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PEEPACE.

THE present work is essentially one of constructive

criticism. It is, we believe, the first attempt made on

any extensive scale to examine critically the fundamental

conceptions of Mathematics as embodied in the current

definitions. The purpose of our examination is not solely

or even chiefly to show the presence of error, but to pro
mote the development of a more scientific doctrine. In

expounding our own views we have often been obliged

to find fault with those of others; but we have not gone
out of our way for the sake of mere criticism; we have

merely cleared away false doctrine preparatory to replac

ing it with true. Our work, though in a sense dealing

with definitions, does not have as its essential scope

questions as to the words to be used in expressing some

thing about which there is universal agreement; it really

deals with the conceptions underlying the definitions

where there is, as will be shown, a great diversity of view.

Further than a discussion of definitions (in this sense)

we do not go, and though we have at times occasion to

enunciate axioms and theorems we never set down a

demonstration. It is indeed undeniable that a discipline

consisting of definitions alone would be perfectly futile,

but this is no argument against deeming the definitions

of a science worthy of a separate exposition. How far

from being systematic is the treatment of the definitions

of Mathematics in most mathematical writings will be
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appreciated by all who have given their attention to the

matter. Definitions are laid down only as they are needed

for the work in hand, and in their formulation attention

is given, not to the needs of mathematical science as a

whole, but to those of a single book too often a book

whose sole purpose is to enable more or less stupid youths
to pose as graduates of a course in Mathematics. As to

the articles of original research published in mathematical

journals, definitions are hardly to be found in them at all.

This state of affairs has reacted upon the demonstrations

of Mathematics. When a systematic nomenclature and
its concomitant, a clear and connected view of matters,

are lacking, precision in statement cannot be expected.
Nor is it to be found, and by far the most difficult task

to the reader of a work on advanced Mathematics is not

appreciating the cogency of the reasoning employed
or depreciating it, as one is sometimes compelled to do

but ascertaining what the author really means. This

in no small number of cases is something very different

from what he has said. Such a state of affairs does not

rule in elementary Geometry; due in large measure to

the Euclidean custom of beginning a demonstration with

a precise statement of the fact about to be proven; this

in turn necessitating more attention to matters of defini

tion than modern mathematicians have thought fit to

give. Mathematics to-day is indeed far behind most

other sciences as regards lucidity of exposition. In a

comparatively short time a young man of average ability

can become so far familiar with Chemistry or Botany
or Zoology, as to be able to read intelligently a work in

any department of the science whatsoever. But this is

not the case with Mathematics a student far above

mediocrity, who has taken the best University Course

in Mathematics to be found, will come across mathematical
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works as unintelligible to him as Chinese or Choctaw.

It is not merely that he finds himself unfamiliar with the

theorems proven in such works: this would be neither

surprising nor detrimental; but he will not even be able

to understand what it is that the theorems are about.

And to gain the knowledge requisite for this will not be

a matter of consulting a lexicon; but one of hard study for

several months. 1 This state of affairs is not, we hold,

an unavoidable one due to the peculiar difficulties of

Mathematics. It is due to the lack of systemization;

and in particular to the failure of text-books to give any

thorough exposition of the fundamental conceptions of

Mathematics. The thirst for so-called
&quot;

original research,
&quot;

and the credit attached to it, has led mathematicians to

disregard such matters. The investigation, for example,
of some particular differential equation not yet touched

upon is classed as
&quot;original&quot; work, while investigation

of the current doctrine of differentiation is not. And

by implication the impression is conveyed that work of

the former type requires a higher degree of intellect than

the latter an impression very far from the truth. Thus
the one is encouraged, the other discouraged; and in

many quarters the impression prevails that there is noth

ing more to be done at the foundations of Mathematics;
that the only obiect of a mathematician should be to rear

1 As an illustration of the difficulties in the way of acquiring a

thorough knowledge of a branch of mathematics, we may mention

that Hamilton, assuredly no tyro in Vector Analysis, found the

Ausdehnungslehre so obscure that he avowed himself unable to

understand Grassmann s system in all its details. And Herschel,

in turn, after reading three chapters of Hamilton s Lectures on

Quaternions, was obliged &quot;to give up in despair&quot; his hope of master

ing the subject. This was some years ago, but what change has

since taken place in methods of mathematical exposition has not

been a change for the better.
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the superstructure still higher, leaving the old foundations

alone. In fact, however, the great desideratum in Mathe
matics at the present day is, a rebuilding of the founda

tions, and a readjustment and systemization of what has

been built upon them. There is needed a scientific

exposition of the definitions, and a complete enumeration,
with specific enunciation, of the axioms and postulates.

After this (but not before) should come a systematic

statement of the theorems, the conditions under which

each is valid being stated with perfect precision. It is

of little avail to have the theorem of some
&quot;

original inves

tigator&quot; hidden away in a back number of some mathe

matical journal, and even there loosely stated or (as is

more commonly the case) not explicitly stated at all.

This much-needed revision of Mathematics ought

undoubtedly to be made from a philosophical standpoint,

there being constantly maintained rigid adherence to

the requirements of a sane Metaphysics in the best sense

of the word and to the canons of a sound Logic. It is

quite clear that unless our fundamental conceptions and

principles accord with the one, and our processes of deduc

tion with the other, we cannot develop anything wcrthy
of the name of a deductive science. Unfortunately too

many mathematicians look askance upon the application

of philosophical doctrine to Mathematics. With but few

exceptions, authors of mathematical works and teachers

of the subject cultivate Mathematics as an art. They
often show extraordinary ingenuity in the solution of

problems and in the transformation of formulas, while

giving little heed to the realities represented by their

symbols and the processes of inference corresponding to

their symbolic transformations. Were this all, no objec

tion could be raised by those who wish to see Mathematics

developed as a science. The bricklayer and carpenter
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are useful members of society, even though ignorant of

the science of Mechanics. But too often the conventional

mathematician arrogantly assumes, toward the philo

sophical side of the question, an attitude like that of the

illiterate artisan toward physical science. He stigmatizes

any attempt at logical precision as of no practical value;

and is indeed in one respect worse than the carpenter or

bricklayer, since the latter makes no claim to the title

of scientist, while the artisan mathematician would

arrogate this to himself to the exclusion of the philoso

phical investigator. Such an attitude is amusing, when

one considers of how little bread-and-butter utility are

many departments of Mathematics which find no lack of

devotees. It is really remarkable how narrow many
mathematicians are, not merely in their lack of knowledge,
but in their ignorance of their own limitations. They
are aware of these limitations only so far as the physical

sciences are concerned. None of them would, for instance,

venture to speak on a question of Botany without having
studied the subject, and likewise a botanist who had

never mastered the first book of Euclid would not dare

to affirm it to be possible to square the circle; but a

mathematician who has never even opened a book on

Logic will calmly make a pronunciamento on logical doc

trine as absurd as the paradoxes of modern circle squarers

or the vagaries of the ignorant theologians who &quot;refute&quot;

the theory of evolution. More excusable are those

mathematicians who openly acknowledge their incom

petence in the logical field; there is so much charlatanism,

in Logic as well as in Metaphysics, that a person who
has only seen certain works (not the least renowned)
on philosophical matters, may be pardoned for giving

up the whole subject in disgust. The Logic of Hegel,
for example, has no more to do with the science of Logic
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or with any philosophical discipline than the speculations
of the circle squarer have to do with true Mathematics.

And even many works on not quite so low a level so inter

mingle truth and error that it is very doubtful whether

their study is not more harmful than beneficial, so far

as attaining an insight into correct philosophical doctrine

is concerned. There are in fact cases of mathematicians

of high order of intellect who, while not neglecting the

study of philosophical works, have gone astray in select

ing their masters. In some countries this was not to be

wondered at, since conditions were such that hardly any
sound works were likely to come into their hands. It was

especially a pity that George Cantor a really remarkable

genius should have been enveloped in that dense fog
of Kantian philosophy which so perniciously pervades the

intellectual atmosphere of Germany.
1

The first portions of this treatise deal with Algebraic

Mathematics, and it is of these portions alone that we
shall give an account in our preliminary remarks here.

It is to be noted that we have not attempted to take up
all the conceptions relevant to Algebraic Mathematics.

It would have been quite impracticable to do this and

also give the more important the attention they merit.

In particular we have almost always refrained from dis

cussing such matters as are given a satisfactory exposition

by the ordinary text-books. One result of so doing is to

make it appear that there is greater diversity of our views

from those ordinarily received than is actually the case.

Authors who pass over in silence the thousand and one

1 The work of the late Professor Mach of Vienna: Analyse der

Empfindungen is, we hope, the promise of a new philosophical

movement in the German speaking countries a philosophical

movement in which words will be counters instead of passing for

money.
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points on which they agree with the established doctrine,

and dwell on the one.^
or two points at which they disagree,

are liable to produce on the unthinking reader an impres
sion as to their general attitude which is wholly erroneous.

This is regrettable, but we see no way of obviating it,

save in so far as these remarks may tend to that end.

The keynote of our work is the distinction we find it

necessary to make between quantities, values and vari

ables on the one hand, and between symbols and the

quantities or variables they denote or values they represent

on the other. These distinctions though most important
and obvious enough (one would think) have not hereto

fore been clearly brought to light; still less made the

basis of a systematic exposition of the conceptions of

Algebraic Mathematics. Mathematicians confuse values

and quantities, and again quantities and variables,

though not usually values and variables. And they also

confuse symbols (and in general expressions) with the

things these denote or represent. In saying that this

last distinction has not been clearly brought to light, we
do not mean that mathematicians when questioned would

usually deny that such a distinction should be made.

But a formal admission of its importance is very different

from the actual enforcement of this distinction. And
that in mathematical discussions (aside from Geometrical

Mathematics) such enforcement is almost everywhere

prominent by its absence, can, we think, be conclusively

shown. The tendency to confusion instead of distinction

would indeed seem to be growing, and certain mathema
ticians \vould avowedly make Mathematics entirely a

matter of symbolism.

Keeping in view the distinction just mentioned, we

proceed to examine into the nature of the so-called

imaginary quantities, not only of Algebra but of the
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science of Quaternions. We are thus led to the con

sideration of the essential characteristics of quaternions
and vectors, and are not able to accept as entirely satis

factory the expositions of the matter in the works now
current. Our view of Quaternions is, we admit, not

precisely that of Hamilton. Kim we regard as one of the

most scientific of mathematicians; but surely, great

though he was, he can no more be accepted as an infallible

authority in the philosophy of the science he founded,

than Newton or Leibnitz can be followed as an unerring

guide in the theory of Differential and Integral Calculus.

In connection with Quaternions, we consider the essen

tial characteristics of Arithmetical or Semi-Single Algebra,

Single Algebra and Double Algebra, laying down what

we esteem as distinguishing an n-tuple algebra. The

ordinary algebra of the present day, the Double Algebra
to which pertains the Argand scheme of representation

of &quot;imaginary&quot; and complex quantities, ought, we hold,

to be largely developed as a complanar vector analysis;

and it is on such a basis that we deal, not merely with

the imaginary quantities but also with the real negatives,

the abstract as well as the applicate. The method of intro

ducing the negative real abstract quantities by the sanction

of the Principle of Permanence we are constrained to regard

as especially unsatisfactory, though this method is used,

in formulating Algebra as a system, by the most eminent

mathematicians. Our own way of dealing with these

and with the imaginary abstract quantities is the natural

result of not confining our attention to the formal side

of algebraic science, but taking into account its matter

as well as its form. Those who would develop algebra

as a purely formal science, and as nothing more, are

satisfied to stop when they have ascribed the origin of

the conception of a negative real abstract quantity
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to such equations as +1=0, +2 = 0, etc., and the

conception of an imaginary abstract quantity to such

equations as z2+l=0, x2+2 = 0, etc. But the con

ceptions attained when one does not look beyond the

equations are nothing more than purely formal concep
tions of quantities, and he who would master the matter

as well as the form of the science must look deeper. He
must attain what might be termed entitative conceptions.

He must find classes of entities adequate to fulfill the

conditions fixed by the formal conceptions. Even outside

of Mathematics the distinction holds, and how impor
tant are the entitative conceptions and how trivial,

relatively speaking, are the formal is readily seen. Thus
the conception: cause of yellow fever, so long as it does

not go beyond what is stated by these words, is a purely
formal conception, and one of no great value; the only
service it renders is to keep prominent the need of an

etiological investigation. But when wre conceive, as the

cause of yellow fever, a microorganism carried to human

beings by the mosquito, we arrive at an entitative concep

tion, and one of some importance. Just so to conceive

of a negative real abstract quantity or an imaginary

quantity merely as something which will satisfy an

equation of a certain type is only a preliminary step;

what is really final and paramount is the finding of a

class of entities that may be conceived to satisfy such

equations. It is only thus that one can arrive at the

entitative conceptions necessary for the development of

algebra as an entitative (or &quot;material&quot; or &quot;significant&quot;)

discipline. And it is the search for the requisite entities

that leads us to the field of vector analysis.

The incommensurable quantities we take up as soon as

a sufficient foundation has been laid for their treatment,

and here we find ourselves compelled to advocate the
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introduction of a new postulate. We also consider in

due course the transfinites of Cantor (which we prefer
not to designate as quantities), and here again we draw
a distinction, ignored by Cantor and his successors,

between the value of a transfinite and the transfinite

itself.

In our discussion of variables we begin by the con

sideration of order, a most important attribute which

has never been adequately treated of in connection with

variables. Such a treatment we attempt to outline as

a preliminary to our consideration of limits. Another

preliminary is the discussion of domains and ranges, of

regions, intervals, neighborhoods, etc. Here the utmost

confusion prevails, and we have endeavored to introduce

a much needed systemization. Of limits we treat at

some length. The relation of a variable to a limit is

undoubtedly the most important feature of the Theory
of Variables, and we need make no apology for going into

the question in detail. On so doing we find that certain

matters connected with it, and by no means minor ones,

have heretofore been entirely overlooked by mathemati

cians.

After discussing limits and various objects of mathe

matical inquiry that are called limits by mathematicians,

but are certainly not true limits, we proceed to the con

sideration of continuity, and find that the investigations

of Cantor, though perhaps the last word to be said as

regards continuity of point aggregates, do not give

adequate ground for the doctrine of continuity most

serviceable in the theory of variables.

As essential to a discussion of equations we are com

pelled to give some attention to symbols, signs and other

characters of Algebraic Mathematics. And naturally

enough, we bring to light some facts that do not come to
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the knowledge of those who fail to distinguish between

a character and what it denotes or represents or indicates.

It seems somewhat amusing that those who do most
toward making Mathematics a matter of mere symbolism

really know the least about the symbols and other charac

ters and expressions of the science. Of equations and

other mathematical dictions we need say no more here

than that we feel the results attained to have amply
repaid our somewhat lengthy inquiries into the matter.

We also take up transformations of equations. In making
a provisional list of these we find that the treatment of

Vieta was more truly scientific than that of the pygmies
who followed him in this field. He made a classification

of transformations that was very creditable, considering

the state of Mathematics in his time, and provided a

nomenclature. His successors sneer at his nomenclature,

while they make no attempt at even a classification of

their own. And certain most important distinctions

drawn by Vieta are entirely ignored by mathematicians

at the present day. After transformations of equations
we find it advantageous to devote a few pages to con

sideration of the transformations of the Theory of Groups
and the Theory of Quantics.

The next subdivision of our work is headed not Functions

but Functional Relations, and this difference in heading
marks a certain difference in point of view, though really,

unless one ignores all progress made in Mathematics

since the days of the Bernouillis and Euler, we do not

see how he can refuse to speak of functional relations.

In our definition we find ourselves unable to accept as

adequate the view ordinarily attributed to Dirichlet

(and which strange to say he does not appear to have

held at all) but lay down in a way somewhat different

from any that has ever before been followed, the condi-
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tions under which two or more variables are said to be

in functional relation with each other. We take up the

formulas pertaining to functional relations, and show that

there are certain conditions not mentioned by mathe

maticians which such a formula must fulfill in order that

it may be of any service in a mathematical investigation.

We then give some attention to various types of functional

relations and to certain formulas incorrectly called func

tions. In particular we discuss quantics and serials

so-called series; the true series and other sequences having

already been discussed at an early stage in our work.

Of ordinary differentiation we give a short account,

and then turn to the differentiation process of Quater
nions of which we give an exposition from a point of view

somewhat different from that of Hamilton. Attention

is also paid to the Infinitesimal Method. Of ordinary

integration we likewise give an account, followed by an

exposition of Lebesgue integration in our own phraseology
which is widely different from that of Lebesgue. Finally

we consider continuity in reference to functional rela

tions, and discuss the analytic and other monogenic
functional relations.

In the course of our investigations we have been obliged

to introduce a few new names in Mathematics and to

revive (often in a modified sense) very many obsolete

ones. It is only natural that, when a distinction is to

be marked out, one should draw attention to the word

he thinks best fitted to mark it. Improvement in clas

sification and development of a technical nomenclature

do in fact almost always go hand in hand. 1 The impor
tant thing, however, is not the nomenclature but the dis-

1
Sylvester tells us (Collected Mathematical Papers, Vol. 2, p. 567,

note) &quot;To attain clearness of conception the first condition is

language, the second language, the third language.&quot;



Preface xv

tinction it marks. Whether an object of mathematical

inquiry shall be designated by a specific name or spoken
of as belonging to the first, second, etc., species of its

genus is immaterial, except in point of convenience. And
if any one, while rejecting our phraseology, shall accept

the distinctions it embodies, we shall have gained our

case.

We have often been compelled to dissent from and criti

cize men for whom we have the greatest respect and

admiration: Hamilton, Cantor and Weierstrass may
serve as examples. Wf

e hope our attitude toward such

thinkers will not be misunderstood. And in general, as

regards our treatment of those whom we criticize, we may
in all sincerity echo the words of that great mathematician

and logician, Wallis, who says in his preface: &quot;And I

have endeavored all along to represent the sentiments

of others with candor, and to the best advantage. Not

studiously seeking opportunities of caviling, or greedily

catching at them if offered. . . . And have been

careful to put the best construction upon their words

and meanings.&quot;
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PART I. VARIABLES AND QUANTITIES.

ORIGIN of the conception of a variable and of the name. Newton s

definition. The accepted definitions are fundamentally erroneous.

Natural numbers. Natural fractions. Applicate quantities. Con
crete quantities. Denominate quantities. Identity and similarity

of attributes of different objects. The equation 3+2 = 5 is a truly

general proposition. Value-classes. Identity and similarity of

attributes where a single object undergoes change of attribute. A
variable is not a quantity, but is constituted by a number of quanti

ties. Variable-classes. Importance with a variable of the attribute :

arrangement in order of its constituent quantities. Neglect of this

in the conventional treatment of variables. Theory of Point Ag
gregates and their so-called limiting points is not really the counter

part of the theory of variables and their limits. Order in space,

order in time, order in value. These three types of order are quite

distinct from each other and from the type of order which is con

cerned with the arrangement of the quantities of a variable. Previous

to, subsequent to, and abreast of. Arrangement in order of the

quantities of a variable is quite arbitrary and (usually) amenable

to change. Unifarious arrangements. Inverse orders. Discrete

unifarious arrangements. Looped and ring-like arrangements.
Multifarious arrangements. Paradoxical arragements supposed to

be at hand in the Theory of Monegenic Functions. Multiplex and

simplex arrangements. Cantor s two distinct uses of &quot;einfach

geordnet.&quot; His use of &quot;mehrfach geordnet&quot; to designate multiplex

arrangements of a special type. Number of quantities that a

variable must contain. Character of the quantities accepted as

constituting a variable. Nearer, in its technical algebraic sense.

Sorts of quantities. Anomalous nature of such quantities as tem

peratures in respect to addition. Kinds of quantities. Comparable
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quantities. Varieties of quantities. Primitive and complex kinds.

Inconvenience of distinguishing the primitive kinds of a sort as

&quot;real&quot; and &quot;imaginary.&quot; &quot;Protomonic&quot; and &quot;neomonic&quot; are

more suitable adjectives. Distinction between positive and negative

with complex quantities. Complex quantities of the first and of

the second family. Distinction to be made between ratios and

quotients, and between the operations of which these are the respec

tive results. Units: units of a sort; units of a kind; units of a

variety. Importance of units of varieties. Quantuplicity, modulus,
norm of a quantity. Modulus of multiplication. Numerical value.

Natural and relational quantities. Quaternions; a quaternion is a

relational abstract quantity. Vectors; Hamilton s definition of

&quot;vector &quot;is inadequate. Lines are not vectors. Vectors of described

straight lines. Geometrical and trigonometrical direction. Cur

rency of a vector. Concurrent vectors. Contrary vectors. Magni
tude of a vector. Ascription of vectors of value zero to points.

Relations between vectors. Inverse relations. Quaternions are

relations between vectors. All abstract quantities, save such as are

positive as well as real, are nothing more or less than relations be

tween applicate quantities. All these relations, whether termed

&quot;real,&quot; &quot;imaginary&quot; or &quot;complex,&quot; have equally a valid claim to

be regarded as really existent. Quaternions are not essentially ratios

or vectors still less quotients. They may accidentally be so, just

as other quantities may happen on occasions to come under con

sideration as results of operations. A quaternion is a relation be

tween two vectors of the same sort. Relate and correlate vectors of a

quaternion. Quaternions whose vectors are non-zeroes of the same

kind are protomonic (&quot;real&quot;) and are positive or negative according

as the vectors are of the same variety or of different varieties. Null

and actual quaternions. Case where both vectors of the relation

are zeroes. Frege s untenable view of the nature of zeroes. Ob

scurity prevalent among mathematicians as to the nature of quater

nions. Angle and plane of a quaternion. Complanar quaternions.

Tensor and versor of a quaternion. Quadrantal or right quaternions,

radial quaternions. Equality of quaternions. Four conditions

usually but not invariably necessary for this. Conjugate quaternions.

Ordinary or Double Algebra, since it takes into account abstract

quantities that are not positive and protomonic (as well as others

that are), must, if it is to be truly scientific, include a treatment of

vectors. The same vectors enter this discipline as enter Quaternions,

but the same vector sorts do not. Vectors of a sort must, in Double
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Algebra, be complanar. The i, j, and k imaginaries of Quaternions
are not, as mathematicians commonly imply, distinct from the

imaginaries of ordinary Double Algebra. Every i orj or k imaginary

may appear in Double Algebra where it will be an ordinary imaginary.

Every quadrantal relation between vectors is an ordinary imaginary
in Double Algebra (and all the imaginary abstract non-zeroes of

ordinary Algebra are quadrantal relations between vectors), while

in Quaternions it is an z-imaginary or a ./-imaginary or a fc-imaginary

or a complex quantity. In Quaternions + V 1 and V 1 cannot

serve as value symbols as they do in Double Algebra. Entitative

(&quot;significant&quot;) and formal algebras. Classification of quantities

into sorts. Definition of a sort. Classification of quantities into

kinds and varieties. Definition of a kind and of a variety. Five

things to be done in kind formation. Confluence. The positive

non-zeroes of a kind. The zeroes of a kind. Whether a quantity
is a non-zero or a zero is sometimes purely a matter of convention.

Contrafluence. The negative non-zeroes of a kind and their relation

to the positive non-zeroes. Kinds containing no positive quantities.

Other possibilities in kind formation. No satisfactory exposition
of the true theory of negative quantities and their relation to the

positive quantities is given in current mathematical works, the

Encyclopaedic included. The doctrine of &quot;number&quot; put forth by
Schubert and others, and its absurdity. Kronecker s still more
remarkable doctrine of &quot;number.&quot; Schubert on the Principle of

Permanence and his blunders on that subject. His doctrine of

&quot;negative numbers,&quot; and its inadequacy. Classification of the

kinds of a sort as primitive and complex. Classification of primitive

kinds as protomonic and neomonic. An abstract non-zero is pro-

tomonic (&quot;real&quot;) if when applied as a multiplier it never changes
the kind, but is neomonic (&quot;imaginary&quot;) if when applied as a

multiplier to a non-zero multiplicand it always changes the kind

save when it gives as product a zero. With applicate quantities the

distinction between protomonic and neomonic is a factitious one

based upon mere symbolism. Classification of algebras in accord

ance with the number of their primitive kinds. Arithmetical or

Semi-single Algebra. Single Algebra; this includes the ordinary
Differential and Integral Calculus. Double Algebra; this includes

the Theory of Monogenic Functions. Triple algebras of De Morgan
and of J. and C. Graves. Quaternions. Hamilton s Icosian Algebra.

Pluquaternions. Octonions. Multenions. Triquaternions. Vector

sorts and Scalar sorts. Various senses in which &quot;scalar&quot; is used in
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Mathematics. Hamilton s suggestion of admitting a fourth primi
tive kind to each vector sort. Quantuplicity of a vector. The
&quot;h&quot; which Hamilton terms &quot;the old and ordinary imaginary symbol
of common algebra.&quot; Biquaternions and bivectors. Tessarines.

Objects, entities, non-entities and chimeras. Hamilton s biquater-

nions and bivectors and Cockle s tessarines are not chimeras. None
of the symbols of Mathematics are mere symbols. Clifford s bi-

quaternions and McAulay s octonions. Combebiac s triquaternions.

Examination of the conventional definitions of &quot;variable.&quot; Baire,

Genocchi. Bauer; his error of thinking that a constant must be

known. Biermann. Burkhardt. Czuber. Pringsheim in the

Encyklopaedie der mathematischen Wissenschaften; his definition can

not be so interpreted as to be even approximately correct. Weber.

Tannery. Pierpont. Harnack; his definition belongs to a transi

tional stage between the Newtonian definition and the symbol-
definition. The symbolic logicians. Bertrand Russell as a repre

sentative of the Peano school. His definition of &quot;number.
&quot; Neither

he nor Peano recognized the distinction between equality and

identity. And both have failed to see the enormous difference that

there is between the name of a variable and an ordinary class name.

A variable is not a set of quantities. Philosophical considerations

as to the possibilities in definition per genus et differentiam. The
name &quot;variable&quot; cannot be advantageously defined in this way.
The nearest one can come to such a definition is to say that a variable

is a quantity aggregate, and this definition is by no means satis

factory. Progressions the simplest of variables. Terms. Series

Summative series. Alternating summative series. Serial functional

relations and the improper use of the name &quot;series&quot; in connec

tion with them. Failure of mathematicians to recognize that series

are variables. Erroneous definitions. Multiple series. Gradual

numbers. Sequences. A sequence is a discrete unifarious variable

having an immutable arrangement of its terms. A progression is a

sequence with which the formula for the nth term lays down as

essential operands m terms previous to the nth. A series is a sequence

with which the formula for the nth term lays down n as essential

operand.

ON THE GENERAL CONCEPTION OF FUNCTIONAL RELATION.

Quesitive and dative symbols. Essential characteristic of a

functional relation. Consentaneous and dissentaneous functional
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relations. One-valued and multivalued. Use of per. Independent
and dependent variables. These names pertain to at least three

different distinctions. Inadequacy of the treatment of the subject

of independent and dependent variables in mathematical works.

Definitions of &quot;function&quot; given by Leibnitz, Bernouilli, Euler.

These antiquated views still adhered to by some authors, and even

designated as &quot;ganz modern&quot; by one mathematician of eminence.

Dirichlet s definition. It is not a definition of functional relation

in general. The definition called Dirichlet s by Hankel. That this

definition (which is erroneous) was put forward by Dirichlet is

expressly stated by some authors (e. g., Dini, Harkness and Morley,

Osgood, Pringsheim). Error of the so-called Dirichlet definition.

Remarkable failure of mathematicians to recognize this error.

Durege, Thomae and Bauer on the definition of &quot;function.&quot; In

none of the current mathematical works is a satisfactory definition

to be found. Riemann; to him is probably due the faulty definition

now current under the name of &quot;Dirichlet s.&quot; Tannery s definition.
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FUNDAMENTAL CONCEPTIONS OF MODERN
MATHEMATICS.

VARIABLES AND QUANTITIES.

No objects of mathematical inquiry are more remark

able than variables and limits. Our knowledge concerning
them has been chiefly acquired in recent times, although

they were not wholly unknown to mathematicians of

antiquity. They were first drawn within the realm of

inquiry by Archimedes and other Greek mathematicians

in their endeavors to effect the rectification and quadra
ture of the circle. In the writings of these old pioneers

of Mathematics neither &quot;variable&quot; nor &quot;limit&quot; nor any

equivalent term can be found. Nevertheless, it must be

acknowledged that in their aims, as well as in the methods

they employed, these inquirers already had within their

grasp the germ of the Integral Calculus of to-day. As
to the name &quot;variable,&quot; it appears to have found its

way into mathematical language during the development
of Analytical Geometry. Naturally it was adopted by the

earliest writers upon the Calculus. Variable quantities

and limits were spoken of by Newton in the Principia,

in 1687, but without furnishing any precise definitions

with respect to them. In his Method of Fluxions, he put
forward what purports to be a fundamental classification

of quantities which with some slight changes in terminol

ogy is still prevalent. He says: &quot;Now those quantities
l
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which I consider as gradually and indefinitely increasing,

I shall hereafter call fluents or flowing quantities and

shall represent them by the final letters of the alphabet,

that I may distinguish them from other quantities which

in equations are to be considered as known and deter

minate, and which are therefore represented by the

initial letters.
&quot; l Of like import are the words of L Hopital,

who gave the first systematic exposition of the method of

Leibnitz. &quot;Those quantities are called variable which

continually increase or diminish, and on the contrary

those are called constant which remain the same while

the others change.&quot;
2

The works of subsequent mathematicians show that

this view, which ascribes to a variable the character of a

quantity, has apparently presented no difficulties, since it

has gained an acceptance which is well-nigh universal. True

it is, that in some recent wrorks there has appeared what

might seem to be a new view of the character of a variable.

In these works, a variable is regarded merely as a symbol
of a certain variety, and is even explicitly defined as a

symbol. On its face, such a definition shows a puerile con

fusion of names with the objects they denote; there being

exactly the same justification for calling a man, a word; or

the King of England, a phrase; as for calling a variable, a

symbol. We will bestow further consideration upon the

symbol-definitions of the term &quot;variable&quot; hereafter. For

our present purpose we will merely point out that the

authors who define &quot;variable&quot; in this manner, do not

seem to regard the adoption of the new definition as

1 Method of Fluxions, translated from the Author s Latin Original

not yet made publick, by John Colson, London 1738, p. 20, 60.

This was written about 1672.

2
Analyse des Infiniment Petits, p. 1, 1. The first edition of

this work was published in 1696.
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marking the eradication of an old and profound error of

Mathematics; they give no intimation whatever that

their view is more than a refinement upon the older one.

In spite of this unanimity of opinion among those of high

authority, we venture to declare that the accepted doc

trines concerning the nature of variables are completely

erroneous. And it is our purpose to furnish ample argu
ments to show that our charges of error are not mere

frivolous objections. We shall produce abundant evidence

in support of this proposition : that to conceive a variable

as a quantity, or as a symbol, is to form a conception

totally incongruous with the conception which must be

formed in establishing a sound theory of variables.

Of all quantities the most primitive are the natural

numbers. That a natural number is an attribute of a

group of objects has long been more or less completely

recognized. Indeed, for ascribing to a group of objects

an attribute of number, we have a foundation perfectly

similar to that for ascribing to a body an attribute of

shape or an attribute of color a quality. Every two

bodies resemble or differ from each other in manifold

ways. To treat of these various modes of resemblance

and difference, we ascribe to them a distinct attribute

for each mode of resemblance or difference. We have no

other foundation for speaking of shape, of color, and of all

the other attributes of bodies. It is upon this basis that

the theory of these attributes rests. It is likewise with

groups of objects. They, too, resemble and differ from

each other in manifold ways. And one mode of resem

blance and difference is in that respect which enables us

to say that a group of objects possesses an attribute of

number. It is not so obvious that a natural fraction is

also an attribute. Nevertheless, this interpretation of

the nature of a natural fraction is clearly tenable. Thus,
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if we are counting spherical bodies, a hemisphere may be

regarded as having a number attribute of one-half, and

any other segment of a sphere which when joined to n-1

other segments exactly similar to itself will produce an

entire sphere, may be regarded as having a number attri

bute of one-nth. 1 Whenever we are treating of objects

which can be decomposed into parts alike among them

selves in certain respects, but different from the whole

objects in these respects, we can take objects of two

types into account, the whole objects and the part objects,

and we can regard the objects of the second type as frac

tional parts of the objects of the first type. In counting

objects of the first type, a group of objects of the second

type can be regarded as having a fractional number

attribute, where a more primitive system of computation
would exclude it from recognition entirely. Whether

there are attributes which constitute the remaining
abstract quantities, we will not pause to consider here.

But we must point out that certain attributes, which are

not abstract quantities, constitute the applicate quanti

ties, which may be very simple as the attribute length,

or very complex as the quantities dealt with in the theory

of electricity. For such an attribute to be an applicate

quantity, it is necessary that it should be amenable to

measurement. Whether or not this necessary condition

is also sufficient; whether it may also be essential that

attributes of this class be amenable to addition, in that we
must be able to add two of them together, is a question

that will be discussed later. We have further concrete

quantities, which are not attributes at all. While an

abstract quantity a ten, in the case of a pile of ten

1 Lodge advocates the introduction of the idea of fraction in

arithmetical instruction by means of segments of apples and oranges.

Easy Mathematics, London, 1906, p. 15.
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oranges is an attribute of a group; the corresponding

concrete quantity the ten oranges is the group itself.

In contradistinction to abstract quantities, the applicate

and the concrete are called denominate quantities.
1

It is customary when the number of objects in two

groups are equal, to say that there are the same number

of objects in the groups. This use of the word &quot;same&quot;

to signify, not identity, but complete similarity, has crept

into Mathematics, as well as into other branches of

inquiry where precision and accuracy of thought are

indispensable, and has been a fruitful source of confusion

and error. It is a colloquial phraseology, rather than one

suited to the requirements of an exact science. The ques
tion as to the propriety of this application of the word is

far from being a mere verbal subtlety, for in any science

it is of the utmost importance that every fundamental

difference of fact be marked by a distinction of name.

When we perceive an attribute of an object (or a group

1 In view of the fact that in the theory of names the distinction

between abstract and concrete names is that between the names

of attributes and the names of substantive objects, it would seem

more appropriate for mathematicians to designate as abstract all

quantities not concrete. A still better course would be to entirely

abandon the use of &quot;abstract quantity&quot; and &quot;concrete quantity.&quot;

Mathematical nomenclature on this subject (a nomenclature we

merely attempt to systematize and not completely remodel) is

full of confusion. Sometimes the name &quot;concrete quantity&quot; is

applied to applicate quantities. Thus Napier (De Arte Logistica,

Liber 3) would call the length of a single body a &quot;concrete number,&quot;

while if two or more bodies were laid down end to end, and the

length taken, this he would term a &quot;discrete number.&quot; Again
&quot;denominate number&quot; is sometimes used in the less general sense

of &quot;applicate quantity.&quot; And the latter name itself, a term that

we have resurrected from the terminology of the older mathemati

cians, was probably as often used in the broad sense given above to

&quot;denominate quantity&quot; as in the narrower one.
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of objects) at one time, and again perceive this attribute

unchanged in the same object (or group) at another time,

we speak of the attribute perceived upon the first occa

sion as being the same as the attribute perceived upon
the second occasion. An entirely distinct case occurs

when we have in view two perfectly similar attributes of

two different objects, or two different groups of objects.

Why should we say in such a case, when two objects are

exactly alike in color, or two groups exactly alike in number,
that they possess the same color attribute, or the same

number attribute? The word &quot;same&quot; has already been

chosen to express one set of facts concerning attributes.

Why should we also employ it to express a totally different

set of facts, when another word, &quot;like&quot; or
&quot;equal&quot;

is

already at hand? To adopt the word &quot;same&quot; for both

purposes is as absurd and misleading as to call two houses

exactly alike, the same house. 1

These considerations are sufficient to make it clear

that the names &quot;one,&quot; &quot;two,&quot; &quot;three,&quot; etc., are general

names denoting the members of classes containing not

one, but many objects. When we put forward the pro

position: &quot;Two plus three equals five,&quot; our proposition

does not bear upon three classes, each of which contains

only one object. We are enunciating, not a singular, but

a general proposition concerning three classes containing

many objects. The proposition concerns every group of

two objects, every group of three objects, and every group
of five objects the affirmation is made that whenever a

1 An interesting discussion regarding sameness of attributes will

be found in Spencer s Prin. of Psychology, Ch. 5, 32 and Mill s

System of Logic, Book 2, Ch. 2, 3, note. We may also mention

in this connection the valuable monograph of G. S. Fullerton:

On Sameness and Identity (Phila., 1890), a work that does not seem

to have received the attention it deserves.



Value-classes 7

group of three objects is joined
1 to a group of two objects,

no matter what groups are taken, the new group formed

will be composed of five objects, and will be equal in num
ber to every other group composed of five objects. Since

the names
&quot;one,&quot; &quot;two,&quot; &quot;three,&quot; etc., are general,

we may legitimately speak of a one, a two, a three, etc.,

although in present usage the article is omitted. Thus
in speaking of the result of an operation a sum for

example we may say &quot;the sum is a four&quot; instead of

using the customary expression &quot;the sum is four.&quot; The
latter phraseology, while its entire rejection may not be

necessary, has doubtless played its part in the birth of the

error we have been discussing.

From the point of view just set forth it is plain that

among the most elementary and fundamental classifi

cations of Mathematics is the formation of classes each

of which consists of all quantities that are mutually

equal. These wTell-marked classes may be called value-

classes. If two quantities are equal they belong to the

same value-class, or, as it is more commonly put, are of

the same value. With abstract quantities, &quot;one,&quot; &quot;two,&quot;

&quot;three,&quot; etc., are the general names belonging to these

value-classes for the natural numbers; and &quot;one-quarter,
&quot;

&quot;one-half,&quot; &quot;three-quarters,&quot; etc., are the general names

belonging to these classes for the natural fractions. And
likewise there are general names for the value-classes of

abstract quantities other than the natural numbers and

the natural fractions. With denominate quantities, to

take only two sorts, &quot;one centimeter,
&quot;

&quot;two centimeters,
&quot;

&quot;three centimeters,&quot; etc., are the general names belonging
to these classes for lengths; and &quot;one

erg,&quot;
&quot;two

ergs,&quot;

1 It should be observed that we do not here assert addition to

include only cases in which there is a physical union of groups.
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&quot;three
ergs,&quot; etc., are the general names belonging to

these classes for quantities of work. In short, with every
value-class of quantities, whether abstract, applicate or

concrete, there is or should be a general name. Corres

ponding to the names just spoken of are the symbols,

1, 2, 3, etc., I, |, f, etc., 1 cm., 2 cm., 3 cm., etc., 1 erg,

2 ergs, 3 ergs, etc., which are nothing more or less than

substitutes for these names, adopted for convenience.

They are general symbols belonging to the value-classes.

They may be called symbols of value.

