X,
and X, X, of the tetrahedron of reference, show that the equation given in
the previous exercise takes the form

ZoYs— Ty Yo = k(T1Y3—%3%1)-

14. If o and 7 are two space correlations, show that there exist in general
four points whose corresponding planes in ¢ and 7 are identical.

Show that on a given quadric i there exist in general four points at each
of which the tangent plane to i is the polar plane of the point in & given null
polarity, and that the four points are the vertices of a skew quadrilateral
of generators of ¢ which are self-polar with respect to the null polarity.

15. If the characteristic roots of the n X n matrix A are,,..., A, (not neces-
sarily distinct) then the characteristic roots of the matrix

ag AP+ +ay  Atagl
are the numbers @y AP+ ... + g1 Aj+apy (¢ = L) Prove this theorem,
and by applying it to the special polynomial A? obtain an alternative proof
of Theorem 5.

16. Prove algebraically that the four united points of the general space
collineation are the vertices of a tetrahedron by establishing the following
general theorem. If a non-singular n X n matrix A has distinet characteristic
roots Apy..., A, and X% is a non-zero vector for which

, Ax®) = ;x0) (1 = 1,..,n),
then the n vectors x®% are linearly independent.
n ,

(Hint. Suppose that ¥ «; x®% = 0, where not all the «; are zero. Multiply

=1

this equation successively by A, A%,..., A"~1, and obtain a contradiction by
using the fact that n linear relations between n vectors are necessarily
linearly dependent.] ‘



CHAPTER XV
LINE GEOMETRY

§1. LINE-COORDINATES

WE have already seen in Chapter X how the oot lines of .S; can be
represented, in terms of any allowable representation %, by sets
of six homogeneous coordinates (D3, Da1, D12, Pors Pozs Pos)s connected
by the fixed quadratie relation

Qpp = P01P23+P02 Ps1+Pos P12 = 0. ‘
We have also discussed the dual coordinates ,;, which are such that

}—’:1 - Por  Pes Pz Pu  Pu
and we have shown that the condition for two lines p, q to intersect
is the polarized form of the identical relation, i.e.

2Q; = Po1 923+ Poa 951+ Pos Q12+ P25 Go1+Ps1 Qo3+ P12 9os = O.

Our main purpose in the present chapter is to introduce the reader
to the systematic study of those subsystems of the full system
of cot lines of §; which are of geometrical interest; but before doing
so we need to look more closely at the way in which lines are repre-
sented by the p,;.

The first essential in the use of line- coordinates is to be able to
find the points which lie on a line with given coordinates and also
the planes which pass through it; and for this it is sufficient to
specify, once for all, the points F,, P,, P,, P, in which the given line p
meets the four reference planes and the planes g, Ty, Ty, T3 Which
join it to the four reference points.

It is sometimes convenient to work not with the six quantities
P23; Pa1s P12> Por> Pozs Pos Only, but with the full set of sixteen quan-
tities p,;, connected by the antisymmetry relations p;; = — Dij
(¢,j = 0,...,3), and this is so at present. If P denotes the skew-
symmetric 4X 4 matrix (p,,) we have the following result, the
verification of which is left to the reader:

The coordinate vectors of F,, B,, P, P, are the rows of the matrix
P, and dually, the coordinate vectors of mg, my, 7y, 7, are the rows
of the matrix Il = (=,,).

If p = (D43, Po1s P12> Pors Pozs Pos) is taken as coordinate vector of
the line p, the six basis vectors (1,0,0,0,0, 0), ete., belong to the
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six reference lines of Z, i.e. the edges of the tetrahedron of reference.
More precisely, that basis vector for which only the coordinate
P.p is non-zero represents the edge X, Xj.

If the line p lies in the reference plane z, = 0, then three of its
coordinates pug, Poy; Pos vanish; and the equation of the line in
the subordinate geometry in the plane 2, = 0 is

PysTp+Pspy+Pp, x5 = O.
(The conventions governing the use of suffixes in equations such
as this will be obvious to the reader.)

Dually, if p passes through the reference point X,, given by
zg =z, = x5 = 0, then p,5 = psp = pg, = 0, and the equations
of the, ine are 28 %) %5 = Pof Pay*Pad-

We note finally that p meets the edge X, X, whose equations
are z, = x5 = 0, if and only if p,; = 0.

EXERCISES
(i) Discuss the families of lines for which

(@) P =P1a =0, and (b) Py = P1a = Pas-
(ii) Find the conditions for a line to pass through the unit point (1,1, 1, 1).

Line systems

The lines of space, as has already been remarked, form a quad-
ruply infinite system, and this means that we have to consider
subsystems of three different kinds:

(e) line complexes, or triply infinite line systems;

(b) line congruences, or doubly infinite line systems;

(¢) ruled surfaces, or simply infinite line systems.

The ruled surface is, of course, the surface generated by a variable
line which has one degree of freedom. _ '

We have already met with examples of all these kinds of system.
Thus the lines which meet a fixed line and those which touch a
fixed quadric form complexes, the chords of a twisted cubic form a
congruence, and the plane pencil of lines and the regulus are familiar
examples of simply infinite line systems.

Any equation

J(Pess Ps1s Pr2s Pors Pozs Pos) = 0,
in which f is not divisible by Q,, ,, imposes a condition on a variable
line p and takes away one of its four degrees of freedom. A single
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equation thus defines a complex, two independent equations a
congruence, and three independent equations a ruled surface.

The simplest line systems are naturally those which are given by
one or more linear equations of the form

(2, P) = @g3Po3+03; P31+812 P127+301 Por+Bog Poz+ s Pos = 0.
Such an equation may also be written as

3 3
0Dy = 0
'igo kgoa'zkpzk

if we define the remaining a,, by means of the relations a;; = —a,,
G,k = 0,...,3).

Itisimportant to realize, however, that even these simple systems
are more awkward to handle than the linear subspaces of the space
8, of points. They are in fact essentially non-linear, since the
identical quadratic relation Q,, = 0 has always to be taken in
conjunction with the linear equations which serve to define the
system. This peculiarity of the geometry of lines deserves to be
examined a little more closely.

A linear subspace of the point space S; may be represented
indifferently as the set of all points whose coordinate vectors x
satisfy r linearly independent linear equations (u®, x) = 0 or as
the set of all points whose coordinate vectors are linearly dependent
on 4—7 independent vectors x%. In the geometry of lines, on the
other hand, r linear equations (a®, p) = 0 determine a line system
which is made up of all the lines whose coordinate vectors p
satisfy the 1 equations

(@9, p)=0 (=1,.,r); Q,, = 0.
Such a system cannot, in general, be represented parametrically by
an equation of the form e .
P =,~§1A ; P9

and indeed if p®W,..., p® are coordinate vectors of lines of space
the vector A, pV4-...+A, p® need not represent a line at all. Only
in special circumstances will this vector satisfy the identical relation
Q,, = 0 for arbitrary values of the A,.

§2. LiNEAR LINE SPACES

Suppose p, g are given lines, represented by coordinate vectors
P, q respectively. Then, for p+4Aq to represent aline, we must have

2 (Por 2901 )(Pas+Agz5) = O,
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where the summation extends over three terms; and this condition

may be written
Y Q,,+ 202, +XQ,, = 0.

Since p and q represent lines, Q,, = Q,, = 0; and the condition
is therefore satisfied for all A if and only if Q,,, = 0, i.e. if and only
if p and ¢ intersect.

' When this is the case, p-Aq clearly represents a general line of
the flat pencil determined by p, ¢. For if 7 is any line which meets
both p and g then

Qpirgr = Qpr Xy, = 0,

and r also meets the line represented by p-+Aq. It follows that this
line p-+Aq lies in the plane of p and ¢ and passes through their
common point.

A system of lines which is such that the coordinate vectors p
which represent lines of the system form a subspace of the vector
space Vy(K)—i.e. the set of all vectors linearly dependent on a finite
set of vectors in V;(K)—will be called ‘a linear line space. The
simplest non-trivial linear line space is accordingly the pencil,
represented by p = A, p®+A, p@; and we shall now show that
only two other linear line spaces are possible, namely the point-star,
or system of co? lines through a point, and the ruled plane, or system
of oo? lines in a plane.

Suppose, in fact, that p®,..., p™ are coordinate vectors of m

- m .
lines p®,...,p™, and that every linear combination > A, p9 also
‘ i=1

represents a line. Then, in particular, every linear combination of
two of the vectors, p®, p¥say, must represent aline; and this means,
as we have already seen, that the lines p®, p% intersect. Thus the
given lines p®,..., p™ all intersect in pairs. Now p®, p® meet in &
point and also lie in & common plane, and since p® meets them both
it must either pass through the point or lie in the plane (but it
cannot do both if the vectors p®, p®, p® are linearly independent).
It is easy to see that the equation

P = 4 pO-+A PP+ DO

gives a parametric representation in the first case of the star and

in the second of the ruled plane containing the three lines p®, p®,

p®. But in neither case can there be a fourth line p¥, not belonging

to the star or the ruled plane, which meets all of p®, p®, p®; and
5304 : Bb
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this means that no more ample linear line spaces can exist. This
enables us to enunciate the theorem:

THEOREM 1. The only linear line spaces in S; are the line pencil,
the point-star, and the ruled plane. -

It will be observed that the star and the ruled plane are dual to
each other in space, while the pencil is self-dual. Every pencil can
of course be obtained as the intersection of a unique star and a
unique ruled plane—i.e. the set of all lines common to the two
systems.

The regulus

When m lines ¢ do not all intersect in pairs they certainly do
not determine a linear line space; but we may still consider the
system of lines p which are linearly dependent on the given lines.
In other words, we may form the vector

S p?
p—-gl,p

and then consider the system of all lines arising from sets of para-
meters (..., A,,) for which the condition Q,, is satisfied.
If ¢, r are two given'lines and p = Aq-+pur then, as we have seen,

Q,p = N+ 22pQ2 - p2Q,, 5
and this means that if ¢ and r are skew no other line can be linearly
dependent on them.
If g, r, s are three given lines and p = Aq4-pur+vs, then

Qpp = (Qqq» er'Qas’ Qrs’qu’ qu Q A, B, v)%
and since Q,, = Q,, = Q,, = 0 this reduces to

Qp = 2(Qp v+ Qg vA+-Qp, A).