Our brief survey of various quantities of Mathematics

involving an incidental consideration of attributes other

than quantities has not drawn within its scope any case

in which change takes place. Now suppose change does

take place; suppose a bar of metal is heated, and its length

changes from 1000 centimeters to 1020 centimeters, while

its color changes from black to red. Are the facts well

expressed by saying the bar possesses the &quot;same&quot; length

and the
&quot;

same
&quot;

color as before? According to the manner
of speaking of such changes in Mathematics, and in keep

ing with the long-accepted definition of &quot;variable,&quot; it

would be said that &quot;the&quot; length of the bar during the

change is a variable, and hence is a quantity, that is, one

quantity. Moreover, in harmony therewith, it must also

be acknowledged that the manifold colors throughout the

change are a color, that is, one color. Such a use of the

word &quot;same,&quot; implying identity where there is diversity,

is even more repugnant than its application in the sense

of
&quot;equal,&quot;

and we are compelled to recognize, when an

object initially possesses a certain attribute and undergoes
a change with respect to this attribute, that we must

regard as a separate and distinct attribute each stage of

the process of change. Such a set of attributes may
together constitute a variable and under this description
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come most of the variables of physical science. We may
have a body with variable velocity a type of variable

which gave frequent opportunity for the exercise of

Newton s genius a body of gas with variable tempera

ture, with variable pressure, and with variable volume.

We cannot say that any of these variables are quantities

unless we wish our language to be an impediment instead

of an aid to exact thinking.

Even stronger do we find our case when we turn to

Geometry and behold the type of variable which first

came under the scrutiny of mathematicians. Antiphon,
in his attempts to rectify the circle, inscribed in a circle,

first a square, then a regular octagon, then a regular

sixteen-sided polygon, etc. Archimedes inscribed first

an equilateral triangle, then a regular hexagon, then a

regular dodecagon, etc. In each case the perimeters of

the inscribed polygons constitute a variable wrhose limit

is the circumference of the circle, while the areas of the

polygons constitute a variable whose limit is the area of

the circle.
1 With what show of reason can we say that

the perimeter of a triangle is one and the same quantity
one and the same perimeter as the longer perimeter of

a hexagon? How are we justified in saying that the area

of a triangle and the area of a much larger ninety-six

sided figure are the same quantity? And yet we must

make these assertions if we acknowledge that a variable

is a quantity. Nor is it only with the circle that such

difficulties arise. The quadrature (or rectification) of

1 Antiphon seems to have believed that a polygon could be ob

tained which would coincide with the circle in modern phras

eology, that the variable would reach its limit. The notion of

variable is also apparent in the second proposition of the Twelfth

Book of Euclid, which purports to prove that &quot;circles are to one

another as the squares on their diameters.&quot;
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any curvilinear figure by the methods of the modern

Integral Calculus present similar difficulties. We have a

set of rectilinear figures, no two alike, the areas of which

(or the lengths of certain lines on which) constitute a

variable the limit of which is sought. Surely these con

siderations are overwhelming against the doctrine which

ascribes to a variable the character of a quantity, and
there is no recourse save to abandon that doctrine com

pletely.

When a long-accepted and apparently well-established

tenet of science has been shown to be untenable, it may
justly be demanded, with the circumstances as they are

here, that a more acceptable doctrine be put forward to

replace that which has been found wanting. It is our

purpose to meet this demand, but this involves as an

essential requisite an inspection of some of the most strik

ing characteristics of variables, of which not the least is

their constitution. And the consideration of their con

stitution will lead us to a closer scrutiny of the various

species of quantities of Mathematics than we have as

yet undertaken.

The quantities contemplated together, wThen a variable

is the object of inquiry, compose a class of quantities

which we may call a variable-class. But a wide gulf

separates the inquiries instituted with respect to variables

and all other inquiries instituted with respect to the

members of classes composed of quantities. This wide

gulf cannot be more clearly pointed out than by a com

parison of the propositions which are set forth concerning

such classes as the value-classes already treated of and the

propositions set forth concerning variables. This com

parison will make it plain that propositions bearing upon
a variable relate, in a peculiar and distinctive manner,
to the members of the variable-class. When we form a



Arrangement in a Variable 11

value-class and give it a class name for example, by

grouping together all the twos and providing the class

name &quot;two&quot; our purpose is to state propositions con

cerning every two taken separately (or concerning each

of some of the twos). When we form a variable-class we
have a totally different purpose in view. The proposi

tions enunciated concernng a variable do not, in the

typical cases, treat of the members of the variable-class

taken separately; they treat of the mutual relations

between the members of the class. And among these

relations, the most common is that state of affairs which

exists when the variable possesses a limit a limit being
a quantity which may or may not belong to the variable./ h

When we say &quot;two plus three equals five&quot; we assert that

every two plus any three equals every other five. When,
however, we say &quot;the variable x approaches the limit I&quot;

we do not assert that any quantity of x approaches /

as a limit indeed such a proposition wrould be utterly

meaningless.

In any inquiry concerning a variable, one of the most

important, though one of the least regarded facts, is the

arrangement in order of the quantities which compose
the variable. It has just been pointed out that to inquire

into the mutual relations of the quantities which are

members of the variable-classes, and to set forth the laws

pertaining to these relations is the purpose in forming
those classes and in establishing a theory of variables.

Now every proposition which can be framed bearing upon
the mutual relations of the quantities of a variable, and

therefore bearing upon those matters for which the

variable has been expressly formed every such proposi
tion must have at least a tacit reference to the arrange
ment in order of the quantities which compose the vari

able. Hence no meaning whatever is conveyed by such
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a proposition unless an arrangement subsists among the

quantities of the variable. Thus, if we say a variable

throughout incessantly approaches a quantity a, either

as a limit or otherwise, we assert among other facts1

that every quantity of the variable is nearer a than every

previous quantity. And we would be enunciating a propo
sition without meaning, if

&quot;previous&quot;
had no meaning

with regard to the quantities of the variable, that is, if

they were not arranged in order. Even in the simple
affirmation that two variables are in functional relation,

though it is not asserted that either of the variables is

arranged for the moment, we hold there is necessarily in

view arrangements of both at some time or other, past,

present or future. At different times the variables may
be arranged quite differently, but at any one time the

two variables must have like arrangements. In the

absence of such arrangement the purpose of a functional

relation cannot be served at all. In the elementary Cal

culus the variables met with are never isolated, but are

in functional relation with one or more other variables,

and a procedure is more or less closely followed which is

tantamount to arranging the quantities of the indepen
dent variable according to value; that is, each quantity
of such a variable is regarded as subsequent to every lesser

quantity. Even here, it is obvious that there is nothing

fixed or immutable about the arrangement of the quanti

ties, and that no necessity compels us to employ arrange

ment in order of value. A variable which in one functional

relation is independent, may be dependent in a dozen or

more other functional relations with as many distinct

independent variables, giving rise to as many different

1 Of course, when the proposition is false, we are asserting not

a fact, but a fancy.
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arrangements of its quantities. While it is hardly defen

sible not to speak of the order of the quantities of the

variables in elementary Calculus, it is utterly inexcusable

to follow this course in those disciplines which treat, not

merely of quantities which are comparable, but also of

quantities which are not comparable as a +1 and a

-f-\/ 1. For in these disciplines arrangement in order

of value fails completely.

Nevertheless, the present trend in Mathematics is not

toward the recognition of order as an attribute whose

consideration is requisite to an adequate theory of vari

ables. That consideration of this attribute is indispens

able to the theory of variables, has not gained recognition

even through the labors of George Cantor, who has so

conspicuously brought forward the attribute in his epoch-

making researches upon the Transfinite Mengenlehre.
The explanation of this anomaly is not far to seek. The

Theory of Transfinite Aggregates deals with aggregates

in general in a most abstruse wr

ay, and gives no specific

consideration to aggregates composed of quantities. The
earlier work of Cantor bearing upon point aggregates is

more specific, and bestows particular attention to limit

ing points or points of accumulation. In establishing

the theory of these aggregates, the attribute of order,

of paramount importance with other aggregates, is not

employed or rather, we should say, an order in space,

and this alone, is vaguely in view. It would appear from

the writings of Cantor himself, and it is expressly stated

by some who adopt the views of Cantor, that the theory
of point aggregates and their limiting points is taken as

the counterpart of the theory of variables and the limits

of variables. The consequence of all this is that in recent

works definitions with respect to limits of a variable have

been laid down permitting us to say a variable possesses
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a limit in cases where no limit is possessed by the variable

properly speaking.
1

The word &quot;order&quot; most naturally brings to mind order

in time and order in space. If a line be described from

a point A to a point B, if a gaseous body expand in an

enclosure, indeed, in any process of Nature, we have before

us a set of events having an order in time. With the

description of the line, the events are the coming into

existence of its various points; with the expansion of the

body, the events are the assumption of the various vol

umes from the initial to the final volume. In both of

these sets of events, the relation between any two events

of a set is that of succession. If the body does not expand

isothermally, that is, if there is a different temperature
of the body for each volume, we have another set of

events, the assumption of the various temperatures from

the initial to the final temperature, each of which is

simultaneous with the assumption of a certain volume.

Thus all processes in Nature are constituted of events

between which subsist the relations of simultaneity and

succession. And all order in time is founded upon these

two relations. Order in space is far more intricate than

order in time, since any spatial relations whatever, between

objects, furnish a foundation for ascribing to them an

order in space. Thus with any straight line A B, whether

it has been described, or whether it has been generated
in any other way whatsoever, the points of the line can

have an order in space assigned to them starting at the

point A, and another and quite different order in space

1 For instance, Otto Stolz and J. Anton Gmeiner in their Ein-

leitung in die Functionentheorie, p. 5, 2, put forward a definition

with regard to limit of a variable apparently expressly designed to

correspond to Cantor s definition concerning limiting point. To
these definitions we shall give full consideration later.
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(the &quot;inverse order&quot;) starting from the point B. In the

first case it is laid down that A is previous to every point

of the line other than A, and of any two of these other

points, that point is previous which is nearer A, and that

point is subsequent which is further from A. In the second

case the point B plays a part similar to that of A in the

first case. But these are only two of the many orders

in space which can be assigned to the points of the line

AB. Besides A and B, any point P of the line between

A and B may be chosen as previous to every other point

of the line; and the points other than P can be arranged

in order by regarding any two points equidistant from P
as abreast of each other, and, with any two points not

equidistant from P, regarding as previous that which is

nearer P, and as subsequent that which is further from P.

The order of the points in space just specified will accord

perfectly with their order of coming into existence in

time if the line AB be generated by describing two

portions starting from P, and going toward A and B,

so that points equidistant from P come into existence

simultaneously.

If a straight line AB be described on an Argand surface,

beginning at the
&quot;origin&quot; (or zero point of the surface),

and going thence in a positive direction, the order in time,

of the coming into existence of the points of the line, and

the order in space of these points starting at A, both

accord perfectly with the order of the values represented

by the points of the line. But these three types of order

ought not to be confused with each other, or with that

fourth type of order with which we are concerned in deal

ing with variables. Order of this fourth type is just as

distinct from order in time, or order in space, or order of

value, as it is from the order of precedence of the English

aristocracy. The order of the quantities in a variable may
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accord perfectly with the order of their values, and the

order in space of the points of the Argand diagram repre

senting these values, and the order in time in which these

points came into existence; but on the other hand, it

may not accord with these at all such accord being in

no way essential to the idea of order in a variable.

In the construction of a perfectly general theory of

variables any set of relations between the quantities of a

variable which will serve as a foundation for arranging
them in an order must not be denied the mathematician

as a means of establishing order among them. Moreover,
the arrangement in order of the quantities of a variable

must be regarded as entirely arbitrary, as amenable to

change during an investigation,
1 and as determined

solely by the fiat of the mathematician, who is permitted
to bestow any order upon the quantities of a variable

that his purposes may dictate.

We shall say that the quantities of a variable are

arranged in order, when every quantity of the variable

has had conferred upon it a relation of order with respect

to at least one other quantity of the variable. The most

simple arrangement is that in which with every two

quantities of a variable a and b, a is either previous to

or subsequent to b, and is not, in any case, both previous

and subsequent to this quantity, while whenever, with

three quantities, a, b and c, a is previous to b and b pre
vious to c, then a is previous to c. Arrangements of this

species are the most important, and will receive by far

the largest share of our consideration. Among variables

possessing this arrangement are the independent variables

1 Amenable to change save in so far as it may be convenient

to lay down in some exceptional cases that certain variables shall

be immutable in this respect, any change of the order of their

quantities producing what we agree to call a new variable.
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in Calculus, which usually consist of one representative

of every real abstract value arranged in order of value.

In such a variable every quantity less than zero is previous

to zero, and to every quantity greater than zero. The
1000 is previous to the 100, the 100 is previous

to the 10; and all of these are previous to the zero,

the +10, the +100 and the +1000, and so on. These

arrangements with discrete variables may be roughly

visualized by points in a row. In such a representation

regard of the value of the quantities must be entirely

subordinated to their order; and the points of the row

must have an order in space, in perfect accord with the

order, in the variable, of the quantities they represent.

With continuous variables these arrangements would be

visualized by lines.

For these arrangements in order of the quantities of

a variable, we propose the name unifarious, and we shall

speak of a variable as being unifarious when an arrange
ment of this character is under consideration.

The order under one unifarious arrangement is said to

be the inverse of that under another (and the twro arrange
ments are said to be inverse to each other) if with every

pair of quantities a and b coming under the arrangements,
a is previous to b under one arrangement, but subsequent
to b under the other arrangement.
A unifarious arrangement is said to be discrete if there

is consecution among the quantities arranged; that is,

if every quantity having another quantity previous to it

has a quantity next to it previously, and every quantity

having another subsequent to it has one next to it sub

sequently. In other words, if 6 is a quantity of a variable

so arranged, then when there are one or more quantities

of the variable previous to b, there must be among these

a unique quantity a such that there is no quantity in

2
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the variable both previous to b and subsequent to a,

and when there are one or more quantities of the variable

subsequent to b, there must be among these a unique

quantity c such that there is no quantity in the variable

both subsequent to b and previous to c. A variable then,

under a unifarious arrangement of its quantities, may be

discrete or non-discrete; the latter word is of course not

synonymous with continuous, though it would not be

difficult to cite authors who have expressly defined

discrete as meaning not continuous.

Somewhat more complicated than the unifarious

arrangements, are those which may be roughly visualized

as looped or ring-like. In these, with every two quantities

of a variable, one is either previous to or subsequent to

the other; and besides, in one or more instances with

two quantities, one is both previous to and subsequent
to the other. The point of crossing of the loop represents

the quantity which is both previous to and subsequent
to the quantities represented by points on the loop.

Thus, if in a variable composed of the quantities a, P, 7,

. . . x, \l/, co; /3 is next subsequently to a, 7 to jS, ... ty next

subsequently to x, then 7 next subsequently to ^, and

finally co next subsequently to 7; the arrangement at

hand is a looped one; 7, which is both previous to and

subsequent to each of the quantities 5, e, . . . \f/, corres

ponding to the crossing point of the loop. A ring-like

arrangement would be obtained, if /3 were made next sub

sequently to a, 7 to /3, ... \f/ to x, then co next subsequently
to

\f/, and finally a, made next subsequently to co. In

such an arrangement, visualized by points lying in a

ring, every quantity without exception is both previous
to and subsequent to every other quantity.

To say, an arrangement may be roughly visualized by

points in a row, in a line, in a loop, or in a ring, is not to
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say that the representation of the quantities of a variable

upon an Argand surface will consist of points so placed.

The primary purpose of the representation of quantities

upon an Argand surface is to exhibit their relations as

to value, by the position of points upon a plane. There

fore, only when the order in space on an Argand surface,

of the points representing the quantities of a variable,

happens to accord with the order of the quantities in the

variable; then and then only, will the order of these

quantities, as well as their values, be portrayed upon
such a surface. It may often occur that these two orders

do not accord at all; in which case a ring-like array of

points, or a closed figure on the Argand surface may
belong to a unifarious variable, while a straight row of

points, or a straight line, may belong to a variable with

ring-like arrangement of its quantities.

A fourth and still more complicated arrangement is

that in which with one or more pairs of quantities of a

variable, a and b, a is neither previous to nor subsequent
to b. When this is the case with two quantities, they

may be abreast of each other, or they may not have

conferred upon them a relation as to order, or they may
have conferred upon them some relation of order not

included among the cases already mentioned. It is not

necessary to dwell upon these arrangements, except to

observe that some of the possible cases may be visualized

by rows of points, which may be independent of each

other, or may intersect, or interlace, or coalesce in a

great variety of ways. We will call arrangements of this

species multifarious.

The arrangements which have been discussed would

seem to comprise all arrangements that could possible

be conceived. But, if we turn to the Theory of Mono-

genie Functions, and observe how the quantities of an
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independent variable would seem to be arranged when the

process of differentiation is in view, a most paradoxical
state of affairs confronts us. Here, for a point on an

Argand surface representing a quantity at which differen

tiation takes place, not only every radial path leading to

the point, but every spiral or sinuous line leading thereto

in short every line whatsoever leading up to the point
is a path of differentiation. And this is the case not

merely with one point but with every point corresponding
to a quantity of the independent variable at which differen

tiation can be performed. And the theory exacts that,

for every point of this description and for each path lead

ing up to it, there shall be at hand a unifarious arrange
ment of such quantities of the independent variable as are

represented by points on the path. In these unifarious

arrangements, the order of the quantities must accord

with the order in space of the points along the lines leading

up to the points of differentiation. Consider two quanti
ties represented by points P

t
and P2 lying in a straight

line leading to a point of differentiation P. In the uni

farious arrangement corresponding to this line, the

quantity is previous which is represented by P
i;

this

point being further from P than the point P2 . Now con

sider a spiral line containing Pj and P2 and leading up to

the point P. If this spiral has P as centre, in the corre

sponding unifarious arrangement the quantity repre

sented by Pj is again previous to that represented by P2 ,

but the intermediate quantities will not be the same

there will be some new intermediate quantities while some

of those intermediate in the first case will not be taken

into the second arrangement at all. Indeed, if the whorls

of the spiral are far enough apart, none of the old inter

mediate quantities will enter into the second arrangement,

and none of the new intermediates will be quantities that
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entered the first arrangement. Again we may have a

sinuous line which passes first through ?2, then through

Pi and finally goes to P. Under the unifarious arrange
ment corresponding to this, P2 will be previous to PI.

If we choose, we may regard the state of affairs embracing
all these unifarious arrangements as itself an arrangement,
into which enters every quantity that entered one of the

unifarious arrangements. Such an arrangement we will

call multiplex, while arrangements of the first four types
we will call simplex. The distinguishing characteristic

of a multiplex arrangement is that it has so to speak
subordinate to it (as above described) at least two

usually innumerable different simplex arrangements (not

necessarily unifarious), each of the latter having as its

scope part or all of the quantities reckoned as taken in

by the multiplex arrangement.
In his treatment of the Theory of Aggregates, Cantor

originally used &quot;einfach geordnet,&quot; to signify what we
here express by

&quot;

unifariously arranged.&quot;
1

Later, how

ever, he modified the meaning of this phrase, and said

that an aggregate was einfach geordnet if with each pair

of its elements A and B, A was either previous to, or subse

quent to, or abreast of B. 2

Presumably he also intended

to require that not more than one of these three relations

be ever at hand, and that whenever A is previous to, or

subsequent to, or abreast of B, and B likewise respectively

previous to, or subsequent to, or abreast of C, then A
must be respectively previous to, or subsequent to, or

abreast of C. In this sense &quot;einfach geordnet&quot; would

apply to all the cases we designate as unifariously arranged
and moreover to some (but not all) of those we designate

1 See Math. Ann., Vol. 46, p. 496.
2 See Zeitsch. f. Phil., Vol. 92, p. 240 et seq.
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as multifariously arranged. And &quot;mehrfach geordnet&quot;

Cantor applied to those multiplex arrangements (to use

our own terminology and not his) whose subordinate

arrangements were all einfach in the second and broader

sense, there being understood to enter in each of these

unifarious arrangements all the elements within the

scope of the mehrfach arrangement. Cantor s point of

view is very different from that taken here. Of relations

as to order between one element and another of an aggre

gate, he admits of only three: 1 that one is previous to

the other, is subsequent to it, or is abreast of it. A literal

translation of &quot;geordnet&quot; would be &quot;ordered,&quot; were

it admissible to use the verb &quot;to order&quot; as a passive.

Some authors have gone so far as to take this liberty.

&quot;Ordinated&quot; would be available as a substitute for

&quot;arranged,&quot;
if the close connection of that verb to the

noun &quot;ordinate&quot; of Analytical Geometry did not make
the usage objectionable. We shall not venture to employ
&quot;ordinate&quot; in this sense, but will content ourselves with

&quot;arrange.&quot;
And when we speak of arranging or of the

arrangement of a variable, we are to be understood to

mean the arrangement in order of the quantities of this

variable.

Our survey of the arrangement of the quantities of

variables is completed. We must now enter upon an

examination of the constitution of variables from another

standpoint, which has for its purpose to discover what

qualifications quantities must possess, with respect to

number and character, to join in forming a variable.

Regarding number, it is plain that a variable must

contain at least two quantities, since we can have no

relation between quantities as to order or otherwise,

1 Op. cit., p. 241.
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unless two are at hand. Although the inquiries which

can be undertaken with a variable containing only two

quantities are very trivial, we can see no good purpose in

requiring more than two as the least number of quantities

capable of forming a variable. As no other restriction

upon the number of quantities is needful or desirable,

we shall merely require that every variable be composed
of at least two quantities. It is worthy of remark that

in the Theory of Aggregates, which is closely related to

that of variables, Cantor regards it as permissible to

recognize a single element as constituting an aggre

gate.
1

To discover what character quantities must possess

to be amenable to those inquiries for which a variable is

formed, and therefore to be eligible to join in forming
a variable, we will inspect the most typical of all of the

relations between the quantities of a variable the

relations which subsist when the variable incessantly

approaches a quantity, either as a limit or otherwise.

The qualifications hereby educed are conformed to by the

quantities of every variable, as an exhaustive examina

tion of the variables found in the mathematical sciences

will show.

For a variable x to incessantly approach a quantity

a, it is requisite: first, that there should be a unifarious

arrangement of the quantities of the variable; second,

that each quantity in the variable should be nearer a

than is every previous quantity; third, that no quantity
of the variable should be equal to or identical with a.

The second condition is that relevant to our inquiry.

In stating it we use the word nearer in a technical alge-

1
Beitrdge zur Begriindung der transfiniten Mengenlehre, Math.

Annalen, Vol. 46, p. 482.
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braic sense. Of two quantities xi and #2 ,
the latter is

said to be nearer the quantity a than is the former when

the difference between x2 and a is less numerically than

the difference between x\ and a. In such a case the dis

tance on the Argand surface between the points repre

senting xz and a will be shorter than that between the

points representing x\ and a. Hence, in order that the

variable x shall incessantly approach the quantity a,

it must be possible to find the difference between every

quantity of x and a in other wr

ords, with each quantity
of x, it must be possible to either subtract this quantity
from a or to subtract the latter from the former. And
for these operations of subtraction to be possible, there

must be a certain uniformity of character of a and the

quantities of x. If a is a length, every quantity of x must

be a length. If a is an area, every quantity of x must

be an area. We cannot subtract a length from an area

or an area from a length, and hence cannot have both

lengths and areas among the quantities of the same vari

able. Similarly, if a is an abstract quantity, every quan

tity of x must be abstract. Of the genus quantity there

are a number of species, and no variable can contain quan
tities of more than one of these species. Such species

are of great importance in Mathematics, and it is desirable

to denote them by a name of their own.

Unfortunately, here as elsewhere in Mathematics, we

are confronted with a lamentable paucity of nomenclature

pertaining to fundamental ideas. A vast and imposing

superstructure has been raised with great labor, while

the foundations have been slighted to a degree that verges

close upon disrespect. Mathematicians have adopted
no word to designate these sharply defined species. For

this purpose we propose the word sort. Two quantities

are of the same sort if it is possible to add either one of
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them to the other. When this condition is fulfilled

as to the quantities x\ and x2 ,
and as to either of these

with respect to a, it can be proven that it is possible to

find the difference between a and both x\ and #2.

It must be recognized that two quantities are sometimes

of such a character, that it is desirable to include them in

the same sort, although it is impossible to add either of

them to the other. It is desirable to include in the same

sort all lengths. But we cannot perform the operation

of adding the two lengths of the same metallic bar at

different temperatures which would consist in bringing

them into juxtaposition. Likewise when we have two

lengths a and b of two different bars, and we bring them

into juxtaposition, thereby producing a new length the

quantity a-\-b this new length is of the same sort as

a and b, but we cannot perform the operation of adding

together either a and the new length, or b and the new

length. For two such quantities to be of the same sort,

we must not require that it be possible to add either one

of them to the other, but merely that it be possible to

add each of them to a third quantity.

Still another difficulty arises in the delineation of a sort

of quantities, such as that under consideration consisting

of all lengths, owing to the inability of human beings
to carry out certain very easily-conceived processes.

It is impossible to add physically a length on the earth

to a length on the moon, and it is impossible to add them
both physically to a third quantity. We must content

ourselves with facing this difficulty without overcoming
it, as we cannot here investigate how far the operations
of Mathematics are physical; how far merely conceptual,
and what is the character of an operation which is merely

conceptual.

With quantities of some sorts which are not excluded
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as components of a variable, it is impossible to add physi

cally any two of them whatsoever. We cannot add

physically the temperatures of two bodies. It is impossible

by bringing two bodies into juxtaposition, or by perform

ing on them any physical operation having the semblance

of addition, to produce a third body whose temperature
is the sum of the temperatures of the bodies brought

together. When the temperature of a body is said to be

the sum of the temperatures of two other bodies, and a

thermometer such as the ordinary mercury thermometer

is used as the criterion of temperatures in which the

expansion of a liquid is indicated by the height of a column

of that liquid what is meant when positive temperatures
alone are considered, is that the temperature of the first

body is such that the length of the column of liquid above

the zero, upon bringing the thermometer in contact with

that body, is equal to the sum of the lengths of the columns

of liquid above zero, upon bringing the thermometer suc

cessively in contact with the two other bodies. 1

How far it is advisable to provide distinctive names for

quantities of species of which some members at least are

amenable to physical addition and for quantities of those

species of which no members are amenable to physical

addition, we need not dwell upon here. It is sufficient to

point out that these two sharply distinguished types of

quantities exist.

We shall also have occasion to use the word kind in

reference to quantities. This is no innovation. We find

it used by Wallis in his Treatise of Algebra published in

1 A somewhat different account of the matter an account too

intricate to set down here would have to be given on employing
the normal constant volume hydrogen thermometer, adopted in

1887 as the ultimate criterion of temperatures by the International

Committee upon Weights and Measures.
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1685, and it is not infrequently met with in modern

authors, though an explicit statement of its meaning is

very uncommon. Two quantities are of the same kind

if they are comparable, that is, can be compared as to

whether one of three relations is borne by the first to the

second, namely: equality, major excess, and minor excess;

in other words, whether the first of these quantities is

equal to, greater than, or less than the second, and more

over it can be determined that one of these relations

does subsist between the quantities. Such a comparison is

sometimes called a &quot;comparison in magnitude,&quot; but this

phraseology is misleading if it implies anything beyond
what we have said. To avoid any misunderstanding,

be it noted that we shall simply speak of two quantities

as comparable, or not comparable, and of the comparison
of two quantities; referring thereby to the comparison
of the quantities as to equality or excess of one over the

other. Quantities of the same kind are always of the

same sort. A +1 and a 2| are of the same kind, while a

+1 and a +-\/ 1 are of different kinds. Of still another

kind is a +(l+ \/ 1). The different kinds of the

single sort: abstract quantities, are innumerable. The
abstract zeroes belong to every one of these kinds. There

fore, in the classification of the abstract sort into kinds,

the classes overlap. And in general, whenever any sort

comprises more than one kind, the several kinds overlap

by the inclusion in every kind of all the zeroes of the sort.

The abstract sort of ordinary Algebra may be represented

by the points of an Argand surface; here every inter

minable straight line passing through the origin serves

primarily to represent a single kind of abstract quantity.

In this case a point on the line represents, not a quantity
of the kind, but a value; and hence represents every

quantity of this value. It is only in a secondary sense



28 Variables and Quantities

that the point can be said to represent one or more, but

not all quantities of this value.

A further classification, and one of no small importance
in Algebraic Mathematics, is the classification of quanti
ties in what we shall call varieties. A variety comprises
either the zeroes and those non-zeroes of a kind greater

than zero, or the zeroes and those non-zeroes less than

zero. In the modern algebras a variety is usually a part
of a kind, each kind commonly comprising two overlapping

varieties; the one positive and containing the zeroes and

all the positive non-zeroes of the kind, the other negative

and containing the zeroes and all the negative non-zeroes

of the kind. But this is not always the case, there being

many sorts each of which includes only one kind and

only one variety. All concrete sorts are of this char

acter, and so are many applicate sorts, among which we
mention those composed of lengths, of areas, of columes, of

quantities of work, and of quantities of energy. Indeed

in the primeval algebra Arithmetical Algebra no sort

contained more than one kind, and no kind contained

more than one variety. For the conventions of com

parison first laid down were not such that a kind could

contain both quantities greater than zero and quantities

less than zero. And likewise the conventions of addition

first accepted were such that each sort contained only

one kind; so that in every case a variety, its kind and its

sort comprised exactly the same set of quantities. In

the passage to the algebras of more modern development,
two varieties, that is, two different kinds and two different

sorts of Arithmetical Algebra were taken, and supple

mental conventions for comparison and addition laid

down, under w^hich these two varieties, while remaining
different varieties, were comprised in a single kind. In

the first instance (that is to say, in the first discipline
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developing out of Arithmetical Algebra) each sort com

prised only one kind, and the only change as regards the

sort, kind, variety classification made in the passage to

the new discipline was that in this a kind may comprise
two varieties. In the next step, the passage to the

ordinary Algebra of to-day, by yet more supplemental

conventions, several kinds, each in the earlier algebras

of a different sort, while remaining different kinds were

consolidated into a single sort of the modern algebraic

discipline.

Among the various kinds of a sort, certain may be dis

tinguished as primitive. Thus with the abstract quan
tities of what we have just designated as the modern

algebraic discipline Double Algebra, as De Morgan termed

it there are two primitive kinds: the real and the

imaginary as they are very inappropriately called. A +3
and a 2, for example, are real; a -\-7\/l and a

13\/ 1 are imaginary. These two kinds are primitive

in this sense: that the value of each abstract non-zero

of every other kind can be and is conventionally repre

sented by conjoining together, with a plus or minus sign

between (as in 3+7-v/ 1), two value symbols; one

that of a real, the other that of an imaginary abstract

value. These other kinds, which stand in antithesis to

the primitive, are designated as complex. In the abstract

sort of Double Algebra there are innumerable complex

kinds, and every abstract zero belongs to all of them and

to the real and to the imaginary kinds as well. And in

general, every zero (whether it be abstract or applicate,

whether it occur in Double Algebra or elsewhere) provided
it belongs to a sort containing imaginary and complex
as well as real quantities, is at once real, imaginary and

complex. A non-zero, however, is never entitled to more

than one of these three designations. Some of the appli-
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cate sorts of Double Algebra contain, like the abstract

sort, two primitive and various complex kinds; others

contain only one kind each (which is classed as real);

but none have more than two primitive kinds. In cer

tain other branches of Algebraic Mathematics, however,

the case is more complicated. Thus, in the science of

Quaternions, which we shall soon have occasion to take

up, the abstract sort has four primitive and innumerable

complex kinds, while an applicate sort can have at the

most three primitive kinds. With some of the complex
abstract non-zeroes of Quaternions, the value is repre

sented by conjoining together four value symbols, each

pertaining to a different primitive kind; with other com

plex abstract non-zeroes, three such symbols suffice; and

with still others, only two need be taken. Analogously,

with some complex applicate non-zeroes, the value must

be represented by conjoining together three primitive

value symbols; while with others, only two are needed

for this purpose. A basis for the classification of the

various disciplines coming under the head of Algebraic

Mathematics is afforded by the number of primitive kinds

that a sort may contain, and by the number of varieties

(two or one) that may be comprised in a kind. Of this

classification we shall say more later; at present we
need merely remark that besides Double Algebra and

Quaternions the most important algebras are Arithmetical

Algebra, in which a kind can comprise only one variety,

and a sort only one kind; and Single Algebra, in which

likewise a sort can never contain more than a single kind,

but in which a kind may comprehend either one variety

or two varieties.

In Quaternions, of the four primitive kinds of the

abstract sort, one is real and three are imaginary there

are t-imaginaries, j-imaginaries and fc-imaginaries in Qua-
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ternions. And when an applicate sort of Quaternions

has the full complement of three primitive kinds, all of

these are imaginary; so that the applicate sorts most

characteristic of Quaternions contain no &quot;real&quot; quantities

at all, though the quantities of these sorts really exist.

Precisely how the so-called &quot;real&quot; and &quot;imaginary&quot; quan
tities differ from each other, is an important question,

and one that we shall soon attempt to answer. For the

present it suffices to point out that, for mathematical

use, the words &quot;real&quot; and &quot;imaginary&quot; labor under the

disadvantage of colloquial associations which would lead

one to think that the quantities designated by the latter

adjective are to be found only in the realms of the imagina

tion, and that real quantities are those which actually

exist in our universe. As the technical mathematical

application of &quot;real&quot; and &quot;imaginary&quot; is quite foreign

to such implications it is fortunate that these are not

the only adjectives available. In place of &quot;imaginary&quot;

Halsted has proposed neomonic; and Lefevre has sug

gested protomonic as a substitute for &quot;real.&quot;
1 This

new terminology is so greatly superior to the old that it

is difficult to see why the latter has not been entirely

abandoned. We shall adopt it here, and ordinarily use

the new adjectives, reverting to the synonymous &quot;real&quot;

and &quot;imaginary&quot; only when the exigencies of the moment
seem to require the use of the commonly accepted phraseo

logy. It is to be noted that non-protomonic is not equiva
lent to neomonic or complex; this is due to the fact that

a zero may be at once protomonic, neomonic, and complex.
It would seem perfectly obvious that, whichever adjec-

1 See Number and Its Algebra, by Arthur Lefevre, Boston 1896.

Napier (De Arte Logistica, Liber 3, Caput 1) used nugacial, or rather

its Latin paronym nugacia, in reference to such expressions as
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tives be adopted, precision and consistency is desirable

in the application of the names taken to mark the distinc

tion between the primitive and complex kinds, and that

between the respective primitive kinds. Yet precision

and consistency is very seldom found in the use made by
mathematicians of

&quot;real,&quot; &quot;imaginary,&quot; and &quot;complex.&quot;

At times we find in mathematical works
&quot;quantity&quot; so

used that it must be taken in the sense of protomonic

quantity; while a &quot;complex quantity,&quot; or an &quot;imaginary

quantity&quot; with some authors, is a quantity which may,
it would appear, be just as frequently protomonic as com

plex or neomonic! To us, such a way of using language
seems utterly indefensible. Equally bad is a variorum,

which, while using &quot;complex quantity&quot; as before, to

include all three cases, uses &quot;real quantity&quot; for one of

these cases; so that here the real quantities constitute

a species of &quot;complex quantities;&quot; and the word &quot;quan

tity&quot;
without an adjective is presumably regarded as

having no definite meaning. Strange as it may seem, a

terminology on such a basis was formally accepted by
no less a mathematician than Gauss, who classified under

the general head of &quot;complex numbers&quot; the &quot;real num
bers&quot; and the &quot;imaginary numbers.&quot; The &quot;real

numbers,&quot; in his view, included &quot;zero&quot; (i. e., the zeroes),

the &quot;positive numbers&quot; (i. e., the positive protomonic

non-zeroes) and the &quot;negative numbers&quot; (i. e., the nega
tive protomonic non-zeroes). &quot;Imaginary numbers&quot;

Gauss regarded as including only non-zeroes, and he sub

divided them into the &quot;pure imaginaries&quot; (i. e., the

neomonic non-zeroes) and the &quot;mixed imaginaries&quot; (i. e.,

the complex non-zeroes).
1

1 See Unlersuchungen ueber hoehere Arithmetic (translations from

the Latin of Gauss by H. Maser), Berlin, 1889, p. 541.
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Some modern mathematicians follow Gauss in refusing

to call zeroes either positive or negative. Others regard

them as both positive and negative. The latter course

saves much circumlocution in the discussion of certain

subjects; notably Budan s theorem. We adopt it here

when the sort to which the zeroes belong contains both

positive and negative non-zeroes. When, however, a sort

contains only positive non-zeroes, we would regard the

zeroes of this sort as positive, but not negative; and

when it contains only negative non-zeroes, we would

regard the zeroes as negative, but not positive. With

neomonic and complex non-zeroes also we are constrained

to differ from Gauss, since we draw a distinction between

the positive and the negative. There is no difficulty in

doing this with the neomonic quantities, but with the com

plex it is not always easy to tell which non-zeroes of a kind

are best classified as positive and which as negative. Take
a 1 \/ 1 and a 1+\/ 1 in Double Algebra for ex

ample. Which should we call positive and which nega
tive? To this question mathematical works afford no reply.

However, in Double Algebra complex quantities of values

represented by points in the upper right hand quadrant
of an Argand diagram are undoubtedly to be classed as

positive, and might be termed positive complex quantities

of the first family. Those of values represented by points
in the lower left hand Argand quadrant are certainly

negative, and might be termed negative complex quantities

of the first family. The remaining complex quantities

of Double Algebra belong to the second family, and we

might, provisionally at least, regard the lower right hand

quadrant as representative of positive values, and the

upper left hand as representative of negative. Then a

1 %/ 1 will be a positive complex quantity of the

second family, while a 1+ \/ 1 will be a negative.
3
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We must now digress for a moment to inform the reader

of the precise sense in which we shall use the name &quot;ratio,

&quot;

a word that will frequently occur in the following pages.

We draw a distinction, not ordinarily made by mathemati

cians, between quotients and ratios. And likewise we

distinguish between the two operations or rather, to be

precise, the two species of operations of which quotients

and ratios are results; division and finding the ratio (or

ratiofication if we may so speak). Each of these is an

inverse of multiplication, to which species of operation W
TC

thus assign not one inverse but two. In view of the fact

that mathematicians admit there to be two [species of]

operations inverse to addition (subtertraction and detraction

in Schubert s terminology, the title subtraction being by
this author applied indifferently to both), it is somewhat

singular that it does not appear to have been clearly

recognized by any mathematician that a like course ought
to be taken with multiplication. For just as with two

operands b and s, there are distinguished the operation
of subtertracting b from s, which consists in finding a

quantity a such that a-\-b = s, and that of detracting
b from s, which consists in finding a quantity c such that

b+c = s; so likewise with ra and n as operands, one

may distinguish between division of m by n, which, as

we define it, consists in finding a quantity q (represented

by m+n, and called the quotient of m to n) such that

nXq=m such that q multiplied by n gives a product

equal to or identical with m, and ratiofication of m by
n, which we define as the finding of a quantity r (repre

sented by m : n, and called the ratio of m to n) such that

rXn=m such that n multiplied by r gives a product

equal to or identical with m. The justification for draw

ing this distinction, between division and ratiofication, is

assuredly as great as that for drawing one between sub-
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tertraction and detraction; and it is of especial importance
to those who, like ourselves, look askance upon ascribing

the role of multipliers to any quantities other than the

abstract. We would not, for example, speak of dividing
one volume by another; for this implies that we may
multiply something by a volume and obtain another

volume as product. And we would not say that there

was a ratio of a volume to an abstract quantity; for this

implies that upon multiplying the abstract quantity by
something which certainly cannot be another abstract

quantity there is obtained a volume as product. From
our point of view the only quantities that can be used as

divisors are the abstract (nothing but an abstract non

zero being capable of dividing a non-zero dividend) ; and

the only ones that can serve as consequents of ratiofica-

tion are quantities of the same sort as their respective ante

cedents (nothing but a non-zero of the same sort being

capable of acting as consequent to a non-zero antecedent) .