Even when the lines ¢, r, s are all skew there are therefore col
lines p which are linearly dependent on them, and these lines
generate a ruled surface through g, 7, s. But, by the linearity in
p of the conditionQ,, = 0, every line ¢ which meets ¢, 7, s also meets
any line given by p = Aq+pur+vs. The lines »p which generate
the ruled surface therefore meet all transversals of ¢, r, s; and this
gives us the following theorem.

. THEOREM 2. The lines which are linearly dependent on three given
" skew lines q, r, 8 constitute the unique regulus which contains g, r, 8,
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If A, u, v are taken as coordinates of a variable point in & plane ,
the lines of the regulus are represented in = by the points of a conic
k whose equation is

Qra"w’l"quVA'!‘quAou’ = 0. (1)
Now a line given by Aq-+-ur--v8 meets a given line ¢ only if
QuA+Q,u+Qyv = 0, (2)

and the two lines of the regulus which meet ¢ are accordingly
represented in 7 by the points of intersection of the conic (1) with
the line (2). These two lines and the two common transversals of
q, 7, 8, t meet ¢ in t_he same points The transversals coincide,
therefore, if the line (2).touches £, i.e. if

(Qas: ng’ Q?m "‘Qanqr: "'quQrs: —QTOQRQQQQI’ Qrb Qsl)z = 0!
iie. if (Qy Q) (@ 2+ (@ Q) = 0.

We could now go on to consider the systems of lines linearly
dependent on four or five general lines; but since such systems
are more simply defined by means of linear equations (a, p) = 0
satisfied by the coordinate vector p of a general line of the system,
we leave them over until later.

ExERCISE. Discuss the systems of lines linearly dependent on g, 7, s when
(@) one pair of these lines intersect, and (b) two pairs intersect.

§3. LiINe COMPLEXES

If F(pqgg;..., Pog) i8 & form of degree n in the six line-coordinates,
and Q,, is not a factor of this form, there are co® lines whose co-
ordinates satisfy the equation

F(Pa3)++s Pos) = 0.
Such a system of lines is called a line complex of order n. If K denotes
the complex, the lines of K which pass through a general point P
will form a cone—the complex cone Cp associated with P; and the
lines of K which lie in a general plane = will form an envelope—
the complex envelope E, associated with =. Since the complex is a
" gelf-dual entity, whose equation can equally well be written

F(ﬂ'ol,..., 1712) == 0,
the order of Cp must be the same as the class of E,.

Suppose P has coordinates (¢, £,, €;, £3). Then the line joining
P to the general point (x,, Z;, 5, %3) belongs to the complex if

F(fy23—£3 ;... EoT3—E3 %) = 0.
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Since the left-hand side of this equation is homogeneous of degree »
in z,, 2, %,, 2;, Cp is & cone of order ». Similarly, or by duality,
E, is an envelope of class n. This gives us the important result:

THEOREM 3. If K is a complex of order n, the lines of K which pass
through a general point generate a cone of order n and the lines of K
which lie tn a general plane generate an envelope of class n.

If K is of order 1, this theorem implies that the lines of K which
pass through a point P all lie in a plane = through P, and the lines
of K which lie in a plane = all pass through a point P in 7. Thus a
complex of this kind, which is known as a linear complex, consists
of the lines of co® flat pencils, one for every point of space. There
are only oo? lines altogether, since each belongs to an infinity of
the pencils. ’

If K is of order 2 it is called a quadratic complex. The lines of K
through P generate a quadric cone, and the lines of K in = envelop
a conic. If the cone is a plane-pair, P is a singular point of K; and
if the conic is a point-pair, 7 is a singular plane of K.

In special cases it may happen that a complex K has total
points or total planes. A total point is such that every line through
it belongs to K, and a total plane is such that every line in it is a
line of K.

The linear complex

The equation of a linear complex K may be written in the form
(a, p) = 0; but it is often better to renumber the coefficients and
write it as '

Qup = G0 Past+o2 P31+ C03 P12t o3 Por + 31 Pogt+ 12 Pes = 0.

If Q,, = 0, so that a,,,..., @y are themselves coordinates of a
line @, then K consists of all the lines of S; which meet a. We say
in this case that the complex is special and that it has a as its axis.
Cp is then the plane joining P to a, and E_ is the point in which
7 is met by a. Every plane through a and every point which lies
on a is total for K.

IfQ,, # 0, K is a general linear complex. The equation of the
complex plane Cp associated with the point P whose coordinates
are (&g, &y, €9, &3) is then

Ao (€a%a—E3%a) 4.+ Aos(€o Ty — £, o)+ ... = 0.
This plane is called the polar plane of P with respect to the complex,
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and its coordinates are obtained from the coordinates of P, if we
now denote these by z, z,, %,, 3, by the linear transformation

[Uo\ = 0 an a4y 6, (%
Uy — Qg3 0 Qo3 —qp || 1
\ % —Q3 —0g 0 Aoy |\ %2
U3 —Q Qoe  — Qg Y T3

or, say, u = AX, where A is a skew-symmetric matrix whose
determinant Q2, does not vanish. The transformation is therefore a
non-singular null polarity ». The polar plane of P in » is its polar
plane with respect to the linear complex, and two points P, @ are
conjugate for v if and only if PQ is a line of the complex. It follows
that the pole of any plane 7 with respect to K is its pole in v, and
that K consists of all the lines of space which are self-polar for ».
This establishes the fundamental connexion between null polarities
and linear complexes.

THEOREM 4. Every linear complex K consists of the totality of lines
that are self-polar for a null polarity v, and conversely. Ifvissingular,
K s special and consists of all the lines which meet a fized line.

It follows from Theorem 4 that all the lines of K which meet a
line I also meet the polar line I’ of I. Conversely, if a line /is not self-
polar for v (i.e. not a line of K) then every line which meets both ¢
and its polar line I’ is a line of K. (See p. 361.) '

Since K and v determine each other uniquely, we may say that
two lines are polar lines with respect to K when they are polar for v.

EXERCISES ‘

(i) If the reference lines X, X, and X, X, are polar lines for a linear
complex K, show that the equation of K reduces to the form p,, = Apys.
Find the polar line of any given line ¢ with respect to this complex.

(ii) Iffour lines p;, Py, Ps, P4 of a linear complex K have two (and only two)
distinct transversals, prove that these are polar lines for K. If the lines have
a unique transversal, prove that this belongs to K; and deduce that the range
cut on it by the lines is homographic with the pencil of planes joining it to
the lines. If the lines belong to a regulus, prove that this regulus is contained
in K, and that the complementary regulus consists of pairs of polar lines
for K.

(iii) Show that there exists a unique linear complex containing five general
lines. Discuss the special case when the five given lines have a unique trans-
versal line. Show also that if the five lines have two transversals they
belong to an infinity of linear complexes.
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Quadratic complexes. The tetrahedral complex

The geometry of the general quadratic complex is a very large
subject which we shall not attempt to go into here. We remark
only that it centres largely round the singular surface of the
complex—a remarkable quartic surface, called the Kummer surface,
possessing sixteen nodes—which is at the same time the locus of
singular points and the envelope of singular planes. Our discussion
will be limited to two special quadratic complexes which are of
more immediate geometrical interest.

The first of these systems is the complex of tangent lines to a
quadric . To find its equation we may make use of the fact that a
line touches ¢ if and only if it meets its polar line with respect to .
Let the equation of ¢ be

agx3+a, xi4-a,234-a, 22 = 0,
and let p be a general line, containing the points (y,) and (z,).
Then the line-coordinates of p are given by

Pij = Y%~ Y%
The polar line p’ of p is the line of intersection of the polar planes
- of the points (y;) and (2,), i.e. the planes (a,y;) and (a,2;), and it
therefore has dual line-coordinates,
Ty = @0y 2—Y;2;) = a; @; Pij-
We have then Q=33 a,0;p%,
and the condition for p to be a tangent line to ¢ is

@3 Pl3-+ 0y @y PGy +01 0y Pla+ a0 8y Py 40 @, Py +ag a5 pF, = O.
This equation is accordingly the equation of y regarded as a complex
of tangent lines. The complex cone Cp is of course the enveloping
cone with vertex P, and the complex envelope E, is the section
of iy by =. The points and the tangent planes of 4 are all singular
for the quadratic complex.

The second special quadratic complex that we wish to consider
is the tetrahedral complex, which may be defined as the totality of
lines which meet the faces of a given tetrahedron in a range of points
with given cross ratio.

Suppose K is & tetrahedral complex, the defining tetrahedron
being the tetrahedron of reference X, X, X, X,. If p is a line of K,
determined by two points (y,), (2;), the coordinates of a general
point of p may be written as (y;—Az,), and the parameters of the
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points in which p meets the faces of the tetrahedron are then given
by A; = y,/% (¢ = 0,...,3). If the value of the constant cross ratio
is «, we then have :

- {@g; !La’;'_/g} _ YoZa—Ys% [Yo%—Ys% _ _PoaPs_

202 % 2 Y12~V %l Y1%—Ys% Po3 Pz
Since the expression on the right may also be written as a7
T12 703

we see, incidentally, that the cross ratio of the four points in which
p is met by the faces of the tetrabedron of reference is equal to the
cross ratio of the four planes joining p to the vertices of the tetra-
hedron of reference—so that the tetrahedral complex is self-dual.
The equation of the system may be written

PozPnt+PosPrz = 0,
and since the p,; are connected by the identical relation

PoiPes+PozPs1tPosPrz = 0,
the same complex may be represented in infinitely many ways by
- an equation of the form

P01 Pas+bPoz Pa1+CPos P1z = O
Conversely, any equation of this form, in which a, b, ¢ are all
unequal, defines a tetrahedral complex.

The special peculiarity of the tetrahedral complex K, as a quad-
ratic complex, is that it possesses four total points and four total
planes, namely the vertices and faces of the basic tetrahedron.
This is apparent at once from the form of the equation just obtained.
~ The complex cone Cp consequently contains the four lines joining
P t6 the vertices of the tetrahedron, and the complex envelope £,
contains the lines in which # is met by its four faces. The locus of
singular points of KX is the set of four faces of the tetrahedron, and
the envelope of singular planes is the set of four vertices.

Tetrahedral complexes are met with in various connexions, and
the following instances are especially important.

(i) If = is a general space collineation, with united points 4, B,
C, D, then all the joins of corresponding points P, P’ generate a
tetrahedral complex based on A BCD, and the lines of intersection
of corresponding planes =, =’ also generate the same tetrahedral
complex.

(ii) If (8) is a general pencil of quadrics the axes #p, relative
to (8), of all points P of space generate a tetrahedral complex
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and the vertices of the tetrahedron are the vertices of the four cones
of the pencil.

(iii) Dually, if (X) is a general range of quadrics the axes &,
relative to (Z), of all planes 7 of space generate a tetrahedral com-
plex; and the faces of the tetrahedron are the planes of the four disk
quadrics of the range.

To prove the statement (1) we need only observe that if P, P’
have coordinates (zy, 2;, %, Z3), (a%y, bx,, cxy, dxs) respectively, the
coordinates of the line PP’ satisfy the equation '

(“+b)(0+d)19011’23+(a+c)(d+b)17021’31+(a+d)(b+c)1’oa1’12 = 0.

1t now follows immediately that the axes ¢p of a pencil of quadrics
constitute a tetrahedral complex—for the polar planes =, o’ of a
point P with respect to two quadrics 8, 8’ of the pencil are col-
linearly related; and, by duality, the axes #, of a range also make up
a tetrahedral complex. An interesting special case of (iii) arises
when the range (X) is a confocal system. In this case we can state
the result in the following terms:

The normals of all the members of a confocal system of central
quadrics generate a tetrahedral complex based on the three principal
planes and the plane at infinity.

It follows from this general result that all the normals that can
be drawn to the confocals from a fixed point generate a quadric
cone, of which one generator passes through the centre of the system .
and three others are parallel to the axes. It follows further that
all the normals to the confocals which lie in a plane envelop a
parabola which touches the three principal planes.

EXERCISES ‘

(i) If 4 is a central quadric, prove that the feet of those normals which
belong to a given linear complex all lie on a quadric ¢’ which passes through
the centre of b and through the points at infinity on its axes, and conversely.
Discuss the special case which arises when the linear complex is special
and the intersection of b with i’ is a pair of conics.

(ii) Prove that the normals at two points of a quadric i intersect if and
only if the join of the points is a normal to some quadric confocal with i.
Deduce from this that if a plane section of s contains one triad of points
at which the normals to i are concurrent, then it contains co! such triads,
and prove that the locus of the points of concurrence of the triads of normals
is a line,

(iii) Form the equation of the complex of lines which meet the conic
whose eaquations are 23—z, z. = 0 = Za.



(377)

§4. LINE CONGRUENCES

If & variable line is restricted in such a way as to reduce its free-
dom from 4 to 2, so that it depends effectively on the values of a
set of parameters of which only two are independent, then it is
said to describe a line congruence K. Thus, for instance, K might
be the totality of lines common to two complexes—the complete
intersection of the complexes; or it might be a two-dimensional
component of a reducible system of this kind—a partial intersection
of two complexes. Inany case we expect there to be a finite number
of lines of K which satisfy any restriction which imposes two further
conditions on the two independent parameters. There will, in
particular, be a finite number m of lines of K through a general point
P; and this number m (which is independent of the choice of P
if K is an algebraic congruence) is called the order of K. Similarly
there will be a finite number of lines of K which lie in a general
plane, and this number is called the class of K. A congruence of
order m and class n will be called an (m,n) congruence.

As simple examples of congruences we have:

(i) the star, which is a (1,0) congruence;
(ii) the ruled plane, which is a (0, 1) congruence;

(iii) the set of lines which meet two skew lines, which is a (1, 1)

congruence;

(iv) the (1, 3) congruence of chords of a twisted cubic.

A point is said to be a singular point of the congruence K if
infinitely many lines of K pass through it, and a plane which con-
tains infinitely many lines of K is called a singular plane.

The linear congruence ,

The lines common to two distinct linear co'mplexes L, L,
evidently form a (1, 1) congruence K, and such a system of lines is
called a linear congruence. The equations of K may be written
in the form Q,, = 0, Q,,, = 0; and the lines of K clearly belong to
every linear complex of the pencil of linear complexes given by
Q.. %, = 0. This last complex is special if and only if A satisfies
the quadratic equation Q,x,q+3 = 0 ie.

- Qo 20Q 45+ A%, = 0.

If this equation has distinct roots A;, As the pencil of linear
complexes contains two complexes which are special, and these
may be chosen as L, and L,. Then K is the system of all lines
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which meet the axes of the two special complexes. This is the
general type of linear congruence. Conversely, the lines which
meet two general lines constitute a linear congruence with the two
lines as axes.

If the quadratic in A has coincident roots, K has only one axis,
and it is then said to be special. It consists in this case of all the
lines which meet a fixed line @ and also belong to a linear complex L.
The axis a is itself a line of L, since otherwise the lines of K would
all meet the polar line of @ with respect to L. The lines of K which
pass through any point P of @ lie in a plane = through a—namely
the polar plane of P with respect to L—and the range (P) and the
pencil (=) are homographically related.

An even more special case arises when the quadratic in A is
satisfied identically. This happens when L,, L, are both special
complexes and when their axes @, b intersect. K consists in this
- case of all the lines through the common point of @ and &, together
with all the lines coplanar with a and b.

Recapitulating, we have:

THEOREM 5. T'he general linear congruence consists of all the lines
which meet two fized non-intersecting lines. A special linear con-
gruence 18 generated by lines p which meet a fixed line a in such a way
that the point ap and the plane ap correspond in a fized homographic
relation. A degenerate linear congruence is composed of a star [4]
and a ruled plane [«], with 4 in o.

Other congruences :

Among other types of congruence we may refer briefly to the
following. ‘ :

The quadratic congruence is a (2,2) congruence which is the
complete intersection of a linear complex § and a quadratic
complex T. If K is a general congruence of this type, it can be
shown that K has sixteen singular points, each of which is the vertex
of a pencil of lines of K; and the planes of the sixteen pencils so
arising are singular planes of K. When, in particular, 7' happens
to be a tetrahedral complex, four of the singular points must lie
at the vertices of the tetrahedron and four more at the poles of its
faces with respect to S; and in each face there lie two other singular
points, whose polar planes with respect to S are the planes which
form with that face the degenerate complex cones of 7' at the
points in question.
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The congruence of chords of a twisted cubiccisa (1, 3) congruence
which has every point of ¢ as a singular point. Dually, the con-
gruence of axes of a cubic developable 3 is a (3, 1) congruence.

The congruence of normals to a quadric ¢ is a (6, 2) congruence
whose lines are mapped on the points of §y at which they are normal.
" The normals of y which belong to any general linear complex are
mapped in this way by the points of the curve in which ¢ is met by
another quadric ¢’ through the centre of  and the points at infinity
on its axes (cf. p. 376, Exercise (i)). In this way the totality of
sections of the congruence by all linear complexes is associated
with the totality of sections of ¢ by the co® quadrics ' through the
four specified points.

§5. RULED SURFACES

A ruled surface R is the line system generated by a variable line
whose position depends effectively on the value of a single para-
meter. The order n of the surface, when this is algebraic, is the num-
ber of its lines which meet a general line of S;.

A particularly simple ruled surface is the intersection of three
linear complexes L,, L;, Ly. If the equations L; = 0 (+ = 1,2,3)
represent three general linear complexes, so that L, = Q, ,, then
the lines common to them all belong to every complex of the co?
linear family AL,+pL,4vL; = 0. The lines therefore belong, in
particular, to the oo! special complexes of this family, and they
have the axes of these complexes as common transversals. But
these axes are given by coordinate vectors of the form

Aa,+pa,-+-rag;

and since we may take three of the special complexes as the Ly,
it follows from Theorem 2 that the set of co! axes is a regulus, and
the set of lines of which they are common transversals is the
complementary regulus. Thus we have the theorem:

THEOREM 6. The intersection of three linear complexes 18, in
general, a regulus, i.e. a ruled surface of order 2.

Among ruled surfaces we distinguish as a special class those which
are developable, i.e. those with the property that consecutive gene-
rators always intersect. Suppose that p(¢) is the coordinate
vector of a variable generator of a developable ruled surface R,
¢t being a parameter, and suppose that p(f) is a differentiable



380 LINE GEOMETRY XV,§5

function of ¢, with derivative p. Then, since R is developable,
P(f) must satisfy the differential equation Q,; = 0.

The lines of a developable ruled surface R are, in general, the
tangent lines of a curve C, the cuspidal edge of R, and they are
also the focal lines of an envelope E, the envelope of osculating
~ planes of C.

EXERCISES ON CHAPTER XV

1. Show that the line whose equations are z,/a = x,/b = x,/c is the axis
of the special linear complex given by ap,,+bp;,-+cp; = 0 and that the
line whose equations are zy = 0 = ax, Bz, +y=; is the axis of the special
linear complex whose equation is apg; +BpPgs+yPes = 0.

If a, # 0, show that a line belongs to the star with vertex (a,, a,a,, a,)
if and only if its coordinates satisfy the conditions

@o P23+ A3 P30+ A3 Pog = Ao P31+ 3 P10+ 1 Pos = B P12+ Pao+a3 06 = 0.

Find analogous equations for the ruled plane whose ordinary equation is
Qg Tyt &y + oy, + oy w3 = 0, where ay # 0.

" 2. Show that the equation p,, = Ap,, represents the special linear complex
whose axis is the line z,—Az, = 0 = ,.

3. Show that the lines which satisfy the equations py; = Py = Do are
those which lie in the plane x, = 0 and those which pass through the point
(0,1,1,1).

Find all the lines which satisfy the equations pgy = p5; = P13

4. Identify all types of line system obtained by taking one or more of the
six line-coordinates to be zero.

5. Find the coordinate vectors of the two lines which meet all the lines
of the linear congruence whose equations are

TPo1— 5Poa+21Pp3+ 2P23 +Psr+P13 = 0,
5P01~~ 2P03 +13pg3 -+ 2ps5 = 0.

6. Show that the tetrahedron formed by the polar planes of the vertices
of a given tetrahedron with respect to a null polarity is both cu'cumscnbed
to and inscribed in the ngen tetrahedron.

Show also that any pair of tetrahedra related in this way are reciprocals
of each other with respect to a null polarity.