A consequent is thus not necessarily abstract; and any

quantity whatsoever, abstract or denominate, zero or

non-zero, may play the part of a dividend in division or

of an antecedent in ratiofication. The result of an opera
tion of ratiofication, a ratio, is always an abstract quantity,

while the result of an operation of division, a quotient,

may be abstract or denominate, but will in any event

always be of the same sort as the dividend. The defini

tion of ratiofication given by us is unquestionably nothing
other than a distinct portrayal of that operation of finding

a ratio which was employed in the Geometry of Euclid.

The only mathematician that we recall as making a specific

distinction between quotient and ratio is Hamilton,
1

1 See letters to De Morgan in Graves s Life of Hamilton, Vol. 3,

p. 598.
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and the distinction he would draw is so entirely foreign

to the one accepted by us that we need not here consider

it at all; we will merely remark that the word most com

monly used by Hamilton is &quot;quotient,&quot; and where he

applied it in his treatment of Quaternions, as designating
the result of an operation performed upon two vectors,

it appears to mean what we prefer to express by &quot;ratio.&quot;

Among the quantities of each sort are some that mathe

maticians term units. A distinction ought, we hold, be

made between units of the sort, units of each kind, and

units of each variety. Thus, with the abstract sort in

Double Algebra, every quantity of value +1 is a unit of

the sort, and is likewise a unit of the protomonic kind of

that sort and of the positive variety of that kind. Every

quantity of value +\/l is a unit of the neomonic

kind and of the positive neomonic variety, though it is

not a unit of the sort. Each complex kind in Double

Algebra has likewise a unit value, and every quantity of

that value is a unit of its kind and of the positive variety

of that kind, though_not of the sort. Thus every quantity
of value f+f\/ 1 is a unit of a certain complex
abstract kind and of its positive variety. Again, each

variety of Double Algebra has a unit value, and every

quantity of that value is a unit of the variety. Every

quantity of value 1, though not a unit of its sort and

not a unit of its kind, is a unit of the negative protomonic

variety. Likewise \/l and f fV 1 are unit

values of negative abstract varieties.

For a quantity to be a unit of its sort, the necessary
and sufficient condition is that it be a unit of the positive

protomonic variety of that sort. For a quantity to be a

unit of its kind, the necessary and sufficient condition

is that it be a unit of the positive variety of that kind.

The fundamental conception is thus that of unit of a
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variety; and the designation of a quantity as such a

unit depends largely upon purely symbolic considera

tions upon the type of value expression assigned to it.

With the positive protomonic abstract variety, a quantity
is a unit if it has as value expression the symbol &quot;I&quot;

or &quot;+1&quot;; and with the negative protomonic abstract

variety, a quantity is a unit if it has as value expression
&quot;

1&quot;. With each denominate protomonic variety, a

quantity is a unit if its value expression arises from con

joining a denomination to
&quot;

1
&quot;

or
&quot; +1

&quot; when the variety

is positive, and to
&quot;

1&quot; when the variety is negative.

It is customary with each neomonic kind to form the

value expression of a non-zero by conjoining to a value

expression which alone represents a protomonic value,

a special character which marks the kind, e. g., in Quater
nions the characters

&quot;i,&quot; &quot;j,&quot;
and &quot;k&quot; mark the three

abstract neomonic kinds. With each abstract neomonic

variety, a quantity is a unit if it has as value expression

the special character serving to mark the kind to which

it belongs, or has as value expression this conjoined to

the sign plus or to
&quot;

1
&quot;

or to
&quot;

+1
&quot;

or to the sign minus

or to
&quot;

1 &quot;. And for the denominate neomonic varieties

the same rule will suffice to fix the unit values when we
adhere to the notation now current, which omits to suffix

a denomination in writing denominate value expressions.

Under a more precise notation, however, we would have

to say that a unit of a denominate neomonic kind has

as value expression the character marking the kind, not

alone, but conjoined with the denomination which serves

to mark the sort, or has as value expression these two

conjoined to the sign plus or to
&quot;

+1
&quot;

or to the sign minus

or to &quot;1.&quot; As units of complex varieties play no

part in value symbolism, notational practice does not

afford a general rule for fixing upon a certain value of a
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complex variety as unit. With Double Algebra, however,
it can be laid down that a complex quantity having
as expression in the customary notation A+B-^l,
with or without a denomination suffixed, is a unit of its

variety provided A 2
-\-B

2 =
l, and with Quaternions a

complex quantity having as value expression W-\-Xi-

+ Yj+Zk, with or without a denomination, is a unit of

its variety provided W2
-\-X

2+Yz+Zi =
l, an analogous

rule holding when we have a trinomial or binomial instead

of a quadrinomial.
Units of varieties are of no small importance, since on

them depends the whole of the general theory of limits.

That this is the case, is due to the fact that on the concep
tion of unit of a variety rests that of unit of a kind, on

which in turn rests the conception of modulus, on the

latter resting the conceptions of numerical equality and

numerical excess, these being absolutely essential to any
consideration of limits where quantities of more than one

kind are concerned. In view of this fact, it would be

strange did the designation of a quantity as a unit of its

variety depend entirely upon notational consideration;

and indeed, in all the algebras coming within the field

of the theory of limits, there are other considerations by
which the mathematician finds himself more or less

restricted wrhen he comes to assign to a value the expres
sion which makes it designable as the unit of its variety.

Though there is an arbitrary element in the selection

of values to serve as denominate units, there are, never

theless, certain prerequisites which, in the algebras we
refer to, must be taken into account in fixing the denomi

nate unit values; while with the abstract quantities there

is no arbitrary element at all in the selection of the units

for these algebras. It is not the case that any positive

protomonic abstract value whatsoever may, at the option
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of the mathematician, be represented by &quot;1&quot; or &quot;+1&quot;;

it is essential that there be taken to be so represented the

value of the number attribute of a group composed of a

single object. Again, in these disciplines, with the nega
tive protomonic abstract variety and the neomonic

abstract varieties, not any value of the variety concerned

is acceptable as the unit value; it is requisite that a quan

tity of the value taken as unit should, when multiplied

into itself a sufficient number of times give a product of

value +1; and with each variety there is thus only one

value eligible as unit. And evidently, the values of the

units of the primitive varieties once fixed, there is, in

Double Algebra and Quaternions, left no opening for

choice in the values to be taken as units of the complex
varieties. Likewise, we apprehend, in any algebra with

which the theory of limits in the present form is concerned,

the abstract quantities apt to be made units by the

assignment of certain expressions to them, must fulfill

just such conditions as those that rule in Double Algebra
and Quarternions.

1 But there are, it should be noted,

1 Were all the algebras of such character it might be worth while

to so formulate a definition of unit of an abstract variety as to leave

symbolism entirely out of consideration. A definition of this descrip

tion that at first sight seems irreproachable, might be formulated

by saying that in order for an abstract quantity to be a unit of its

variety, whether this variety be primitive or complex, the fulfill

ment of one or the other of two conditions is necessary and suffi

cient; these conditions being: First, the quantity multiplied into

itself a sufficient number of times gives a product of value +1; or,

if this condition is not satisfied, Second, that a being the quantity,

we can with the multiplicative sequence aaaa . . . .
, by proceeding

to take a sufficient number of factors, reach a stage where the product
is as near +1 as we wish. But this really has the vice of circulus

in definiendo. For when we say &quot;as near +1 as we wish,&quot; we assert

that after predesignating any abstract non-zero, we can reach a

stage where the product differs from +1 by less numerically than
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branches of Algebraic Mathematics in which the case is

quite otherwise in which, for example, the square (and

hence every higher power) of a neomonic abstract unit

may be a zero.

Next turn to the units of the denominate varieties of

Double Algebra, Quaternions and other cognate algebras.

Here it is that the arbitrary element appears, though it

is restricted by the following law: The unit values of

denominate varieties of such an algebra must be so chosen

that the ratio of a unit of one variety to a unit of another

variety of the same denominate sort shall always be a unit

this non-zero. And if the difference between +1 and the product
at any stage is of a variety whose units do not come under the first

head, or if we have predesignated an abstract non-zero of a variety

whose units do not come under this first head, then we are not as

yet in a position to speak intelligibly of numerical equality or

numerical excess between the two. We might amend the second

stipulation by requiring that we can reach a stage where the differ

ence between +1 and the product is of a variety whose units come
under the first head, and is less numerically than any predesignated

abstract non-zero of such a variety; here numerical excess may
legitimately be spoken of. But some of the abstract quantities it

is desirable to call units of their varieties might conceivably come
under neither head, though with them (or with part of them) we

might always be able to attain a product whose difference from +1
is of a variety whose units come under the second head, and is less

numerically than any predesignated non-zero whose units come
under either the first or the second head. In this event there would

be a third head a third alternative condition, the satisfaction of

which was sufficient to give an abstract quantity the status of unit of

its variety. On these lines one might proceed to formulate a fourth,

fifth, etc., alternative condition, and it is conceivable that to insure

each abstract variety without exception having its units, we might
be compelled to leave open not merely four or five or n alternative

conditions, but to never bring the set of alternative conditions to a

close it might be that no matter how many alternative conditions

we laid down on the above lines there were always left varieties

whose units fulfilled only a condition of a still higher order.
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of an abstract variety. Under this restriction, with that

variety of a denominate sort to which value expressions

are first assigned, it lies wholly within the power of the

mathematician to choose whatever non-zero value he

wishes as unit value. But with all other varieties of the

sort there is no choice open; the value to be taken as

unit value is fixed by the law expressed by the words in

italics.

The ratio of a quantity to a unit of its sort (any such

unit being arbitrarily selected from the unit value class

to fill the role of consequent) may be termed the quan

tuplicity of that quantity. An abstract quantity can

always be taken as its own quantuplicity. The ratio of

a quantity to a unit of its variety is termed the modulus;

and the square of the modulus is termed the norm. A
modulus is always a positive protomonic abstract quan

tity. If the value of a quantity in Double Algebra is rep

resented by A-\-B\/l or (A-\-B\/ 1) Den. (suffixing

the denomination in the case of a denominate quantity)

then in either case A+B\/ 1 represents the value of

its quantuplicity, A 2
-\-B

2
represents the value of its

norm, and -\-\/A
2
-\-B

2
represents the value of its

modulus; while with the value expression A or A Den.

or B\/l or B\/ 1 Den. for the original quantity,

the quantuplicity, norm and modulus have as value

expressions respectively A or B\/l, A2 or B2 and

+ \/yl
2 or -\-\fW2 . In Quaternions, with the value of

the original quantity represented by W-\-Xi-\- Yj-\-Zk

or by (W+Xi+ Yj+Zk) Den., the values of the

quantuplicity, norm and modulus are respectively

represented by W+Xi+Yj+Zk, W2+X2+Y2+Z2 and

+VW2
-\-X

2
-\-Y

2
-\-Z

2
,
and the case is quite analogous

when the original value expression reduces to a tri

nomial or to a binomial or to a monomial, or to one of
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these with a denomination suffixed. Usually this sym
bolic representation is taken as the basis of the definitions

of norm and modulus, and the definitions we adopt in

preference are of course innovations. Nor can we claim

that any authority sanctions our definition of quantupli-

city; a word that has not hitherto been used with any

great precision. The name modulus, we need hardly say,

is due to Argand. De Morgan makes use of the phrase
&quot;modulus of multiplication.&quot; Taking &quot;function&quot; in

an improper sense, in which the result of an operation

upon a quantity is called a function of that quantity, De

Morgan designates, as the modulus of multiplication,

that function &quot;which in the product has the same value

as the product of the functions of the factors.&quot;
1 While

this modulus of multiplication has for formula in Double

Algebra +VA2+B* and in Quaternions +\ W*+X*-
+ F2+Z2

,
it is not always of a formula perfectly analo

gous to these in certain triple algebras developed by
De Morgan. In one case, for example, where the general

value expression for an abstract quantity is A^+Brj+CC,
the modulus of multiplication is -\-\/Ai -\-(B C)

2 instead

of being
Sometimes the value of the modulus of a quantity is

termed the numerical value or absolute value (&quot;absoluter

Betrag&quot; with Weierstrass) of that quantity. Two quanti
ties of the same sort with equal moduli are said to be

numerically equal; such quantities may or may not be

equal. If with two quantities of the same sort, the

modulus of one is greater than the modulus of the other

the former is said to be numerically greater than the latter.

Between quantities of different sorts, it is not, we think,

advisable to ascribe relations of numerical equality or

1 Trans. Cambr, Phil. Soc., Vol. 8, p. 241.
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numerical excess at all. We have seen that value-classes

are formed by grouping together all quantities mutually

equal. Analogously numerical value-classes may be formed

on the basis of the relation of numerical equality, every
two quantities belonging to such a class being numerically

equal. And a numerical value might be regarded, not as

the value of a modulus, but as something not a value at

all, just as numerical equality is not a species of equality.

That is, to say a quantity possesses a certain numerical

value, means simply that it belongs to a certain numerical

value-class. The same symbol could perhaps be used

for a numerical value as for the corresponding positive

protomonic value. And one could then follow the usual

custom of saying that the numerical value of 2 and

+2\/ 1 and 2\/ 1&amp;gt; etc., is +2. However, we
ourselves are not enamored of the customary use of

&quot;numerical&quot; in &quot;numerical equality,&quot; &quot;numerical value&quot;

etc.
; though we do not see our way clear to avoid it, and

regard the use of &quot;absolute&quot; here as still worse.

With the abstract quantities the positive protomonic

variety is that which first comes under consideration.

Among the quantities which it comprises are the natural

numbers and natural fractions, which have already been

given attention, and besides these there are included not

only the natural zeroes and certain non-zeroes which may
be called the natural incommensurables (and of which we
shall have something to say in a later part of this work)
but also various positive protomonic abstract quantities

(zeroes and non-zeroes) which we shall designate as rela

tional by antithesis to the former which we have called

natural. It is not alone in the positive protomonic variety
that relational quantities enter. In fact all the other

abstract varieties owe their very existence to the accep
tance of relational quantities in Mathematics, there being
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no complex or neomonic or negative protomonic non-

zeroes among the natural abstract quantities, and all

abstract quantities being either natural or relational.

We ought to mention that some philosophers hold even

the natural numbers to be relations, contending that the

number attribute of a group of three oranges, for example,
is a relation between this group and a single orange. It

is argued that there is an essential difference between

number and such an attribute as color; since the red

color that a body may happen to have is independent
of our volition, while the number of objects in a group
is dependent on it, in so far that if wre have before us

(for instance) three pamphlets, composed respectively of

twenty, thirty and fifty sheets of paper, there are in this

group three obiects if we choose to count pamphlets, but

a hundred if we choose to count sheets. That a distinc

tion ought to be drawn between qualities and quantities,

no one will deny. But this is a very different thing from

saying all quantities should be classed as relations. We
are inclined to demur at the assumption that the group
of three pamphlets is the same as the group of a hundred

objects obtained on considering their sheets; but of course

this is largely a question of how it is most convenient to

use &quot;same&quot; in reference to groups. To us it would seem

most convenient to so use the word that the &quot;same

group&quot; shall always have the same number attribute.

In fixing upon the value of the number attribute of a

group, one must of course have in view some standard by
which the component objects are to be individualized

by which we may decide whether something at hand is

to be counted as having a number attribute of unity,

or whether several objects are to be discriminated in it,

or whether it is to be ignored altogether (as are the wire

fastenings of the pamphlets in a group composed of their
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sheets). But for our part we cannot see that this fact

makes the number attribute of the group be a relation.

On not entirely dissimilar grounds it might be contended

that a color is a relation. For on any attempt at precise

discrimination of colors, some standard must be taken

for each color, and an object termed &quot;red&quot; or not &quot;red&quot;

according as it does or does not accord in color with the

standard red object. And it might be argued that the

redness of an object was a relation between this object

and the standard, depending entirely upon one s own
volition upon the choice made of a standard. It may
also be mentioned, as having some bearing on the question

of whether natural numbers are relations, that in com

paring the number attributes of groups as to equality or

excess, we do not compare the relations of the groups to

a single object. The objects of the one group are put in

correspondence with the objects of the other group, either

mentally or otherwise, and it is noted whether the objects
of the two groups are exhausted simultaneously or whether

one group is exhausted before the other. It is by making
such a comparison that number attributes are classified

into value-classes. Certain groups are taken as standards,

and a group whose objects are exhausted simultaneously
with those of one of these standard groups has its number
attribute put in the same value-class as that to which

belongs the number attribute of the standard. As the

standards for the value 2, are taken all groups owing their

formation to the joining of one object to another object;

as that for value 3, all owing their formation to the joining

of one object to a group of two objects; as that for value

4, all owing their formation to the joining of one object
to a group of three objects, etc. And thus the value-class

4 does not contain only all quantities which are sums of

3+ 1, but also all which, though not having come into
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existence by such an addition, are equal to a 3+1. So

that the process of ascribing a value to a number attribute

can hardly be said to involve the consideration of the

relation of this group to a single object.

Of the natural zeroes we shall need to say but little

here. The name of such a quantity serves to express the

want or absence of a number attribute. When there are

no objects at all at hand, we can express this fact by
saying that there are zero objects or that the number of

objects is zero. But such cases are not the only ones

in which wre may speak of a natural zero. If we are count

ing objects of any particular type, a group composed of

objects of another type not taken into consideration must

be deemed to have a number attribute of zero. And in

any computation there may be many distinct groups

having no number attribute, so that there are many
different natural zeroes. We may speak of adding a

natural zero to a natural number, not only in the sense

of doing nothing to the group of which the natural num
ber is an attribute, but also in reference to joining to

this group another group whose number attribute is

zero.

Of the relational abstract quantities none stand forth

more prominently than those brought into Mathematics

by Sir William Rowan Hamilton, and called by him

quaternions. We say that these quantities are prominent
in Mathematics, but we must add that a clear recognition

of their true nature is, in the conventional treatment of

the subject even in the treatment given by Hamilton

himself conspicuous by its absence. And hence it is

by no means superfluous for us to insist upon the fact

that a quaternion is nothing more or less than an abstract

quantity,^ Of course not all abstract quantities are

quaternions; and indeed of a single value there may be
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abstract quantities which are not quaternions and others

which are, as we shall soon show.

Quaternions are closely connected with, and in fact

depend for their existence on, certain applicate quantities

known as vectors. Hamilton lays down that &quot;A right line

A B, considered as having not only length, but also direc

tion, is said to be a Vector.&quot;
1 Whether he regarded this

statement as furnishing an adequate definition of &quot;vector&quot;

is not clear. His successors usually content themselves

with a bare repetition of it.
2 As a definition, however,

it is obviously inadequate, since a linear velocity at a

point? is a vector, and of course a velocity is not a line.

Further, not all straight lines possess the attributes

requisite to vectors. With regard to their mode of genera

tion, straight lines may be classed into those which have

been described, and those which have not been described;

and only a straight line of the first class possesses an

attribute of direction of that type which is of utility

1 Elements of Quaternions, London, 1868, p. 1.

2 Thus Prof. C. J. Joly, the highest authority on Quaternions
at the present day, does no more in his Manual of Quaternions

(London, 1905) than to repeat textually on his first page this state

ment of Hamilton s.

3 The adjective &quot;linear&quot; is employed to distinguish the velocities

here spoken of, from angular velocities; and the phrase &quot;at a point&quot;

to distinguish one species of linear velocities from two others. The
other two species are linear velocity from one point to another, of value

obtained by performing an operation usually called &quot;dividing the

space travelled by the time,&quot; and average linear velocity from one

point to another, of value obtained by finding the average of the mag
nitudes of all the velocities at the various points of the path

&quot;average&quot; here referring, not to a result obtained by dividing a sum

by the number of summands entering in it, but to a result obtained

by integration. These last two species of velocity are usually not

distinguished. They can hardly be said to possess direction, or

currency as we will call it.
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in Quaternions. With a straight line which has been

described, each point further from the initial point has

come into existence later than every point nearer the

initial point. We can distinguish between two types of

direction, which may be called respectively geometrical

direction and trigonometrical direction. These cannot be

more readily pointed out than by stating when two straight

lines have like and when unlike directions. Two straight

lines have like geometrical directions when they are

either parallel or coaligned, and have unlike geometrical
directions when they are neither parallel nor coaligned.

Two straight lines have like trigonometrical directions

when they satisfy a set of three requirements: first,

they have been described; second, they are parallel or

coaligned; third, they are not of contrary description.

Two straight lines have unlike trigonometrical directions

when they satisfy a set of two requirements: first, they
have been described; and second, they are not parallel

or coaligned; or when they satisfy a set of three require

ments: first, they have been described; second, they are

parallel or coaligned; third, they are of contrary descrip

tion. We may speak of trigonometrical direction as

currency; and say that two described straight lines, or

in general two vectors, are concurrent if they are alike

as to trigonometrical direction. The names &quot;currency&quot;

and &quot;concurrent&quot; are due to Clifford. Some authors

employ the term &quot;sense&quot; instead of currency, but this

practice has no merits which justify it. &quot;Current&quot; and

&quot;currency&quot; naturally suggest a running or flowing, but

no such associations are called forth by the word
&quot;sense,&quot;

which is used chiefly to refer to the meaning of a word,

the mentality of a person, or the process of sensation.

Two vectors parallel or coaligned, but not concurrent, are

said to be contrary. With currencies distinctly delineated,



Currencies and Magnitudes 49

we will turn to the other class of attributes, one of which,

united with a currency, constitutes every vector not of

value zero. These attributes are usually termed the

magnitudes of the vectors. The magnitude of a line

vector is simply its length; the magnitude of a force

vector is its intensity, etc., etc. Wherever a currency and

a magnitude subsist together, there a vector exists. For

two vectors of the same sort to be of the same kind, it

is necessary and sufficient that they should be parallel

or coaligned. In order that they be of the same variety,

it is necessary and sufficient for them to be concurrent.

For two vectors of the same sort to be equal, it is necessary

and sufficient that they be concurrent and of equal magni
tude. The magnitudes of the vectors of each sort are

themselves quantities, and together constitute a sort

(which is a denominate though not a vector sort) con

taining only one kind and only one variety.

To recognize that a currency and a magnitude together

constitute every non-zero vector does not appear to be

sufficient to avoid confusion. Even so high an authority

as Hamilton states that a right line is a vector; a view

which is quite untenable. 1 The vector of a straight line,

1
Occasionally an author gives a definition less open to reproach.

Thus in Vector Analysis, founded upon the lectures of J. Willard

Gibbs, by Edwin Bidwell Wilson, New York, 1902, p. 1, we find:

&quot;A vector is a quantity which is considered as possessing direction

as well as magnitude.&quot; The typical vector, Gibbs tells us, &quot;is the

displacement of translation in space. Consider first a point P.

Let P be displaced in a straight line and take a new position P .

This change of position is represented by the line PP . The magni
tude of the displacement is the length of PP

;
the direction of it is

the direction of the line PP from P to P .&quot; Translatory motion is

not a species of motion of a point. It is a species of motion of a body.

It occurs whenever all points of a body travel along paths exactly
alike and along parts of these paths exactly alike during the same

4
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which is composed of two attributes of the line, is as

different from the line itself as the color of a red body
is different from that body. Suppose that a straight line

has been described from a point A to a point B, the length

of the line being 150 cm. This line possesses the attributes

of a vector, but it is not itself the vector. For let the line

be turned about the point A to a new position without

undergoing any change in length. It would still be

regarded, and justly so, as the same line moved into a

new position. But the vector of the line has changed
the line in the new position has a new vector which is not even

equal to the vector of the line, in its old position. The magni
tude of the vector of a line is, as we have already said,

nothing more or less than the length of the line, and is

expressed in centimeters, meters, etc. According to the

requirements laid down by the founders of Vector Analysis,

for two non-zero vectors to be equal, they must not only

be equal in magnitude, but must also be concurrent.

The vectors of the line AB in its two positions do not

meet both these requirements. The two vectors are not

times. A sub-species of translatory motion is rectilinear transla-

tory motion in which all points of a body move along straight lines

of equal length. To this Gibbs refers when he speaks of &quot;displace

ment of translation in space,&quot; the practice of referring to the sub

species by the name properly belonging to the species as a whole

being as common as it is unjustified. We can, in any case of trans

latory motion, select one point of a body and employ its motion as

descriptive of the motion of the body. Further, we can speak of

the length of the line described by such a point as the magnitude
of the displacement, and in the case of rectilinear translatory motion,
and in this case only, we can speak of the direction of the line as the

direction of the displacement. That the magnitude and displace

ment of a rectilinear translatory motion must be founded upon the

length and direction of a straight line which has been described,

appears to us conclusive against the statement: &quot;The typical

vector is the displacement of [rectilinear] translation in space.&quot;
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concurrent. Moreover, if we construe &quot;equality in mag
nitude,&quot; in the proper sense of equality which excludes

identity a distinction which was perhaps never plainly

before the founders of Vector Analysis then the two

vectors are not equal in magnitude; the magnitude of

the one vector is the same as the magnitude of the other

vector. That the vectors of the line AB in its two posi

tions have the same magnitude not equal magnitudes
is an excellent example of identity, something so frequently

improperly conceived, as to be in its misconception one

of the most striking characteristics of the erroneous philo

sophical theories of Mathematics.

We have seen that every non-zero vector consists of

two attributes: a currency and a magnitude. How is it

with zero vectors or null vectors as they are sometimes

called? With that class of vectors, a sort, whose non-

zeroes are vectors of described straight lines, it is not

unnatural to turn to points to see whether these cannot

be said to possess vectors of zero value belonging to the

same sort as vectors of lines. A little reflection suffices

to show that such is indeed the case. Points can fulfill

all the requirements which need be demanded of them for

this purpose. The conventions can be laid down that

all points have equal vectors, and that every vector of

a point is greater than every negative vector of a line,

but less than every positive vector of a line. These stipu

lations are not sufficient to enable us to ascribe to points
vectors of the same sort as vectors of lines. There must
also be laid down conventions for the addition of vectors

of points to vectors of points, and for the addition to one

another of vectors of points and vectors of lines. To add

the vector of a point B to that of another point A would

be to move B so as to bring it into coincidence with A,

thereby forming a vector a zero vector of the same
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value as the operands. To add a vector of a point B to

a vector of a line AC would be to move the point B
so as to bring it into coincidence with the final point C
of the line AC, thereby forming a vector of a line of the

same value as the augend, the vector of the line AC.
And finally to add the vector of a line AC to the vector

of a point B would be to move the line AC, without

altering the currency of its vector, so as to bring its

initial point A into coincidence with the point B, thereby

forming a vector of a line of the same value as the addend,
the vector of the line AC. When these conventions have

been adopted, it is perfectly proper to regard points as

possessing attributes of magnitude. But it must be

acknowledged that a point cannot possess an attribute

of currency. Indeed, with all zero vectors whatsoever,

attributes of currency are lacking.

We are now prepared to give an exposition of what we

regard as the true doctrine of those remarkable objects

of mathematical inquiry known as quaternions. Suppose
there are two vectors a and b of lines running toward

the East1 of respective lengths 7 cm. and 21 cm. We may
ascribe to this pair of vectors a relation in fact two

relations: that of b to a, and its inverse,
2 the relation of

1 We use North, South, East, West, etc., in reference to horizontal

currencies in a plane, supposed to be tangent to the spheroidal surface

of the earth at a certain point, or in other planes parallel to this.

2 As to the inverse relations, the question might be raised whether

a relation and its inverse are really two relations whether they are

not merely different aspects of the same relation. It might be said,

for instance, that paternity and filiation are not two relations but

one and the same relation. But after all, since no one would contend

that to be a father is the same thing as being a son, the question is

largely one of how far it is most convenient to use the word &quot;rela

tion;&quot; and it seems by far better to grant the claim of inverse rela

tions to this title. For it is quite clear that there are certain impor-
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a to b, classing these relations with abstract quantities,

and assigning them the values 3 and f respectively. If

instead of 6 we have c, a vector likewise of magnitude
21 cm. but Westward instead of Eastward, the relation

of c to a may be taken as a negative abstract quantity

of value 3, and the inverse relation of a to c as another

negative abstract quantity of value |. Such abstract

quantities as the four just described are quaternions in

the broad (and most proper) sense of the word, though
sometimes &quot;quaternion&quot; is used in a narrower sense as

excluding the simplest cases those of abstract quantities

arising as relations of concurrent or contrary vectors. But

at all events it is this point of view, of ascribing abstract

quantities as relations between vectors, which characterizes

Quaternions and certain other systems of vector analysis.

It is taken broadly, and to every pair of non-zero vectors

of the same sort is ascribed a relation and its inverse,

which are classed as abstract quantities and in the disci

pline founded by Hamilton called quaternions. It is to

this alone that is due the entrance into Mathematics

of all abstract quantities save those which are positive

as well as real. 1 Some of these relations between vectors

tant facts which, on making the distinction between such a relation

as paternity and its inverse, can be well expressed by the use of the

term &quot;relation,&quot; and for the expression of which we must have

recourse to some word other than &quot;relation&quot; if this distinction be

not drawn.
1 While it is quite clear that all complex or imaginary abstract

non-zeroes and all negative real abstract non-zeroes appear in Mathe
matics as relations between applicate quantities, and in no other

way, we must concede that the applicate quantities concerned need

not in strictness be vectors. With any applicate kind containing
two varieties, the relation of a non-zero of either variety to a non
zero of the other might be regarded as a negative real abstract

quantity. And likewise with any applicate sort containing at least
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are termed
&quot;real,&quot; others &quot;complex&quot; and still others

&quot;imaginary;&quot; but all have an equal claim to be regarded
as really existent.

In the Elements, Hamilton describes a quaternion as

the quotient of one vector by another vector. 1 If we
had deemed it proper to define a quaternion by means of

an operation, we would have chosen ratification as we
have expounded it not division. For this was unques

tionably the operation which Hamilton had in mind in

speaking of
&quot;quotient&quot; of one vector by another. We

have not, however, been able to take this view, and have

defined a quaternion as a relation. To some the use of

the term &quot;relation&quot; may appear to be captious pedantry.
It would be so; indeed it would be merely the idle substi

tution of one word for another, did we regard a ratio or

a quotient as a relation; but we do not. The idea of a

relation is entirely unessential to the idea of a ratio or

to the idea of a quotient. Further, though it is true that

each relational quantity may on occasions be a ratio or

a quotient that is, may be arbitrarily selected from among
the quantities of a value-class to fill the role of result

of a particular operation of ratification or division

it need not necessarily be so; a relational quantity may
exist for millions and millions of years and yet never be

chosen for such a role. And with the ratification of one

vector in respect to another, it is not even invariably

the case that the abstract quantity chosen as ratio need

two kinds of two varieties each, the relation of a non-zero of either

kind to a non-zero of the other might be accepted as an imaginary
abstract quantity. With applicate quantities other than vectors,

however, the possibility of such a procedure is of purely speculative

interest; utility it has none; and accordingly it has never yet been

carried into mathematical practice.
1 Elements of Quaternions, Book II, Chap. 1.
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be a relational quantity. Thus consider the two concur

rent vectors a and b specified above. Can we not find

a ratio of b to a without resorting to quaternions or any
other relational quantities? Most certainly we can; a

natural number of value three will answer all the require

ments exacted of the ratio. That is, if a be multiplied

by a natural three, a process which consists in adding to

a (viz., to a vector of a line Eastward in currency and 7

cm. in magnitude) another line vector equal to the former

(in other words, also of Eastward currency and of 7 cm.

magnitude) and to their sum a third line equal to each of

the other two, then there is obtained a vector equal to

or identical with 6.
1 This much being admitted, we may

ask whether any particular natural quantity of the value

three ought to be taken as the result of the operation

of finding the ratio of b to a. It might be thought that

we ought to take that particular three which is the number
attribute of the group of three vectors joined together.

A moment s reflection, however, shows that the joining

is a mere potentiality. That is, we can say the ratio is a

three even though a joining of three vectors is never actu

ally carried out. And, moreover, if it be in fact performed,
there is obviously great room for choice in the selection

of the second and third vector from among the many
line vectors with Eastward currency and 7 cm. magnitude.

1 Notice that the operation of multiplying a by a relational three

need not involve addition at all. It consists merely in finding a vector

whose relation to a is equal to (or identical with) the multiplier. To
find such a vector we may, if we choose, form a new vector by joining

together three vectors already at hand. But, though this can always
be done, it is not a necessary part of the multiplication process. We
need not form a new vector in multiplication by a relational abstract

quantity if we can find already in existence a vector which satisfies

the conditions required of the product.
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Each selection gives a different group, and hence a different

number attribute; but a mathematician is not bound to

make such a selection and call the three belonging to it the

ratio of b to a, any more than he is bound to select the rela

tion of b to a as the ratio. In fact any relational quantity
of value three or the number attribute of any group what
soever containing three objects may be chosen as the

ratio of the vector b to the vector a. We hold that a ratio,

and likewise a quotient (and in general a result of any
inverse operation) is a quantity arbitrarily selected from

among the quantities of a value-class, entirely without

regard to the operands of the operation, these having an

influence only upon the value-class permissible.
1 And

when a and b are non-zero vectors, the relation of b to a,

or any equal relation between two other vectors may be

chosen, or finally, when natural quantities equal to the

relation of b to a are available, any one of these may be

made the ratio.

It now behooves us to ask whether the ratio of one vector

to another vector can be obtained when the vectors are

non-concurrent without resorting to relational quantities.

If it be acknowledged that there are entities other than

relations which can serve as negative real abstract non-

zeroes and as imaginary and complex abstract non-zeroes,

then this question can be answered in the affirmative. In

the Elements of Quaternions, Hamilton accepted without

examination the existence of negative real abstract quan-

1
Except that with some operations, a particular quantity or several

particular quantities of the value-class may be barred when a cer

tain set of operands are in question. Thus in subtraction, if 6 is a

four and a a two, for choice of the remainder b-a there is not open
the whole value-class two, since we cannot accept a itself as remainder.

To call a the remainder of b-a would imply that a could be added to

itself; and no quantity can be added to itself.
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titles (&quot;negative real numbers&quot;) as established entirely

apart from any consideration of vectors or other applicate

quantities. Thus if two line vectors were contrary, then a

negative real abstract quantity, the existence of which was

admitted by Hamilton entirely apart from consideration

of vectors, was taken as their ratio. But with the imaginary
and complex abstract quantities of Quaternions, he was

not content to assume a preestablished existence. Thus
if two line vectors were neither concurrent nor contrary,

an imaginary or complex quantity, the existence of which

was based by Hamilton entirely upon the consideration

of vectors, was taken as their ratio. These imaginary
and complex quantities he regarded as totally different

from the imaginary and complex quantities of ordinary

Algebra, while he held that Quaternions and the older

branch of Mathematics had in common the same set of

real abstract quantities, positive and negative. He brought

together and included under the title &quot;quaternions,&quot;

when using that name in its broadest sense; first, those

imaginary and complex abstract quantities the existence

of which he regarded as established entirely by considera

tion of vectors; second, such positive real abstract quan
tities and negative real abstract quantities of ordinary

Algebra as were taken for ratios of vectors, though the

existence of these real abstract quantities, called by
Hamilton scalars, was regarded by him as established with

out any consideration of vectors at all. To us it appears
far more proper to include among quaternions only those

quantities which are relations between vectors. Thus
we could not regard as a quaternion, the number attribute

of a group of three objects, even if it were chosen as the

ratio of a vector of 21 cm. magnitude to a concurrent

vector of 7 cm. magnitude. And neither in ordinary

Algebra nor in any other branch of Mathematics, are
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there, we hold, any entities other than relations, which

can be properly designated as negative real abstract

non-zeroes or as imaginary or complex abstract non-

zeroes, all such quantities arising only as relations between

applicate quantities.

In delineating the character of a quaternion, we have

said that it is a relation between two vectors of the same

sort. That the vectors giving rise to a quaternion must
be of the same sort is never stipulated, though it must

surely be acknowledged that neither Hamilton himself

nor any other mathematician has ever conferred a standing
as mathematical quantities upon such relations as that of

a line vector to a linear velocity; that of a linear velocity

to an acceleration; etc. In treating of that quaternion
which is a relation of the vector b to the vector a, we shall

speak of b as the relate, and of a as the correlate of the

quaternion, which we shall represent by (b, a). When both

relate and correlate vectors are non-zeroes and are parallel

or coaligned (i. e., are of the same kind), the quaternion

(b, a) is a real abstract non-zero, and is positive or negative

according as a and b are concurrent (are of the same

variety) or contrary (are of different varieties). A qua
ternion whose relate is a zero, and whose correlate is a non

zero, is a null quaternion; that is to say, the value abstract

zero is assigned to it. (As antonym to null Hamilton

uses actual.) With the case in which both relate and corre

late are zeroes, no decision has been reached by mathe

maticians as to the value to be ascribed the quaternion;

in fact the question does not even seem to have presented

itself to mathematicians in just this way. We shall not

ourselves attempt a decision, but would remark that the

case is widely different from that of the ratio of a zero to

a zero; a matter which we will take up later on. There

cannot well be ascribed more than one value to the rela-
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tion of one vector to another, whether these be zeroes or

not. But the operation of ratiofication can and, we hold,

should in such cases have more than one result; namely a

result of every value-class that contains quantities capable
of satisfying the conditions required of a ratio. And as

any abstract quantity whatsoever will satisfy the condi

tions exacted of a ratio of a zero to another zero of the same

sort, there will be innumerable ratios in such a case, each

abstract value being represented.

It has been previously pointed out that we may say a

natural zero exists where there is an absence of number

attribute. It has also been shown how points may be

regarded as possessing vectors of zero value belonging to

the same applicate sort as line vectors, and analogously
with other denominate sorts, certain entities may play the

role of zeroes. And finally we have shown that such a

relation as that of the vector of a point to the vector of a

line is a zero quaternion. A view of the nature of mathe
matical zeroes quite different from the one we take a

view we do not hesitate to characterize as most extra

ordinary has been put forth by an author of some

celebrity G. Frege. In Die Grundlagen der Arithmetic1

he says: &quot;Since under the concept unequal to itself

nothing [nichts] falls, I declare: is the number which

belongs to unequal to itself.&quot; This view evidently rests

upon two misapprehensions: First, that zero is simply

nothing; Second, that every entity is equal to itself. The
doctrine of Frege is that there is only one zero, this

being nothing, and that the most suitable way of defining

&quot;nothing&quot;
is by means of the &quot;concept&quot;

of unequal to itself.