7. Find the equation of the unique linear complex which contains the
following five lines: the edges Xy X, Xo X,, X3 X,, X, X, of the tetrahedron
of reference and the line with coordinates (1,1,2,1,1, —1).

8. If the coordinate vectors of three skew lines are p = (1,0,0,0,0,0),

= (0,0,0,1,0,0), and r = (1,0,1,1,0, — 1), show that any line of the
regulus containing these three has a coordinate vector of the form

(1=)p+A*—2A)q-+Ar.
Show that the quadric surface which contains the regulus is z,zy = , 2,.
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9. If a, b, ¢ are constants, show that the lines whose coordinates satisfy
the equations pg/a = (Por—Pis)/b = Py/c all meet two fixed generators
of the quadric zy»; = x,%,.

10. Five skew lines and & point O being given in general position, trans-
versals are drawn from O to the pairs of transversals of sets of four of the
lines. Show that the five transversals so obtained lie in a plane.

11. Find the line-coordinates of the lines joining the reference points to
the poles of the opposite reference planes with respect to the quadric whose
plane-equation is ¥ Agu;u; = 0, and verify that these four lines are
linearly dependent. :

Deduce that the joins of corresponding vertices of two tetrahedra which
are reciprocal for a quadric belong to a regulus.

12. A conic and a line are given, of general position in space, and a homo-
graphic correspondence is set up between the points of the one and the
points of the other. Show that all the joins of corresponding points meet &
second fixed line.

13. If p, g, 7, s are tangents to the twisted cubic ¢ (62, 62,0, 1) at the points
whose parameters are ;, 0, 8, 8,, show that 2Q,, = (8,—0,)*, and deduce
that if the signs of the fourth roots are chosen suitably then

(Qpg )t + (R Qg+ (R Q) = 0.

14. The six coordinates p;; of a variable line are quadratic polynomials
'in a parameter 0, which satisfy identically the fundamental relation Q,p =0,
and the matrix of coefficients of the six polynomials is of rank 3. Show that
in general the line generates a regulus, and find the complementary regulus.

15. Find the equation of the complex of lines which meet the conic
a3—x,xy = 0 = z,, and that of the complex of lines which meet the twisted
cubic ¢ (68,03,6,1).

16. Xf four skew lines, which do not lie on a quadric, meet a line ! in
points 4, B, C, D and lie respectively in planes «, B, y, 8 through I, show.
that they have no second common transversal other than l if and only if

(A; B, C, D) VAN (ayﬁf}"a)- .

17. Show that if one quadric is transformed into another by the null
polarity belonging to a linear complex, the two quadrics have four generators
in common.

Show, conversely, that if two quadrics have four common generators there
exists a null polarity which transforms the one into the other.



CHAPTER XVI
PROJECTIVE GEOMETRY OF n DIMENSIONS

Ix this concluding chapter we propose to give the reader some
indication, through the medium of specific examples, of the natural
extension of projective geometry to spaces of higher dimensionality,
and of the important function of higher space in providing con-
venient and suggestive representations of variable geometrical
entities in spaces of two and three dimensions. The systematic
development of many-dimensional geometry, initiated in the second
half of the nineteenth century by the Italian school of geometers,
and by Veronese and the great Corrado Segre in particular, was a
momentous undertaking and one which revealed unsuspected
potentialities in the subject of projective geometry. Segre showed
that to stop at three dimensions gives an unnatural and distorted
picture even of much of three-dimensional projective geometry,
since configurations in §; that appear to be very complicated can
often be obtained as sections or projections of much simpler ones
in higher space. Again, the introduction of higher space has proved
of inestimable value in making possible new developments in
ordinary projective geometry by allowing the construction of
simple models of systems of geometrical entities in ;. Quite
apart from all this, the study of the geometry of S, both for its own
sake and also with a view to solving purely algebraic problems,
has opened up a vast and fruitful field of research.

Four-dimensional geometry

For the sake of simplicity we begin with four-dimensional space
8;, in which the points are given, in any allowable representation %,
by homogeneous coordinate vectors X = (x,, #;,...,2,). The repre-
sentation may be specified by choosing five reference points
X,,..., Xy, the vertices of a four-dimensional pentahedron of
reference, and a unit point E.

The fundamental entities in 8, are points, lines, planes, and
solids. Lines, planes, and solids are linear subspaces of S,, and
they may be defined as totalities of points linearly dependent
respectively on two, three, or four linearly independent points of 3.

Alternatively, a solid may be characterized as the totality of
points whose coordinates satisfy a single linear equation u?7x = 0;
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and the vector u is then a coordinate vector of the solid. Planes,
lines, and points are clearly the intersections of pairs, triads,
and tetrads of linearly independent solids.

The solids through a plane form a pencil, those through a line
form a line-star, and those through a point form a point-star.

The reader will have no difficulty in interpreting and verifying
the following scheme indicating the normal intersections of linear
subspaces in S;:

line plane solid
line — — point
plane — point line
solid point line plane

It will be noted, in particular, that a line normally meets a solid in
a point. This enables us to define an operation of projection from
a point V on to a solid IT, by which any general point P of S is
transformed into the point of intersection of the line VP with II.
Further, two planes normally meet in & point; and so we can define
projection from a line » on to & plane =, by which a point P goes into
the point of intersection of the plane vP with =. :

In 8,, as in S, and S,, we have a principle of duality. This is indi-
cated by the scheme

point line  plane solid
solid plane line  point)’

Thus, for example, to the proposition that two planes normally
intersect in a point corresponds the dual proposition that two
general (non-intersecting) lines have as their join a solid.

EXERCISES

(i) Show that a line and a plane do not meet unless they lie in a solid, and
that two planes meet in a line if and only if they lie in a solid.

{ii) Verify that S, ~ontains cot points and solids and co® lines and planes.

(iii) Show directly, and also by applying the principle of duality, that
three general lines of S, have a unique transversal line. Explain the circum-
stances in which three lines of S; may have infinitely many transversals.

In S, there are three kinds of point-locus: (a) primals, which are
three-dimensional loci, each given by a single homogeneous equa-
tion in g, 2,,..., 24, (b) surfaces, which are loci of co? points, and
(¢) curves, which are loci of co! points.

The primals of order 1, given by linear equations, are of course
the solids of S,. Next in simplicity after these come the primals of
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order 2 , or quadrics. Every quadric is represented by an equation
of the form

4 4
8= :2 Zoaikxixk =0 (a4 = ay);

and, as was the case in S, the projective character of the locus
depends only on the rank of the matrix (a,,). According as the rank
is 5, 4, or 3, the quadric is (i) a general quadric, (ii) a point-cone,
generated by the co? lines which join a fixed point to all the points
of an ordinary quadric surface lying in a solid, or (iii) a line-cone,
formed by the ool planes which join a fixed line to the points of a
conic.

One of the simplest surfaces which belong properly to 8, (i.e. -
which do not lie in any solid in §,) is the Segre quartic surface F,
the surface of intersection of two general quadrics in 8,. This
surface is known to have sixteen lines lying on it; it projects from
any general point of itself into a general cubic surface in S;; and it
lies on each of the five cones belonging to the pencil defined by the
given pair of quadrics. Another simple surface, the cubic ruled
surface of 8, is the residual intersection of two quadrics (necessarily
cones) which pass through a common plane.

The simplest curve properly belonging to S4 is the rational normal
quartic curve C*—the analogue of the conic in S, and the twisted
cubic in S;—whose parametric equations, referred to a suitably
chosen system of reference, are

Toi®y Xy kg, = 04:6%:6%:0:1.

This curve is met by any solid in four points, whose parameters
may be regarded as the roots of a quartic equation, and the resulting
association between solids in S, and quartic equations f(8) = 0
provides us with a means of inferring algebraic properties of such
equations from known geometrical properties of C4.

The theorem of the fifth associated plane in S,

IR order to illustrate the working of four-dimensional geometry,
- 'we propose now to give a direct algebraic proof of an altogether
remarkable and yet simple theorem which is the basus of much
interesting geometry in S,.

THEOREM 1. T'he lines which meet four given general planes of S,
all meet a fifth plane, which, together with the four original planes,
makes up a symmetrical set of five associated planes.
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Proof. Let m,, my, my, m, be the four given planes. If Ay = mymy,

we can choose coordinate vectors a,; for the six points A, in such

that .

& way s Qy+a3+a5, a5+ +2 =0 (1)
Now let p be a line which meets m; and m, say in the points

represented by the vectors a,,-+2a;3-+ya;, and a,,+2853-112y

respectively. Then a general point of p is given by

(14-A)ags+2a55+ya,+A28y 1Ay, 2
and p meets 75 provided that, for some value of A, this vector is
of the form la,;-+mayy-+na,,, and hence, by (1), of the form
—na+ (—n)a3—nay+ (Mm—n)a—nay,.
This requires that, for some A,

A 1+FA=y=X,
and so yields the condition
t =y/ly—1). : (3)
In the same way, the condition for p to meet 7, is
| = z/@—1). @)

Suppose, now, that conditions (3), (4) are satisfied, so that p
meets all four planes; and consider the point of p for which

A= —(@@—1)@E—1).

Substituting this value for A in (2), we obtain, as the coordinate
vector of the point,

(@+y—zy)as,+2ay3+ya,—2(y—1)as—Y (x—1)az,
ie. (x+y“xy)(a1z+azs+am)+x(313—az4)—‘?I(azs—'au)-
But this is the coordinate vector of a point lying in the plane =
of the points given by a,,-+253-1-224, 813324 and a,,—a,,. The

same plane is also determined by the second and third of these
points together with the point represented by
(@15 g5+ 8gq)+ (A13—B2)— (Bez—B14) = B12—Bse-

We have proved, therefore, that any line which meets m,, my, 73, ™y
also meets the plane m; which is determined by the three points
whose coordinate vectors are as—a;y, 3;3— 8¢, 12— 24> and this
plane may be said to be assoctated with m;, 7y, 73, 4.