Surely the relation of a vector of a point to a vector of

a line is very far from being nothing. And there are many

1
Breslau, 1884, p. 87.
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other zeroes which are not non-entities. If we turn to

concrete quantities, we see that since on counting oranges,

men are not taken into account, a man (a zero so far as

oranges are concerned) is, according to Frege s doctrine,

a mere nothing whose distinguishing characteristic is that

he is unequal to himself! As to the second misappre

hension, it is a part of that error to which we have to

recur again and again in criticising the doctrines of cur

rent mathematical works the confusion between equality

(and other cases of perfect similarity) and identity; one

of the most pernicious errors into which a mathematician

can fall. And here we have an example of its consequences
in leading so pitiably astray the thoughts of a man who

aspires to be a philosopher. Many are the pitfalls which

could be avoided if authors would only remember these

maxims: No entity is equal to itself. Every entity is

identical with itself, and may be perfectly similar to other

entities in various respects. No writer is worthy of being
taken as a guide in the Philosophy of Mathematics if

he disregards them, and endeavors to rear a system involv

ing a disregard of the fact that every sort contains many
zeroes, each of which is equal to every other zero of this

sort, and a repudiation of the truism that every quantity,

non-zero as well as zero, though identical with is unequal
to itself.

Of the services rendered by Hamilton to mathematical

science, one of the most important has not been recognized

by mathematicians. With the admission of the relations

between vectors of the same sort to membership among
the quantities of Mathematics, there is furnished ample

argument to banish forever, to the limbo of doctrines

outworn, the tenet so widely taught by mathematicians,

even at the present day, that negative, imaginary and
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complex
&quot;

numbers&quot; are mere symbols.
1 That this doctrine

now enjoys, more than half a century after the publication

of Hamilton s immortal work, the support of mathemati

cians of the highest eminence even men of no less author

ity than those brilliant mathematicians who contributed

to the most authoritative mathematical work of modern

times, the Encyklopaedie der mathematischen Wissenschaften

is owing in part to the attitude of Hamilton himself.

His declarations on the nature of those quantities he

called &quot;quaternions&quot; were not sufficiently consistent and

unequivocal to prevent there arising on this subject an

obscurity which still prevails. Though himself a man
imbued with the true scientific spirit, he was not always
able to resist the solicitations of his disciples, men rather

of the artisan than of the scientific type, who cared much
for the results attained by Quaternions but little for its

principles, and who were continually urging Hamilton to

abandon his work on the foundations of the science, and

devote himself to extending its applications. His best

work they disapproved of; and thus Tait, having the self-

assurance to class as of the same caliber as himself all the

students of Hamilton s works, tells us that Hamilton

1 In teaching this doctrine mathematicians are not merely ex

pounding the historical beginning of the use of such symbols as

1, +\/ 1, etc. They are enunciating the proposition that in

the present state of development of Mathematics, we are under the

necessity of regarding all inquiries concerning negative, imaginary
and complex &quot;numbers&quot; as dealing solely with symbols representing

no objects whatsoever. The view which we maintain throughout
this work is that relations between vectors of the same sort fulfill

all the requirements which can be exacted of them to deserve the

title of complex, or of imaginary, of or negative real abstract quan
tities as the case may be. If this can be proven, it follows that it

is wholly unjustifiable to lower the dignity of mathematical theory

by treating these quantities as symbols, and making Mathematics

a mere doctrine of symbolism.
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&quot;fatigued and often irritated his readers by constant

excursions into metaphysics.&quot; Tait even calls the abstract

imaginaries, i, j and k, of Hamilton &quot;mere excrescences

and blots on his improved method,&quot;
1 and states that

Hamilton had himself recognized this. That Hamilton

might have taken this view in a moment of aberration,

we cannot deny; as we have said, he was not always con

sistent, and often falls into the error of accepting vectors

as multipliers. He has, however, the undeniable merit of

being the only founder of an important system of Vector

Analysis who made any attempt at all to distinguish

between those quantities which can be properly used as

multipliers in his system, the abstract quantities called

quaternions and vectors, which are quantitives of an

entirely different type, and ought only enter operations

of multiplication as multiplicands. As has been well

said, Grassmann and Hamilton s other rivals never even

attained the conception of a quaternion. Indeed, a recent

writer, E. Study, in the Encyklopaedie actually reproaches

Hamilton for making with multiplication, the distinction

between multiplier and multiplicand; a distinction which

this author says &quot;influences the clearness of the exposi

tion&quot; and &quot;is not necessary for the application&quot; of the

theory of &quot;complex quantities&quot;
2 a subject which Study

treats from a purely symbolic standpoint. Such remarks

would be impossible were mathematicians awake to the fact

that Hamilton s achievement in conceiving the abstract

i s, j s and & s was not the mere introduction of a new set

of symbols, and that it is a matter which concerns not

Vector Analysis alone but the whole of Algebraic Mathe-

1 On the Intrinsic Nature of the Quaternion Method, Proc. Roy.
Soc. Edin., Vol. 20, p. 276 et seq.

2
Op. cil., Theorie der gemeinen und hoeheren complexen Groessen,

Vol. 1 Part 1, p. 159 note.
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matics. When this becomes recognized, then that day,

October 16, 1843, when he cut on Brougham Bridge the

fundamental formula he had just discovered: i
2
=j* = k2 =

ijk=l, will be esteemed one of the most significant

dates in the history of mathematical science.

In his earlier articles Hamilton himself defined a qua
ternion as an expression: &quot;Let an expression of the form

Q = w-\-ix-{-jy-}-kz be called a quaternion.&quot;
1 He never

entirely abandoned this mode of speech, and like most

mathematicians, seems at times quite unaware that a clear

distinction ought always be drawn between names and

what they denote. To define a quaternion in this manner
is as futile as to define a man as a word of three letters

&quot;m,&quot; &quot;a,&quot;
&quot;n.&quot; It would be unjust, however, to accuse

Hamilton of not being aware of the insufficiency of this

definition; particularly in view of many of his statements

in the Elements of Quaternions. But we cannot absolve

him completely of falling into those modes of thought
and expression which have now become so predominant
as to warrant speaking of the present as the Symbolic
Period in Mathematics. In the Elements, Hamilton

first mentions quaternions by informing us &quot;that there is

an important sense in which we can conceive a scalar to

be added to a vector; and that the sum so obtained, or the

combination, Scalar plus vector, is a quaternion.&quot;
2 This

is plainly intended here merely as a comment upon one

aspect of quaternions, since the conception of a quaternion
is first unfolded by him through the operation of finding
the quotient of one vector by another vector, as Hamilton

calls the operation of ratiofication. But when he estab

lishes the proposition that the general expression for a

1 Phil. Mag., July, 1844, p. 10.

2
Op. tit., Book 1, Chap. 1, p. 11.
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quaternion is w+ix-\-jy+kz, we are told that &quot;in fact,

a quaternion may be symbolically defined to be a quadri-

nomial expression of the form, q= w-\-ix-}-jy-\-kz&quot;
1 It

is now perfectly clear that the proposition: &quot;Scalar plus

vector is a quaternion&quot; is nothing more than the symbolic
definition in disguise. It gives us no information con

cerning scalars themselves or vectors themselves; it gives

us only information concerning their symbols of value:

It informs us that if we put down the symbol of value of

a scalar, say the value symbol 2, and after it a plus sign,

and after these the value expression of a vector without

the denomination, say 3i+4j+5&, then we obtain the

value expression of a quaternion; namely, 2+3i+4j+5A-.
When these aspects of quaternions are contemplated

in conjunction with the statements made by prominent
writers concerning them, it needs no argument to defend

the assertion that obscurity now prevails concerning the

nature of quaternions. Some of the workers in the field

of Vector Analysis, and not the least renowned, regard

them with suspicion and distrust. Oliver Heaviside, for

instance, boasts that &quot;there is not a ghost of a quaternion
in any of my papers (except in one, for a special purpose),&quot;

and says: &quot;A quaternion was, I think, defined by an

American school-girl to be an ancient religious ceremony.
This was, however, a complete mistake A
quaternion is neither a scalar, nor a vector, but a sort of

combination of both. It has no physical representatives,

but is a highly abstract mathematical concept. It is the

operator which turns one vector into another. . . .

The laws of vector algebra themselves are established

through quaternions assisted by the imaginary -%/!
But I am not sure that any one has quite understood this

1
Op. tit., p. V.
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establishment. It is done in the second chapter of Tait s

treatise. I never understood it, but had to pass on.&quot;
1

And one even finds a strange oblivion as to the nature of

a quaternion with some of those authors who the most

strenuously uphold the Vector Analysis of Hamilton in

opposition to the rival systems in which quaternions play
no part. Thus Prof. C. G. Knott, in a controversial article:

Recent Innovations in Vector Theory, actually makes the

plaint that &quot;Of late years there has arisen a clique of

vector analysts who refuse to admit the quaternion to the

glorious company of vectors.&quot;
2 Can anyone conceive the

relation of one vector to another vector as being itself

a vector? As to formal definition of &quot;quaternion,&quot; there

has been no improvement since the time of Hamilton, and

the latter at his worst compares favorably with some of

the latest works. In the latest revision of the Encyklo-

paedie, for instance, we read: &quot;A quaternion may be

regarded as the complex (a , a) of an ordinary number
or scalar and of a vector a .... The quaternions

include as particular cases the real numbers a
,

if a is

null; and the vectors a, if is null.&quot;
3 In connection with

the definitions of this type may be mentioned the use of

degraded quaternion to designate quaternions of the four

primitive kinds (which of course have monomials as value

expressions) and sometimes apparently to designate these

in common with quaternions of such complex kinds as

have binomial or trinomial value expressions for their

non-zeroes. The application of this title to a relation

between vectors would seem to imply that the relation so

1
Electromagnetic Theory, London, 1903, Vol. 1, p. 135.

2 Proc. Roy. Soc. Edin., Vol. 18, p. 212.
3 French translation (Encyclopaedic des Sciences Mathematiques)

Nombres complexes, article by E. Study revised by E. Cartan,
Tome I, Vol. I, p. 404.

5
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designated was a quaternion only by courtesy. But no

such implication should be taken; for in reality all rela

tions between vectors of the same sort that appear in the

science of Quaternions have an equal right to be called

quaternions.

With quaternions, as with all other quantities, acces

sion to membership among that large company, the quan
tities of Mathematics, grows out of the laying down of

conventions, whereby any two quaternions can be com

pared and can be subjected to the operations of addition,

multiplication, etc. Hamilton laid down such conventions,

and then proceeded to bring to light the laws which hold

sway over these quantities, thereby building the science

of Quaternions for which his name is justly famous. We
shall here give an outline of the conditions under which

two quaternions are said to be equal, but first we shall

have to give, as a preliminary, some account of angles

and planes, of tensors and versors of quaternions.

When the two vectors of a quaternion are actual and

concurrent, the quaternion is said to have an angle of

0, while if they are actual but contrary, the quaternion
is said to have an angle of 180. The angle of a quaternion

in other cases of actual vectors, is the minor of the two

conjugate angles formed by them when they are coinitial;

while if they are not coinitial, the minor angle formed by
the correlate vector with a coinitial vector, taken as sub

stitute for the relate and equal to the latter, is regarded

as the angle of the quaternion.
1 The plane in which lies

the angle of the quaternion is termed the plane of the

quaternion, provided this angle is not or 180, and two

1 Mathematicians usually say: either vector and a substitute for

the other. But for the sake of clearness of thought, it would seem

well to specify that in all cases the correlate must be taken or in

all the relate. And we prefer to always take the correlate.
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quaternions having the same or parallel planes are said

to be complanar. When the angle is or 180, the

quaternion is real, and then, in so far as &quot;plane of the

quaternion&quot; and &quot;complanar&quot; are used at all, they are

given a non-natural significance, as is also the case with a

null quaternion, which properly speaking has no angle. In

any of these last three cases, the quaternion is apparently

regarded as complanar with every other quaternion (and
in general, with every abstract quantity) whatsoever;

entirely without regard to what is the plane of the latter,

or whether it has anything that can properly be called a

plane. It is usually stated that a quaternion can act as

multiplier on a vector when and only the latter lies in

the plane of the former. But, in fact, even with non-

protomonic quaternions, the multiplicand vector may lie

either in this plane or in any other plane parallel to it.

And with protomonic quaternions, if the multiplicand
be regarded as lying in the plane of the multiplier, then

every plane in space, no matter how it lies, must be

regarded as &quot;the&quot; plane of every protomonic quaternion.

Connected with every quaternion whose vectors are

actual and neither concurrent nor equal in magnitude, are

two other abstract quantities themselves quaternions
called the tensor and the versor of the quaternion. We

shall give an account of these, somewhat different from

the formal definitions laid down by Hamilton, since the

latter do not appear to us to bring forth with sufficient

clearness adequate conceptions of tensor and versor.

Suppose (b, a) is the quaternion, and let a be a vector

equal in magnitude to the correlate vector a, but concur

rent with the relate vector b (a being arbitrarily selected

from the value-class thus fixed); then the relation of b

to a will be a new quaternion (b, a ) which is called the

tensor of the quaternion (b, a). Take, for example, the
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quaternion of two line vectors, with magnitudes 20 cm.

and 10 cm. and with currencies Westward and North

eastward respectively. Here the tensor is the relation

of the Westward 20 cm. vector to a vector also West

ward but of 10 cm. magnitude; this tensor has the

value 2. Next let a&quot; be a vector which, while con

current with a, is equal in magnitude to b (and other

wise is arbitrarily selected). Then again we have a new

quaternion (b, a&quot;),
and this is called the versor of the

original quaternion (b, a). In the case of the two line

vectors above, the versor is the relation of the Westward
20 cm. vector to a Northeastward vector also 20 cm. in

magnitude. Tensors and versors are also ascribed to

quaternions whose vectors, while actual, are concurrent

or equal in magnitude; but here we must not speak of

two other quantities. For though when the vectors are

concurrent but not equal in magnitude, the above def

inition applies as to the versor, which is here of value 1,

the quaternion is then its own tensor. Analogously when
the vectors are equal in magnitude but not concurrent,

the usual definitions applies for the tensor, which is of

value 1, but the quaternion is its own versor. And when
the two vectors are concurrent as well as equal in magni

tude, the quaternion is at once its own tensor and its own
versor. When the relate of a quaternion is a null vector,

and the correlate actual, the tensor ought undoubtedly
have the value zero; and probably here again the quater
nion should be regarded as its own tensor. What value,

however, to assign the versor, which will be a relation

between two null vectors, and what tensors and versors

should be attributed to quaternions with neither vector

actual, remains a moot question. At all events we would

take the view that a quaternion has only one tensor and

only one versor which are always themselves quaternions.
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It can be proven that a quaternion is always equal to

(or identical with) the product of its tensor and its versor

taken in either order. On multiplying the correlate vector

of a quaternion by the tensor, there is obtained as product
a vector equal in magnitude to (or identical with) the

relate. Because of this the tensor of a quaternion is called

the stretching or shrinking factor, the operation of multi

plying the correlate vector by it being conceived, more or

less improperly, as stretching or shrinking this vector

until it becomes equal in magnitude to the relate. But

a tensor does not always stretch or shrink, even when the

correlate is a non-zero, since, as we have seen, it may be

of value 1, the correlate vector being then already equal

in magnitude to the relate. On multiplying the correlate

vector by the versor, there is obtained a vector concur

rent with the relate. On this account the versor is called

the turning factor of its quaternion. A versor, however,

does not always turn, even when both vectors are actual.

It does not turn when the relate and correlate vectors

are already concurrent, the versor then being of value 1.

A tensor is always a positive protomonic abstract quantity,

and is always equal to the modulus of its quaternion.
A versor may be protomonic, neomonic or complex, posi

tive or negative, but it is always a unit of its variety. If

the vectors of the quaternion are concurrent, the versor

is, as we have said, of value 1; if they are contrary, the

versor is of value 1. A quaternion with an angle of

90 is said to be a quadrantal or right quaternion. The
versor of such a quaternion is called a quadrantal or right

versor. A quaternion of two actual vectors of equal

magnitudes, and therefore with a tensor of value 1, is

called a radial quaternion. And naturally a quadrantal
radial or right radial quaternion is one of angle 90 with

two actual vectors of equal magnitudes.
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For two quaternions to be equal, there are, save in

certain exceptional cases, four conditions that must be

fulfilled, and this was one of the several facts taken by
Hamilton as justifying his adoption of the name &quot;

Quater
nions.&quot;

1 The exceptional cases are those of null quater
nions and those of protomonic actual quaternions in

other words, of actual quaternions whose angles are

or 180. As null quaternions are regarded as all equal

to each other and to all other abstract zeroes as well,

there is with them only one condition: that embodied

in the very fact of both quaternions being zeroes. With

protomonic actual quaternions, there are two conditions

requisite for equality: First, the tensors of the two qua
ternions must be equal; Second the angles must be equal,

being with both of or with both of 180. With all

other quaternions, that is, with all neomonic or complex
actual quaternions, there are, as we have said, four con

ditions. These are: First, that the tensors be equal;

Second, that the angles be equal; Third, that the two

quaternions be complanar; Fourth, it is requisite that

(b, a) and (& ,
a ) being the two quaternions, on looking

from above towrard the plane of the quaternion (6, a)

with the vertex of the angle of the quaternion toward

the observer, b must be to the right or to the left of a

(or its substitute) according as b lies to the right or to the

left of a (or its substitute) under an analogous view from

above. If the first three conditions are fulfilled, but not

the fourth, the quaternions are said to be conjugate to

each other. A quaternion whose angle is or 180 is

1 From our point of view, there would seem to be one necessary

and sufficient ground for the use of the name. And this is the fact

expressed in our terminology by the statement that Quaternions
is a quadruple algebra as it includes a sort with four primitive kinds

but no sort with more than four.
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its own conjugate, and a like view might perhaps be taken

of the conjugate of a null quaternion. The product of

a quaternion and its conjugate is equal to the square

of its tensor. In Double Algebra &quot;conjugate&quot;
is used in

a quite analogous sense. Two complex non-zeroes of the

same sort whose sum is protomonic and whose difference

is neomonic are, in Double Algebra, said to be conjugate

to each other. Thus a quantity of value 5+2\/ 1 and

one of value 5 2\/ 1 are conjugates.
1 Two zeroes of

the same sort are always conjugate, two neomonic quan
tities are conjugate when their sum is a zero, and two

protomonic quantities are conjugate when their difference

is a zero.

The consideration of vectors is not restricted to that

special mathematical discipline known as Quaternions.

There are other systems of vector analysis; and vectors

and their relations can advantageously be considered in

ordinary Double Algebra. Indeed we hold that in the

latter discipline a scientific treatment of the neomonic

and complex (to say nothing of the negative protomonic)
abstract non-zeroes can only be attained by giving these

quantities their footing as relations of vectors. The very
same vectors treated of in Quaternions can be taken up
in Double Algebra, but the grouping in sorts is not the

same. Where Quaternions has one sort, Double Algebra
will have several, in fact innumerable sorts. 2 In both dis-

1 In Stevin s terminology, two such quantities were said to be

respondant. See Les Oeuvres Mathematiques de Simon Stevin, ed. by
Albert Girard, Leyden, 1634, p. 14.

2 There is, however, the possibility of there being taken up in

Quaternions a sort so narrow that Double Algebra is quite adequate
for its treatment. In this case the sort would of course be the same
in both. But a sort which can be treated by simpler methods is not

usually taken up by Quaternions.
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ciplines the relations between vectors of the same sort

are regarded as quantities, excepting, of course, in the

case in which the correlate vector is a zero. As has already

been mentioned, all the vectors of Quaternions are either

neomonic or complex; but in Double Algebra protomonic
vectors also appear. And the self-same vectors may be

classed as neomonic or complex in Quaternions and as

protomonic in Double Algebra a paradoxical fact that

will be elucidated when we take up the question of the

essential nature of the distinction between protomonic

(&quot;real&quot;) and neomonic (&quot;imaginary&quot;) quantities. In

Quaternions there are three primitive kinds of vectors

to a sort, all neomonic. In Double Algebra there are two

primitive kinds to a vector sort one protomonic and the

other neomonic. And the vectors of each sort in Double

Algebra must be all complanar. In Double Algebra as

well as in Quaternions, for two actual vectors of the same

sort to be of the same kind, it is necessary and sufficient

that they should be parallel or coaligned. For them to be

of the same variety it is necessary and sufficient for them

to be concurrent. In Double Algebra as in Quaternions

any relation between two actual vectors of the same

variety is a positive protomonic abstract non-zero, and

any relation between two actual vectors of the same kind

but of different varieties is a negative protomonic abstract

non-zero. It can be proven that a relation of the latter

type is always a square root of a positive protomonic

abstract non-zero in this sense, that on multiplying a

vector by such a relation and then multiplying the product

again by the same multiplier the result attained will be

what could be reached by multiplying once by a positive

protomonic abstract non-zero indeed by a natural

abstract non-zero. A relation between two actual vectors

of the same sort but of different kinds is always either
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a neomonic or a complex abstract quantity. In Double

Algebra such a relation if quadrantal is invariably neo

monic, but in Quaternions a quadrantal relation may be

either neomonic or complex. It is quite commonly implied

by mathematicians that the i, j and k
&quot;

imaginaries
&quot;

(neomonic abstract quantities) of Quaternions are distinct

from the ordinary \/ 1
&quot;

imaginaries&quot; of Double Algebra.

Cayley indeed goes so far as to say that &quot;the imaginary
of ordinary algebra . . . has no relation whatever

to the quaternion symbols i, j, k.&quot;
1 In fact, however, it

is quite possible for identically the same abstract quantity
the relation between precisely the same pair of vectors

to come within the scope of both Quaternions and

Double Algebra, and if it is an i, or aj, or a k &quot;imaginary&quot;

in the former science, it will necessarily be an &quot;ordinary

imaginary&quot; in the latter. Suppose there are three non

zero vectors a, b and c of three different kinds but of

the same sort in Quaternions, and suppose that in this

science the relation of a to & is an z-imaginary, the relation

of b to c a j-imaginary, and the relation of c to a a k-

imaginary. In Double Algebra a and 6 might enter the

same sort while still being of different kinds they would

not, however, both be designated precisely as they were

in Quaternions, since one of them would be called
&quot;

real
&quot;

in Double Algebra though it was classed as &quot;imaginary&quot;

in Quaternions and the relation of a to b would now be

an &quot;ordinary imaginary.&quot; Double Algebra could not

now include in this same sort the vector c.
2 But it could,

1 Coordinates versus Quaternions, Proc. Roy. Soc. Edin., vol. 20,

p. 271.
2
True, according to the theories of Cantor, there are no more

points, hence no more vector values, in three dimensional than in

two dimensional space (i.e., the vector values of the former can be

put into one-to-one correspondence with those of the latter). Hence



74 Variables and Quantities

after abandoning the first inquiry, take up another in

which b and c are included in a single sort (a new and dif

ferent sort), a being excluded therefore. And then the

relation of b to c would be an &quot;ordinary imaginary.&quot;

Finally the second inquiry could be abandoned, and a

third taken up in which c and a are put in a sort from

which b is excluded. And no\v the relation of c to a would be

an &quot;ordinary imaginary.&quot; There are, moreover, abstract

quantities of innumerable complex kinds in Quaternions,

each of which may appear in Double Algebra as an

&quot;ordinary imaginary.&quot; Every quaternion with a quad-
rantal versor, if it appears in Double Algebra, appears as

an &quot;ordinary imaginary;&quot; and there are innumerable com

plex abstract kinds made up of quadrantal quaternions.

If radial, a quadrantal quaternion, whether it be an i-

imaginary, a j-imaginary, a ^-imaginary or a complex

quantity, will always appear in Double Algebra as an

&quot;imaginary&quot; abstract quantity of unit value (positive

or negative); asa +\/ 1 or as a \/ 1- The result

attained by multiplying a vector by a quadrantal quater
nion and then multiplying the product by the same

quaternion will always be what could be attained by a

single multiplication by 1. And hence the quadrantal
radial quaternion, if positive is a +\/ 1; if negative,

a \/ 1. There are both positive quadrantal quater
nions of innumerable different values and negative quad-

it is quite conceivable that a system of vector analysis might be

developed which had only two primitive kinds to a sort, and yet
included in the same sort all the line vectors and vectors of points

of Quaternions, and in general had precisely the same sorts as that

science. But this would be a discipline very different from ordinary
Double Algebra, where all the vectors of a sort must be complanar.
Under the conditions laid down above, of course, a, b and c cannot

possibly be complanar.
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rantal quaternions of innumerable different values; so

neither +A/ 1 nor -\/ 1 can be used in Quaternions

as a value symbol, though in ordinary Double Algebra
this is substantially the role they (somewhat improperly)

fill. If used in an analogous way in Quaternions, each must

be understood to be a polyvalued expression; the one

applicable as the name of all positive, the other as that

of all negative quadrantal radial quaternions, just as in

Double Algebra 2
X

is a polyvalued expression applicable

to quantities of innumerable different values.

We have seen that the classification of vectors into

sorts is quite different in Double Algebra from what it is

in Quaternions. It will not be without interest to survey
the possibilities in the field of classifying quantities, both

abstract and applicate, into sorts, kinds, and varieties.

To examine the mode of laying down conventions which

effectuate such classification is highly instructive, and

reveals procedures of the greatest importance in Algebraic

Mathematics. Indeed, it is not too much to say that an

examination of this procedure leads to conclusions of a

very remarkable character with respect to the foundations

of mathematical science. There will be occasion in our

discussion to distinguish between entitative and purely

formal branches of Algebraic Mathematics. We shall

designate an algebra as entitative if the symbols of this

algebra denotes entities. Significant algebra has been

used in this sense as an antonym to formal algebra; but

as the symbols of every algebra must have meanings, even

though the discipline be a merely formal one, the adjective

&quot;entitative&quot; is preferable to
&quot;significant.&quot;

A formal

algebra is one whose symbols represent objects of thought
which the mathematician has not as yet shown to be

entities.

The formation of a class of objects which will constitute
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a sort of quantities grows out of the laying down of con

ventions for addition. The conjoining of objects into such

a class is among the preliminary steps toward the admis

sion of the objects to membership among quantities; and

it is only when all the qualifications for such membership
are possessed by the objects that the class constitutes a

sort of quantities. From its very inception as a quantity,

each quantity must belong to some sort, since the entrance

into one of these classes is among the preliminary qualifica

tions which must be demanded of an object for eligibility

to membership among quantities. In view of what has

already been said as to how sorts change on the passage
from one branch of Algebraic Mathematics to another,

and even from one investigation to another investigation

in the same algebra, it is clear that the conventions of

addition laid down are to a large extent arbitrary, depend

ing on the fiat of the mathematician. A class of quantities

is a sort, if and only if it includes all quantities that can

be taken into it under the condition that every two

quantities so taken shall be of the same sort. In Quater

nions, vectors of described straight lines and of points

constitute one sort of applicate quantities; linear velocities

at points, another; linear accelerations at points, a third;

and so on. In Double Algebra, as we have said, only

complanar vectors can go to make up a sort. If vectors

are admitted in Single Algebra, only parallel or concurrent

vectors will be included in the same sort; while Arith

metical Algebra would accept in each of its sorts only
concurrent vectors. As to abstract quantities, it would

appear to us desirable to have the conventions of addition

so laid down that they bring within a single sort all the

abstract quantities that appear in a branch of Algebraic

Mathematics. To attain this end, it is obviously not

enough to lay down conventions for adding natural
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abstract quantities together, and others for adding together

relations of vector pairs of the same sort. There must

also be laid down conventions for adding natural abstract

quantities and relational abstract quantities together,

and conventions for adding a relation between two vectors

of any sort to a relation between vectors of any other

sort. Such conventions are easily formulated, once it is

admitted that relations between vector pairs of different

sorts may be equal, and that a natural abstract quantity

may be equal to a relation between two vectors of any sort.

For an addition which has a relational abstract quantity
as summand, even when all the vectors concerned are of

a single sort, is usually carried out mediately, not directly,

there being taken in such a process instead of one of the

summands, or instead of each of them, another quantity

equal to it. Thus the addition of the quaternion (b, a)

to the quaternion (d, c) may sometimes be carried out by

taking instead of (b, a) an equal with c as correlate vector

the quaternion (b
f

, c), while if c does not lie &quot;in the

plane&quot; of (b, a) there must be taken two new quaternions,

both with the same correlate vector: a vector lying in

the intersection of the planes of the two original quater
nions. The procedure of including within a single sort all

the abstract quantities of an algebra is of course not the

only one possible. It might be held that an abstract

quantity appearing as a relation between vectors of one

sort, and another appearing as a relation between vectors

of a second sort, themselves belong to different abstract

sorts. Every vector sort would then give rise to an abstract

sort of its own, and we might further distinguish, as dif

ferent from each of these, an abstract sort composed of

the natural abstract quantities. A natural three then,

the number attribute of a group of three objects, would
be of a different sort from a relational three appearing as
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the relation of a vector to another vector of the same sort

as itself and concurrent with it. This view is undoubtedly
a tenable one, but it seems to us not as much in accord

with the current use of such symbols as
&quot;3,&quot;

(

i,&quot; &quot;j,&quot;

&quot;k,&quot; etc., as that which regards all abstract quantities

as of a single sort.

The conventions of comparison which rule the classi

fication of quantities into kinds are entirely independent
of the conventions of addition from which arise the classi

fication as to sorts. Nevertheless, be it noted, no mathe

matician has ever laid down conventions whereby two

quantities, such as a length and an area, which are not

of the same sort, can be compared and thereby become

quantities of the same kind. It might indeed be possible

to lay down, in some fantastic manner, such conventions

for a length and an area, a velocity vector and an accelera

tion vector and so on. Then quantities not of the same

sort would be of the same kind. But to follow this pro
cedure would be a futile waste of time. Hence we say
that only quantities of the same sort are of the same kind.

Since an object cannot properly be called a quantity
until after a convention has been laid down by which it

may be compared with other objects also quantities

as to equality and excess, it follows that every quantity

necessarily belongs to some kind. As wTith the conjoining
of objects into a class which will form a sort of quan
tities, so the conjoining of objects into a class which

will form a kind of quantities is among the preliminary

steps toward the admission of the objects to member

ship among quantities; and of course it is only when
all the qualifications for such membership are possessed

by the objects that the class constitutes a kind of quan
tities. A class of quantities is a kind, if and only if it

includes all quantities that can be taken into it under
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the condition that every two quantities so taken are

comparable. And hence, in order that a class of quan
tities shall constitute a kind, it is necessary and suffi

cient that conventions of comparison shall have been

laid down under which each quantity of the class is made

comparable with every other quantity of the class, and

that no conventions shall have been laid down under which

any quantity not of the class is made comparable with

every quantity of the class. Quantities outside the class

may be comparable with some of the quantities in the class,

but not with all. Thus in Double Algebra a kind may
belong to a sort containing one or more other kinds, and

then quantities not of the kind are comparable with every

zero of the kind, though not with any of the non-zeroes.

In order that a set of quantities shall constitute a variety,

they must all be of a single kind, there must be among
them both zeroes and non-zeroes, and the former must

comprise all the zeroes of the kind, while the latter must

be either all the non-zeroes of the kind greater than the

zeroes or all less than the zeroes. It is not obvious

that every quantity must necessarily belong to some

variety, since it is quite conceivable that a quantity might

belong to a kind containing no zeroes. In the most

rudimentary state of the mathematical activities of the

human race, such kinds did indeed exist; men dealt with

the natural numbers before they conceived of zeroes as

quantities. But in anything worthy of the name of

algebraic science, every kind contains its zeroes; and thus

we may assert that each quantity, besides belonging to a

sort and to a kind, also belongs to a variety.

Suppose there is under consideration a set of objects
that it is desirable to put in the category of quantities.

Let us assume that conventions of addition and in general
all conventions, save those of comparison, requisite for
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giving these objects the footing of quantities have been

already laid down. Then, some branch of Algebraic Mathe
matics being understood to take this set as the totality

of the quantities with which it deals, a basis for marking
out the various sorts of the discipline has been afforded,

but with the kinds this yet remains to be furnished. What
now must be done to form from among these objects a

kind of quantities containing the full complement of two

varieties? 1

Obviously five things: First (but not neces

sarily first in order of execution) there must be selected

from among the set certain objects to fill the role of the

positive non-zeroes of the kind, and conventions must

be laid down making these positive non-zeroes compar
able among themselves. There is nothing in the meaning
of &quot;kind&quot; and nothing in the meaning of &quot;positive

variety,&quot; in so far as the connotations of those terms have

been heretofore set forth, requiring these conventions to be

laid down in any particular way. But in all ordinary cases

(probably we may even say: in all the cases that occur in

the entitative algebras of Mathematics) the quantities

accepted as the positive non-zeroes of a kind are made

comparable by conventions from which it follows, or by
conventions which themselves expressly state, that any
two quantities are equal if, and only if the ratio of each

of them to the other is a one; and of two quantities, that

1 As a matter of historical fact, an algebra usually grows, and is

not brought to a state of completion by any single mathematician

or by a group of mathematicians assembled in conclave. And thus

it may never have been the case that a kind was formed by a mathe
matician or mathematicians contemplating the totality of quantities

that enter an algebra, and deliberately selecting certain of them to

constitute the kind. But for the purpose we have in view in the

text, it is best to consider this purely ideal possibility, and leave

for the moment the actual historical development of Mathematics

entirely out of account.
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and only that is greater which when taken as antecedent

with the other as consequent gives as ratio an abstract

quantity greater than one. 1
Moreover, there is never

left out of the selection any object of the original set which

has, to an object that is selected, a unique ratio of a pro-

tomonic value higher than zero. No quantities have ever

(so far as we are aware) been brought together, in entita-

tive Mathematics, to form the positive non-zeroes of a

kind, whether this kind contains two varieties or only one,

which are compared by conditions not of this character

And the adoption of other conventions in our present

algebras would evidently entail a very considerable altera

tion, in the form at least, of these disciplines. Of course,

if precisely the same set of facts as before were dealt with,

the alteration would be merely in phraseology; the facts

of mathematical science are immutable, and do not in

any way depend upon the volition of the mathematician.

The doctrine of certain philosophers, that truth is merely
a matter of convenience, is as erroneous in Mathematics

as in other sciences. Such a change of conventions of com

parison as we have reference to is in itself substantially

a mere change in the application of
&quot;equal,&quot; &quot;greater&quot;

and &quot;less,&quot; which alone would necessitate solely a change
in the wording of propositions involving &quot;excess,&quot;

&quot;equality,&quot; &quot;greater,&quot; &quot;less,&quot; &quot;equal,&quot; &quot;kind,&quot; &quot;posi

tive variety,&quot; etc. But the change would almost inevi

tably be accompanied by a change in the scope of the dis

ciplines ;
facts not formerly considered would be taken into

account, and others that were originally given attention

would be disregarded. So that in actual practice a change

1 It is to be noted that in the present discussion we are leaving

entirely out of account the transfinites of Cantor. These we prefer

not to designate as quantities.

6
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in the conventions of comparison or in general a change
in any of the important conventions of algebraic science,

marks an alteration of algebraic methods. Just how far

the conventions of comparison may be varied without

overstepping the legitimate bounds of algebraic science

in other words, just how fantastic they may be made
without it being advisable to bar the use of &quot;excess&quot;

and &quot;equality,&quot; of
&quot;greater,&quot;

&quot;less&quot; and
&quot;equal&quot;

in

connection with them is a matter upon which WTC shall

not presume to pronounce here. It will suffice to say
that the application of these names must assuredly be

restricted in one way or another; and that it would be

a tenable position to hold that the meanings of
&quot;equal,&quot;

&quot;greater&quot;
and &quot;less&quot; and hence of &quot;kind,&quot; &quot;positive

variety,&quot; &quot;negative variety,&quot; etc., necessitates the laying

down of the conventions of comparison in the manner

we are now in the course of describing,
1 even though to

take this stand may involve a rejection of some of the

more or less fantastic algebras that have been devised

by mathematicians. It is to be noted that, the conventions

of comparison being as above described, the objects taken

as positive non-zeroes of each kind must form a class of

a certain character. Not every set of quantities is capable
of having such conventions laid down for it. Only such

sets as possess a property which we shall designate by
the name of confluence can be made the positive non-

zeroes of a kind. The quantities of a set may be said

to be confluent, and the set may be called a confluent

class of quantities, if this set comprises all quantities

such that (1) each quantity of the set can be ratiofied

with respect to every other quantity of the set, and (2)

1
Aside, of course, from cases where transfinites are concerned.
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gives in each case a unique ratio,
1 and (3) a natural

abstract non-zero can always be taken as this ratio

a ratio being, as we may recall, a quantity arbitrarily

selected from a value-class. Evidently confluence of the

quantities of a set is a property dependent on the laws

of addition that rule with these quantities. The quantities

of a confluent class are necessarily all non-zeroes. As

an example of a confluent class, we may take any class

composed of all actual vectors of a sort that have a certain

currency; e. g., all line vectors with currency Eastward

constitute such a class, and so do all line vectors with

currency Westward.

The second thing to do is to select, from the set that

comprises all objects designed to be quantities of the

algebra, certain objects to fill the role of the zeroes of the

kind, and to provide conventions of comparison by which

each quantity of the previous class (the positive non-

zeroes of the kind) is made greater than each of the

zeroes. It may not be necessary to adopt a second con

vention for this; thus with temperatures, a single rule

suffices for the comparison of all the quantities of the kind,

positive or negative, zeroes or non-zeroes. But sometimes

a specific convention is necessary. Thus the positive

line vectors of a kind are made greater than the vectors of

points by a fiat of the mathematician, entirely unconnected

with the conventions for the comparison of line vectors

of the same kind among themselves.

It may seem paradoxical to say that whether or not

a quantity be classified as a zero is often purely a question
of convenience. But that this really is the case may readily

1 The stipulation that there be but one ratio bars from the set

quantities whose laws of addition make them apt for designation
as the zeroes of their sort. For a zero has, to a zero of the same

sort, innumerable different ratios.
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be seen by considering the type of quantities exemplified

by temperatures. When a convention has been adopted
for the comparison of temperatures, and all temperatures
have been classed in a single kind, there is still necessary

a convention for the selection of a value-class of the tem

peratures as that of zero value. There is nothing to prevent
the choice of any value-class of temperatures whatsoever

for this purpose, and in fact there are in common use

zeroes of three different values. The [relative] Fahren

heit system of thermometry adopts as its zeroes tempera
tures of one value-class; the [relative] Centigrade and

Reaumur take for this purpose temperatures of quite a

different value; and finally, in the so-called Absolute

systems, temperatures of a third value serve as the zeroes.

Like remarks apply to all quantities of the same type as

temperatures; that is, resembling the latter in incapa

bility with respect to operations of physical addition.

With quantities of the other type, however, necessity for

compliance with the law (an axiom as we esteem it) that

the sum of a zero a and any other quantity b (zero or

non-zero) of the same sort, taken in either order is always

equal to or identical with b, prevents us from selecting

at our option whatever value-class of a kind we may
wish to choose as that of zero value; the matter here is

not one of convention at all. The law of course holds even

with the pseudo-addition of quantities of the temperature

type, but here what value is possessed by the sum of two

quantities depends not only on the character of these

quantities themselves but also on what value-class be

made that of the zeroes. If a and b are the respective

temperatures of two bodies and by temperatures we
of course do not mean figures or symbols, but actual

attributes of the bodies and the sum a+6 is equal to

a or to 6 under the Centigrade system, this sum under
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the Fahrenheit or Absolute system will not be equal to

either a or b but will be greater than either of them.