In order to show that the five planes =, are symmetrically related,

we find coordinate vectors for the points m;ms (v =1,2,3, 4).
5304 ce
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These may be taken as

a5 = —(a,+33+ay,),
A5 = —(a1p+8p31+2y),
a3, = —(y3-+a5+ay),
a5 = — (84125123

It now follows that the plane associated with 5, Ty, Ty, 7y i8 deter-
mined by the three points whose coordinate vectors are

A—Ay3 = Bp5+2y,, 35—y = A;p-1-2y,,
and Ap—ag, = 21342,

—i.e. it is the plane #,; and this completes the proof of the theorem,
since ,, m,, m3, m, enter symmetrically into the problem.

The lines which meet, the five associated planes ; are subject
to only four simple conditions, and they therefore form a doubly
infinite system. This means that they generate a threefold locus,
and this locus is called the Segre primal. In order to elucidate the
nature of this primal we need to represent it algebraically, and this
may be done in the following manner.

If A5y, Ass, Ay, Agg, Ay, are taken as vertices of a new penta-
hedron of reference, the coordinates of a general point of p are given,
in accordance with (2), by

) Ty _ Ty %3 Xy

== "= == = = p, 88y.
142 = ¥y 2 X P, 88y
Then p = .zﬂ—_xs —_ ﬁ', and hence - xsw .
z z Ty T—y
But,by (4), z=—2_, and hence z— """,
= T3—%g

Similarly, by eliminating ¢ instead of 2z, we obtain

y (=] x‘;xz
Ta—To
.® X
Since ;1 = -2, we have finally
y

z ‘”s—’&/-"’r‘xz
Ly T3—y Ty—Xy
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The locus generated by p is therefore the cubic primal whose
equation is ' .
2, (20— Ts) (Xp—24) — La(Zo—Za) (#1—Z5) = 0.

This equation may be written in the form

XYZ=XY'Z,
where X, Y, Z, X', Y’, Z' are six linear forms in the five point-
coordinates which are connected by the identical relation

X4Y+Z=X'+Y'+7Z.
EXERCISES .
(i) Show that the Segre cubic primal defined above contains fifteen planes
in all, including the five original associated planes; also that it has ten nodes,
of which four lie in each plane.
(ii) Verify that the equations
X = y(t—=z), Y = 2(t—2), Z = z(t—y),.
X' = 2(t—y), Y = z(t—z), 7' = y(t—=),
give a (1,1) parametric representation of the Segre primal on the points
(2,9,2,t) of a three-dimensional space; and find the surfaces in this space
which correspond to the sections of the primal by solids of S,.
(iii) Enunciate the dual of Theorem 1, i.e. the theorem of the fifth asso-
ciated line.

Five-dimensional geometry

The points of S; are given, in any allowable representation 2,
by means of vectors X = (&, Zy,..., %5); and any particular repre-
gsentation can be specified by means of the six vertices X,,..., X;
of the simplex of reference and the unit point £.

The fundamental entities in S; are points, lines, planes, solids,
and primes (four-dimensional linear subspaces). Five linearly
independent points are joined by a unique prime, and five linearly
independent primes intersect in a unique point.

The scheme of normal intersections of linear subspaces in S;
is as follows:

l line plane solid prime
line - —_ — point
plane —_ — point line
solid — point line plane
prime _ point line plane solid

It will be noted, in particular, that two planes of S; do not ordinarily
intersect.
5304 oc2
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The principle of duality in S; is indicated by the scheme

point line plane solid prime
prime solid plane line point )’

The plane features here as a self-dual entity, and the co® points in a
plane are dual to the co? primes passing through a plane.

In §; we have to consider loci ¥, (k = 4, 3, 2, 1) of four different
dimensionalities: primals ¥, (each given by a single equation),
threefolds ¥;, surfaces V,, and curves ¥;.

A quadric primal V3 is said to be general or non-singular if it is
given by the vanishing of a quadratic form whose matrix is of
rank 6. If the rank is 5, 4, or 3, the primal is said to be a point-
cone, a line-cone, or a plane-cone. These three manifolds are
obtained respectively by joining the points of a quadric threefold
V3 by lines to a point, the points of a quadric surface V2 by planes to
a line, or the points of a conic V% by solids to a plane.

EXERCISES

(i) If two planes have a point in common, show that they lie in a prime.

(ii) Show that through any general point there passes a unique transversal
line of two given non-intersecting planes. State the dual result. .

(iii) Prove that in S; there are co® points and primes, oo® lines and solids,
and oo? planes.

(iv) Discuss projection from a point, line, or plane in S;.

Representation of conics in 8, by points in S;

We have already referred in an earlier chapter (see p. 106) to the
fact that when considering systems of conic loci k in a plane = it is
natural to represent all such loci by points of S, taking as co-
ordinates z; of the representative point in S the six coefficients

: 2 2
which appear in the equation Y > a,2;2, = 0. When this is
i=0%k=0 "

done, the four types of linear system of conics, those of freedom
1, 2, 3, and 4 respectively, are represented by the four different
types of linear subspace of S;. Thus, in particular, the conics of a
pencil are mapped on the points of a line in ;.

We shall now give a few properties of this useful representation
in order to exhibit some of its more typical features. The first
thing to observe is that while a general conic in = is represented
simply by a general point of S;, various special kinds of conic are
represented by points belonging to certain loci in S;. Thus we have
the following results.
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The points of Sy which represent repeated lines of the plane form a
surface ¢, called the Veronese surface; and those which represent line-
pairs form a cubic primal M3, called the cubic symmetroid. M3 is the
locus generated by all chords of ¢. '

To prove this we observe first that if k is the repeated line given
by (Ao px,+vx,)? = 0, the coordinates z; of the image point K
are given by ,

Ty _ T _ % _ T _T_ %, W

2 a2 A o o M
and these equations constitute a parametric representation of the
surface ¢—defining a mapping of the points of the surface on the
points (A, u,v) of a plane a. If 7' is any general solid of Sy, defined as
the intersection of the two primes whose equations are
i uix; =0, io'vi x"i =0,

<

i=0

then the points of intersection of ¢ with 7' are represented in o by
the four points (A, p,v) that are common to the two conics whose

equations are U Aty 2ot A = O

and VA2 4o, u2 ... vgApn = 0.

Thus ¢ is met by a general solid in four points, and we accordingly
describe it as a quartic surface.

The points of S5 which represent line-pairs of = are evidently
those whose coordinates satisfy the equation

xy, x5 %y| =0,
’ ’ ’
Ts T %3
’ ’ ’

~ and this is the equation of the cubic symmetroid Mi:
2 2
Finally, since a quadratic form > kz ;. %; % is a product of linear
i=0k=0

factors if and only if it can be expressed as a linear combination
AL2+p M2 of the squares of two linear forms in 2, z;, ,, it follows
that a point of S; lies on M} if and only if it lies on a chord of ¢;
i.e. M3 is the locus of chords of ¢. :

We can now establish the following additional property of the
manifolds ¢ and M3:

The surface ¢ contains a doubly infinite system of conics, one conic
passing through any two given points of the surface. M3 is the locus
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of planes of these conics, and it has the tangent planes of ¢ as a second
system of generating planes.

To prove this, we consider the curve ¢ on ¢ whose points represent
repeated lines through a fixed point ¥V in . This curveisrepresented
by a straight line in the plane o of the parameters A, u, v. Its
parametric equations are obtained therefore by replacing A, p, v
in (1) by linear functions of a parameter 8, and this procedure clearly
leads to equations of a curve of the second order, i.e. a conic. Also
the points of the plane of ¢ represent all line-pairs with ¥V as vertex,
and this plane therefore lies on M. Since, furthermore, any two
lines of = meet in a unique point ¥V, any two points of ¢ are joined
by & unique conic ¢ on the surface. Any two conics ¢, ¢’ on ¢ meet
in & unique point.

Finally, it is easy to verify that all the line-pairs of 7 with a fixed
line d as component are mapped by points of the tangent plane to ¢
at the point which represents the repeated line d; and this shows that
the tangent planes to ¢ form a second doubly infinite system of
generating planes of M3.

EXERCISES

. (i) Show that the three line-pairs of a pencil of conics in 7 are represented
in S; by the three points of intersection with M3 of the image line of the
pencil. Deduce that all the conics which touch a fixed conic &k in 7 are
represented by points of the tangent cone to M2 from the image point of k.

(ii) Prove that a double-contact pencil of conics is represented by a line
which meets ¢; also that any trisecant plane of ¢ represents the net of

conics for which a fixed triangle is self-polar.
(iii) Show that all the conics of 7 which touch a fixed line are represented

in 8 by the points of a quadric primal through ¢.

Representation of the lines of §; by the points of a quadric

primal Q of S;

Our last illustration of the use of geometry of higher dimension-
ality is ene of a kind that has proved to be extraordinarily useful
and suggestive, as well as being capable of very wide application.
It concerns a representation in which a system of geometrical
entities—in this case the lines of S;—is mapped not on a whole
space S, but on a certain algebraic manifold in such a space.

We have already discussed the elements of line-geometry in
Chapter XV, and the reader must have been struck by the fact that
the geometry of line systems of one, two, and three dimensions
is much harder to visualize than the more familiar geometry of
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point-loci. A further awkward feature of line-geometry, to which
we drew specific attention, is the fact that a linear combination of
coordinate vectors of lines is not in general itself the coordinate
" vector of a line—so that the coordinate vectors of the lines of S;
do not constitute a vector space. What we now propose to do is to
show briefly how these and other similar difficulties may be avoided
by transforming the whole theory of line systems in S into the
theory of ordinary point-loci on a four-dimensional manifold Q
in 8;, whose points map unexceptionally the lines of S;.

In terms of any fixed allowable representation of S, every line p
has a set of six line-coordinates which make up the coordinate

t0
vector P = (D3, Pa1» P12s Pors Pozs Poa)s

and this vector satisfies the identical relation

Qpp = Po1 Poa+PoaPa1tPosPrz = 0-

If, now, we interpret p as the coordinate vector (zo,...,%s) of &
point in S, it is obvious that a one-one correspondence is set up
between the lines of S, and the points of S; which lie on the quadric
primal Q whose equation is

Q = xyz3+2, 74+ 2,25 = 0.

This is the representation to which we have already alluded.
Complexes, congruences, and ruled surfaces of S; are represented
respectively by threefold loci, surfaces, and curves cut on Q by .
algebraic manifolds in S;; and the condition €, = 0 for two lines
p, qin 8, to intersect clearly expresses the conjugacy of their repre-
sentative points in S5 with respect to the quadric Q.

Plainly, in order to profit from this representation, we need to be
familiar with the properties of Q. Our knowledge of such properties
comes in the first instance partly from such algebraic results as
we already know concerning quadratic forms and symmetrical
polarities and partly from the results that we have already obtained
by direct study of the line-geometry of S;. )

To begin with, Q is a non-singular quadric of S;; for a simple non-
singular transformation of coordinates reduces z,%3+; %+ 5
to a sum of the six squares of the new coordinates.

Then again, by obvious generalization of the polar properties
of conics and quadric surfaces, we may infer the following pro-
perties of Q. ’
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(i) Q defines a symmetrical (non-singular) point-prime polarity
of §;, in which the uniquely associated pairs of polar spaces are
(@) point and prime, (b) line and solid, (c) plane and plane. Any
point of either space of a polar pair is conjugate to all points of the
other, and any prime through either space of a pair is conjugate
to every prime through the other. (The definitions of conjugacy
are, of course, immediate generalizations of the definitions of
conjugacy of points and of planes with respect to a quadric in S;.)

(ii) The points of Q are those points of S, which lie on their polar
primes, and the tangent ptimes of Q are those primes which contain
their poles.

(iii) Through any solid 7' there pass two tangent primes to Q,
and the polar line of 7' is the line which joins their points of contact.
Through any general plane = there pass ool tangent primes of Q,
and these touch Q at points of the conic in which Q is met by the
polar plane of =. :

Analogy with the quadric in S; leads us to expect that Q will
contain certain systems of generating linear spaces which lie
wholly on it, and such spaces do in fact exist. In order to find them
we can use the representation of lines; for any generating space of
Q must be the image on Q of a linear line space in S, (see Chapter
XV, § 2). Now we know exactly what special line systems of this
kind exist in 83, and we accordingly infer that Q contains the follow-
ing generating spaces:

(i) oo® lines, representing pencils of lines in S;;
(ii) 0o® planes of one system, «-planes say, representing point-
stars of S;; )
(iii) co® planes of another system, B-planes say, representing
ruled planes of S;. )

Every line on Q is clearly the intersection of a unique «-plane with
& unique S-plane. ,

Since two point-stars of S; have a unique ray in common, it follows
that two «-planes meet always in a single point; and similarly two
B-planes meet in a single point. A point-star and a ruled plane, on
the other hand, have either no line in common or else contain a
common pencil of lines (when the vertex of the star lies in the plane);
and therefore an a-plane and a B-plane in general do not intersect,
but if they have an intersection this must be a line.

We are now in a position to discuss the representation on Q of
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various types of line system in S; which we have already met in
Chapter XV.

In the first place, any linear complex—obtained by imposing
a fixed linear condition on the p;—is represented by the threefold
locus V2 in which Q is met by & prime II. IfII touches Q at a point
P, then the section V3 is & point-cone with P as vertex, and the
corresponding linear complex is then the special complex whose
axis is the line corresponding to P.

A quadratic complex K is represented by the quartic threefold
V4 in which Q is met by a second quadric Q’; and the geometry of
K is accordingly related to that of the pencil of quadrics defined
by Q and Q’. The singular points and planes of K correspond to
a-planes and B-planes of Q which touch Q’, i.e. which meet it in
line-pairs.

A linear congruence is represented by the quadric surface F in
which Q is met by a solid 7', and its two directrices are represented
by the points of intersection of Q with the polar line of 7'.

A quadratic congruence is represented by the Segre quartic
surface common to two quadrics Q, Q' and a prime II.

A regulus is represented by the conic in which Q is met by a
plane =; and the complementary regulus is represented by the conic
in which Q is met by the polar plane 7’ of m. This follows from the
fact that if P, Q are two points, one on each of the conics, represent-
ing lines p, ¢ respectively, then P and Q are conjugate points for €2,
and the condition Q,, = 0 for p and ¢ to intersect is therefore
satisfied.

Tor further details and applications of the representation just
considered, in addition to those few given in the exercises below,
we refer the reader particularly to the excellent account given in
Baker, Principles of Geometry (Cambridge, 1925), volume iv; and
also to the accounts given in Edge, Ruled Surfaces (Cambridge,
1931), chapter i, and Semple and Roth, Introduction to Algebraic
Geometry (Oxford, 1949), chapter x.

Conclusion

Our main concern in the preceding chapters has been with some
of the simplest manifolds in two and three dimensions, especially
the conic, quadric, and twisted cubic, and we have been able to
give a tolerably complete account of these three manifolds by
relying on a few general notions such as that of homographic
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correspondence. We have also touched lightly upon certain power-
ful methods of proving geometrical theorems, of which the methods
of transformation and representation are typical. We have met
various examples of birational transformation, including Cremona
transformations of a plane into itself and projection of a quadric
on to a plane; and we have seen how conics in 8, and lines in S,
may be represented by points in higher space.

In order to illustrate Segre’s discovery that figures in S, or S; can
sometimes be derived by projection or section from simpler figures
in higher space, we should have to study a number of other special
manifolds in addition to those already mentioned, and to do this
we should need to go more fully into the theory of birational corre-
spondences. This would take us beyond the confines of elementary
projective geometry into the realm known as algebraic geometry.
References to a number of books on this subject have already been
given.

A yet more ambitious project may just be discerned upon the
horizon—to discuss, in full generality, the properties of algebraic
manifolds as such in projective space S,. This is the ultimate objec-
tive in algebraic geometry, and one towards which some progress
has been made from various directions. Thus the geometers of
the Italian school rely largely upon correspondence methods, while
other algebraic geometers are bringing the full resources of modern
algebra to bear upon their problems. The reader who wishes to
learn more of this side of geometry should turn, say, to Methods
of Algebraic Geometry by Hodge and Pedoe.

Our task has been a much more elementary one; but it has its
justification in the intrinsic interest of the particular manifolds
we have discussed in detail, and also in the fact that one has to be
thoroughly acquainted with the properties of a variety of special
manifolds in order to be in a. position to tackle more general geo-
metrical problems.

EXERCISES ON CHAPTER XVI

1. Show that any quadric of S, that contains a plane is necessarily a
cone (or a pair of solids).

2. If two quadric cones of S; have a plane 7 in common, show that in
general they meet residually in & cubic ruled surface, and that the generators
of this surface meet 7 in the points of a conic.

Show also that the equations of such a cubic ruled surface can be written
in the form u/u’ = vfv’ = wfw’, where u, v, w, w’, v’, w’ are linear forms in
the point-coordinates.
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3. Deduce from Exercise 2 that the cubic ruled surface lies on a quadric
line-cone whose vertex meets all the generating lines of the surface.

Show also that the surface is generated by the lines which join corre-
sponding points of homographic ranges on a line and on & conie respectively,
and that any general surface so generated is a cubic ruled surface.

[Hint. Write

ufu’ = v = ww' = (Au+pv+vw)/(ku'+pv’+vw')

— (A/u_’_y'/v+v/w)/(Alul+’L/vl+vlw/)’
and choose A, p, v, X, ', v’ 8o that Nu+pv+v'w = M+ pv’ +vw'.]

4. Show that all the planes of S, which meet three general lines meet &
fixed solid in the lines of a tetrahedral complex, and that any tetrahedral
complex can be generated in this way. [Hint. If the unique transversal
line of the given lines meets them in A, B, C and meets the solid in D, and
if 7 is any one of the planes, then the pencil of solids w(4, B, C, D) meets the
fixed solid in a pencil of planes of fixed cross ratio.]

5. If Cisthe rational normal quartic curve whose parametric equations are

T i@y Ty 1yt wy = 04:0°:60:0:1,
ghow that the solid which joins the four points of the curve whose para-
meters are 0; (i = 1,2, 3, 4) has the equation
' | X8, Xy 83Ty — 8y Tyt 8 Ty = 0,
where 8,, 8, 8, 8, are the elementary symmetric functions of 6,, 0;, Oy, 0.

Deduce from this the equations of a trisecant plane and of a chord of
the curve. :

6. Show that the chords of the curve C in the previous exercise generate
the cubic primal whose equation is
Ty T %3] =0
T %3 T3
T3 Ty T,
Show that three chords of C meet a general line of S;.

Show that four osculating solids of C pass through a general point of ;.
If P is this point and II is the solid containing the points of contact of the
four osculating solids, show that II is the polar solid of P with respect
to a fixed non-singular quadric containing ail the tangents of C.

7. Show that the trisecant planes of a rational normal quartic curve which
pass through a general point generate a quadric cone with vertex at the point.

8. The quartic equation a,x*+ 44,23+ 6a,2%+4a,2+¢a; = 0 is repre-
sented by the point (ay,...,a,) of S;. Show that (i) the locus of points of Sy
which represent equations with four equal roots is a rational normal quartic
curve C, (ii) the locus of points which represent equations with three equal
roots is & sextic surface, locus of tangent lines of C, (iii) the locus of points
which represent equations with two equal roots is a sextic primal, locus of
osculating planes of C, and (iv) the locus of points which represent equations
with a given root is an osculating solid of C.

Find the locus of points which represent equations with two pairs of equal
roots. ‘
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9. Prove, by the methods of Exercise 8, that a necessary (and in general
sufficient) condition for the quartic polynomial (ay,..., @,{z, 1) to be expres-
sible as a sum of two fourth powers is

a, a, ay|=0.
a; a; ag

Q; az ay

In what special circumstances is this condition insufficient ?

10. A rational quartic curve in the plane or in space being defined as a
quartic curve given by parametric equations in which the coordinates are
proportional to linearly independent quartic polynomials in & parameter ¢
with no common factor, show that every such quartic curve is a projection
of the rational normal quartic curve in S, from a line or from a point.

Show that the general rational plane quartic has three double points.

Show also how to choose the line-vertex of projection so that the rational
normal quartic shall project into a tricuspidal plane quartic; and interpret
in this way the fact that the three cuspidal tangents of such a curve are
concurrent.

11. Prove that the general rational quintic curve in S; has one quadri-
secant line, and that the general rational quintic curve in S, has one trisecant
line.

12. Prove that the general quintic polynomial in one variable x is expres-
sible in one and only one way as a linear combination of three fifth powers
(@—a), (z—P)S, (z—y).

13. Show that in S; a unique transversal plane of three given lines (of
general position) can be drawn through any general point P.