And in general the addition process with quantities of

the temperature type is such that if we choose to call

the quantities of a value-class zeroes (of course excluding
all other quantities of the sort from this title), the sum
of a quantity of this class and any other quantity of the

same sort is by definition equal to or identical with the

latter quantity. We may remark that usually with

quantities of this type there is but a single kind to a sort,

but it would be quite possible to take temperatures, for

instance, and another species of attributes that bodies

may possess simultaneously with temperatures, and attain

therewith the complex as well as the primitive kinds of a

sort. And here we could still select at our option the zero

value-class for temperatures, and select in entire inde

pendence the zero value-class for the other species of

attributes (provided the latter were also of the type in

question). The quantity thus considered in connection

with a body would be a compound attribute, constituted

by its temperature and its attribute of the other species;

and this quantity would not be a zero unless the body
were both at zero temperature and at zero in the other

respect. If the temperature were taken as protomonic
and the other attribute as neomonic, a body at zero tem

perature and not at zero as regards the other attribute,

would have pertaining to it a neomonic non-zero quantity;
while if not at zero temperature, but at zero in the other

respect, the quantity would be a protomonic non-zero.

And finally, if in neither respect the body was at zero, its

quantity would be a complex non-zero.

The third thing to be done is to select objects from

among the set to fill the role of the negative non-zeroes,

and to make these comparable among themselves. In
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making this selection we must that is to say, must if

the present methods of our algebras are to remain

unchanged so proceed that the objects taken shall con

stitute a confluent class. But this is not all; it is necessary,

unless we are willing to face a widespread change in alge

braic methods, to so select those objects which are to form

a second confluent class of quantities, that there shall be

between the old class and the new a certain relation which

we shall designate as contrafluence. Two classes of qua-
tities may be said to be contrafluent to each other, and every

quantity of each class said to be contrafluent to every

quantity of the other, if, both classes being confluent, for

every quantity in either class there can always be found

a quantity in the other class which added to the former

gives as sum a zero. Thus Eastward and Westward vectors

are contrafluent classes; and so are Northward and South

ward. Clearly then the eligibility of two classes of objects

as positive and negative non-zeroes of the same kind is to

some extent dependent on the conventions of addition that

have been laid down for them. Suppose now that the ques
tion of eligibility of the objects we wish to make negative

non-zeroes has been satisfactorily settled; we cannot

(without changing algebraic methods) take at our will

any convention of comparison for these objects; the

condition must be fulfilled that any two quantities of the

class are equal if the ratio of each of them to the other is

a one, and of two quantities that is the less which when

taken as antecedent with the other as consequent gives

as ratio an abstract quantity greater than one. No

quantities have ever been brought together, in entitative

Mathematics, to form the negative non-zeroes of a kind

which are compared by conventions not meeting the

conditions laid down above, and conformity of the con

ventions of comparison to these conditions might reason-
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ably be ascribed as part of the meaning of &quot;negative

variety.&quot;

The fourth thing to be done is to provide conventions

under which every quantity of this second set of confluent

quantities will be less than each of the quantities taken as

the zeroes.

As fifth requisite, there must be provided conven

tions under which every quantity of the first confluent

set (the positive non-zeroes) will be greater than each

quantity of the second confluent set (the negative non-

zeroes).

Finally to the five requisites of commission we must
add one of omission; no conventions may be laid down
which make any quantity not taken in forming the kind

comparable to every quantity that is taken. And, of course,

if there is to be adherence to the methods that rule in

the present entitative algebras, no conventions may be

laid down under which any quantity not taken is made

comparable to even a single non-zero that is taken; and

none may be laid down under which a quantity of the

kind is made comparable with any quantity not included

in that sort to which this kind belongs.

There are also, as we have seen, kinds embracing only
one variety each. Indeed, all those first brought into

service by mathematicians were of this character, con

taining only zeroes and positive non-zeroes. Such a kind

is formed when the first two of the five things stipulated

above have been done, but the other three have not.

Kinds of one variety each might also be formed composed
of zeroes and negative instead of positive non-zeroes.

It is true that no such kind of quantities has ever

been contemplated by mathematicians. The only kinds

of quantities containing negatives of which they have

treated are kinds containing positive as well as negative
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non-zeroes. But a kind comprising a negative variety

alone is quite conceivable in the absence of any definite

decree by mathematicians establishing that part of the

meaning of &quot;negative quantity&quot; requires a quantity so

designated to belong to a kind containing also positive

non-zeroes. To form a kind including a negative but no

positive variety we must first select objects to fill the role

of negative non-zeroes, and lay down conventions making
them comparable among themselves. The set of quantities

thus formed must be confluent, but contrafluence to

another set would not be a requisite. The conventions

of comparison adopted must be such that two quantities

of the class are equal when, and only when, the ratio of

each to the other is a one; and that one quantity of the

class is less than another when, and only when, the ratio

of the former to the latter is greater than one. Second,

we must select objects to fill the role of the zeroes of the

kind, and lay down conventions by which each of these is

made greater than every quantity of the former set.

To establish a set of objects in the position of zeroes

or positive non-zeroes or negative non-zeroes of a kind

(after the requisite conventions other than those of com

parison have been provided) it is sufficient and, if we would

hold fast to the methods that rule in our present entitative

algebras, necessary to lay down for them conventions of

comparison of the character stipulated above. As a finish

ing touch comes the representation of the values so formed.

In all the primitive kinds each positive non-zero value

represented by an expression having either a + affix

(a &quot;plus sign&quot;) at its beginning or no affix at all, while

each negative non-zero value is represented by an expres
sion having at its beginning a affix (a &quot;minus sign&quot;).

It is quite clear that, even with the above restrictions,

whether an object, which is to play the part of a non-zero
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quantity in a mathematical investigation, shall be positive

or negative is, to a large extent dependent on the volition

of the mathematician. What is called a positive quantity

might often just as well have been a negative. This is

sufficiently obvious as regards a kind of vectors. Take,
for example, the two classes composed respectively of all

Eastward line vectors and of all Westward line vectors.

Each of these classes is confluent, and the two are contra-

fluent to each other. We can make either one of these

classes the positive non-zeroes of a kind, and the other

the negative non-zeroes of the same kind. No one will

deny that a mathematician may, as suits his convenience,

either make Eastward line vectors positive and Westward

line vectors negative or make the Westward ones positive

and the Eastward ones negative. But a qualification

must be made. The line vectors with currency Eastward

and with currency Westward belong to a sort containing

line vectors of all currencies. If a certain number of kinds

and the positive and negative varieties of each of these

kinds have been carved out of this sort, then with some of

the remaining kinds capable of being carved from the same

sort, there is left no freedom of choice between the two

confluent (and mutually contrafluent) sets of line vectors,

one of which must be taken as the positive non-zeroes of

the kind, the other as the negative. If Northward and

Eastward vectors are positive in their respective kinds, and

Southward and Westward negative, we cannot in another

kind of this same sort make Southwestward vectors posi

tive and Northeastward vectors negative, though we can

still deal as we please with vertically upward and down
ward vectors. Northeastward vectors must perforce be

made positive and Southwestward negative, unless one

is willing to infringe the rule that the sum of two positive

quantities shall always be positive, and the sum of two
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negative quantities always be negative. In general,

when a sort contains n primitive kinds, the choice as to

positive and negative non-zeroes is free with n kinds of the

sort, and not free with the remaining kinds. It will usually
be convenient to make the choice with the n primitive
kinds themselves. But obviously this is not absolutely

necessary; the choice might just as well be made with n
of the complex kinds. Thus with a vector sort of Quater

nions, the choice can be made with any three kinds of

vectors, whether these be primitive or complex, provided

the three kinds are not complanar.
Turn now to the abstract quantities. How far is there

here a freedom of choice with the primitive kinds as to posi

tive and negative? (Since the choice, when there is one,

can and, for the sake of convenience, always will be made
with the n primitive kinds, we need not concern ourselves

with the possibility of its being made with n kinds not

primitive or not all primitive). With the neomonic kinds

there is no doubt at all that the choice is entirely free

that, though we assume the protomonic positive and nega
tive to be fixed, the fixing of the neomonic positive and

negative depends solely on the fiat of the mathematician.

In the Argand vector analysis of Double Algebra, with

vectors in the plane of the paper before us, the relation

of a vector with currency toward the right to a perpen
dicular horizontally upward vector is assigned a positive

neomonic value while the relation of the vector \vith right

hand currency to a perpendicular horizontally downward
vector is assigned a negative neomonic value. But this

could easily be reversed by mere convention, relations

of the former type being, at the option of the mathema

tician, made positive and those of the latter made negative.

In Quaternions the arbitrary nature of the classification

of neomonic abstract quantities as positive and negative
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is even more obvious. For Hamilton adopted as positive

direction of rotation that which is followed by the hands

of a clock, while Tait and later quaternionists took the

reverse direction of rotation as positive. And this amounts

to saying that the relations (quaternions) which Hamilton

designated as of value -\-i and +j, and classed as positive,

were by Tait classed as negative, and had their values

represented by i and j respectively; and vice versa

Hamilton s negative quaternions of value i and j were

by Tait made positive, and given the value symbols
-\-i and +J.

1 In general, with each set of abstract non-

zeroes that goes to make up a neomonic kind, the mathe

matician has, up to the time the conventions of comparison
are laid down, merely two confluent and mutually con-

trafluent sets of quantities before him, and he can at his

will so lay down these conventions as to make either set

positive and the other set negative. As to the protomonic
abstract varieties, the case is somewhat different. If we
adhere to the rule of laying down the conventions of

comparison between the non-zeroes of each positive

variety in such manner that two of these quantities are

equal when and only when the ratio of each to the other

is a one, and one of them is greater than another when and

1 Or rather either the Hamiltonian abstract varieties of the i and

the j kinds, or those of the j and the k kinds, or those of the k

and the i kinds were interchanged in Tait s scheme, the third primi
tive kind having its varieties unaltered. Which are altered and which

remain unaltered depends on how the primitive kinds of vectors

are taken. Of the three primitive kinds of Hamiltonian vectors in

each sort (the I, J and K kinds) one kind, it is immaterial which,
must have its varieties interchanged in the passage to Tait s system,
and the others must remain unchanged. If the K vector kind has its

varieties undergo interchange, the i and j abstract kinds likewise

have their varieties undergo interchange, while the k abstract kind

is unaltered etc.
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only when the ratio of the former to the latter is greater

than one; while we lay down for the non-zeroes of each

negative variety a like stipulation as to equality, but stip

ulate that a non-zero of such a variety shall be less than

another when and only when the ratio of the latter to the

former is greater than one, then we are assuming as pre-

existent a convention of comparison concerning the natural

abstract non-zeroes and the relational abstract quantities

equal to natural abstract non-zeroes a convention of

comparison that obviously does not come under the nega
tive head, and hence, if it be admissible at all, must

necessarily come under the positive head. The very
statement of the rule then implies that if it is adhered to

and each confluent set of quantities subjected to it made

positive (that is, has its quantities made greater than the

zeroes of the sort) we are obliged to make this set of pro-

tomonic abstract quantities positive. And hence the contra-

fluent set of abstract non-zeroes, the relations between

contrary vectors of the same sort, must, if it is to be in

cluded in the same kind, be made negative.

The foregoing considerations suffice to show how far

the classification into positive and negative is arbitrary

with a kind containing two varieties. Kinds exist, however,
which contain only one variety each, there being no set

of objects fit to fill the role of a class of quantities contra-

fluent to the non-zeroes of such a variety.
1 All concrete

kinds are of this description, and among applicate kinds

answering to it, we may mention lengths, areas and

1 We leave out of account, as of no especial interest here, kinds

which, though of only one variety, have contrafluent to the non-

zeroes of that variety a suitable set of objects, so that the variety

could at will be included in a two-variety kind. The conclusions

reached in the text apply equally well to such kinds, whose natural

habitat is Arithmetical Algebra.
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volumes. These single-variety kinds were those first

contemplated by mathematicians, who have always looked

upon them as necessarily positive. With each of them

the non-zeroes have invariably been held to be greater

than the zeroes, and the conventions of comparison for

the non-zeroes among themselves have always been laid

dowrn in the manner characteristic of the positive non-

zeroes of a kind. It may be held that this is necessary;

that part of the meaning of &quot;negative non-zero&quot; requires

such a quantity to belong to a kind containing also posi

tive non-zeroes, and to necessitate putting under the head

of positive non-zeroes the quantities of any confluent set

for which there cannot be found another set of confluent

quantities contrafluent to the former. But if this conten

tion be not made (and no mathematician has as yet put
it forth), any class of denominate quantities which has

hitherto been appointed to play the part of the positive

non-zeroes of a kind could play that of the negative non-

zeroes of a kind without doing any violence to the laws

of Mathematics. It is quite possible, with the quantities

of any single-variety kind, to agree that each non-zero

shall be accepted, not as greater, but as less than the zeroes,

and that conventions of the negative character shall be laid

down for the comparison of the non-zeroes among them

selves. We would then have a kind containing only nega
tive quantities. Thus take areas; let it be decreed that

each non-zero area shall be less than every zero area, and

that two non-aero shall be esteemed equal if the ratio of

each to the other is a one, but that one of them shall be

esteemed less than the other if the ratio of the former to

the latter is greater than one. Areas being then all nega

tive, those of them which are non-zeroes would naturally

be represented by value expressions beginning with a

negative affix (a &quot;minus
sign&quot;).

An area which is at



94 Variables and Quantities

present represented by the value symbol 10 sq. cm. would

then be represented by 10 sq. cm., and those areas which

are now greater than this area would be less than it.

For example, an area which is now represented by 20

sq. cm., and is greater than the former area, would be

represented by 20 sq. cm., and would be less than the

other area. And so with every other denominate kind

comprising only one variety; this variety can just as well

be made negative as positive.
1 No advantage at all would

accrue on making it so, but likewise there would be no

disadvantage. It is quite immaterial for the purposes
of Mathematics whether the quantities of such a kind

be made all positive or whether they be made all negative.

From the view here taken of the character of positive

and negative quantities, the remarkable conclusion has

been drawn with regard to applicate quantities such as

lengths, areas, volumes and so on, and also with regard

to concrete quantities: that they can serve either as posi

tive or as negative quantities depending on the conven

tions adopted for comparing them. But a still more

remarkable conclusion now confronts us. In the formation

of kinds, mathematicians have never hitherto (aside from

1 If this were done with a concrete kind, the question would natur

ally arise whether a group which was a concrete quantity of this kind

could not be regarded as having a negative number attribute, and

whether there could not in this manner appear negative abstract

non-zeroes which were not relational. In the absence of any actual

attempt by mathematicians to deal with concrete kinds in this way,
we have not deemed it necessary to take this possibility into account

when making the statement that all abstract quantities, save such

as are positive and protomonic, exist only as relations. But we do

not deny that natural negative abstract non-zeroes may conceivably

be brought into Mathematics in the way just outlined provided

mathematicians are willing to accept negative non-zeroes which do not

have contrafluent to them other quantities constituting the positive non-

zeroes of the same kind.
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the including in a kind both &quot;finite&quot; quantities and Can-

torian transfinites a case that we need not as yet con

sider) gone further than to bring together with the zeroes

two classes of confluent non-zeroes, each of which is con-

trafluent to the other. And, as we have already had occa

sion to say, if one of two confluent and mutually contra-

fluent sets of quantities be made positive, the other set,

if it be included in the same kind, must be made negative.

The &quot;must&quot; is a consequence of one s determination to

adhere to the methods of our present entitative algebras.

Suppose, however, we are willing to deviate from these

methods, and adopt conventions of a character never

before admitted into Mathematics. Then after making

comparable in the same manner (for instance, that manner

characteristic of the positive non-zeroes of a kind) within

the set, the quantities of both sets, we might include both

of these in the same kind without making them belong
to different varieties, by merely putting forth the fiat

that each quantity of one of the sets shall be deemed

greater than every quantity of the other, and that those

of both sets shall be alike deemed greater (or less) than the

quantities taken as the zeroes of the kind. Thus we might
take Eastward line vectors, and make them comparable

by the positive method, under which, for example, an

Eastward line vector of 20 cm. magnitude would be greater

than one of 10 cm. magnitude. Then we might take the

contrafluent set of Westward line vectors, and make these

likewise comparable among themselves by the positive

method, but decree that each Westward line vector shall

be greater than every Eastward line vector, and that every
Eastward and every Westward line vector shall alike

be greater than every vector of a point. In this event

a Westward line vector of 20 cm. magnitude would be

greater than a Westward line vector of 10 cm. magnitude,
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which would be greater than an Eastward line vector of 20

cm. magnitude, which would be in turn greater than an

Eastward line vector of 10 cm. magnitude, and finally

this last vector and the three others would be greater than

the vector of a point. And we might in like manner take

a third confluent set, for example, Northward line vectors,

compare its quantities among themselves by the positive

method, and then make each of these quantities by our

fiat greater than the zeroes and the quantities of the two

previous sets. And we could proceed thus indefinitely,

and include innumerable different sets of confluent quan
tities in a single positive variety, which need have no nega
tive variety in its kind. Likewise innumerable different

sets could be included in a single negative variety. This

is one of the ways in which, at the option of the mathe

matician, negative quantities or positive applicate quan
tities could be entirely excluded from Mathematics. By
still further deviating from present algebraic procedures,

what we have termed the positive and the negative

methods of fixing conventions of comparison could be

abandoned, and sets of quantities, compared among
themselves in some other fashion, might be made positive

or negative; that is, greater than the zeroes of the sort

or less than these. But into this possibility we need go no

further.

To the view of positive and negative quantities which

has just been set forth, any one will be driven who
endeavors to attain an adequate view of their nature; not

confining his attention to the protomonic abstract quanti

ties alone, but bringing into consideration all types of

quantities that enter Mathematics. So general a view

of the matter is not ordinarily taken however. To-day
the highest mathematical authorities, in contrasting nega
tive quantities with positive, are satisfied to take into
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account negative protomonic (&quot;real&quot;) abstract non-zeroes

alone, or even solely a species of these: the negative

protomonic abstract integers. In defense of this course,

it may be argued that these quantities suffice to illustrate

the distinguishing characteristics of negative quantities.

That such is not the case, is in our opinion quite evident

from the foregoing discussion. Indeed, even those nega
tive quantities that mathematicians do purport to take

into account, are not brought clearly into view; a delinea

tion of the nature of the entities that come under the head

of negative protomonic abstract non-zeroes being entirely

lacking in mathematical text-books. Instead of speaking

of negative real abstract non-zeroes, mathematicians

ordinarily employ the name &quot;negative numbers&quot; a

crude term, quite unsuited to the present state of Mathe
matics and most authors explicitly state that the nega
tive numbers are mere symbols. Those who do not,

clothe their ideas on the matter in language so vague as

to make it almost impossible to determine what view they
do accept as to the nature of such quantities. In the

conventional treatment much stress is laid upon the

Principle of Permanence, the laws that rule the negative

real abstract quantities being derived by its sanction,

instead of being derived from the properties possessed

by those entities which enter Mathematics under that

name. A relatively superior exposition of the prevailing

views is to be found in the treatment given the matter

by Schubert. One of his latest articles: Grundlagen der

Arithmetic, as it appeared in the French version of the

Encyklopaedie der mathematischen Wissenschaften, has

had the revision and endorsement of Tannery and Molk

(who, like Schubert, are mathematicians of the highest

standing) to say nothing of the sanction of the other

mathematicians who are responsible for this very authori-

7
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tative work. From Schubert then we shall quote. In

order to place his views of &quot;negative numbers&quot; in the

proper light, it is necessary to put beside them his views

on &quot;number,&quot; which is a term he employs sometimes to

denote the natural numbers alone, sometimes to denote

these and the concrete non-zero integers, sometimes

even to denote quantities of any character whatsoever.

The term is also used by him perhaps we should say:

most frequently used by him to denote the symbols of

such quantities. For in his doctrine the symbols are given

predominance over the quantities they represent, in so far

at least as there is in evidence any distinction between the

two. A clear distinction he never seems to attain. Indeed,

obscurity of thought would appear to go hand in hand with

the use of &quot;number&quot; which affords some of the worst

examples of laxity in all of mathematical nomenclature.

The following is from Schubert s essay on the Notion and

Definition of Number
1 which sets forth his view of number

more fully and lucidly than does his later articles in the

Encyklopaedie, the two articles being, however, essentially

in accord in their doctrine. &quot;To count a group of things

is to regard the things as the same in kind and to associate

ordinally, accurately, and singly with them other things.

In writing, we associate with the things to be counted

simple signs, like points, strokes, and circles

We must add to the definition of counting given above

a third factor or element which, though not absolutely

necessary is yet very important, namely, that we must

be able to express the results of the above-defined associ

ating of certain other things with the things to be counted

by some conventional sign or numeral word

1 Mathematical Essays and Recreations, trans, by Thos. J. McCor-

mack, Chicago, 1903.
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Having thus established what counting or numbering

means, we are in a position to define also the notion of

number1 which we do by simply saying that by number
we understand the results of counting. These are naturally

composed of two elements. First, the ordinary number-

word or number-sign; and secondly, of the word standing
for the specific thing counted. For example, eight men,
seven trees, five cities. . . . We are ultimately led

in our conception of number to abstract wholly from the

nature of the things counted and to form the definition

of unnamed number. . . . The preceding reflections

have led us to the notion of unnamed number or abstract

numbers. The arithmetician calls these numbers positive

whole numbers, or positive integers, as he knows of other

kinds of numbers, for example, negative numbers, irra

tional numbers, etc. Still, observation of the world of

actual facts, as revealed to us by our senses, can naturally

lead us only to positive whole numbers, such only, and no

others, being results of actual counting. All other kinds of

numbers are nothing but artificial inventions of mathe

maticians created for the purpose of giving to the chief

tool of the mathematician, namely, arithmetical notation,

a more convenient and more practical form, so that the

solution of the problems which arise in mathematics may
be simplified. All numbers excepting the results of count

ing above defined, are and remain mere symbols.&quot;
2

1
&quot;Number&quot; would here mean concrete integral non-zero if the

author clearly distinguished between symbols and the quantities

they represent.
2 If Schubert, as is probably the case, intends here to give &quot;num

ber&quot; the significance of quantity taken in the widest sense, the ques
tion arises: Does he forget lengths, areas, volumes, etc. (to say

nothing of vectors and relations between vectors), or does he regard

these as symbols, or does he cast them out from among quantities?
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Any one who looks beyond words, and seeks to ascertain

what an author means by his verbiage, will, upon the most

cursory examination, find some remarkable blunders in

these passages of Schubert s. &quot;Number&quot; Schubert first

defines as the result of counting, and cites as the results

such names as &quot;eight men,&quot; &quot;seven trees&quot; and &quot;five

cities&quot; which are then names of concrete integral quanti

ties, or &quot;numbers,&quot; and are not the concrete quantities or

numbers themselves. Then he says that by abstraction

in counting we are led to &quot;unnamed&quot; or &quot;abstract

numbers.&quot; To say, as Schubert does, that &quot;the arith

metician calls these numbers positive whole numbers, or

positive integers, as he knows of other kinds of numbers,
for example, negative numbers&quot; is at least to imply
that positive whole number and abstract numbers are

one and the same. The proper designation, however, is

not &quot;positive whole numbers,&quot; but &quot;positive protomonic

[non-zero] abstract whole numbers,&quot; as they are only one

species of abstract quantities. Consistently with the

statements concerning concrete integral quantities, it

ought to be said that the positive abstract numbers are

such names as
&quot;eight,&quot;

&quot;seven&quot; and
&quot;five,&quot; which are

the names of the numbers, and not the numbers themselves.

Schubert finally declares, however, that the &quot;positive

abstract whole numbers&quot; are the only quantities which

are not mere symbols, since they are the only quantities

resulting from counting. This appears to us a very insuffi

cient argument to show that all quantities excepting the

&quot;positive abstract whole numbers&quot; are mere symbols.
We are unable to comprehend how the names

&quot;eight,&quot;

&quot;seven&quot; and &quot;five&quot; are in any way better entitled than

the names &quot;eight men,&quot; &quot;seven trees&quot; and &quot;five cities&quot;

to be regarded as more than mere symbols. Both sets of

names can be attained in processes of counting. But in



Symbols and Quantities 101

both cases we hold it to be erroneous to say these names

are quantities; it is what these names denote that are

quantities.

That any mathematician should speak of the quantities

of the science as mere symbols, is really astounding. But

those who take such a view seem never to have seriously

considered what it means to say we are dealing with words

or symbols merely. Such a statement can only mean
that sentences containing the word or symbol in question

are conversant solely with its suppositio materialis with

the spoken logophone or written logograph. This is the

case when we say &quot;Abracadabra is composed of five

syllables&quot; or &quot;England is written with a capital.&quot; It is

not the case with the proposition of any branch of Mathe

matics, whether this discipline be entitative or purely

formal. The assertions made in Mathematics are not of

the character of the assertions of Lexicology or Grammar.
A confusion between two so widely separated types of

inquiry w
rould hardly seem excusable even in a very stupid

school boy. And yet again and again one finds authors

of good repute making, like Schubert, statements which

are indubitable evidence of such confusion. Thus, Tannery

gives the readers of his works the following misinformation

as to the nature of an &quot;integral number:&quot; &quot;Here is a

bag of marbles, a flock of sheep, some letters forming a

word, some words that form a phrase: how many marbles

are there in this bag, how many sheep in this flock, letters

in this word, words in this phrase? The reply to these

questions is a number1 or to be more precise an integral

number. The idea of integral number is attained by

1 A less slovenly wording would be &quot;The replies to these questions
are numbers,&quot; but we of course reproduce exactly what Tannery
himself said.
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abstraction from the idea of a collection of distinct

objects.&quot;
1 As the reply to such a question will be a propo

sition, abbreviated on occasions into a word (the name
of a natural number value), one might expect a consistent

adhesion to the view just quoted to lead up to a defini

tion of addition as an etymological operation somewhat
like apheresis, syncope and apocope; while subtraction,

one would think, would be analogous to prosthesis, epen-
thesis and paragoge. Mathematicians, however, do not

always count consistency as a virtue. The last sentence

quoted would seem to say that by abstraction from the

idea of a flock of ten sheep (for example) one may attain

the idea of the word &quot;ten&quot; or the idea of the proposition

&quot;There are ten sheep in this flock;&quot; a view as to the

nature of abstraction which has at least the merit of

novelty. Another curious view of number, which may
well find mention here, is that of Kronecker. This eminent

mathematician actually holds that the number of a group
of objects is a group of numeral words; that when there

is a group of five apples before us, the number belonging
to that group is another group composed of the five words :

first, second, third, fourth, fifth!
2

From this notice of the remarkable views as to the

nature of &quot;number&quot; prevalent among mathematicians of

the highest eminence, we pass on to consider Schubert s

conception of the way &quot;negative numbers&quot; gain entrance

into Mathematics. We quote first his formulation of the

Principle of Permanence or the Principle of No Excep
tion, as he prefers to call it. &quot;Arithmetic follows a prin-

1

Lemons d Arithmetic theorique et pratique, by Jules Tannery, 2nd.

Ed., Paris, 1900.
2 See Ueber den Zahlbegriff by Leopold Kronecker, in Philosoph-

ische Aufsaetze, E. Zeller . . . gewidmet, Lpz., 1887, p. 265.
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ciple, that is called the Principle of Permanence or of

No Exception and consists of four parts: First, to impart
to each combination of symbols, which represents none

of the hitherto defined numbers, a meaning such that the

combination can be treated by the same rules as could be

applied to it if it represented one of the hitherto defined

numbers: Second, to define such a combination as a

number in the widened sense of the word, and thereby to

widen the conception of number; Third, to prove that,

for the numbers in the widened sense, the same laws hold

as for the numbers in the not yet widened sense: Fourth,

to define what equal, greater and less mean in the widened

number realm.&quot;
1 This statement of the principle would

be more lucid were it not marred by a confusion between

symbols and wrhat they represent. When Schubert

speaks of a combination of symbols as represented or not

representing a number, he would not seem to regard a

number as being a symbol or combination of symbols.

But when, in his next clause, he speaks of defining a com
bination of symbols as a number, he implies that a number

is an expression of a certain character. He could have

attained consistency by saying that the entities chosen

to be represented by this combination are to be defined

as numbers or, if one wishes to be really correct on his

language, classified as numbers. But nothing like this has

any connection with the most important office of the

Principle of Permanence. The fundamental applications

of this principle are concerned with something that cannot

reasonably be read into Schubert s words at all; they do

not bear directly on the quantities represented by symbols
and compound expressions; they concern the operations

indicated by signs or indicated by a positional notation

1 Grundl. d. Arith., p. 12, in the Encyklopaedie.
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as in a&quot;. To take a specific example of the workings of the

principle, suppose we are at a stage in the development
of Mathematics where a

n
, whenever it has any meaning

at all, is invariably synonymous with aaaa. . . to n

factors; then the expression a* indicates no operation
at all, and is meaningless. Here the Principle of Perman
ence bids us find, not a quantity to be denoted by a 71

&quot;,

but

an operation suitable for indication by aw . And mathema
ticians have done this. Before it was done a 71

&quot;

had no

meaning at all; afterward (a meaning any abstract

quantity, and TT having its usual meaning) aw has a mean

ing even though it has no denotation even though no

entity fulfills the conditions requisite of a quantity to be

accepted as a result of the operation indicated by a71
&quot;

and

to be hence denoted by this expression. It is quite incor

rect to say that by such a process we introduced & new

number into Mathematics; what we do is to introduce a new

type of operation (commonly a compound, derived from the

already known simple types; thus the operation indicated

in a 71
&quot;

is a compound operation involving the performance
of addition, multiplication, division and finding the limit),

this new type being, however, in common with an older

type or types, indicated by an old sign or an old positional

notation. The Principle of Permanence, which Schubert

says &quot;created the negative numbers from a-b where a

is not greater than
b,&quot;

1 can be brought to bear upon the

quantities represented by algebraic expressions only in

virtue of its having a secondary office very different from

the primary one. This second part of the principle, on

attempting to put into precise language the more or less

obscure locutions of the text-books, would seem to be a

precept bidding the mathematician to turn a formal

1
Grundlagen, p. 19.
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algebra into an entitative (&quot;significant&quot;) one whenever

he is able to do so to find entities that the symbols
and compound expressions of the formal algebra can

denote without infringing the laws of this algebra. Thus

construed, the principle commands the mathematician

(besides bringing new operations into play) to seek

entities fit to be designated by 5-9, by +V/
1, etc., and

to so designate these entities, thereby giving each expres

sion (which, be it noted, has already a meaning ) what

without this process it does not possess: namely a denota

tion. This secondary precept, and this alone, appears to

be what Schubert has vaguely in view in the definition of

the principle cited above, the primary precept being

strangely ignored by him, though it assuredly is of equal

if not greater importance than the secondary.
1 But

whether both offices or only one be taken into account,

the Principle of Permanence can properly play no part

whatsoever in the scientific exposition of an entitative

algebra as a deductive science. Nor indeed has it anything
to do wyith the exposition of the laws of a formal algebra.

Its proper use is as an instrument of discovery. Far too

often, however, this Principle of Permanence plays the role

of a mere pretentious set of words invoked by the symbolist

1 In view of the fact that German mathematicians usually give

Hankel credit for the first adequate formulation of the Principle

of Permanence (Peacock s earlier Principle of Permanence of Equiva
lent Forms being, they hold, of merely historical importance) it may
be of interest to note this formulation, which was put forth by
Hankel under the name of the Principle of Permanence of Formal

Laws, and reads as follows, the italics being ours, &quot;when two forms

expressed in general symbols of the arithmetica universalis are

equal to each other they must also remain equal when the symbols
cease to designate simple quantities and therefore the operations

also bear some other significance.&quot; See Vorlesungungen ueber die

complexen Zahlen und ihre Functionen, Part 1.
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to save himself the trouble of inquiring what entities it is

that his symbols can denote in other words, as an excuse

to justify his disregard of this very principle! Let us now
see what use Schubert and his collaborators, Tannery
and Molk, make of it in the Encyclopedic.

The Principle of Permanence, we are told,
&quot;

permits the

introduction of negative numbers. Let us designate,

for this purpose, by A the class formed solely of the

numbers 0, 1, 2, 3, . . . .; let us employ for the

moment the letters a, b, . . . to signify only such

numbers; let us suppose established the properties of

addition and of subtraction for these numbers, and let

us take again for the signs +, the significance relative

to these operations. The symbol (sic} a-b has meaning

only if a is greater than or equal to b. Whether a is greater

than, equal to, or less than b, we agree to call number the

expression a-b formed in reality by the two constituent

numbers, a, b, which, it may be remarked, do not play
the same role. With respect to this new species of numbers

all definitions must be reconstructed. When the two symbols

a-b, a -b have a meaning, it is quite easy to derive from

propositions concerning addition and subtraction that

the equality a-\-b = a +b is the necessary and sufficient

condition of these two symbols representing the same

number. It is natural to define in all cases by this condi

tion the equality of the symbols a-b, a -b
, noticing that

this definition satisfies the conditions imposed by every

condition of equality. It results from this, that if (a, a

being respectively smaller than b, b } b-a and b -a are

equal to the same number c, the two new numbers a-b,

a -b are equal ; they are equal to 0-c. Instead of 0-c we

agree to write -c, and it is under this abridged form that

the new numbers wyhich are called negative numbers, can

be represented. ... In antithesis to the negative
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numbers, we designate under the name positive numbers,

the numbers such as c or 0+c.&quot;
1

Schubert s article in the original German Encyklopaedie
did not treat the topic in quite so much detail as does the

article of the French revision, but as to doctrine there is

no essential difference between either of these reductions

and Schubert s earlier article on Monism in Arithmetic.

In the latter he begins by considering 5-9 as originally

a &quot;symbol&quot; wholly destitute of meaning, and states that
&quot; As the form of the symbol 5-9 is the form of a difference,

it will be obviously convenient to give it a meaning which

will allow us to reckon with it as we reckon with every other

real difference, that is with a difference in which the

minuend is greater than the subtrahent.&quot; His idea of

imparting a &quot;meaning&quot; to it does not, however, go beyond
the laying down of conventions under which &quot;all such

symbols in which the number before the minus sign is

less than the number behind it by the same amount may
be put equal to one another,&quot; after which he tells us

triumphantly that &quot;we have invested thus, combinations

of signs originally meaningless, in which a smaller number
stood before than after a minus sign, with a meaning
which enables us to reckon with such apparent differences

exactly as we do with ordinary differences.&quot;
2 Likewise

in the original German Encyklopaedie, after laying down
the conditions under which a &quot;difference form&quot; a-b

with which a&amp;lt;b can be equated to another such difference

form, Schubert says: &quot;Finally by calling such difference

forms also numbers, one widens the number concept and

attains the introduction of the negative numbers.&quot;
3

This, then, is the doctrine of negative protomonic abstract

quantities put forward under the auspices of an interna-

1

Op. cit., Tome I, Vol. 1, p. 34.
2 P. 12 and 13. 3 P. 12.
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tional body of mathematicians of the highest eminence.

And it assuredly cannot be deemed a satisfactory one;

indeed, it is so permeated with error as to be quite unworthy
of those who stand sponsor for it. Taken apparently
as unfolding the nature of negative quantities in general,

it in fact brings to light not one of their characteristics.

From it one gets no inkling that a quantity is negative on

account of the mathematician having more or less arbi

trarily laid down conventions of comparison of a certain

character for this quantity and its congeners, the other

quantities of the same kind. Still less does the doctrine

tell us that, of the various conceivable ways of laying down
such conventions, a specific one is adopted in our present

entitative algebras one that might to advantage be

made the basis of the very definition of &quot;negative quan

tity&quot; and that the conventions of comparison cannot be

laid down in this way unless certain conditions are ful

filled. To Schubert, anything like the conceptions of

confluence and contrafluence seems wholly unknown.

And the view, which he appears to hold, that negative

quantities are brought into existence primarily to obviate

the difficulties which arise in attempting to subtract a

lesser quantity from a greater, is in no wise tenable.

With the most characteristic of all sorts in which the

distinction of positive and negative is of moment the

vector sorts such difficulties have never arisen. The
entire theory of the addition and subtraction of vectors

of any sort can be and always is established without the

slighest consideration of the distinction between positive

and negative, and even without the slightest considera

tion of whether or not the operands are of the same kind.

Whether the minuend is greater than, or equal to, or less

than, or incomparable with the subtrahend is of no

moment whatsoever in the subtraction of one vector from



Origin of Negative Quantities 109

another of the same sort. And the like is true of sub

traction applied to the relations between vectors. There

is no need of calling in the aid of the Principle of Perman
ence when we classify as a negative quantity the relation

of one actual vector to another of the same sort and con

trary to the former. These relations are not classified

as negative abstract quantities in order to render pos
sible the performance of subtraction with minuend less

than subtrahend, taking, as operands, relations between

concurrent vectors of the same sort or natural abstract

quantities. And how anyone can contend, even for a

moment, that either relations between vectors or the

vectors themselves are mere symbols, &quot;artificial inven

tions of the mathematician, created to give arithmetical

notation a more convenient form&quot; we are unable to under

stand. But Schubert evidently never realized what the

negative abstract quantities are; to conceive them as

relations between applicate quantities seems never to

have been dreamt of by him. His vision of negative quan
tities took in nothing further than what arose by the step

he called investing with a meaning expressions originally

meaningless a step which is not in any proper sense the

introduction of negative quantities into Mathematics.

It is not even a carrying out of the behests of the Prin

ciple of Permanence, either in its primary precept or as

extended to apply to quantities as well as to operations.

It is not the finding of entities that the negative expres
sions of a formal algebra can denote, and the producing
of an entitative algebra by giving these denotations to the

expressions while also giving suitable denotations to the

other expressions of the formal algebra. It is not even

the investing of meaningless expressions with meanings.
For before any such step is taken, 5-9, or in general a-b

where a is not greater than b, has a meaning, that is to
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say, it has a connotation though it be as yet lacking a

denotation. The expression 5-9 is the name of an object

(of every object, we should say) which on having a nine

added to it gives as sum a five; and a-b is the name of an

object which on having b added to it gives as sum a quan

tity equal to or identical with a. Whether there are already
at hand quantities of this description; or whether, though
there are not, objects can be found answering to it which

may be put in the category of quantities at our option;

or whether no such objects can exist, is quite immaterial.

For in any event this is a description; the expression has

a meaning. And the step Schubert takes does not change
the connotation of the expression one iota; neither does it

give or take away or in any way change a denotation. Why
he should regard the making 5-9 equatable to 7-11, to

1-5, etc., as giving a meaningless expression a meaning,
and as a process of any particular importance in the

delineation of the negative quantities, we are utterly

unable to fathom. Of one thing at least there is no doubt
;

namely, that many mathematicians would attain a much

greater clearness of thought if they took the trouble to read

carefully the first book of Mill s Logic, and to master

the elements of the theory of definition.