If P describes a fourth line, show that the transversal plane cuts homo-
graphic ranges on all four lines.

14. Establish the following results for the representation of the conics
of §; by points of S; (p. 388).

(i) The surface ¢ is double on M3, i.e. any general line through a point P
of ¢ has two of its three intersections with M} coincident at P.

(ii) Any inflexional tangent line to M3 represents a pencil of conics with
three-point contact.

(iii) Any plane which does not meet ¢ but meets M3 in the sides of a
triangle represents a net of conics which pass through three fixed points.

(iv) A solid which contains a conic of ¢ meets ¢ in general in one further
point not on the conic, and it represents the system of conics which have a
given point and a given line as pole and polar.

(v) The cone which projects ¢ from any general point of S; represents
the system of all conics which have double contact with a fixed conic.

(vi) Any prime of S; represents the system of conics which are outpolar to
a fixed conic envelope, and this envelope is a proper conic, a point-pair, or &
repeated point according as the prime meets ¢ in an irreducible quartic
curve, a pair of conics, or a single conic counted twice.

15. . Establish the following properties of the representation of the lines

of S, by the points of a quadric Q in S;.

(i) The section of Q by the tangent prime at any point P is a quadric cone
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V3, generated by the co! a-planes and the oo! B-planes through P, and it
represents the lines of Sy which meet.a fixed line.

(ii) A twisted cubic curve C on Q represents a cubic ruled surface R3?in
S,, and in general the lines of R? meet two fixed lines, two of them passing
through any general point of one of the lines and one of them through any
point of the other.

(iii) The chords of a twisted cubic ¢in S; are represented on (2 by the points
of & Veronese surface which meets any general a-plane in one point and any
general B-plane in three points, and the axes (lines which lie in two osculating
planes) of ¢ are represented by another Veronese surface which meets any
genersal a-plane in three points and any general B-plane in one point.

16. Show that the vertices and faces of a tetrahedron in S,, regarded as
point-stars and ruled planes respectively, are represented on 2 by a double-

four
o) O Qg Oy

Bi B B Bs
of a-planes and B-planes such that o; meets B; in a line (i,j = 1,2,3,4)
except when ¢ = j.
" Show also that the section of Q by a quadric Q’ through such a double-
four of planes represents a tetrahedral complex in S;.



' APPENDIX
TWO BASIC ALGEBRAIC THEOREMS

MucH of the argument of the preceding chapters rests upon two
theorems in pure algebra, one on linear transformations and the
other on quadratic forms, and we shall conclude our account of
algebraic projective geometry with a formal statement of these
basic theorems.

The application of linear algebra to projective geometry is com-
plicated by the fact that the coordinates used are homogeneous
and, in consequence, the correspondence between points and co-
ordinate vectors is not one—one. For this reason we have usually to
take scalar factors of proportionality into account, as in the lemma
which follows. :

LEMMA. If X,,...,X, ., are n-+2 vectors in V, (K), no n+1 of
which are linearly dependent, and if e,,...,e,, e, ., are respectively
the wvectors (1,0,...,0),...,(0,0,..., 1), (1,1,...,1), there exists a non-
singular linear transformation x> AX of V, ., into itself such that
Ae; = A, x; (1 = 0,...,n+ 1), where the A, are non-zero scalars; and the
matrices of any two transformations with this property differ at most
by a scalar factor.

Proof. Let x; have components (2;q, Z;y,..., ¥z,)- The matrix A
satisfies the n+1 conditions ,

Ae; = N x; (1=0,..,7)
if and only if the elements of its (¢4 1)th column are the com-
ponents of the vector A; x,, i.e. if A = (a,;) = (A\,x,,). We have to
show, therefore, that the values of A,,...,A,, and A,,,, can be so
chosen that the remaining condition
Ae = Ay Xpn
_ is also satisfied. For this to be the case,

XoToo MZrg - - - Ao\ [1\ = [AiaZTasio) -
AoTor ATy o - . ATy 1 Ap1 Ty 11
A0 xOn A1 xln LR . An Lnn 1 An +1%, +1,n

The A; must accordingly be chosen to satisfy the equations

n .
kzoxkz‘)‘k“xnﬂ,i)‘nu =0 ‘(7' = 0,...,7n);
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and since, by the hypothesis concerning the linear independence
of the vectors X;, all the (n+1)-rowed determinants formed from
the matrix of coefficients are non-zero, the ratios of the A; are
uniquely determined. Furthermore, none of the ), is zero. The
matrix A is thus uniquely determined apart from a scalar factor,
and it is clearly non-singular.

THEOREM 1. If Xy Xpyg O Yosuees Y4 OTE T00 3668 of n+2
vectors in V, .,(K), no n+1 vectors in either set being linearly depen-
dent, there exists a non-singular linear transformation X > Px of
¥, ,1(K) into itself such that PX; = p;¥; (¢ = O,...,n+ 1), where the.
p; are scalars; and the matriz P is uniquely determined apart from a
scalar factor.

Proof. By the lemma, we can choose a non-singular matrix A
and a set of non-zero scalars Ay,...,A,;; 80 that

Ae; = \;x; (1=0,.,n+1),
and in the same way we can choose B and pq,..., pin 4y 80 that

Bei = "’iY‘i (i = O,..’.,n"“‘l).

Then BA-1x; = %y,- (¢ =0,.,n+1),

and we need only put BA-! =P, %‘ = p;.

If, furthel‘, Pxi == Piyi aand QXi = aiY‘i’ then PAei = PiA'SY'l
and QAe; = o;),Y;; and hence, by the lemma, PA = 1QA, ie.
P = 7Q for some scalar 7.

Theorem' 1 supplies the foundation for our whole geometrical
system. Interpreting X as a homogeneous coordinate vector of a
point in S,(K) we can infer at once (i) that an allowable representa-
tion of 8, is determined uniquely when n--2 points, no n-1 of
which are linearly dependent, are chosen as reference points and
unit point respectively, and (ii) that a gelf-collineation of 8, is
determined uniquely by n-+2 corresponding pairs, provided that
the usual restrictions as to linear independence are satisfied.

The second fundamental theorem alluded to above is required in
the theory of conics and quadrics, and it may be stated in the
following terms.
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THEOREM 2. If Q(x,X) = XTAX s a quadratic form in ,...,z,,
and A is of rank r, a non-singular linear transformation x = Py and
non-zero constants d,,...,d,_, can be found such that

Q =doys+...+d, 1 Y71
If the elements of A belong to a field K, the elements of P and the
coefficients d; may all be chosen in K.

The proof of this theorem is well known, and we do not need
to give it here. The reduction of @ to diagonal form may be carried
out in any given case by Lagrange’s method.



INDEX

(Most of the numbers refer to the pages on which the topics are first mentioned, but
some additional page references have been given where it seemed that they might be useful.)

Absolute conic: in non-euclidean geo-
metry, 97; in euclidean geometry,
255.

Absolute invariant, 194.

Absolute points, 34, 93; in trilinears,
128 (Ex. 21).

Absolute quadric, 356.

Affine geometry: 1-dimensional, 64; 2-
dimensional, 91 ; 3-dimensional, 254.

" Algebraic correspondences, 176.

Algebraic curves and envelopes, 102.

Allowable coordinate representations,
41.

Angle: modulus and Laguerre defini-
tion; 93.

Apolarity, 184.

Associated points: in the plane, 321; in
space, 339.

Asymptotes, 119, 313. )

Auxiliary circle, 127 (Ex. 20).

Axes: of a conic, 121, 189 ; of a quadric,
284 ; of points for a pencil of quad-
rics, 330; of planes for a range.of
quadrics, 335.

Biaxial collineation, 350.

Bifocal plane-pair, 269, 278.
Birational transformation, 230.
Bitangents of a plane quartic, 344.
Brianchon’s Theorem, 143.

Cayley’s notation, 104.

Centre, of a conic, 119.

Centre locus of a pencil or range of
conics, 164.

Characteristic roots and vectors, 211,
286, 365 (Exx. 15, 16).

Chasles’s Theorem, 20, 133.

Circular points, 32.

Class of an envelope, 102.

Clifford parallels, 357.

Coaxal circles, 158, 165.

Collinear fields and stars, 254 ; reduced
equations, 259 (Ex. 12).

Collineations (plane), 205; cyclic, 218—
21; a geometrical characterization,
238 (Ex. 6); involutory, 218; per-
mutable, 239 (Ex. 12); real, 216;
which leave a conic invariant, 221,
240 (Ex. 18).

Collineations (spacé), 348; involutory,
353; which leave a quadric invari-

ant, 354, 364 (Ex. 6); which leave a

twisted cubic invariant, 364 (Ex. 5).

Complex points, 12.

Complexes (of lines), 367, 371.

Concomitants, 200. .

Confocal conics, 166, 174 (Ex. 20).

Confocal quadrics, 336; complex of
normals, 376.

Congruence transformations, 358.

Congruences (of lines), 367, 377.

Conic, 19, 27, 103 ; as a one-dimensional
projective domain, 132; axes, 121;
canonical parametric representation,
131; centre, 119; conjugate di-
ameters, 120 ; degenerate forms, 112,
117; director circle, 123; discrimin-
ant, 112; foci, 123, 294 (Ex. 22);
freedom, 105; normals, 150; proper,
116 ; projective generation, 136 ; self-
duality, 115; space dual of a quadric
cone, 269 ; special forms of equation,
129.

Conics: apolar, 188; harmonically cir-
cumscribed or inscribed, 148; in-
variants of a pair, 194; nets of
conics, 170; pencils and ranges, 156;
reciprocation of one conic into an-
other, 148; representation by points
of S;, 106, 388; triangularly circum-
seribed or inscribed, 147.

Conjugate lines for a quadric, 271.

Conjugate points: for a conie, 108; for
a correlation, 225.

Coordinates: allowable systems, 41;
areal, 25; dual (tangential), 79, 244 ;
homogeneous and non-homogeneous,
40, 41; homogeneous cartesian, 14,
22 ; projective, 23 ; Pliicker (or Grass-
mann), 246; trilinear, 25; tetra-
hedral, 260 (Ex. 22).

Correlations (plane), 224; generating
(2,2) correspondences on & conic,
240 (Ex. 19).

Correlations (space), 359, 364 (Ex. 11).