The question of positives and negatives having been

disposed of, we may next inquire into the manner in which

kinds are classified as primitive or complex, and as pro-

tomonic primitive or neomonic primitive. The only
denominate sorts we need here consider are vector

sorts; no other denominate sorts containing complex kinds

having yet found entrance into Mathematics. In each of

these sorts there is absolute freedom of choice with the

kind first selected as a primitive; but the selection of this

decides the question as to which shall be the remaining

primitives, and leaves the mathematician no option in
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the matter. That is to say, in each particular system of

vector analysis, stipulations are laid down which make
the selection of one primitive kind carry with it the selec

tion of all the others. Thus, in Quaternions, Double

Algebra and the cognate discipline it is stipulated that with

every vector sort, each of the kinds selected as primitive

must have its actual vectors at right angles to the actual

vectors of all the other primitive kinds. Hence, if East

ward and Westward vectors of lines (together of course

with the vectors of points, which enter into all the kinds

of the sort) are selected in Quaternions as constituting

one primitive kind of their sort, the two other primitive

kinds must necessarily have as their components North

ward and Southward vectors and vertically upward and

downward vectors respectively. Were other primitive

kinds selected, we could indeed have a system of vector

analysis, but it would not be Quaternions. We might, for

instance, while taking Eastward and Westward vectors

for the first primitive kind, take Northeastward and South-

westward vectors for the second, and obliquely upward and

downward vectors for the third. In Double Algebra, if

Eastward and Westward vectors are taken for one primi
tive kind of a sort comprising vectors of points and hori

zontal line vectors, then Northward and Southward vectors

must be taken for the other primitive kind. There might
indeed be developed a vector analysis, dealing like Double

Algebra only with sorts made up of complanar (and null)

vectors, and having two primitive kinds which were taken

obliquely to each other; e. g., Eastward and Westward
vectors for the first, Northeastward and Southwestward

vectors for the second primitive kind. But this, though
describable as a double algebra, would not be the ordinary
Double Algebra of our present Mathematics.

With the abstract sort, in each of the various algebras,
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the law ruling the selection of primitive kinds is this:

that when a and b are actual vectors belonging to the

same kind (primitive or complex) or to different primitive

kinds of the same sort, then the relation of a to b must

always belong to a primitive abstract kind
;
and no abstract

kind is to be designated as primitive that does not contain

relations of this character. Hence one primitive abstract

kind must, in Quaternions, etc., be that contained, among
other quantities, the relational quantities equal to the

natural abstract quantities; for under this head come all

the relations between concurrent actual vectors of the same

primitive kind. And, in these disciplines, all the other

primitive abstract kinds must have quadrantal relations

as their non-zeroes. In Double Algebra all quadrantal
relations belong to a single primitive abstract kind. In

Quaternions there are three different primitive abstract

kinds having quadrantal relations as non-zeroes, but not

every quadrantal relation belongs to a primitive kind.

The primitive kinds having been selected, which of

them ought we to designate as protomonic and which as

neomonic? What are the principles underlying the ap

plication of these adjectives and their synonyms &quot;real

and &quot;imaginary&quot; to kinds and to quantities of these

kinds? We may dismiss from consideration the zeroes;

they possess none of the characteristics which make imper
ative the distinction between protomonic, neomonic and

complex non-zeroes. But convenience dictates that just

as every zero is regarded as positive or as negative or as

both, and never as neither, though the characteristics

which mark the positive and negative non-zeroes are

lacking with the zeroes; so every zero, according as the

sort to which it belongs contains protomonic, neomonic

and complex non-zeroes, or non-zeroes of only one or two

of these types, ought to be designated as at once proto-
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monic, neomonic and complex, or as entitled to have

applied to it only one or two of the three adjectives. We
may restrict then our attention to the non-zeroes of the

various primitive kinds; and shall begin by seeking the

essential characteristics of protomonic and neomonic

abstract non-zeroes as contradistinguished from each other.

The neomonic abstract non-zeroes most prominent in

elementary Mathematics are the square roots of 1

that appear in Double Algebra. Cognate to these, and

constituting the other non-zeroes of the neomonic abstract

kind, are other square roots of negative protomonic
abstract non-zeroes. In some algebraic disciplines there

appear neomonic abstract non-zeroes that are cube or

fourth, etc., roots of negative protomonic abstract non-

zeroes instead of square roots. And in still other cases

neomonic abstract non-zeroes have been introduced which

are the square, cube, fourth, etc., roots of positive proto
monic abstract non-zeroes or even of abstract zeroes.

Now the square, cube, etc., of a protomonic abstract

non-zero is always itself a protomonic abstract non-zero

in the ordinary entitative algebras, and is therefore either

confluent or contrafluent to its base; while no protomonic
abstract non-zero is (in these algebras) either confluent

or contrafluent to any neomonic quantity. Hence, so

far as Double Algebra, Quaternions, etc., are concerned,

we might conveniently lay down that a primitive abstract

non-zero is to be designated as protomonic if its square
and its cube, etc., is always either confluent or contra-

fluent to the base; but is to be designated as neomonic if

its square or its cube, etc., is neither confluent nor contra-

fluent to the base. A definition of this type, however,
if taken as perfectly general for every algebra of mathe

matical science, obviously requires the formation of kinds

to be invariably carried out in that particular manner
8
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adopted in Double Algebra, Quaternions, etc., where,

among other things, the non-zeroes of each variety must
be mutually confluent and must be contrafluent to the

non-zeroes of the other variety of the same kind. As has

been said, this mode of laying down conventions of com

parison might be accepted as the only one admissible in

Algebraic Mathematics; and we ourselves are somewhat
inclined to favor taking this course. But there is no

advantage in so laying down the definitions of &quot;proto-

monic&quot; and &quot;neomonic&quot; as to necessitate its being taken.

The question may well be relegated entirely to that part

of algebraic theory which deals with kind formation;

and left quite out of account in the consideration of the

distinction between protomonic and neomonic kinds. We
shall then seek to so delineate this distinction as to allow

it to apply not only in the ordinary algebras, but in all

that may reasonably be considered as more than a mere

play of the fancy. Now in all algebras, even those most

remote from the disciplines commonly made use of by
mathematicians, there is, we think, one principle that

is never violated. It is this: the product of a protomonic
abstract non-zero into a neomonic unit is always of the

same kind as the latter. Whenever mathematicians elab

orate an algebra which has a neomonic as well as a proto
monic abstract kind, they adopt a notation for the neo

monic non-zeroes which implies this principle; for they

suffix, to each protomonic abstract value expression, an

expression representing the unit value of the neomonic

kind, and the result is always taken as denoting quantities

belonging to this neomonic kind and of that value which is

possessed by the product of a protomonic quantity having
the value represented by the protomonic value expression

into a unit of the neomonic kind. A natural complement
of the principle, though not a logical consequence of it,
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would be the assertion that, even with quantities other

than neomonic units as multiplicands, the kind is never

changed on multiplying by a protomonic abstract non

zero; but that a change of kind is always effectuated on

multiplying a non-zero by a neomonic abstract non-zero

save when a zero is attained as product. And wre shall,

we think, risk nothing more than the possibility of barring

the classification of primitive kinds into protomonic and

neomonic from algebras too fantastic to be of any serious

interest in mathematical science, if we lay down as dis

tinguishing characteristics that a protomonic abstract

non-zero when applied as multiplier to a non-zero (abstract

or denominate) gives as product a non-zero of the same

kind as the multiplicand, while a neomonic abstract non

zero gives a product of different kind than the multiplicand

or else gives as product a zero. A primitive abstract kind

is to be termed protomonic if all its non-zeroes are proto

monic; but is to be termed neomonic if all its non-zeroes

are neomonic. And were any mathematician to so form

a primitive abstract kind that some of its non-zeroes

when applied as multipliers to non-zeroes gave non-zero

products of the same kinds as the respective multiplicands,

wT
hile others gave products of different kinds, then this

abstract kind ought not, we apprehend, to be termed

either protomonic or neomonic; and a like remark would

apply to a kind containing an abstract non-zero which

wrhen applied as multiplier to some non-zero multiplicands

changes the kind, but applied to others leaves the kind

unchanged while giving non-zero products.
The adoption of the definitions of protomonic abstract

kind and neomonic abstract kind that have just been

suggested will undoubtedly give the two terms and the

classification they mark, a wider range of applicability

than the definitions based upon the confluence and contra-
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fluence of a power with its base, provided Mathematics

admits certain conceivable algebras in which the principle

of confluence and contrafluence is completely set aside in

kind formation. It should be especially noted that, under

the former definition, what are protomonic abstract

quantities in the ordinary algebras (and in particular

the natural abstract quantities and their equals among
the relational abstract quantities) could in a large measure

be excluded from the protomonic kind in other algebras
a fact which from some points of view may be regarded

as a detriment rather than as a merit. Of this possi

bility we shall proceed to give an illustration. It will be

convenient in so doing to make use of the graphic repre

sentation of values by the Argand scheme, and we shall

designate as a line of a kind, any line so drawn on the

Argand surface that every point in it serves to represent
a value of the kind in question, and that every value of

this kind is represented by a point of the line. In ordinary

Single Algebra and Double Algebra every kind of a vector

sort, and likewise every abstract kind, has as its line a

straight line passing through the origin, and extending out

&quot;to infinity&quot; in both directions. Suppose, however, we
choose to devise quite another system of vector analysis

which, though not the Single Algebra with which ordinary
mathematical work is concerned, is yet a single algebra
in that it takes into each of its sorts only a single kind.

In this new system let the line of each vector kind, while

passing through the origin (the zero point) and extending
&quot;to infinity&quot; in both directions as usual, be curvilinear,

having the part on one side of the origin congruent with

the part on the other side, so that if the former be revolved

180 around the origin as axis, it will coincide with the

former. And let the curve be such that every straight

line through the origin which passes through another
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point of the curve intersects the latter in two points

equidistant from the origin, and does not coincide with

the curve elsewhere than in these two points and the

origin. It is understood, of course, that the curve of each

vector kind, and in general of each applicate kind that

enters this system, is congruent with the curve of every
other applicate kind of the discipline. Then the abstract

sort of the algebra thus brought into existence contains

quantities of value 0, + 1 and 1
;
but contains no other

quantities of the values designated as protomonic (&quot;real&quot;)

in the ordinary algebras. All the other abstract quanti
ties of the science are what would be called complex or

neomonic abstract quantities in Double Algebra, and do

not enter our ordinary Single Algebra at all. These other

quantities are, however, in the algebra under consideration,

all included in a single kind, and ought all to be called

protomonic if the definition advocated above be accepted.

There are in the algebra no abstract quantities outside

this protomonic kind, which includes abstract quantities,

natural and relational, of values 0, +1 and 1 together

with the other abstract quantities just mentioned and

nothing else. These latter quantities are all relational,

each being the relation of one actual vector to another

that is complanar with but neither concurrent with nor

contrary to the former. The product of any vector by
an abstract quantity of this kind will be a vector of the

same kind as the multiplicand. In order for multiplica

tion of an abstract quantity by an abstract quantity to

be possible, there must be attained as product an abstract

quantity admissible in this algebra and, hence, of the same

kind as the multiplier and multiplicand. Obviously
this requirement might prevent it being always possible

to multiply one abstract quantity of this algebra by
another, or to square an abstract quantity. And thus
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such a system would be likely to have a set of postulates

and axioms widely different from those of the ordinary

algebras. We make no claim that a vector analysis of

the character just described would be of any particular

service in Mathematics; on the contrary we think it prob
able that no algebra will be found to be of any real advan

tage in mathematical practice unless the formation of its

kinds be carried out on the basis of the confluence-contra-

fluence doctrine. And, of course, so far as the algebras

founded on this principle are concerned, the definitions

of protomonic and neomonic based on the confluence

or contrafluence of a power with its base give the adjec

tives precisely the same denotations as the definitions based

on the fact that multiplication by a protomonic abstract

quantity does not change the kind.

From the abstract we now turn to the denominate

primitive kinds. Here we find the distinction between

protomonic and neomonic to be a wholly factitious one

based upon mere symbolism. Whether the quantities

of a denominate primitive kind be classed as &quot;real&quot; (pro

tomonic) or as &quot;imaginary&quot; (neomonic) does not in any

way depend on the quantities themselves; it depends

entirely upon the volition of the mathematician. Primi

tive denominate non-zeroes have no specific attributes by
which they can be distinguished as protomonic or neo

monic; they are protomonic or neomonic according as

the mathematician arbitrarily chooses protomonic or

neomonic value expressions for them. And that is all

there is to the matter. The three primitive kinds of each

vector sort in Quaternions are &quot;imaginary.&quot; Why?
Merely because Hamilton chose to represent the values of

the unit vectors of these kinds by the symbols &quot;i,&quot; &quot;j&quot;

and &quot;k&quot; which also do duty as symbols of
&quot;imaginary&quot;

abstract values, and in general used neomonic abstract
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value expressions to represent the values of the vectors

of the primitive kinds. How far this procedure was an

arbitrary one may be seen on considering the fact that

any two of the three primitive kinds of vectors may enter

Double Algebra as primitive kinds of a new vector sort,

and there, while one (whichever one the mathematician

chooses) will remain neomonic, the other will become (i. e.,

must be made) protomonic. Hamilton ordinarily denotes

a unit vector with him the units referred to are always
units of the kind by that same value expression which

denotes a unit quaternion whose plane is perpendicular

to the vector. Thus a unit vector perpendicular to the

plane of an i quaternion has itself &quot;i&quot; as value symbol;
one perpendicular to the plane of a j quaternion has

&quot;j&quot;

as value symbol; one perpendicular to the plane of a k

quaternion has
&quot;k,&quot;

etc. Sometimes he improves this

notation, and uses
&quot;7,&quot;

&quot;J&quot; and &quot;

K&quot; to denote the unit

vectors perpendicular to the planes of the quaternions

whose value symbols are respectively &quot;i,&quot; &quot;j&quot;
and &quot;k.&quot;

The making the three primitive vector kinds of Quater
nions to be neomonic is not necessary; one or two or all

three of them could have been made protomonic by the

adoption of a suitable symbolism. But in that event

the mathematician would be deprived of the very con

venient analogy between the formulas ij
= k and iJ= K,

between jk=i and jK = I, etc. We need not say that in

our view the best mode of deriving the value expressions

for denominate quantities from abstract value expres

sions is usually to suffix denominations to the latter;
1 and

1 Here also it is convenient (though not necessary) to take analogy
as a guide. For example, it would be quite inconvenient in Quater
nions when ij

= k and i\i hold, to have iXl Den. =k Den., as

would be the case were the three unit values of each vector sort to

be i Den., 1 Den. and k Den., there being then one protomonic and two

neomonic kinds in each vector sort.
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where this procedure is followed we may lay down that a

denominate non-zero is protomonic if its value expression

is formed by suffixing a denomination to a protomonic
abstract value expression; but that it is neomonic if its

value expression is formed by suffixing a denomination

to a neomonic abstract value expression. A definition of

this type cannot, however, be accepted with complex
denominate quantities. For, though a complex denomi

nate quantity may have its value represented by suffixing

a denomination to a complex abstract value expression,

it is not complex in virtue of this mode of representation.

Thus in Double Algebra an applicate non-zero may have

its value represented by (A-\-B-\/ 1) Den., but it is classi

fied as complex, not on this account, but on account of its

being of a value representable by A Den.+$\/ 1 Den.,

and its belonging to a sort including two primitive kinds

to which belong the values A Den. and B\/^l Den.

The algebras of mathematical science may be classified

in accordance with the number of their primitive kinds.

De Morgan, to whom the names Single Algebra, Double

Algebra, etc., are due, lays down that: &quot;A system of

Algebra of the nth character is one in which there are

n distinct symbols &, 2 , ,
each of which is

a unit of its kind, of a difference from all other kinds

such that aii+22+ . . . cannot be equivalent to

. . unless i
=

a2, bi = b-2 ,
etc.&quot;

1 Mak-

1 Trans. Cambr. Phil. Soc., vol. 8, p. 241. De Morgan published

four articles: On the Foundations of Algebra in vols. 7 and 8 of these

Transactions, and we may also mention here his Trigonometry and

Double Algebra (London, 1840) where he says, p. iii, that Double

Algebra &quot;means algebra in which each symbol stands for an object

of thought having two distinct and independent qualities.&quot; The
relative inaccessibility at the present day of such important writings

is highly regrettable; other work by the same hand, and that of no
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ing the slight variorum of terming &quot;of the | character&quot;

an algebra having never more than one variety to a kind

and never more than one kind to a sort, we are substan

tially following De Morgan in saying that Mathematics

includes the following algebras:

Arithmetical or Semi-single Algebra, which takes within

its scope solely such sorts as contain only a single variety

each. This discipline includes, as a part of a much greater

whole, the scientific principles underlying the art taught
in the schools, and there called &quot;Arithmetic.&quot; Mathe
matical practice has heretofore always assumed that the

variety embraced by a sort of Arithmetical Algebra is

necessarily the positive protomonic variety, but this

assumption is justified only with the abstract sort. The
abstract quantities of Arithmetical Algebra are necessarily

positive and protomonic, comprising only the natural

abstract quantities and such relational abstract quanti
ties as are equal to natural abstract quantities. The
denominate quantities that most obviously come within

the scope of this algebra are the concrete quantities and

such applicate quantities as lengths, areas, volumes, etc.

Yet no denominate quantities at all need be excluded.

Even vectors are not excluded from a science where the

quantities of a sort are all of a single kind and of a single

variety. But in order that a sort of vectors shall embrace

vectors of one kind and one variety alone, the conventions

of addition must be such that it is impossible to add two

non-concurrent vectors together. A vector sort would,
under these circumstances, consist of all actual vectors

small value lies buried in an obsolete encyclopedia. It is a crying
shame that the University of Cambridge, which has recently stood

sponser for so many treatises of dubious value, has not yet set her

press to the work of issuing an edition of the collected works of

Augustus De Morgan, one of the greatest of her sons.
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of a certain type with a certain currency, and of all null

vectors of the same type. Thus all line vectors with

currency Eastward, together with all vectors of points

would constitute a vector sort in Arithmetical Algebra.

This mode of forming vector sorts would alone suffice to

bar relations between non-concurrent vectors from being

accepted as quantities in the science. Such relations

could not be subjected to addition, for this would

involve the addition of non-concurrent vectors. And
therefore the only relational abstract quantities that

can possibly enter this algebra are those which are relations

between concurrent vectors i. e., those which are equal
to natural abstract quantities. As the abstract quantities

of Arithmetical Algebra are thus all positive and proto-

monic; and as the value expressions for the denominate

quantities of the same algebra are most conveniently
formed by merely suffixing a specific denomination for

each denominate sort to the abstract value expressions,

it is not surprising that such a notation has always been

adopted in Arithmetical Algebra. And this it is, in con

junction with the customary adoption of the positive

conventions of comparison in such cases, that occasions

mathematicians incorrectly to regard the denominate as

well as the abstract quantities of Arithmetical Algebra
as necessarily positive and protomonic. In fact there is

no necessity about it; any or every denominate variety of

Arithmetical Algebra can, at the will of the mathema

tician, be made negative and protomonic or made neomonic

(positive or negative) by the adoption of a suitable nota

tion and suitable conventions of comparison. Among
the teachings of Arithmetical Algebra is this proposition:

that it is impossible (within this algebra) to subtract a

greater from a lesser vector; just as it is impossible to

subtract any abstract quantity from a lesser abstract
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quantity; and, in general, that it is impossible to subtract

any quantity from a lesser quantity. And, of course, no

actual vector can be either added to or subtracted from

another unless the latter vector is concurrent with the

former.

Single Algebra, which takes within its scope solely such

sorts as contain only a single kind each, this kind embrac

ing, in some cases, two varieties; in others, only one. In

current mathematical practice the kind is always taken

as protomonic. The abstract quantities that enter Single

Algebra consist of first, the natural abstract quantities;

second, such relational abstract quantities as are equal to

these; third, such relational abstract quantities as are

contrafluent to natural abstract quantities. Single Algebra
thus accepts the protomonic abstract quantities, positive

and negative, and no others. Its inclusion of the nega
tive protomonic non-zeroes (and of course also its inclusion

of the relational positive protomonic abstract quantities)

requires for justification a treatment of vectors. Since

a vector sort in Single Algebra can comprise only a single

kind, the vector analysis of this discipline must be based

on conventions of addition which make no provision for

addition between two actual vectors that are neither

concurrent nor contrary. A sort of vectors under these

circumstances consists of all actual vectors of a certain

type with a certain currency, all actual vectors of the

same type with the contrary currency, and all null vectors

of the same type. Thus all line vectors of Eastward cur

rency, all of Westward currency, and all vectors of points

can be made to form a sort which contains one kind of two

varieties, and is suitable for inclusion in the subject matter

of Single Algebra. Naturally one of the teachings of the

science is that it is impossible (within Single Algebra)
to add any actual vector to or subtract any actual vector
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from another unless the latter is concurrent with or con

trary to the former. It is clear that the mode of forming
sorts followed in Single Algebra bars all relations between

vectors that are neither concurrent nor contrary from

being accepted as quantities of this discipline in other

words bars from Single Algebra all abstract quantities

save such as are protomonic.
1 And as it is convenient

to form the value expressions for the denominate quan
tities of Single Algebra by merely suffixing denominations

to the abstract value expressions, all the denominate

quantities of the discipline have heretofore been invari

ably made protomonic by the adoption of such a notation.

But of course there is no necessity to write the denomi

nate value expressions of Single Algebra in this way, and

hence no necessity for any denominate kind of Single

Algebra to be taken as protomonic rather than as neomonic.

The ordinary Differential and Integral Calculus is a part
of Single Algebra; and we may here take occasion to point
out that an entirely unnecessary restriction is laid upon
these disciplines when it is required that all the quantities

considered be &quot;real.&quot; For, obviously enough, what is

actually requisite in Calculus is that the quantities of

a variable be of the same kind, though they may just as

well be neomonic or complex as protomonic. Even with

abstract quantities most of the theorems of Calculus hold

for the neomonic and for each complex kind (and in this

far go somewhat beyond the scope of Single Algebra),

though here of course due regard must be paid to the fact

that certain operations (such as squaring) may bring a

second kind into play when the operands are neomonic

1 Of course all non-protomonic abstract quantities are barred

even without this, since the protomonic kind of the abstract sort

is admitted, and there is no room for a second kind of that sort in

Single Algebra.
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or complex, notwithstanding there being only one kind of

quantities concerned when the operands are protomonic.

Double Algebra, which admits sorts containing two

primitive kinds, but no more, and innumerable complex
kinds. It ought, we hold, to include a treatment of vectors

an Argand Vector Analysis, so to speak to justify its

use of neomonic and complex expressions, and make it

a double algebra in an entitative instead of a merely
formal use of such expressions. Indeed, as contradistin

guished from Single Algebra on the one hand and from

Quaternions on the other, it might be considered to be

essentially a doctrine of complanar vectors. To it belongs

the Theory of Monogenic Functions. Besides the ordinary

Double Algebra of our present mathematical science,

there are conceivable various other algebraic disciplines

that might be elaborated into systems, each of which

could be properly designated as a double algebra. But

in view of the actual state of Mathematics, no incon

venience will be entailed by the use of &quot;Double Algebra&quot;

without qualification in speaking of that discipline which

by virtue of eminence is best entitled to the name. With

Arithmetical Algebra and Single Algebra the case is some-

wrhat different; for though other semi-single and single

algebras could be devised, this could only be done by

rejecting in these systems the usual method of comparison

(and hence the usual method of forming kinds and varieties)

based upon the doctrine of confluence and contrafluence

any system in wrhich this method is adhered to not

being a semi-single algebra distinct from Arithmetical

Algebra or a single algebra distinct from ordinary Single

Algebra. And, as we have said, adhesion to the principles

of confluence and contrafluence might not unreasonably
be held to be essential for the admission of a system to the

ranks of the algebras.
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Various triple algebras, which have been developed by
several investigators, notably De Morgan. De Morgan s

triple algebras grew out of vector analysis of tridimensional

space, but more attention was paid in his investigations

to the formal than to the entitative side of the matter.

He distinguishes his triple algebras as &quot;quadratic, cubic

and biquadratic, according as the invented imaginary
units represent square roots, cube roots, or fourth roots

of the negative real unit.&quot;
1

Triple algebras quite different

from those of De Morgan have been devised by other inves

tigators. Thus, J. and C. Graves developed cubic triple

algebras in which the units of one primitive abstract kind

being as usual of value +1, those of the two other primitive

abstract kinds were cube roots of +1, instead of cube

roots of 1 as in De Morgan s cubic algebras. We may
notice here that it would be possible to develop, as a corn-

planar vector analysis, quite an interesting semi-triple

algebra, that is, an algebra in which a sort may contain

three primitive kinds of one variety each, there never

being more than three primitive kinds to a sort, and never

more than one variety to a kind. In this complanar
vector analysis, the three primitive kinds taken for each

vector sort have their lines straight and going out from

the origin on one side only, extending of course out &quot;to

infinity&quot; on that side. The three lines are spaced 120

apart. Let, for example, the line of one primitive kind go

Eastward, and call this kind the E kind, using &quot;E&quot; as

the value symbol for its units. Designate as the R kind

that other primitive kind whose line is attained by 120

of right hand rotation of the E line about the origin as

axis, and as the L kind the third primitive kind whose

1 Proc. Cambr. Phil. Soc., Vol. I, p. 14. (De Morgan s own abstract

of his fourth article: On the Foundations of Geometry published in

the Transactions.)
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line will be attained by 120 of left hand rotation of the

E line. And use
&quot;

R&quot; and
&quot;

L&quot; respectively as the value

symbols for the units of these last two primitive kinds.

There are no negative quantities at all in this algebra.

We make all the vectors of each kind, whether this be

primitive or complex, positive. Contrafluent to the posi

tive non-zeroes of each vector kind are other actual vectors,

but these, instead of being included in a negative variety

of the same kind, constitute, together with the null vectors

of the sort, quite another kind. Thus the vectors contra-

fluent to the actual vectors of a primitive kind belong to

a complex kind. If a greater vector is subtracted from

a lesser vector of the same kind, the difference is not a

negative vector of that same kind, but a positive vector

of another kind. There will be in this algebra three

primitive abstract kinds, each comprising a positive

variety alone. The first (the protomonic kind) will com

prise the ordinary positive protomonic abstract quantities

the natural abstract quantities and such relations

between vectors of the same sort as are equal to natural

abstract quantities. The second or r kind (with unit

value r) will be a neomonic kind whose units when used

as multipliers upon actual vectors effect rotations of 120

to the right, so that rE= R, rR = L, rL = E. Every non

zero of this r kind is a relation of an actual vector to another

actual vector of the same sort such that the latter vector

could be brought into concurrence writh the former by
a rotation of 120 to the right. And conversely every
relation of this description belongs to this abstract kind.

The third or / abstract kind (with unit value I) will also

be a neomonic kind, but its units effect rotation of 120

to the left, so that IE = L, IL = R, IR= E. And the non-

zeroes of this / kind are those relations betwreen actual

vectors of the same sort with which the correlate could



128 Variables and Quantities

be brought into concurrence with the relate by rotations

of 120 to the left. All the neomonic abstract non-zeroes

of this algebra, the I quantities as well as the r quanti

ties, are cube roots of positive protomonic abstract quan
tities. And we have as fundamental formulas I

3 = r3 = +1,
I
2 =

r, r
2 = l. But, as far as we are aware, this semi-triple

algebra would be of no particular utility in Mathematics,
and we need dwell no further upon the matter. Nor need

we consider the possibilities in the development of semi-

double algebras etc.

Quaternions, which is a quadruple algebra. De Morgan
sometimes so terms it, but sometimes on the other hand

he speaks of it as &quot;one of the triple algebras.&quot; On one

occasion he says: &quot;in my view of the subject, it is not

quadruple but triple, since every symbol is explicable

by a line drawn in space.&quot;
1 We cannot quite see the

relevancy of the clause beginning with &quot;since,&quot; and from

our own point of view it is undoubtedly quadruple; for

though Quaternions has only three primitive kinds of

vectors, it has four primitive kinds of abstract quantities;

and we hold an ?i-tuple algebra to be one wyhich with some

sorts admits n primitive kinds of two varieties each, never

more than n, though with some sorts there may be less

than n kinds. We may also mention here Hamilton s

Icosian Algebra, in which the units of the four primitive

kinds are of values +1, i, H, X; where i
2 =+l, *3=+l

and X5 =
-{- 1 ; i, x and X being respectively a

&quot; new square

root, cube root, and fifth root of positive unity; the latter

root being the product of the two former when taken in

an order assigned but not in the opposite order.&quot; The t s,

x s and X s, like the i s, j s and k s of Quaternions, are

associative but not commutative.

1
Op. cit., Vol. 8, p. 254.
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And so we might go on to pentuple algebras, etc. The
name Pluquaternions

1 serves to designate any n-tuple

algebras, with n higher than 4, analogous in its laws to

Quaternions. It has been proven that a formal octuple

algebra analogous to Quaternions could be developed,
and also proven that no 16-tuple algebra possessing the

requisite analogy is possible. And in general, even the

formal development, with n higher than 8, of an n-tuple

algebra analogous to Quaternions does not appear to be

possible. Besides Octonions, which seems to be put
forth as an entitative octuple algebra of the Quaternion

type, we may mention Multenions and Triquaternions
as algebras which have been more or less thoroughly

developed by mathematicians.

In connection with the discussion of sorts, kinds and

varieties, we may notice a distinction sometimes made
between vector sorts and scalar sorts. In saying this dis

tinction is made, we of course do not mean that they who
make it use the word &quot;sort.

&quot; What we refer to, as tanta

mount to such a distinction, is the fact that physicists

not infrequently classify the denominate quantities with

which they deal, as vector quantities and scalar quanti
ties. &quot;Vector quantity&quot; here means simply vector;

the term being applied to forces, accelerations, etc.

Examples of scalar quantities are masses, volumes, and

temperatures. And what physicists have in view, as

basis for the distinction they make, is the fact that while

vector quantities are &quot;directional&quot; (that is, while vector

1 The word &quot;Pluquaternions&quot; is due to Rev. Thomas P. Kirkman:
On Pluquaternions, Phil. Mag., 1848, Vol. 33, p. 447 and 494. This

author, however, used it, not so much to designate branches of Mathe

matics, as in application to the expressions representing the values

of pluquaternions; the abstract quantities characteristic of these

branches.

9
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non-zeroes possess currencies}, scalar quantities are not

(no scalar quantity possesses an attribute of currency).

This application of &quot;scalar&quot; is assuredly not an extension

of Hamilton s original use of it as denoting the protomonic
abstract quantities of Single Algebra. What would be a

natural extension of this, is the use of the term to desig

nate a quantity belonging to a sort which includes only one

kind a scalar sort. In this sense, however,
&quot;

scalar sort is

not an antonym to
&quot;

vector sort.&quot; For Single Algebra may
take within its scope a sort of vectors comprising only a

single kind, and being in this sense a scalar sort, though

according to the usage of physicists the quantities com

posing it would not be termed scalars. We may incident

ally mention here that half the sum of a quaternion and

its conjugate a sum that will always be a protomonic
abstract quantity, and thus be a scalar in the original sense

of that term was called by Hamilton the scalar of that

quaternion. Quite different from the use of &quot;scalar&quot; in

reference to denominate quantities, is an extension of its

original application sometimes made, under which it is

applied to any abstract quantity with which the commuta
tive law of multiplication holds universally (so far as is

concerned the algebra in which the discussion arises) .

That is, an abstract quantity a is called a scalar if it be

such that whenever b is another abstract quantity, we

invariably have ab = ba. Even though b is not a scalar

at all (if for example it is an i or a j or a A;), when a is

a scalar we must have ab = ba. In this sense all the

abstract quantities of Double Algebra, whether proto

monic, neomonic or complex, are scalars in that branch of

Mathematics. In still another sense &quot;scalar&quot; is used by
De Morgan in the phrase &quot;scalar function.&quot;

1

1 See his Trigonometry and Double Algebra, p. 162.
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In the classification of the vectors of Quaternions into

kinds one thing especially noticeable is the inconvenience

of the customary use of &quot;real&quot; and &quot;imaginary&quot; to desig

nate primitive kinds, and the advantage of adopting

&quot;protomonic&quot; and &quot;neomonic&quot; in their place. Even
the most eminent mathematicians fail to keep distinct

the technical and the colloquial meanings of the former

adjectives. Thus, Tait tells us that :

&quot;

Hamilton s system
makes all directions in space equally imaginary or rather

equally real,&quot;
1 in which sentence &quot;imaginary&quot; is used in

its technical sense, while &quot;real&quot; is not. Surely this is not

an especially lucid way of stating the fact that in Quater
nions there are three primitive kinds of vectors to each

sort, all imaginary, technically speaking, and various

complex kinds; and that no actual vector is real in the

technical sense of Mathematics though it really exists.

Hamilton himself wavered in his use of the words &quot;real&quot;

and &quot;imaginary.&quot; The I, J, and K quantities he some

times called
&quot;

imaginaries
&quot;

and sometimes &quot;geometrical

reals.&quot; Even more paradoxical would have been the

nomenclature of Quaternions had Hamilton adopted

throughout his system the procedure suggested by him

of admitting a fourth primitive kind of vectors to each

sort, or rather to use his own phraseology, admitting &quot;a

species of Fourth unit in Geometry.&quot; This course, as

Hamilton points out, will obviate the use of vectors

as multipliers, any notation apparently involving such

multiplication being construed as a mere abbreviation

which really refers to multiplication by the quantuplici-

ties of these vectors. The quantuplicity of a vector is

its ratio to a unit of its sort, and without the acceptance

1

Elementary Treatise on Quaternions, by P. G. Tait, 3rd Ed.,

Cambridge,-
1

1890, p. 5.



132 Variables and Quantities

of this new kind, a vector has no quantuplicity in Quater

nions,
1 there being in our three dimensional space no unit

of any vector sort of that science. Another change brought
about by the admission of a fourth primitive kind is that

the operations of Quaternions are made more widely

applicable. Quaternions is defective in that it is not

always possible to multiply a vector by a quaternion.

Thus, if the relation of one vector to another is the qua
ternion q, it does not necessarily follow that we can

multiply a third vector by q and obtain a vector as product.

In such cases an attempt to apply the ordinary rules to the

expressions representing the multiplicand and multiplier

may give a product expression which does not fit into

our vector system at all. The result may be a symbol of

&quot;real&quot; quantity not a zero, or it may be complex of

quadrinomial form, involving a &quot;real&quot; term as well as

1
Unless, indeed, we choose to define &quot;quantuplicity of an applicate

quantity&quot; on a symbolic basis, and say that when the value of an

applicate quantity is represented by suffixing a denomination to

an abstract value expression (or, improperly, by this abstract value

expression alone) then a quantity arbitrarily selected from the

abstract value-class pertaining to this expression is the quantuplicity

of the applicate quantity. With the notation current in those of

our present entitative algebras that have protomonic kinds in each

sort, this definition will in every case give the same value for the

quantuplicity as the ratio definition. And with the vectors of Qua
ternions, it can be proven that the value fixed for a quantuplicity

by the definition based on symbolism is necessarily that which would

be possessed by the ratio of the vector to a unit of the fourth primitive

kind mentioned in the text if such a kind existed. And the theorem

to this effect affords in fact the only possible means of calculating

the value of such a supposititious ratio. So really, so far as calculat

ing the value of the quantuplicity of a vector is concerned, it makes

no difference whether we make the vectors in Quaternions have

quantuplicities by adopting the definition based on symbolism, or

do this by accepting a fourth dimension of space while retaining

the ratio definition.
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three terms of the I, J and K character respectively, or

it may be a trinomial or a binomial involving a &quot;real&quot;

term. Aside from the case in which the multiplier is a

protomonic quaternion (in which case multiplication is

invariably possible), we can multiply a vector c by a

quaternion q and obtain a vector as product when and

only when c lies in the plane of q that is, the plane
determined by the two vectors of which q is the relation

or is parallel to that plane. The current treatment of

Quaternions can usually gloss over such difficulties, since

very loose definitions are given, and no distinction at

all is made between abstract and applicate quantities.

Multiplication by vectors is admitted, and the products
obtained may be vectors or may not. Thus no scruple

is made of multiplying one vector by another parallel

to it, and obtaining as product a &quot;number&quot; that is, a

protomonic abstract quantity. On the other hand it is

equally admissible to multiply together two perpendicular

vectors, and the product is a third vector perpendicular
to both. This procedure may well awaken the wonder

of the philosophical inquirer if not his admiration; it

certainly far surpasses the ancient doctrine that the

product of two lengths was an area, which De Morgan
so aptly characterized as the mysterious notion that

multiplication placed two straight lines at right angles

to each other, and drew parallels through their extremities.

If, however, we admit of multiplication by abstract

quantities only, and require the product to be of the same

sort as the multiplicand, multiplication of a vector by
an abstract quantity can be made invariably possible in

only one way by assuming hypothetical vectors of a

fourth primitive kind which shall be real in the technical

sense. We would then have an assumed fourth dimension

of space; vectors in this direction perpendicular to the
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three I, J, K dimensions would be &quot;real;&quot; a vector

oblique to this direction, and having only its origin in

ordinary space, would be a complex quantity involving

one &quot;real&quot; and one or more &quot;imaginary&quot; terms in its

value expression. Under such circumstances, to say a

non-zero vector was imaginary would be to say it really

existed, while to say it was real wrould mean that it did

not exist except in the four dimensional space of our

imagination. We may remark that this increased appli

cability of the multiplication process entails an abandon

ment of the condition requiring two equal quaternions,

if non-protomonic to have the vectors of which they are

the relations in the same or parallel planes.

The procedure outlined above is the only way in which

multiplication of a vector by a quaternion can be made

universally possible, but it is not the only method which

multiplication by vectors may be obviated. For when one

vector is &quot;multiplied&quot; by another, and a third vector

obtained as &quot;product,&quot; we may demur at the application

of the names &quot;multiplication&quot; and
&quot;product,&quot; though we

accept as a valid and useful mathematical operation this

process of finding from two given vectors (of the same

sort) a third vector having a certain connection with them.

We have seen that i, j, and k quaternions (the imaginary
abstract quantities commonly regarded as peculiar to the

science of Quaternions) are in fact imaginary abstract

quantities of ordinary Double Algebra. There appear,

however, in Quaternions certain expressions, which,

while denoting neither i-quantities, nor j-quantities, nor

^-quantities, are nevertheless regarded as imaginary;
such an expression being termed by Hamilton &quot;the old

and ordinary imaginary symbol of common algebra.&quot;

Hamilton often has occasion to formulate an equation in

which occurs
&quot;q,&quot;

the symbol of an abstract quantity
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of unknown value, the equation expressing certain con

ditions (not necessarily realizable} which this unknown

quantity must fulfill. On solving such an equation, in

some cases he attained this result: that q, the unknown
abstract quantity must be of the value fixed by the

equation:

q = iv+xi+yj-\-zk+h(w +x
f

i-{-y j-}-z k)
1

&quot;where
&quot;w,&quot; &quot;x,&quot; &quot;y,&quot;

(

z,&quot;
&quot;&quot;w

f
,&quot;

&quot;x

f

,&quot; &quot;y&quot;
and &quot;z&quot;

denote protomonic abstract quantities, and where
&quot;i,&quot;

&quot;j&quot;
and &quot;k&quot; denote units of the three neomonic abstract

kinds, while
&quot;

h&quot; must denote a quantity of the following

description: First, h must be a square root of 1; that

is, on multiplying a vector by it, then again multiplying
h into the product, multiplying h into this second product
and finally multiplying h into the third product, there

must be attained as ultimate product a vector equal to

(or identical with) the original vector. Second, it must

be commutative with every abstract quantity; so that

(among other analogous equations) we have:

ih= hi; jh = hj; kh= hk.

Now the first condition is satisfied by the units of the i, j

and k imaginary abstract kinds and of various complex
abstract kinds every quadrantal radial quaternion satis

fies this condition. But none of these (in fact no non-

protomonic quantity of Quaternions) satisfies the second.

With the non-protomonic quantities of Quaternions mul

tiplications is commutative only when multiplier and

1 Of course, there may vanish from the right hand member some

or all of its first four terms and any one or two or three of the four

terms of the expression in parenthesis.
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multiplicand are complanar or when one factor alone

is non-protomonic the commutability thus not being
universal as must be the case with h. The second condi

tion is satisfied by all the protomonic abstract quantities,

but of course these do not satisfy the first. It is clear that

within the bounds of the science of Quaternions there

are no quantities answering to the description of h. And
in fact it is found, when &quot;

h&quot; appears in the expression

finally equated to
&quot;

q,&quot;
that the original equation involv

ing &quot;h&quot; laid down conditions that could not be realized;
&quot;

q&quot; denoting from the start, not a quaternion, but a

quantity that, so far as Quaternions is concerned, could

not possibly exist. Hamilton then regarded

w+xi+yj+zk+h(w
f+xf

i+yj+z k)

as denoting what he called a biquaternion; and

which may arise in an analogous way (and which, since

it denotes an applicate quantity, ought to have a denomi

nation suffixed) he regarded as denoting what he called

a bivector.

Hamilton sometimes used the symbol
&quot;

h,&quot;

1 but usually

he wrote \/l; a procedure which we regard as improper
as would be using the name &quot;animal&quot; in place of &quot;cen

taur,&quot; or in general putting any generic name where the

name of one of the species properly belongs. The i, j and

k imaginary abstract units and the complex quadrantal
radial quaternions are just as much entitled to the desig-

1 See Lectures on Quaternions by Sir W. R. Hamilton, Dublin,

1853, p. 730 note.
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nation \/ 1 as is an h; and he who wishes to make him

self clear ought not use a name applying to all of these

species when he is really speaking of only one. It is also

to be noticed that, though the interpretation of an equa
tion in which

&quot;

h&quot; appears in Quaternions is analogous
to that of an equation of Arithmetical Algebra or of Single

Algebra in which \/l appears on which fact is doubt

less based Hamilton s view that his \/ 1 is the &quot;old and

ordinary imaginary symbol of common algebra&quot; there

is no analogy at all with the appearance of -%/ 1 in an

equation of Double Algebra : that science which developed
from the Argand scheme. In Double Algebra \/l is

not essentially a mark of impossibility, and its appearance
is quite analogous to the appearance of

&quot;i,&quot; &quot;j&quot;
and &quot;k&quot;

in Quaternions. True it is that with certain sorts \/l
may mark impossibility in Double Algebra; but so may
negative or incommensurable or fractional expressions

in considering men, for example, ^ will mark impossi

bility and under a scientific view of Quaternions it

cannot be denied that this must be regarded as having
within its scope all the quantities of Double Algebra,
and hence, with certain sorts &quot;i&quot; or

&quot;j&quot;
or &quot;k&quot; will

mark impossibility in Quaternions. As to the commuta
tive property of the h s, which is also referred to by
Hamilton as a reason, this would seem to suggest something

quite different from the view that an h is an ordinary

imaginary of Double Algebra. For commutability is at

hand with all abstract quantities whenever both multi

plier and multiplicand are complanar, and it is in virtue

of this and the fact of the applicate sorts of Double Algebra

being so restricted that all vectors of a sort are complanar

(all their relations being hence complanar) that a \/ 1 of

Double Algebra has the commutative property rather

we should say: has it in Double Algebra. It follows that
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an analogous case in Quaternions would be a relation

between vectors whose plane is parallel with every other

plane, so that the relation (a biquaternion, for of course

an h itself comes under this head) would be complanar
with every quaternion and with every biquaternion.
And considering how mathematicians use or, one had
better say, misuse the word

&quot;infinity,&quot;
it is surprising

that no one has suggested that a biquaternion might be

a relation between vectors located at &quot;infinity,&quot; where

so many wonderful things happen, and where all the planes
of space might be said to become parallel or perpendicular
or anything else one s fancy may suggest.

A case in Double Algebra more truly analogous than that

of v 1 to the &quot;h&quot; of Quaternions is given in the equations

where the second + sign is understood to signify that the

positive square root is to be taken, or, in the last equation,

that the quantity whose symbol is enclosed in parentheses
is positive. For such an equation to be true, we need a

new type of positive abstract quantities of such a character

that the sum of a one (itself positive of course) and a posi

tive quantity of the new type is a zero. Though no such

quantities have yet been brought into service,
1 there is

1 The late Sir James Cockle of Trinity College (and incidentally

chief justice of Queensland) investigated the formal laws of combina

tions of symbols in a branch of Mathematics where such expressions

as the + Vx above would be admissible. But, owing to the lack of

entities that these expressions can conveniently denote, his investi

gations remain in the realms of formal as distinguished from entita-

tive Mathematics. The formal algebra Cockle developed he called

Tessarines. A tessarine would seem to be an abstract quantity

(though Cockle himself defines it as an expression, just as Hamilton

originally defined a quaternion to be an expression) which, unless it
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no real impossibility about it unless we accept the con

tention that part of the meaning of &quot;positive quantity&quot;

requires the sum of two positive non-zeroes to be always
itself a positive non-zero. If that contention be denied

(or if it be denied that part of the meaning of &quot;zero&quot;

requires the sum of every quantity and a zero of the same

sort to be equal to or identical with the former), quantities

of this type are conceivable objects, even though inexistent

in the mathematical universe of Double Algebra. Their

symbols are not on a par with the words &quot;blictri&quot; and

&quot;abracadabra,&quot; which have not the shadow of a meaning;
but are analogous to such words as

&quot;

centaur
&quot;

and &quot;

satyr;&quot;

and so is Hamilton s
&quot;

h,&quot; When a symbol or other name
is defined as one applicable to an object (or to each of

several objects) possessing certain properties, these prop
erties may, so to speak, be consistent with each other

or they may not. Thus to say: an X is an object that is

at one time both white and non-wr

hite, is to assign to the

name &quot;

X&quot; inconsistent properties. Such a name repre

sents, not an object of thought, but a chimera; for example,

degrades, has a value expression of the form: w-{-xa-+-y(3-\-zy.

Here &quot;a&quot; represents the unit value of what Cockle would term the

unreal kind, this value being fixed by the equation: l+a2 = 0.

The kind of which
&quot;/8&quot; represents the unit value is termed by Cockle

impossible, the value for /3 being fixed by the equation: !+ (+ V/3)
= 0. As for 7, which should probably be regarded as the unit value

of still another primitive kind (though Cockle himself does not

regard his system as including &quot;three independent imaginaries),&quot;

its equation of definition is 7 = a/8. Cockle classifies quantities as

algebraic, under which genus comes the three species: real, unreal

and impossible, and hyper-algebraic, this second genus including as

species the typal and the ideal quantities. See On Certain Functions

resembling Quaternions and on a new Imaginary in Algebra, Phil.

Mag., 1848, Vol. 33, p. 435. See also Vol. 34, p. 37, p. 132, p. 402;
Vol. 35, p. 434.
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an honest thief is a chimera. Now when the definition

of a name is perfectly self-consistent, assigning no incon

sistent properties to what that name is to denote, even

when nothing answering the description exists in our

universe, and the name has no denotation, this name
nevertheless represents, not a chimera, but a true object

of thought although a nonentity. Of this character are

biquaternions; they are not chimeras, but objects, which,

however, so long as nothing answering their description

has been found, cannot be regarded as entities. Of a like

character are centaurs, satyrs, and unicorns. We may
define a certain symbol as denoting a quantity satisfying

certain conditions which transgress the laws of that

branch of Mathematics in which wre are working. The
conditions laid down may nevertheless be self-consistent,

and then the symbol does not represent a chimera. When
it thus represents an object of thought, the question will

naturally arise: Can we find entities satisfying such con

ditions, and fit to be the operands of a new branch of

Mathematics? It was this question that arose in connec

tion with the expression \/ 1 in Single Algebra, and the

movement initiated by Argand has answered it in the

affirmative, and given us our modern Double Algebra.

Digressing for a moment to consider the historical

development of Double Algebra, we may notice that

Argand was anticipated by Wessel, not to speak of Truel,

but that the investigations of these precursors remained

unnoticed, and played no part in the subsequent develop

ment of vector theory. All the early investigators (Wessel,

Argand, Buee, Francais, Gergonne, Servois and Gauss)

seem to have confused abstract value expressions with

vector value expressions, and to have regarded +v 1

as denoting a &quot;directed line&quot; (i. e., the vector of a directed

line) perpendicular to another directed line which +1
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was supposed to denote, instead of recognizing that to an

abstract value symbol a denomination ought to be suffixed,

if it is to be rendered suitable to represent a vector value.

Recent writers, purporting to give expositions of the Argand

scheme, assign to the perpendicular &quot;directed lines&quot; the

roles of being mere geometrical representations of real

and imaginary quantities. A more legitimate procedure
is to distinguish between the Argand Vector Analysis and

the Argand Diagrams, the points of each such diagram

serving to represent protomonic, neomonic and complex
values (primarily, and quantities secondarily) of a sort

(abstract or applicate) of Double Algebra. Mathematical

text-books do not make such a distinction, and do not

tell us where are to be found the imaginary and complex
abstract quantities which they say are &quot;represented&quot; in

the Argand scheme. A conception of these quantities as

relations between vectors does not seem to have entered

the minds of the authors of such works. As to the early

writers, Argand and Francais spoke of relations and ratios

(&quot;rapports&quot;), but not in a way which exhibited any

conception of such relations in the light of quantities.

So we certainly cannot agree with Prof. Hardy when he

says that in the articles in the Annales de Mathematiques

by Argand, Francais, Gergonne and Servois, &quot;the true

theory of the so-called imaginary quantities

was so exhaustively treated that nothing new has since

been found to add to them.&quot;
1 Gauss spoke of relations

as quantities; but these were not relations between vectors;

they were relations between points, and were themselves

vectors. That is to say, he regarded a line vector begin

ning at the point A and ending at the point B, as a relation

1 See Imaginary Quantities; their geometrical interpretation, (a trans

lation from Argand with comments) by A. S. Hardy, New York, 1881.
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between the point A and the point J5.
1 The recognition

of relations between vectors as abstract quantities owes its

inception to Hamilton, though even he was not as clear

on this matter as would have been desirable. Still it must
be admitted that by recognizing quaternions as entities

distinct from vectors as operators upon vectors he

showed a genius that puts him far above both his

predecessors and his contemporaries.

Returning now to the question of symbols which have

no denotation, we may say that the
&quot;

+\/x&quot; and
&quot;

-\-A
&quot;

mentioned above, Hamilton s
&quot;

h&quot; and the expressions

of his other biquaternions, the expression &quot;\/ 1&quot; in

Single Algebra and
&quot;

1&quot; in Arithmetical Algebra come
as near being &quot;mere symbols&quot; as anything in Mathe
matics. But we would hold that nothing ought to be

called a &quot;mere symbol&quot; whose habitual use is in dis

course where what is referred to is not the symbol itself

but wrhat that symbol represents. And thus none of the

symbols of Mathematics are, properly speaking, mere

symbols.

It may be of interest to note that Hamilton regarded
as a

&quot;

fault of Double Algebra that it interprets too much.

There ought to be uninterpreted symbols; and if you insist

on treating V/
1 as representing two real unit lines,

at right angles to the two lines 1
,
in a given plane, you

will just find yourself obliged to invest some new signs

for the old imaginaries of algebra, in order to meet the

necessities of geometry, even within the plane.&quot;
2 And

1 See Werke, Goettingen, 1863, Vol. 2, p. 175 and 176. In this

discussion Gauss does not restrict his consideration of relations to

relations between points, but he nowhere appears to consider rela

tions between vectors as quantities.
2 Letter to De Morgan in Life of Sir W. R. Hamilton, by R. P.

Graves, Vol. 3, p. 603. See also letter p. 298.
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Salmon held that the appearance in Quaternions of the

uninterpreted imaginary symbol
&quot;

h&quot; was a great advan

tage, and that the lack of such a mark of impossibility

would have made Quaternions &quot;good for nothing.&quot;
1 As

an example of what the appearance of a biquaternion may
signify, there may be taken the so-called imaginary inter

sections. When the question at issue is where a certain

intersection takes place, the arising of a biquaternion,

in the equation purporting to give the solution, is an

indication that intersecting is in the present case impos
sible. We may remark here that among other peculiarities

Hamilton s biquaternions possess the interesting property
that the product of two non-zero biquaternions may be

a zero.

The word &quot;biquaternions,&quot; originally introduced by
Hamilton, has also been used in a quite different sense by
Clifford,

2 who attempted to develop a new branch of

1 Letter to De Morgan in Life of Sir W. R. Hamilton, by R. P.

Graves, Vol. 3, p. 603. See also letter p. 298.
2 The first use of &quot;biquaternions&quot; in a sense deviating from that

of Hamilton is due to the Rev. Thomas P. Kirkman, Phil. Mag.,
1848. He used (p. 449) &quot;biquaternion or octad&quot; nominally to desig

nate certain octonomial expressions involving symbols of imaginary
units of seven different kinds. Probably he actually meant to apply
the term to what such expressions can denote. In the latter sense

the conditions required of Kirkman s biquaternions would seem to

be fulfilled by those abstract quantities which appear as relations

between Clifford s motors. The impropriety of Kirkman s use of

&quot;biquaternion&quot; is shown by Hamilton: Lectures, p. 730 note. We
may also mention the use of &quot;biquaternion&quot; by Gaston Combebiac
in his Calcul des Triquaternions, Paris, 1902. In his terminology,
&quot;A biquaternion is a complex quantity of the form q-\-uqi, where

q and q\ are quaternions and w is a new complex unit commutative
with the four quaternion units and having its square zero&quot; (p. 10).

Triquaternions is a &quot;complex number system with twelve units&quot;

and a triquaiernion is a complex quantity of the form q
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Mathematics called by him Biquaternions.
1 The applicate

quantities peculiar to Clifford s system (and taking a

role analogous to that of vectors in Quaternions) are desig

nated as motors, and the abstract quantities appearing
as relations of motors are called biquaternions. The most

important characteristic of motors as contrasted with

vectors is that in comparison of motors as to equality,

the positions of straight lines called axes pertaining to the

respective motors are taken into account, while for two
vectors to be esteemed equal, it is sufficient for them to

be alike in currency and magnitude. A velocity of rota

tion about a certain axis is a motor of one of the simplest

types, and motors of such simple types are designated
rotors. More recently the subject has been taken up by
McAulay2 who replaced the word &quot;

biquaternion
&quot;

by
&quot;octonion.&quot; An octonion ought by analogy with Quater
nions be an abstract quantity: a relation between two

motors of the same sort; and likewise by analogy there

ought to be seven primitive imaginary kinds and one

primitive real kind in the abstract sort of Octonions.

But neither Clifford (who from the difference between

his Lectures and Essays, which are a model of clearness

of thought and exposition, even where Mathematics is

concerned, and his not very lucid Mathematical Papers,
seems to have been philosophically something of a Dr.

Jeckyll and Mr. Hyde) nor McAulay have paid much
attention to relations between motors; both seem to prefer

where q, &amp;lt;?i

and q-i are quaternions, and w and M units commutative

with the quaternion units and following the laws: w2 =
0, M2 = 1,M =

Mco = co.

1 See Mathematical Papers of W. K. Clifford ed. by Robert Tucker,

London, 1882.
2 See Octonions, a development of Clifford s Biquaternions, by Alex

ander McAulay, Cambridge, 1898.
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to treat the subject on the lines followed in vector analysis

by Grassmann, Gibbs, et al, rather than to adopt a more

scientific method. 1

A stage has now been reached where we may with

advantage examine the conventional definition of variable

in its more modern form. Practically all the mathematical

text-books now in use in England and the United States,

either give no definitions at all of variable and constant,

or reproduce almost verbatim the definitions of Newton,

As, however, such text-books are brought forth almost

invariably by mere compilers, rather than mathemati

cians of authority, we turn to continental Europe, where

we find equally bad definitions from more authoritative

sources. For instance, in Lemons sur les Theories Generates

de VAnalyse by Professor Rene Baire of Dijon, a most

eminent mathematician, we are told that: &quot;In Mathe

matics, one represents by a letter a number susceptible

of taking different values. We say then that we have a

variable.
&quot;2 At another place (p. 43) Baire speaks of a

1 Any one with a philosphical cast of mind who looks into the

Ausdehnungslehre will be inclined to agree with Hamilton s estimate

of Grassmann (written not for publication but in a private letter to

De Morgan, see Life vol. 3, p. 442): &quot;Grassmann .... has

not anticipated, nor attained the conception of, the quaternion,

even so nearly as I guessed that he might have done, from a notion

hastily taken up, of what might have been his meaning (and what
it was, I very dimly know even now), in his doctrine of eingewandte

multiplication. I quote from memory. His outer products (auessere)

I think that I do understand; and that is saying something for a

person who has not learned to smoke. And even his inner products
. . . . I can swallow pretty well. ... I think that my
own researches, or speculations, would have a better chance of being

appreciated in these countries, if readers had first been put through
a sufficient course or dose of Grassmann. I must say that I should

not fear the comparison.&quot;
2
Op. cit., vol. 1, p. 20. This work is dated 1907.

10
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variable quantity, while again he takes occasion (p. 20)

to refer to
&quot;

several variables ; that is to say, several letters

each of which is susceptible of representing different

numbers.&quot; The word number itself, he does not seem to

define.

For another example of the doctrine in vogue in the

Latin countries, it will surely not be unfair to turn to a

work written under the supervision of Professor Giuseppe
Peano of the University of Turin, who has attained an

international celebrity from his application of Symbolic

Logic to Mathematics. In Calcolo Differenziale e principii

di Calcolo Integrate by A. Genocchi
&quot;

publicato con aggiunto
dal Dr. Giuseppe Peano (Roma, 1884)&quot; we find the fol

lowing (p. 3): &quot;In the questions considered there may
appear quantities to which determinate and fixed values

are supposed to be attributed, and these are called con

stants, and other quantities supposed to be able to assume

diverse values, and these are called variables.&quot;

In Germany those eminent mathematicians who, during
the last fifty years, made such noteworthy investigations

of the Theory of Functions, usually fail to give any
definition at all of variable, and here again we are com

pelled to consult University text-books, rather than

memoirs of original investigations. In a very recent work;
the Vorlesungen ueber Algebra of Dr. Gustav Bauer,

&quot;Geheimrat, Ordentliche Professor an der Universitaet

Muenchen&quot; (2nd Ed., Leipzig, 1910), we are told (p. 1)

that: &quot;One distinguishes between constant and variable

quantities. The former have a fixed given value, the latter

can take different arbitrary [beliebige] values.&quot; The only

innovation here apparent over the old Newtonian defini

tion is a new error; the stipulation that the value of a

&quot;constant quantity&quot; must be
&quot;given.&quot;

As will be shown

in our subsequent discussion of the known (or &quot;given&quot;)
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and unknown quantities of Algebra, the distinction

between these has nothing whatever to do with the dis

tinction between variables and &quot;constants.&quot; A constant

may be unknown just as well as it may be known, and a

variable may be composed of known quantities, or of

unknown, or of both.

In the Theorie der analytischen Fmwtionen by O.

Biermann (Leipzig, 1887) occurs the following: &quot;In

the formation of named expressions we will posit [fest-

setzen] that certain elements retain values fixed once for

all, other elements take in turn various values of our

system of quantities [Groessensystem]. The former

quantities are called unalterable or constant, the latter

alterable or variable.&quot; (p. 64).

Professor Heinrich Burkhardt of Munich is a mathe

matician of some prominence. In his Algebraische Analysis

(Leipzig, 1903) he gives the following definition (p. 37) :

&quot;A number is said to be alterable or variable when in the

course of an investigation there is always assigned to it

one value after another [immer andere und andere Werte

beigelegt], and to be constant when the value first assigned

to it is retained throughout the whole investigation (which

does not preclude its changing during another investi

gation.)&quot;

In E. Czuber s Vorlesungen ueber Differential und

Integral Rechnung (2nd Ed., Leipzig, 1906) we find the

following (p. 13) :
&quot;By

a real variable is to be understood

a symbol for a variable quantity, which, in accordance

with the problem in which the variable quantity appears,

can be assigned several or unlimitedly many number-

values [Zahlenwerte].&quot;
1 To distinguish between &quot;vari-

1 We translate Zahlenwerte by number-values, as numerical values

would obviously not be what is meant. Since &quot;real variables&quot;

are in question, protomonic values are probably what are referred to.
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able&quot; and &quot;variable quantity&quot; in this way, does not,

of course, surmount any of the difficulties that arise

in connection with the Newtonian definition, since the

question at once comes up whether or not the variable

quantity, of which we are told a variable is the symbol,
is really a quantity.

Of the various encyclopedic works on Mathematics,
the latest and most authoritative is the Encyklopaedie der

mathematischen Wissenschaften edited (so far as Division

1, Pure Mathematics is concerned) by Burkhardt and

Meyer. The section on the Grundlagen den allgemeinen

Functionenlehre (Vol. 2, Part 1, Leipzig, 1889) was written

by Professor Alfred Pringsheim of Munich, who is without

question one of the very highest authorities on the subject.

On page 8 we find this definition: &quot;By a real variable is

to be understood a symbol, usually one of the last letters

of the alphabet, to which is assigned successive different

number-values (for example, all possible between two

fixed number-values, all rational, all integral).&quot; Quite

similar statements are to be found with various other

authors, and for some strange reason this symbol modifi

cation of the old definition would seem to be growing in

favor. We speak of it as a mere modification, and not as

something entirely new, since those authors who adopted
it do not bring it forward as expressing a new conception

of a variable, and have no objections to offer against

the old definition, even though (like Pringsheim) they

purport to give a historical account of the fundamental

conceptions of the Theory of Functions. The obvious

interpretations of such a silence would be that these

authorities do not deny that a variable is a quantity,

but class variable and quantities alike as symbols, and

thus regard Mathematics as conversant with words and

symbols merely, We have already, in discussing the
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i, j, k quantities of Quaternions, shown how preposterous

is such a view when closely examined, and we would be

loath to believe that a man like Pringsheim could have

fallen into this error. One would suppose it must have

been clear to him that Algebra is more than mere symbol

juggling, and no more has for its subject matter the words

and symbols it makes use of, than Botany has as its

subject matter such words as &quot;coniferse&quot; and &quot;cruciferse.&quot;

But it avails little to attempt to absolve Pringsheim from

this absurd blunder, since no matter how we construe

his words, there cannot be read into them any meaning
that is even approximately correct.

Like remarks apply to the various formulations of the

symbol definition to be found in mathematical works.

Among such we may cite that of Weber, who after defining

an integral function as an expression of a certain character

involving x, says that x is
&quot;

a symbol for which any number

value we choose can be put. We then call x the variable.&quot;
1

Tannery says: &quot;the notion of a variable, of a letter which

can take any number-value [valeurs numeriques] whatso

ever has been difficult to bring to light . . . it is

well to modify the notion of the variable: this is not, as

I have said provisionally, a letter which can take any
values whatsoever, but any values whatsoever belonging

to a certain ensemble. There are functions which are only

defined for the integral and positive values of the vari

able.&quot;
2 We regret to also find a definition of this type in

the recent work of Professor Pierpont of Yale: Lectures

on the Theory of Functions of Real Variables (Boston, 1905),

a work of really great merit. On page 118 of Vol. 1,

1
Encyklopaedie der elementaren Algebra und Analysis by H. Weber,

Leipzig, 1906, p. 185.
2
Mathematiques Pure by Jules Tannery (in De La Methode dans

les Sciences, Paris, 1909).
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Pierpont says: &quot;A symbol which takes on more than one

value, in general an infinity of values is called a variable.&quot;

Here, besides the symbol fallacy, there is another error

in the restriction requiring there to be more than one

value represented in a variable. This is entirely needless,

since Mathematics is not bound to defer to etymological

prejudices. To require that there be variation of value

in the quantities of a variable, is a cumbersome and useless

restriction, however it may appear to the etymologist.

In Analytical Geometry, for instance, there is no reason

why the ordinates of a line drawn parallel to the axis

of abscissas should not be regarded as constituting a

variable. In such a case all the quantities of the variable

are of the same value, but it is a variable for all that.

A variable-class differs from a value-class not by what

it includes, but by the purpose for which it is formed.

The Elements der Differential imd Integralrechnung by
Professor Axel Harnack is a work of some repute. We
quote the following from the English translation of 1897

(p. 15): &quot;A quantity is said to be variable when it is

able to assume different numerical values. 1 As in purely

arithmetical investigation we no longer consider what

are the things given in number, so in the conception of

variable quantity we have also to free ourselves entirely

from considering what this quantity represents. The
distance of a movable point, the temperature, the tension

of vapor, in a word everything measurable in nature can

enter into calculation as variable quantity.&quot; These

remarks evidently belong to a transitional stage in the

change from the Newtonian quantity-formulation of the

1 In the original: Zahlenwerte, which we ourselves would render

by number-values not by numerical values. The English transla

tion above quoted is entitled Introduction to the Study of Calculus,

and is said to be by G. L. Cathcart.
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definition of variable to the symbol-formulation. Harnack

appears to take the untenable ground that &quot;variable&quot;

is an ordinary class name. When he speaks of freeing

ourselves entirely from considering what a variable

quantity represents, he probably means the leaving out

of considerable certain differences in value when forming
classes. He seems to have a faint and confused idea of

the process of forming value-classes and variable-classes,

though he is unable to see that they are composed of quan
tities. Moreover, he is unaware of the essential difference

in purpose of these two class forming processes, and fails

to see that while
&quot;

two,&quot; for example, the name correspond

ing to a value-class, is an ordinary class name, the name

assigned a variable is not an ordinary class name, and in

its characteristic use does not occur in propositions con

cerning the members of the variable-class taken indi

vidually. The proposition: &quot;Two plus three equal five&quot;

is in this respect quite analogous to the ordinary logical

proposition: &quot;Every man is mortal,&quot; and &quot;two&quot; and

&quot;man&quot; are both ordinary class names. But this analogy
does not hold with the proposition: &quot;The variable x

approaches the limit a;&quot; and the name &quot;x&quot; or &quot;variable

x&quot; does not bear to the quantities of this variable the

relation a class name bears to the objects of its class.

To confuse names of variable with ordinary class names
in this way would be far more reprehensible in a. logician

than in a mathematician, who can seldom lay claim to

more than a narrow technical education. But we do

find this very error with authors who deem themselves

logicians. There are logicians and &quot;logicians,&quot; however;
there are mathematicians who devote themselves to Logic,

but who instead of introducing logical methods into their

mathematical investigations, find it more congenial to

introduce &quot;mathematical&quot; methods into Logic. In this
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treatment of Logic, manipulation of symbols plays a pre

ponderant part, while attention to the meaning of the

symbols, and to the processes of inference represented

by symbolic transformations is reduced to a minimum.

In so speaking we do not have in mind all works on Sym
bolic Logic (that of Venn, for instance, is of true scientific

value); but we do not hesitate to say that such treatises

as those of Schroeder and Peano are a hindrance rather

than a help to precision of thought and speech. If, after

developing Logic on a &quot;mathematical&quot; basis, the symbol

juggling &quot;logician&quot; again turns his attention to Mathe

matics, we might well expect to see, not a clearing away
of old errors, but an aggravation of them; to say noth

ing of the introduction of new, and this is usually what

actually happens. Among English mathematicians of

the Peano School the Honorable Bertrand Russell stands

preeminent. He is the author of a ponderous and preten

tious treatise entitled Principles of Mathematics 1 from

which we shall give a few citations bearing on quantities

and variables.

Let us begin with Mr. Russell s views concerning natural

numbers. Mr. Russell, using &quot;class&quot; where we would

prefer to say &quot;group of objects,&quot; and taking &quot;similar&quot;

in a sense under which a thing may be said to be similar

to itself, defines
&quot;

as the number of a class the class of all

classes similar to the given class,&quot;
2 which is such as though

1 Cambridge, at the University Press. All our citations are from

the first volume (1903).
2
Op. cit., p. 115. A definition, not wholly unlike this and clearly

of equal value is formulated by Frege (Op. cit., p. 79): &quot;Ich defmire

demnach: die Anzahl, welche dem Begriffe F zukommt, ist der

Umfang des Begriffes gleichzahlig dem Begriffe F.
&quot; This defini

tion and that of zero previously cited are not unfair specimens of

what Frege puts forth. As a logician he cannot be ranked above the

level of Schroeder and Peano.
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one were to define whiteness as the class of all white

objects. This absurd definition, which Mr. Russell calls

&quot;an irreproachable definition of the number of a class

in purely logical terms,&quot; is not due to Peano, but is claimed

with pride by Mr. Russell as all his own. Both master

and disciple, however, agree that such similar classes all

have the same number, which is, Peano contends, a

property common to all the classes. And thus Peano, as

well as Russell, has failed to recognize the important
distinction between equality and identity a distinction

which must form the corner-stone of any really scientific

treatment of Mathematics.

According to Mr. Russell: &quot;The variable is, from the

formal standpoint, the characteristic notion of Mathe
matics. Moreover, it is the method of stating general

theorems. . . . That the variable characterizes Math
ematics will be generally admitted, though it is not

generally perceived to be present in elementary Arith

metic. Elementary Arithmetic, as taught to children,

is characterized by the fact that the numbers occurring

in it are constants: the answer to any schoolboy s sum is

obtainable without propositions concerning any number.

But the fact that this is the case can only be proved by
the help of propositions about any number, and thus we
are led from schoolboy s Arithmetic to the Arithmetic

which uses letters for numbers and proves general theorems.

. . . Now the difference consists simply in this, that

our numbers have become variables instead of being
constants. We now prove theorems concerning n, not

concerning 3 or 4 or any other particular number.&quot;
1

It is clear from these passages that Mr. Russell (like his

master Peano we must add) utterly fails to see the essen-

*0p. tit., p. 90.
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tial difference between the name of a variable and an

ordinary class name. It is certainly not very creditable

to the Peano School that both Master and Disciples fail

to perceive the enormous difference between the name
of a variable,

&quot;

x,&quot;
in such a characteristic proposition

as &quot;The variable x approaches the limit
a,&quot;

and a true

class name &quot;x&quot; in a proposition like &quot;Every x is greater

than zero.&quot;

It will be observed that, while we have made plain what

a variable is not, and have described in what manner it

is constituted, care has been taken to avoid any statement

as to what a variable is. We have shown of what a variable

class consists, but have not defined &quot;variable.&quot; A vari

able as we have seen is neither a quantity nor a symbol,
and reflection shows that we cannot in consistency with

the phraseology of Mathematics say categorically that

a variable is the variable-class or set of quantities wrhich

constitute the variable, When y is a variable in functional

relation with another variable x, the functional formula

being y = x2
, we cannot well replace the names

&quot;y&quot;
and

&quot;x&quot; by &quot;a set of quantities&quot; and &quot;another set of quan
tities,&quot; for we cannot intelligibly speak of the square of

a set of quantities at all. Of course the interpretation of

the proposition y= x2
presents no great difficulty; it clearly

refers to the operation of squaring each of the quantities

of the set in question; but when this is once admitted we

cannot, if the rules of language have any sway at all,

say categorically that the variable x is the set of quanti

ties we must content ourselves with saying the variable

is constituted by this set of quantities. Were the names of

variables to occur only in such propositions as y= x2 or

only in such as &quot;x approaches a as a limit,&quot; there would

be comparatively little difficulty in defining &quot;variable,&quot;

but the use of propositions of both types side by side ren-
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ders the name variable anomalous, and though, on the one

hand, it would seem we cannot call
&quot;x,&quot;

the symbol of

a variable, a class name,
1 on the other, after once accepting

the use of &quot;x&quot; in such a proposition as y=xz
, one can

hardly be expected to refrain from passing on to the phrases

&quot;an x&quot; &quot;two of the x
s,&quot;

&quot;all of the x
s,&quot; etc., etc., where

quite clearly &quot;x&quot; is used to denote quantities of the vari

able, just as though it were nothing more or less than

an ordinary class name belonging to these quantities.

We must thus recognize that, with a variable, one and the

same name is used in denoting the variable itself and the

quantities which constitute it.

Any attempt to give a precise account of the definition

of the term &quot;variable&quot; would require a somewhat lengthy

consideration of the philosophical theory of the categories,

which cannot be given in this place. We may, however,

make a few remarks on this matter; remarks which owing
to their brevity cannot constitute an entirely satisfactory

treatment of the subject. In Metaphysics the point of

view which is perhaps the most prevalent is Realism in

its various modifications, a doctrine which upholds the

existence of things in themselves or substrata underlying

our perceptions. Opposed to this we have the School of

1 Or rather let us say: &quot;It would seem we cannot call x a class

name of a variable-class.&quot; Of course if there be included under

class names individual names (e. g., &quot;Socrates,&quot; &quot;Plato&quot;) put for

ward each as the name of a single object, the class in such a case

containing only this one member, the name of a variable is a class

name by virtue of its denoting the variable itself. But this is quite

a different matter from its being a non-individual class name and

being the class name of the class of quantities constituting the

variable. The wording of our text is not we apprehend incorrect

from the point of view of current usage, which hardly sanctions

calling an individual name a class name. However, it seemed best

to add this note, as we ourselves are inclined to include individual

names under class names.
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Empiricism, which starting in the Philosophy of Locke

found further development with Berkeley and reached

its culmination with Mill. In antithesis to Realism we
have the word Idealism to denote the views of the Philoso

phers last mentioned; Berkeley having denied the exist

ence of one class of &quot;things in themselves&quot; (having denied

the &quot;existence of matter&quot;) while Mill without reservation

denied the existence of substrata altogether.
1 Besides

its application in reference to the denial of such existences,

the term &quot;Idealism&quot; has frequently been applied to the

point of view which Sir William Hamilton (of Edinburgh)
called &quot;Cosmothetic Idealism,&quot; and which consists in

a philosopher &quot;denying an immediate or intuitive knowl

edge of the external reality whose existence he maintains.&quot;

Those who, like Kant, hold this view obviously stand on

a very different footing from that of the true Idealist,

who utterly refuses to admit the existence of an
&quot;

external

reality.&quot; The most extreme development of Empiricism
in this respect is the denial that we can intelligibly speak
of things in themselves, as distinguished from things as

they appear to some sentient being. Where the moderate

Idealist would deny the propositions of the Realist con

cerning existence and thus admit them to be intelligible,
1

1 It will be observed that we make no mention of Hume, an omis

sion not without its reasons, though they cannot be given here.

We need hardly remark that Empiricism in Metaphysics has nothing
in common with the &quot;Positivism&quot; of Auguste Comte a &quot;Philo

sophy&quot; characterized by a total absence of any attempt to analyze
mental phenomena. As far as very recent works are concerned,

the only one for which an Empiricist can feel any enthusiasm is

Mach s Analyse der Empfindungen.
1 A Philosopher, however, who classes meaningless propositions

with false, instead of making a threefold classification of propo
sitions into true, false and meaningless, can consistently deny the

existence of substrata, and yet be an extreme rather than a moderate

Idealist.
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the more extreme Empiricist would regard the propositions

in question as mere gibberish without a shadow of meaning.
This latter view needs a specific name to distinguish it

from moderate as well as Cosmothetic Idealism, and as

it will usually be held in conjunction with the Nominalistic

view concerning the nature of general terms and has some

connection with the latter, we may provisionally denote

the standpoint of the more extreme Empiricist (which we
ourselves uphold) by the title Nominalism. Now accord

ing as the system accepted be Realism or Nominalism,
the question of the categories appears under one of two

varying aspects. The Realist will think that every object

worthy of consideration comes under one of several

summa genera, it being regarded as possible to completely
enumerate these summa genera or highest classes. Any
name not belonging to an object coming under one of

these heads is, he holds, of no importance, being the name
not of a really existing object but of a fictitious entity.

The Realist then thinks it always possible to give a defini

tion per genus et differentiam. The Nominalist makes

of course no distinction between the name of an object

possessing a substratum and the name of an object devoid

of this. To him every name is alike a device to describe

a state of affairs which on analysis ultimately reduces

to certain perceptions
1 or groups of perceptions of sentient

beings. Thus to say: &quot;An orange lies before me&quot; means

simply that, if my senses be in a normal state, by proper
attention I can have certain perceptions of sight, touch,

taste, etc. Take now the more complicated statement:

&quot;The English constitution exists.&quot; This of course does

1 The word perception, as here and elsewhere used by us, includes

sensations and in general all states of consciousness whatever. Its

use in this sense, though by no means an innovation, is of course

not the one most prevalent.
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not refer to a roll of parchment covered with writing; in

fact England has no written constitution. But the English
constitution is a reality for all that, even though it cannot

be put under any of Aristotle s categories. To say the

English have a constitution merely means that under the

proper circumstances certain facts would be observed by
a sentient being or beings, and the observations thus made
would amount ultimately to nothing more or less than

very complicated groups of perceptions.

The Nominalist then, unlike the Realist, regards the

English constitution as a really existing object, just as

much as the orange; neither are fictitious, but the former

is at a much greater remove from its elemental percep
tions than is the latter. It is futile, from the standpoint
of Nominalism, to attempt a complete enumeration of

summa genera; if a complete list be made to-day, to

morrow a new phraseology may spring up which groups

perceptions in a way never hitherto attempted and thus

brings into existence a new summum genus. Definition

per genus et differentiam is available when the name to be

defined is that of an object belonging to a well known
summum genus, but when the object concerned is of an

entirely new type when we are concerned with an entirely

novel grouping of perceptions any attempt to define in

this way would result in failure. To tell us an X is a Y

possessing the differentia Z does not give us any informa

tion of service unless we are already familiar with the genus
Y. When this difficulty arises a new mode of definition

must be adopted. We must gather together the various

propositions that can be asserted concerning the objects

in question, and say under what state of affairs we would

assert each of them to be true and under what false. Thus,
instead of attempting to say a variable is an object of a

certain genus with certain differentia, the aim should be
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to gather together the most important propositions in

which the word &quot;variable&quot; is used, and to say under what

conditions they are true or false. The name &quot;variable&quot;

was not coined to denote members of a class carved out of

one of Aristotle s categories, it was brought into use to

describe certain important facts concerning sets of quan
tities. If it can be stated what these facts are, and the

reader be enabled to interpret every proposition involving

the word &quot;variable,&quot; he being thus put into a position to

tell what state of affairs corresponds to the affirmation

of the proposition and what to its denial, more will have

been done than if a variable had been defined by means
of a genus utterly unknown to him. When the student

of Mathematics reaches the subject of variable it is utterly

impossible to give him a definition per genus et differen-

tiam based upon the familiar conceptions of elementary
Mathematics. Variables are not special cases of a class

of objects already familiar to the student; they are objects

of an entirely new type, though, as \ve shall see, he usually

deals with variables of a simple character long before he

becomes acquainted with the name. One might, indeed,

it would seem, include variables in the summum genus

aggregates, and say a variable is a quantity aggregate, but

this definition sheds more light on the meaning of
&quot;

aggre

gate&quot; than on that of &quot;variable.&quot; Moreover, the Theory
of Aggregates exhibits a marked difference from the

Theory of Variables, in that the former takes not the

slightest account of the individual characteristics of the

elements of an aggregate (e. g., their values in the case of

an aggregate of quantities) while in the latter the values

of quantities of a variable are of supreme importance. And
as a natural consequence of this, there are in the Theory
of Aggregates no propositions made use of analogous to

those expressing functional relations between variables.
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So that here the anomaly does not arise of having the

same symbol denote both an aggregate and the elements

of that aggregate. Aside from this fact (to which mathe
maticians have hitherto paid no attention) it would seem

a quite obvious step, after the Theory of Aggregates had

once been developed, to define a variable as an aggregate

composed of quantities (or &quot;numbers);&quot; and this has

occasionally been done, but the authors who take such

a course show no indications in what they say elsewhere

of any insight into the true doctrine of variables. A defini

tion of this type is given by Durege, who says: &quot;Instead

of the designation number we use also the designation

number quantity [Zahlgroesse] or quantity. We use

in particular the designation variable quantity or vari

able when we represent to ourselves that the symbol x

shall denote in succession the different numbers of a

number aggregate M.&quot;
1

Durege evidently failed to per
ceive the important difference between the name or

symbol of a variable and an ordinary class name used to

denote the component quantites of that variable, and

nowhere in his works can be found traces of the wide

spread changes in other definitions which are necessitated

by a recognition of the true distinction between quantities,

variables, and symbols.
The most simple of all variables are the ordinary pro

gressions of Arithmetic: arithmetical, geometrical, har-

monical, etc. That these are not given a more prominent

place in the current treatment of the theory of variables

is highly regrettable. The four distinct and somewhat

difficult conceptions of variable, limit, algebraic continuity

1 Elemente der Theorie der Functionen einer komplexen veraender-

lichen Groesse by H. Durege (5th Ed; edited by L. Maurer, Leipzig,

1906), p. 23.
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and function are best introduced one by one, and progres
sions are par excellence the variables whose theory can be

developed to a considerable extent without bringing into

play the three remaining conceptions.