Covariants and contravariants, 199.

Cremona transformations, 230.

Critical points of a correspondence, 177.
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Cross axis: of related ranges on lines,
89; of related ranges on a conie, 141.

Cross ratio, 17, 26, 45; of pairs of
points on a conic, 133; six cross
ratios of four numbers, 47 ; symmetric
function of six cross ratios, 69 (Ex.
18).

Cubic curves (plane): nodal, 240 (Exx.
25, 28); projections of twisted cubic,
299, 325 (Ex. 13); property of non-
singular cubic, 346 (Ex. 10).

Cubic developable, 310.

Cubic surfaces, 317 ; 4-nodal surface and
cubic scroll, 322, 326 (Exx. 21, 22);
cubic ruled surface in S,, 384, 394
(Exx. 2, 3), 397 (Ex. 15).

Cubic symmetroid, 389.

Curves in higher space: rational normal
Cs, 384, 395 (Exx. 5-10); rational
normal C% and projections, 396 (Exx.
11-12).

Cylinder, 283.

Dandelin’s Theorem, 39 (Ex. 18).

Desargues: Theorem for triangles in
perspective, 80, 251, and failure in
limiting case, 99 (Ex. 14); involution
theorem for a pencil of conics, 161;
theorem for tetrahedra in perspec-
tive, 250.

Descartes, 7. -

Developable, 268 ; cubic, 310.

Developable surface, 379.

Diameters, of conics, 119 ; of quadrics,
283.

Direct and opposite transformations,
354. )

Director circle, 123, 127 (Ex. 14), 165.

Directrix of parabola, 140.

Disk quadric, 265.

Distance, 96; non-euclidean, 97, 357.

Duality, 21; principle, 79, 248.

Elation, 54.

Ellipse, 119.

Ellipsoid, 282.

Elliptic paraboloid, 283.

Equianharmonic tetrads, 48.

Euclidean geometry: 1-dimensional,
66 ; 2-dimensional, 93 ; 3-dimensional,
255.

Euclidean transformations, 256-17.

False position, method of, 182.
Fifth associated plane, 384.
Focal conics, 337.

INDEX

Foci and directrices of a conic, 38, 123.

Frégier point, 1563 (Ex. 16); extension
for a quadric, 293 (Ex. 20).

Fundamental points (of a transforma-
tion), 232.

Generators, 273.

Gordan’s Theorem, 198.
Group, 4, 9, 10; projective, 41.
Grassmann coordinates, 246.

Harmonic construction, 82.

Harmonic locus and envelope, 181.

Harmonic pole and polar: for a triangle,
78; for a tetrahedron, 249.

Harmonie relation, 18, 48.

Hesse: Theorem for a conic, 150; quad-
rilateral, 185.

Homaloidal net, 232.

Homographic correspondences, 28, 50;
canonical forms, 55-57; cyclic, 58;
elliptie, hyperbolic, or parabolic, 67 ;
generation of elliptic type, 101 (Ex.
25); on a conic, 137; of period 3 or 4,
68 (Ex. 9); representation as product
of involutions, 61; representation in
Argand plane, 69 (Ex. 19).

Homographic ranges and pencils, 82,
86

Homographies, permutable, 62.

Homologies (plane), 214; general equa-
tions, 238 (Ex. 3); transforming one
conic into another, 223.

Homologies (space), 351.

Hyperbola, 119; of Apollonius, 151.

Hyperboloid, hyperbolic paraboloid,
282.

Ideal elements, 12, 92.

Incidence constructions with a conic,
142.

Inpolar relation, 188, 308.

Invariants, 191.

Inversion, 39 (Ex. 20), 236, 291. -

Involutioni, 55; on a conic, 138; on a
twisted cubic, 301; ternary, 304;
quaternary, 305. :

Isotropic lines, 93 ; planes, 255.

. Jacobian curve: of a net of conics, 171 ;"

of a net of quadrics, 342.
Joachimsthal’s equation, 107, 265.

Klein, Erlangen Programme, 6.

Laguerre’s formula, 95.
Length, 97.
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Line at infinity, 13, 92.

Line-coordinates, 22, 75, 244, 366.

Line systems, 367.

Linear dependence of points, 73, 242.

Linear transformations, basic theorem,
398.

Mobius net, 207.

Net: of conics, 170 ; of quadrics, 339.

Non-euclidean geometry : 1-dimensional
70 (Ex. 21); 2-dimensional, 97, 223;
3-dimensional, 356.

Normals: to a conic, 150; to a qua.dnc,
293 (Exx. 16, 18), 338, 376.

Null polarity, 311, 361, 364 (Exx. 12—
14).

Order: of & plane curve, 102; of a
twisted cubic, 296; of a Cremona
transformation, 232.

Orthocentre, 99 (Ex. 15),172 (Exx. 1-2).

Orthogonality, see Perpendicularity.

Outpolar relation, 188, 306.

Pappus’s Theorem, 81.

Parabola, 119.

Parabolic cylinder, 283.

Parallels, 13, 92, 254; right and left,
357.

Pascal’s Theorem, 143.

Pencil: of lines, 83; of conics, 156; of
quadrics, 327.

Perpendicularity, 34, 93, 265; non-
euclidean, 97, 357.

Perspective (relation): perspective
ranges and pencils, 86 ; triangles, 81;
conics, 333.

Perspectives (transformations), see Ho-
mologies; perspectivity, 86; skew
perspective, 350.

Points at infinity, 13, 92.

Polar lines for a quadric, 271.

Polar k-points and k-sides, 184.

Polarity : for a conic, 108 ; for a quadric,
266 ; for a twisted cubic, 311.

Polarization, 198.

Poncelet, 5; Porism, 147, 181.

Position ratio, 10, 44.

Primal, 383, 388.

Prime, 387.

Principal axes, transformation to, 285.

Projection, 15; of a quadric, 278; of a
twisted cubic, 299; in S,, 383; in S;,
388.
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Projective equivalence, 15.

Projective geometry, 10; general defini-
tion, 40; 1-dimensional, 42 ; 2-dimen-
sional, 72; 3-dimensional, 241; sub-
ordinate, 76, 134, 247.

Projective hierarchy, 6, 9.

Projective parameter, 25, 43.

Projective transformation, 29

Pseudo-invariant, 194.

Quadrangle, 18, 88.

Quadratic complex, 372.

Quadratic forms, reduction to sum of
squares, 400.
Quadratic transformation, 233 by in-
cidence construction, 259 (Ex. 13).
Quadric, 263; centre, diameter, axes,
283 ; circular sections, 284 ; cone and
disk quadric, 264, 277; curves on the
surface, 281 ; focal conics, 337; foci,
338, 347 (Ex. 17); generators, 273;
projection, 278; reduction to prin-
cipal axes, 285 ; surface of revolution,
285, 293 (Ex. 17), 346 (Ex. 12).

Quadric systems: pencil, 327; range,
335; net, 339; centre locus of a net,
346 (Ex. 11).

Quadrilateral, complete, 19; Hesse,
185; metrical properties, 203 (Ex.
14).

Radial expansion, 217; product of two
expansions, 239 (Ex. 10).

Range: of conics, 156 ; of quadrics, 335.

Rational curve, 132.

Reciprocal transformation, 231.

Reciprocation, 230; of one conic into
another, 148.

Rectangular hyperbola, 122; ortho-
centric property, 172 (Exx. 1, 2).
Reflection: 2-dimensional, 217; 3-di-
mensional, 351-2; mnon-euclidean,

356.

Regulus, 274, 370.

Representations: of quadric on & plane,
278; of cubic surface, 318; of quartic
equations by points of §,, 395 (Exx.
8, 9); of quintic equations, 396 (Exx.
11, 12); of conics by points of S;, 108,
388, 396 (Ex 14); of lines by points
of a quadric in S;, 390, 396 (Ex 15).

Ruled surfaces, 379.

Segre: quartic surface, 384;
primal, 386.
Serret’s Theorem, 190.

cubic
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Similarity euclidean geometry, 32, 96.

Singular points and planes of a com-
plex, 372; of a congruence, 377.

Skew involution, 351.

Skew perspective, 350.

Skew polarity ; see Null polarity.

Sphere, 284; envelope equation, 346
(Bx. 12).

Star of planes and lines, 249.

Steiner’s Theorem, 27, 136.

Stereographic projection, 289.

Subordinate projective geometries, 76,
134, 247.

Symmetrical correspondences, 178;
(2,2) on a conic, 179; (2,2) and (3, 3)
on a twisted cubic, 303-4.

Tensor, 197.

Tetrahedra: euclidean properties, 260
(Exx. 19, 20); in perspective, 251;
inscribed in and circumscribed to a
tetrahedron, 258 (Ex. 6); reciprocal
for a quadric, 381 (Ex. 11); self-polar,
272; three, with each pair quadruply
in perspective, 259 (Ex. 11).

Tetrahedral complex, 374, 395 (Ex. 4),
397 (Ex. 16).

Total points or planes of a complex,
372.

Translations, 216, 352; non-euclidean,
355.

Triangles: in perspective, 81 ; inscribed
in one conie, and either circumscribed

to another, 146, or self-polar for an-
other, 148, or circumscribed to a tri-
angle, 152 (Ex. 9); inscribed in one
triangle, and either circumscribed to
another, 100 (Exx. 18, 19), or self-
polar for & conic, 126 (Ex. 9); polar
(reciprocal) for a conic, 149; self—
polar, 109.

Tricuspidal quartic, 240 (Ex. 24).

Twisted cubic, 295; affine properties,
313; associated null polarity, 311;
correspondence of harmonic points,
defined by the curve, 313 ; generation
by related pencils, 306; as residual
intersection, 307; by related stars,
309; self-collineations, 303, 364 (Ex.
5); triangles cut on the curve by a
system of parallel planes, 314, 325
(Exx. 14, 15); the rectangular curve,
314, 326 (Exx. 17, 18).

Twisted cubics: numbers which satisfy
certain conditions, 314; with a com-
mon associated null polarity, 324.
(Ex. 6).

Umbilics, 285.

United points: of a homography, 54;
of an algebraic correspondence, 177;
of collineations, 210, 349.

Vectors, 10, 41.
Veronese surface, 389, 397 (Ex. 15).
Vertex of an involution on a conic, 139.
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