A progression is a discrete unifarious variable of a cer

tain character. The quantities of a progression are called

its terms. 1 It is more common to speak of the symbols

representing the quantities as the terms, but if this be

accepted, it is difficult to see how we can intelligibly

speak of the sum of n terms, of the mathematical relation

borne by the second term to the first, etc.
2 If to a closed

vessel filled with air we apply a piston pump, and remove

air without leakage, stroke by stroke, the weights of the

bodies of air successively drawrn out will consitute a vari

able, and this variable will be a decreasing geometrical

progression. With arithmetical and geometrical progres

sions, to obtain the value of any term from the progres-

sional formula, it is necessary to have given besides the

formula, merely the value of the preceding term. Thus
with such formulas as an = an_i+5 (which is that of an

arithmetical progression) and as a,t
= 5an_i (which is that

of a geometrical progression) we are able to do this. With
other more complicated progressions, the progressional

formula is such that to find the value of any term from

the formula, it is necessary to have given, besides the

1 The name term may be applied to the quantities of a variable

whenever the variable is discrete.

2 What we take as the mathematical significance of &quot;term&quot; is

in sharp contrast to its meaning in Logic, where a term is a name
and is thus not what this name denotes. We prefer to use &quot;term&quot;

in these two so different senses, in the two different sciences, rather

than use it in both Logic and Mathematics as referring, not to what
is spoken or written of, but to a part of the speech or writing itself,

while making the requirements under which an expression may be

called a term different in the two disciplines.

11
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formula, the value of two or even more of its immediate

predecessors. But, however this may be, if the value of

n preceding terms is sufficient with one term of a progres

sion, the values of a like number of predecessors will also

be sufficient with every other term. That is to say, with

all progressions, to obtain the value of any term by means

of the progressional formula, it is necessary and sufficient

to have given, besides this formula, the values of a certain

number of preceding terms. The problems met with in

Arithmetic concerning progressions are: given certain

data, to find the value of the nth term of a progression,

the sum of n consecutive terms, or the formula; there is

here no consideration of approach to a limit.

We will next consider a class of discrete unifarious vari

ables differing from progressions solely in the character

of their formulas. The formula of a variable of this class

enables us to find the value of any term when we are given
no data except the ordinal rank of the term in its variable.

That is to say, to find the value of the nth term by means

of the formula, it is necessary and sufficient to have given,

besides this formula, the value of n. Here then n is an

essential operand, while this is not the case in the applica

tion of the formula of a progression. We should prefer

to apply to variables of this character the name series;

but &quot;series&quot; as commonly used in Algebra does not in

clude all such cases. If we have a variable of the class

just mentioned whose formula is of the simple type

exemplified in a n
= 5

n
or an = 3

n+10n+1 we can evidently

form another less simple variable of the same class by

taking as first term, the first term of the original variable;

as second term, the sum of the first and second terms of

the original ;
as third term, the sum of the first, second and

third terms of the original and so on. In the new variable

there is clearly not a great deviation from the original
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type, the only difference in character being that the for

mula is more complicated. If the original formula be

f(ri), the new formula will be /(I) +/(2)+ .+f(n).
In the present usage of mathematicians, the name &quot;series&quot;

is given to variables whose terms are derived from the

terms of other variables by such processes of addition, but

it is not granted to these other variables if they are of

the simple type (i. e., if they do not themselves originate

by such summation). We, however, prefer to use the name
summative series for variables produced by the processes

of summation described above, widening the name series

to include the original variables as well as the new vari

able derived from it. The adjective &quot;summative&quot; may
seem hardly suitable when, as in the case of a 6+c d-\-

. . . for instance, there seem to be involved in the for

mula of the series one or more minus signs. But in treat

ing such a series mathematicians follow- a procedure which

amounts to putting in the place of b, +( 6); in the

place of d, -\-(d); etc., so that we have as formula

for the series a+( 6)+c+( d)-\- . . .; and hence

there can be really no objections to the use of &quot;summa

tive&quot; here, provided it be understood that the first for

mula is merely an abbreviation for the second. In a+ ( 6) ,

etc., the sign does not indicate subtraction, and of the

operation it does indicate there will be more to say later.

If in the primitive series, by the addition of whose terms

a summative series is derived, the terms are all of a single

kind and alternately positive non-zeroes and negative

non-zeroes, the summative is said to be an alternating

series.

Completely irreconcilable, not merely with the view wre

have taken of series, but likewise with that which would

restrict the title to the summative series, is a practice

which by its prevalence makes the current use of the term
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not even self-consistent. When an expression is said to

represent a series, what is frequently meant is that it

represents a dependent variable which is not a series,

though it bears to another variable what might be termed

a serial functional relation. Thus take the expression :

where
&quot;

x&quot; represents an independent variable ranging
in value continuously from to +1 (both exclusive).

The expression in question represents, not a series, but

a non-discrete variable, the quantities of which are the

limits of the innumerable summative series whose form

ulas can be obtained by substituting for &quot;x&quot; in the above

expression an individual symbol representing a quantity
of the variable x. If &quot;a&quot; is such an individual symbol,
the formula for the nth term of the corresponding series

will be:

In a case like this, then, although there are innumer

able series concerned, neither the independent nor the

dependent variable of the discussion is a series.

The application of &quot;series&quot; which we have advocated

and intend to adopt in the present work is not entirely an

innovation. Cayley sanctions its use in a sense which is cer

tainly not less broad. He says: &quot;A series is a set of terms

considered as arranged in order. Usually the terms are

or represent numerical magnitudes and we are concerned

with the sum of the series.&quot;
1

Cauchy thus defines series:

&quot;an indefinite succession of quantities u
,
ult u2,

u-A ,

. . . which are derived from each other according

1 Collected Math. Papers, Vol. 11, p. 617 (Article Series).
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to a determined law. The quantities themselves are the

different terms of the series.&quot;
1 We may also invoke

the authority of Wallis, a mathematician and logician of

repute, who deserves the chief credit for the introduction

of infinite series into mathematical investigations. In

the terminology of Wallis, series are simply &quot;certain

Progressions or Ranks of Quantities orderly proceeding.&quot;
2

None of these authors, however, distinguish, as we do,

between a primitive series and its summative; between the

terms of the primitive and the terms of the summative;
between the convergence of the former and the converg
ence of the latter. With all mathematicians heretofore

the two series are confused; when terms are spoken of,

the terms of the primitive series are always meant, while

the convergence or divergence considered is always the

convergence or divergence of the summative. Another

distinction which is not properly drawn is that between

series and progressions. Not all mathematicians go so far

as Wallis, who would seem to regard the two names as

synonymous, but it w^ould be difficult to find an author

that even attempts to precisely delineate a distinction

between them. The distinction we have laid down is based

it should be noted, not upon the constitution of the vari

able itself, but upon the character of the formula assigned

to it. The same set of quantities, arranged in the same

way, may be made to constitute either a progression or a

1

Oeuvres, Series 2, Vol. 3, Paris 1897, Anal, algebr. p. 114.

2 His definition has reference more particularly to convergent series.

In his Treatise of Algebra, London 1685, Ch. 73, he says: &quot;There

is yet another thing to be spoken of which I look upon as a great

improvement; which is that of Infinite Series (as they are wont
to be called); That is certain, Progressions or Ranks of Quanti

ties, orderly proceeding, which make continual approaches, and if

infinitely continued would become equal to what is inquired after.&quot;

Note the recognition that a series is composed of quantities.
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series, according to the formula laid down as belonging to

this variable. Thus a variable whose successive terms are

of values, 5, 10, 15, 20, etc., is a progression if an = an-i+5
is laid down as its formula; while if an

= 5n is laid down,
it is a series. Every progression can at will be changed
into a series, but some series cannot be changed into

progressions, there being no progressional formula ade

quate to express the law that rules such a series.

That the series of Algebra are variables is, one would

think, sufficiently clear from the mere fact that nearly

all the discussions of series in mathematical works bear

upon their convergence or want of convergence that is,

their tending or failure to tend to a limit. And yet it

would be difficult to find anywhere an explicit statement

to the effect that a series is a variable. Some definitions

of &quot;series&quot; are indeed glaringly erroneous. Thus, in a

comprehensive work of high repute by Professor G.

Chrystal,
1 we are told that

&quot;

By a series is meant the sum
of a number of terms formed according to some common
law. . . . An Arithmetic Series or an Arithmetic

Progression, as it is often called, is a series in which each

term exceeds the preceding by a fixed quantity.&quot; That

with the series to which mathematicians have paid most

attention, summation plays an essential part, affords

not the slightest excuse for defining a summative series

as a sum; while there is lacking even the shadow of a pre

text to justify speaking of a sum whose summands con

stitute a progression as the progression itself. Incidentally

we may add that any one who defines a series as a sum,
must in consistency deny the name to many of what

mathematicians now call series. With a convergent
summative series of innumerable terms, it is customary

1

Algebra, 5th Ed., London, 1904, Part 1, p. 480 and 482.
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to speak of the limit toward which the series converges
as the &quot;sum of an infinite number of terms,&quot;

1 and when
an &quot;infinite&quot; series is divergent the sum is said to be plus

infinity or minus infinity. But, even admitting for the

moment such a use of the word &quot;sum,&quot; there is nothing
which is or can be called a sum in the case of an &quot;infinite&quot;

series neither convergent nor divergent. And yet no one

would propose to abandon the use of the name series in

such cases.

We find the following in a work of well deserved repute :

&quot;When the terms of a sum are to be added in the order

in which they are written, the operation is called a series

. . . for the succession of numbers ... we retain

the word sequence, and we observe that the series is the

process or series of simple operations by wrhich we build

the sequence for the terms . . . the act (whether
of thought, writing or speech) by which we pass from the

sequence of terms to the sequence of sums this is the

infinite series.&quot;
2 The advantages of this use of the word

&quot;series&quot; we must profess ourselves utterly unable to

apprehend. In the Encyklopaedie der mathematischen

Wissenschaften no definition of series is given, so far as

we can find, but a procedure is followed which implies

some such view as the above. Infinite series are put
under the heading

&quot;

Irrationalzahlen und Konvergenz
unendlicher Prozesse.&quot; Do the eminent mathematicians

responsible for this work really regard a series as a process?

Besides the series of the character so far considered

there are also variables which mathematicians call mul-

1 The terms referred to in this phrase are not terms of the sum-

mative series itself (properly speaking), but are terms of the primi
tive series from which is derived the summative series that converges.

2 Introduction to the Theory of Analytic Functions by James Hark-
ness and Frank Morley, London 1898, p. 97.
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tiple series, these being multiplex instead of simplex; and

if they be admitted to be series, the ordinary series should

perhaps be called simple series. But it is very question
able whether the use of &quot;series&quot; as a generic name to

include multiple or better multiplex series together with

simple or simplex series is attended with any advantage.
We shall have no occasion to discuss multiple series and

will merely remark that the extension of &quot;series,&quot; to cover

series not derived by summation as well as summative

series, applies here also.

In some of the older works the first term of a progression

was said to have 1 as gradual number, the second to have

2 as gradual number, the third to have 3, etc. This

nomenclature originally arose with geometrical progres

sions, where, as in the case of a, a2
,
a3

, etc., there occur

in the representations of the successive terms the exponent

symbols &quot;1,&quot; &quot;2,&quot; &quot;3,&quot;
etc. (though, of course, &quot;1&quot; is

ordinarily not written). There might perhaps, on occa

sions, be some advantage in using the name gradual num
ber in this way, but without restriction to the case where

the terms concerned are in geometrical progression, and in

general making use of the designation in connection with

a progression or series of any character.

The term sequence which has been mentioned above

is in common use in modern Mathematics, and is there

given a denotation broader than that of either series

(even in the broad sense that we have taken for it) or

progression. A sequence is simply a discrete unifarious

variable of any character whatever, or rather, of any
character in so far that its terms may follow any law

that can be designated (for example: the law of a pro

gression or the law of a series) or may even be entirely

unamenable to law. This at least is the meaning that

must be inferred from the current use of &quot;sequence,&quot;
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though we do not recall having ever seen it explicitly

stated that either a series or a sequence is a variable.

When in Mathematics we deal with simple series (or

with progressions) there is most frequently considered,

in the discussion, only one arrangement of the quantities

of the variable in question, and this arrangement is

necessarily unifarious. There is nothing, however, to pre

vent our rearranging the quantities of such a variable

in quite a different order, which may be either unifarious

or non-unifarious, and we might even give them a non-

discrete unifarious arrangement, under which the variable

in question would necessarily cease to be a series. It would

really seem best to include as a part of the meaning of

&quot;sequence&quot; (and hence of &quot;series&quot; and &quot;progression)&quot;

the fact that the arrangement of the terms in the order

originally given them is always thereafter adhered to

(which is, of course, not the case with all variables), and

that a change in order is not a change in the sequence,

but its destruction and the creation of an entirely new

sequence. Taking this view, we must define a sequence
as a discrete unifarious variable having an immutable

arrangement of its terms. A progression is a sequence
with which the formula for the nth term lays down as

essential operands m terms previous to the nth; while

a series is a sequence with which the formula lays down n

itself as essential operand.



ON THE GENERAL CONCEPTION OF
FUNCTIONAL RELATION.

The following discussion of the general conception of

functional relation is a portion of Part X (Functional

Relations) of the first division (Algebraic Mathematics)
of this work. Since the publication of Part X as a whole

will probably not take place for some time to come, we
have thought it best to here insert a few excerpts from

that part which form a natural complement to what has

been said in the foregoing pages concerning variables.

One name that occurs in these passages, &quot;quesitive

symbol&quot; will be new to the reader, for it belongs to the

terminology of our Part VII (Symbols, Signs and Sigla).

As we use the term, it denotes those symbols used to

represent the unknown quantities of a mathematical

investigation. The antonym to &quot;quesitive symbol&quot; is

&quot;dative symbol.&quot;

The essential characteristic of a functional relation

between variables we hold to be the like order of corre

sponding quantities in these variables. For two variables,

y and x, to be in functional relation, it is necessary and

sufficient that there be two or more quantities of x, x\, x2 ,

etc., which respectively correspond to y\, yz , etc., quanti
ties of y, and that with every two pairs of corresponding

quantities, xm and ym ,
xn and yn , ym is subsequent to yn

when xm is subsequent to xn and vice versa; ym is previous
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to yn when xm is previous to xn and vice versa; and finally

when xm is neither previous nor subsequent to xn (e. g.,

is abreast of it, as may be the case under a multifarious

arrangement) ym bears a like relation of order to yn ,

and is neither previous nor subsequent to the latter and

vice versa. In the case of three or more variables, x, y, z,

etc., the sufficient and necessary conditions are quite

analogous. Thus there must be two or more quantities

of x, Xi, Xz, etc., which respectively correspond to y\, y%,

etc., quantities of y, to Zi, z2 , etc., quantities of z, etc., etc.

And, with every two sets of corresponding quantities,

, ym ,
zm , etc., xn , yn ,

zn , etc., whenever a quantity of

the first set is subsequent to the cognate quantity of the

second, every other quantity of the first must likewise

be subsequent to its cognate in the second; whenever

a quantity of the first is previous to the cognate quantity
of the second set, every other quantity of the first must be

previous to its cognate in the second; and whenever a

quantity of the first set is neither previous nor subsequent
to the cognate quantity of the second, every other quantity
of the first must bear a like relation of order to its cognate
in the second set.

The simplest case of a functional relation is that in

which, with all the variables, every quantity without ex

ception has a unique corresponding quantity in each of

the other variables. Such a case we propose to designate

as a consentaneous functional relation. The functional

relations which do not answer this description may be

termed dissentaneous. If y is a dissentaneous function of

x, there may be quantities of x having no corresponding

quantities in y, or quantities of y having no corresponding

quantities in x, or both; moreover there may be quantities

in x each of which has two or more quantities of y corre

sponding to it, and the like may be true of some of the



172 Functional Relations

quantities of y. Still more complicated cases of dissen

taneous correspondence may be conceived, all of which

are covered by our definition, but as these will hardly be

likely to arise in mathematical investigations, it is needless

to go into further details. Certain dissentaneous functional

relations do however frequently occur, and failure to

recognize this is a grave defect in the current definitions

(founded on Dirichlet s definition of the phrase &quot;y
is a

continuous function of
x&quot;)

as we shall show in our dis

cussion of the latter, which also fail to specify likeness of

order as an essential feature in a functional relation. Since

the fixing of a correspondence between the quantities of

two or more variables, and the giving them a like order

of arrangement, is entirely a matter of convention, several

variables are in functional relation whenever we choose

to make them so any variable without exception can be

made a function of any other or any others whatsoever,

by the mere adoption of a convention which puts the

quantities of the variable into correspondence and makes

them alike in order. It is not however always possible

to put a set of variables into consentaneous functional rela

tion, as here it is requisite that there be a like number of

component quantities to each variable. In our view two

(or more) variables, no matter how closely they may be

connected in the natural occurrence of their quantities,

are not functions of each other until made so by a con

vention, while on the other hand two (or more) variables

which show no natural connection at all can be put into

functional relation whenever it is so desired. There how

ever, is not usually any practical advantage in thus putting
into functional relation variables not connected naturally.

Obviously a set of variables can be put into functional

relation in more than one way, as there is always room
for choice in deciding what quantity or quantities of one
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variable shall be made to correspond to a given quantity

(or quantities) of another. Thus suppose y and x are

capable of entering into consentaneous functional relation

of such character that the functional formula is y 2x= 0.

Let no two quantities of y be of the same value, and let x

be likewise panvariant. Then there is only a single quan

tity of y to which a particular quantity of x can be made
to correspond if y 2x = is to be true. If a y is a 6, the

corresponding quantity of x must be a 3, and ex hypo-
thesi there cannot be more than one 3 in x. Hence any

convention, which makes the 6 of the y correspond to

any other quantity, puts y and x into an entirely different

functional relation, not having as formula y2x = 0.

As regards the likeness of order of arrangement of the

quantities of variables in functional relation, it is to be

noted that this does not preclude a change in arrangement,
the manner of arranging the quantities being still entirely

arbitrary and according to our option. We can take any
one of the variables and change its arrangement to what

we choose, but, since the variables are in functional

relation, such a change in one of them necessitates an

analogous change in arrangement of the quantities of

each of the others, unless the functional relation is dissen

taneous and the change first made is restricted to quanti
ties not concerned in the correspondence between the vari

ables. We need hardly say that
&quot;y

is a function of
x,&quot;

&quot;a: is a function of
y,&quot;

and
&quot;y

and x are in functional rela

tion&quot; have exactly the same meaning; and this is likewise

true of
&quot;y

is a consentaneous function of
,&quot;

&quot;a: is a consen

taneous function of
y,&quot;

and
&quot;y

and x are in consentaneous

functional relation;&quot; and of
&quot;y

is a dissentaneous function

of x&quot; &quot;x is a dissentaneous function of
y&quot;

and
&quot;y

and x

are in dissentaneous functional relation.&quot; And similarly

when three or more variables are concerned.
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The distinction we purpose to mark by means of the

words consentaneous and dissentaneous is in no way
tantamount to that already recognized in the Theory of

Functions in connection with the adjectives one-valued

and multivalued. The former refer to quantities, not

to values; and y may be a consentaneous multivalued

function of x, or a dissentaneous one-valued function of

it, just as well as a consentaneous one-valued or a dis

sentaneous multivalued function. With a functional rela

tion between the variables y and x, y is said to
&quot;

be a one-

valued function of z at a certain value represented in

x&quot; (and as it might also, we think, be put: &quot;the functional

relation is one-valued per y at this value of
x&quot;) whether

there be one quantity of the value in x or more than one,

and whether corresponding to this quantity or quantities

there be in y one quantity or several
; it is merely necessary

that these corresponding quantities be all of a single value,

and there be at least one such corresponding quantity.
A functional relation may or may not have pertaining

to it a functional formula. We shall say more about this

later on, but in the meantime let it suffice to say that if

a functional formula has once been laid down, we hold it

must be adhered to, and that though what are obtainable

from it by various transformations are formulas concerning

the functional relation in question, they should not be

confused with the true functional formula or given the

title &quot;functional.&quot; It is in connection with functional

formulas and the formulas deduced from them that first

arises the distinction customarily made between the

independent and the dependent variables of a functional

relation. The lines upon which this distinction is drawn

are not very precisely fixed, the distinction made when one

matter is under consideration not being at all the same

as is made when another aspect of the same functional
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relation is given attention. First, when there is under

consideration a functional formula of the type:

y = v(x, z, . . . ); e. g., y =x+a+zi
,

belonging to a functional relation between two or more

variables, y, x, . . .
,
the variables x, z, . . . are

here said to be the independent variables, and y to be the

dependent variable. And when reverting we pass to

x=$(y, z, . . . ); x =y-a-zz

x is now understood to have become dependent, the inde

pendent variables being y, z, . . . The chief purpose
of such a transformation would be to facilitate the finding

what value of the variable here made dependent corre

sponds to a given set of values for the respective inde

pendent variables, so that, in this sense, to say a variable

is dependent, verges on regarding its symbol as quesitive

for the time being. Similarly, with implicit formulas

and with the explicit y = x, the distinction to be drawn

between the independent and the dependent variables

is that, at the stage in question of the discussion, one or

more sets of values taken by the former are laid down,
and there is to be found by means of the formula the

corresponding value or values taken by the latter variable.

In this first sense, among all the variables of a functional

relation, only one (at any particular stage of the discussion)

can be a dependent variable, all the rest being necessarily

independent. A second distinction between the variables

of a functional relation arises in connection with their

arrangement in order. In ordinary protomonic Calculus

a procedure is adopted, when there are only two variables

entering the functional relation, which amounts to first
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giving one of these an arrangement of its quantities in

order of value, and then letting the dependent variable

take such an arrangement as will give likeness in order

of corresponding quantities. The variable first arranged
is that with symbol &quot;x,&quot;

which is usually the independent
one in the sense above, and it would seem sometimes that

in speaking of independent and dependent variables the

distinction sought to be made is at bottom nothing more
or less than that between the variable (the independent
in this second sense) whose arrangement is taken as

pattern for the arrangement of the others, and these

other variables of the functional relation (the dependent

variables). In this sense, in every functional relation,

under each particular arrangement, there is necessarily

one and only one independent variable, all the rest being

necessarily dependent. Thirdly, a distinction between

independent and dependent variables arises in connec

tion with differentiation. If we differentiate a functional

relation, we must do so in respect to one of the variables,

which is termed the &quot;independent.&quot; Here again all the

other variables are necessarily dependent. Besides these

three quite distinct and different senses in which &quot;inde

pendent&quot; (and &quot;dependent&quot;) is used in reference to

variables there may possibly be still others. Of the exist

ence of three at least there can however be no doubt at

all. Mathematical text-books we need hardly say give

a most inadequate account of the matter. Indeed Molk,
in the Encyclopedic des Sciences Mathematiques, dismisses

the matter in a single sentence, telling us that
&quot; When the

variable x is not regarded as a function of another variable,

x is said to be an independent variable.&quot;
1 In another

1 Tome II, Vol. 1 5, p. 22. The article in the original German
edition (by Pringsheim) does not contain this statement.
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paragraph of the same article there is mentioned
&quot;

the most

general notion of a function of an independent variable;&quot;
1

so apparently in the sentence first cited Molk does not

mean to deny that an independent variable belongs to a

functional relation, but is merely using &quot;function&quot; in

the sense of &quot;dependent variable,&quot; and telling us the

momentious fact that an independent variable is one

not dependent!
The word &quot;function&quot; is said to have been used by the

older analysts as synonymous with
&quot;power.&quot;

The first

step towards its use is the modern sense is commonly
ascribed to Leibnitz, who in an article: Considerations

sur le difference qu il y a entre I Analyse ordinaire et le

nouveau Calcul des Transcendantes, after making some

remarks concerning a problem that had been proposed by
John Bernouilli, says: &quot;Here is a more general one which

includes it [Bernouilli s] with an infinity of others. Given

the ratio as M to N between any two functions whatever

of the line ACC to find the line. I call functions all the

portions of straight lines that are made in constructing

the indefinite straight lines which pass between [repondant

au] a fixed point and the points of the curve, as are AB
or Aft abscissa, BC or fiC ordinate, AC chord, CT or Cd

tangent, CP or Cir perpendicular, BT or /30 sub-tangent,
BP or BIT sub-perpendicular, AT or Ad resectae or cut

off [retranchee] by the tangent, AP or ATT cut off by the

perpendicular, Td and PIT sous retranchee sub-resectae

a tangente, vel perpendicular, TP or 6ir corresectae and
an infinity of others that can be imagined of a more compli
cated construction. The problem can always be solved

and there is a method of constructing the line, at least

1
Op. cit. 3 p. 13.

12
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by the quadratures or by the rectifications.&quot;
1 The mean

ing given to &quot;function&quot; by this definition is evidently

exceedingly remote from its present application ;
even more

so than the earlier meaning of power. No mathematician

would now term a tangent (or anything else) a function

of a curve, and, if we pass from curves to the equations

representing them, we find nothing in modern Mathematics

that it is customary to call a function of an equation, and

nothing that may be called a function of the fact asserted

by an equation. In view of this it is hardly worth while

inquiring whether Leibnitz s usage was in strict accord

with his definition. Nor need we investigate the usage of

other mathematicians up to the time, twenty four years

later, at which was formulated the first authoritative

definition that really comes in touch with the modern use

of the name &quot;function.&quot; This definition is that of John

Bernouilli. It reads: &quot;We name a quantity composed
in any manner whatever, of a variable magnitude and

constants, a function of the variable magnitude.&quot;
2 This

definition would seem to imply that quantities (or &quot;mag

nitudes)
&quot;

are of three species: constant quantities, variable

quantities and functions a classification that we need

hardly say is entirely erroneous. Even at the present day
however it is quite common for writers to use the name
&quot;function&quot; in designating a dependent variable of a func

tional relation, and to put in antithesis to this, &quot;variable&quot;

or &quot;argument&quot; as designating an independent variable.

1

Opera Omnia, Geneva 1768, Vol. 3, p. 302, from Journal des

Savans 1694. In Latin in the Acta Eruditorum 1694. See Opera

Omnia, Vol. 3, p. 300. Two years previously in the Acta Eruditorum

of 1692 (See Opera Omnia Vol. 3, p. 265), Leibnitz had spoken of

&quot;tangens, vel alias non-nulla3 functiones ab ea [the curve] pendentes,
verb. gr. perpendiculares ad tangentem ab axe ad curvam ductae.&quot;

2 Par. Mem., 1718, p. 106.
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Such a manner of speaking is quite inexcusable in one who
admits that whenever one variable is a function of another

the latter is necessarily also a function of the former, and

this is now we believe universally admitted. It would be

well not to apply the name &quot;function&quot; to any of the vari

ables of a functional relation, but to regard
&quot;

is a function

of&quot; as a convenient though misleading phrase which would

be more precisely rendered by &quot;is in functional relation

with.&quot; It is perfectly justifiable to do this, as in fixing the

most suitable scientific use of &quot;function&quot; (or any other

word) we need not be bound by its original appli

cation.

In 1748, thirty years later, appeared Euler s definition.

He says :

&quot;A function of a variable quantity is an analyti

cal expression composed in some way of that variable

quantity and of numbers or constant quantities.&quot;
1 From

this definition it would seem that in Euler s mind quan
tities and variables were not clearly distinguished from

the symbols and compound expressions that represent them

while otherwise his definition appears to agree with

Bernouilli s. The latter indeed by its use of &quot;composed&quot;

might be construed to refer to expressions, rather than to

what the expressions represent. The most obvious inter

pretation of the expression-definition is that a functional

relation is a relation between a compound expression, which

is called the function and a symbol or set of symbols; the

relation being that the latter is contained in the former.

Thus the expression 3x2 would be called a function of the

symbol &quot;x,&quot;
for this symbol is contained in the compound

expression 3x2
. Moreover, although the definitions do

not expressly state it, those who accept them would hold

1 Introductio in analysin infinitorum by Leonard Euler, Lausanne

1748, Vol. 1, p. 4.
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that in the equation y = 3x2
, the symbol &quot;y&quot;

is a function

of the symbol &quot;x,&quot;
in that the former symbol can be

substituted for the expression 3#2
. Still more remotely

removed from the definition is the case in which
&quot;y&quot;

is

said to be an implicit function of &quot;x&quot; through the two

symbols being involved in a compound expression which

is one number of an equation having as other member
a cipher.

Definitions of this type have become entirely obsolete

in authoritive works on the Theory of Functions, but when

we turn to other branches of Mathematics wre sometimes

find even an author of repute laying down a definition

embodying this antiquated error, and making no reference

whatever to the modern definition of functional relation.

Thus Burnside and Panton, who, if we may judge by their

remarks on functions, are in serene omninescience of the

progress made since the middle of the eighteenth century,

give the following definition:1
&quot;A mathematical expres

sion involving a quantity is called a function of that

quantity.&quot; Similarly, in the Encyklopaedie der mathe-

matischen Wissenschaften, Netto defines an integral func

tion as an expression, noting that the use of the name

function in this and a more general sense dates from

Leibnitz, and quoting John Bernouilli s definition as &quot;ganz

1 Theory of Equations, Vol. 1, p. 1. Chrystal, in his Text Book

of Algebra, gives no general definition of &quot;function,&quot; but he says,

Part 1, p. 30, &quot;The result of multiplying or dividing any number of

letters or numbers one by another addition and subtraction being

excluded, for example, 3XaXxXb+c-s-yXd is called a (rational)

monomial algebraic function of the numbers and letters involved,

or simply a term,&quot; and on p. 281: &quot;any intelligible concatenation of

operations in which the operands selected for notice and called the

variables are involved in no other ways than by addition, sub

traction, multiplication, division and root extraction is called an

Ordinary Algebraical Function of these variables.&quot;
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modern!&quot;
1 We would not, of course, contend that a

doctrine now current is necessarily better than one in

vogue a hundred and fifty years ago, but a writer who

prefers the antiquated one may at least be expected to

justify his choice by some discussion of the merits of the

two. In the elementary text-books of Algebra used in

schools and colleges the old error is quite common, and

here we may fairly attribute it to the ignorance of the

authors, who are probably not aware that there once

lived a mathematician named Dirichlet.

As might have been expected, the modern doctrine did

not arise among those mathematicians who devoted them

selves to the solution of general equations and other purely

symbolic work, but is due to men who, by their investiga

tions in physical science, came into contact with facts as

well as formulas. It developed out of the investigations

begun by D Alembert in the study of the oscillation of

cords, in which he was joined by various other scientists.

These investigations led to the discovery of the extra

ordinary properties of the so-called trigonometric series

(which are really serial limit expressions and not series

at all) with which will always be associated the name of

Fourier. It was now made manifest that what at the time

of Euler would have been considered as two or more func

tional relations between as many pairs of variables could

be united, in many cases, by the use of such expressions

into a single functional relation between two such vari

ables, and finally a definition was framed that entirely

cast aside the old trammels under which a functional rela-

1 Vol. 1, Pt. 1, p. 222: &quot;Ein Ausdruck von der Form .... heisst

eine ganze Funktion der Variablen z . . . . Der Ausdruck Funktion

ruehrt in diesem und in allgemeinerem Sinne von G. W. Leibniz

her. Ganz modern definiert schon Joh. Bernouilli On appelle,

etc.
&quot;
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tion was dependent for existence on a mathematical

formula.

This definition is due to P. G. Lejeune-Dirichlet who

says: &quot;Let by a and b be understood two fixed values,

and by x a variable quantity \vhich gradually assumes all

values lying between a and 6. If now a single finite y

corresponds to every x and does this in such manner

that while x continuously [stetig] passes through the inter

val from a to b, y=f(x) likewise varies gradually, then y
is called a continuous [stetig oder continuirliche] function

of x for this interval. (As in what follows, the discussion

will be of continuous functions alone, the adjective may
be omitted without disadvantage.) It is thereby quite

unnecessary that y in this entire interval should be

dependent upon x according to the same law; indeed we
need not once think of a dependence expressible by means

of mathematical operations. Geometrically represented;

that is, considering x and y as abscissas and ordinates,

a continuous function appears as a coherent [susammen-

haengende]
1 curve in which only one point corresponds to

every abscissa contained between a and 6. This definition

ascribes to the several [einzelnen] parts of the curve no

common law. We can think of the curve as made up of

the most heterogeneous parts or as delineated entirely

without law. It follows that such a function is only to be

looked upon as completely determined for an interval

if it is either given graphically
2 for the entire extent of the

1 We need hardly remind the reader that Dirichlet s &quot;zusam-

menhaengend&quot; has not the significance given the word by Cantor

some fifty years later, and hence should not be translated &quot;con

catenated.&quot;

2 A discussion of the possibility of arbitrarily fixing a functional

relation graphically will be found in the Mathematische Annalen

for 1883, Vol. 22, p. 249 et seq. Ueber den allgemeinen Functions-
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interval or is subjected mathematically to laws valid for

the several parts of the interval. As long as we have

determined a function for only a part of the interval, the

character of its continuation for the remainder of the

interval is entirely arbitrary.&quot;
1

It will be seen that Dirichlet restricts his attention to an

interval in which y is a one-valued and continuous func

tion of x, and thus gives a definition relating, not to func

tional relations in general, but to continuous functional

relations. A more general definition is however current

to which the name of Dirichlet is usually attached. In

Hankel s wording it is as follows:
&quot;y

is said to be a func

tion of x, if there corresponds to every value of the vari

able quantity x within a certain interval a fixed value of

y, it being immaterial whether throughout the whole

interval y is dependent on x according to the same law

or not: whether the dependence can be expressed by mathe

matical operations or not. This purely nominal defini

tion, which I shall in future call Dirichlet s, since it lies

at the base of his researches concerning Fourier s series

which have conclusively shown the old conception of

functional relation to be untenable does not suffice how
ever for the needs of Analysis, as functions of this kind

possess no general properties and hence all relations of

values of the function for different values of the argument
are wanting.&quot;

2 Later authors, not content with giving

begriff und dessen Darstellung durch eine willkuerliche Curve by F.

Klein. There are also some interesting remarks bearing, in a sense,

on this topic by Jourdain: J . reine & angew. Math., Vol. 123 (1905),

p. 185 note.
1 Ueber die Darstellung ganz wilkuerlichen Functionen durch sinus

und cosinusreihen; Werke, Vol. 1, p. 135. From Repertorium der

Physik, edited by H. W. Dove and L. Moser, 1837, Vol. 1, p. 152.
2 H. Hankel: Untersuchungen ueber die unendlichen oft oszillierenden

und unstetigen Funktionen, Tuebingen, 1870, p. 5.
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to this general definition of function the name of
&quot;

Dirich-

let s definition,&quot; actually assert he formulated it, and refer

in so doing to the place in which he defined, not functional

relation, but continuous functional relation. Thus Dini

says: &quot;In earlier times the expression function served

exclusively for the denotation of the powers of one and the

same quantity. ... In this century Dirichlet (Dove s

Rep. d. Physik, Vol. 1, p. 152; Journ. /. Math., Vol. 4, p.

157) gave the word function a significance independent
of any assumption of the possibility of an analytical

representation, and called a function of a real variable

x any quantity y which for every special value of x within

the interval the frontiers [Grenzen] included has a single

fixed value which is known or can be found no matter

whether our knowledge of this value of y is attained by

analytical operations upon the variable x or is attained

in any way whatever.&quot;
1 The passage by Dirichlet in

the Rep. d. Physik to which Dini refers has just been

quoted by us. As to the fourth volume of the Journ. f.

Math., there is on page 157 an article by Dirichlet: Sur

la convergence des series trigonometrique qui servent a repre-

senter une fonction arbitraire entre les limites donnees, but

this contains no definition bearing on functional relation.

Harkness and Morley say:
2

&quot;Dirichlet defined y as a

function of x in the following manner Let x take certain

values in an interval (x to Xi); if y possess a definite

value or definite values for each of these, y is said to be

a function of x. It is not necessary that y should be related

to x by any law or arithmetic expression. Moreover

1
Grundlagen fuer eine Theorie der Functionen einer veraender-

lichen reelen Groesse, by Ulisse Dini, translated into German by J.

Lueroth and A. Schepp, Lpz., 1892, p. 48.

2 Treatise on the Theory of Functions, New York and London,
1893, p. 53.
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the function may be defined for certain values only of x

within the interval (XQ to Xi) e. g., for all rational numbers;
but usually it is defined for all the values within the

interval (Repertorium der Physik her. v. Dove t. 1, p. 152).

According to this definition the values of y when x = a,

may be entirely unrelated to the value of y for any other

value of x, x = b. This definition in contrast to those used

before Dirichlet s time, errs on the side of excessive gener

ality; for it does not of itself confer properties on the func

tion. The functions so defined must be subject to restric

tive conditions before they can be used in analysis. Never

theless, this definition forms and must continue to form

the basis for researches upon discontinuous functions of

a real variable. In Dirichlet s sense f(x) is a function

of x throughout an interval when, to every value of x

within the interval belongs a definite value of f(x). A
value of x which makes the function infinity is excluded.&quot;

Professor W. F. Osgood in his Lehrbuch der Functionen-

theorie tells us that
&quot;

according to Dirichlet f(x) is called

a function of x when for every value of x belonging to an

interval a = x = b there is assigned according to a fixed

law a second value f(x).&quot;

1

Pringsheim makes the usual

blunder, but accentuates it by prefixing &quot;one-valued&quot;

[eindeutige] to &quot;function&quot; in the definition he ascribes

to Dirichlet, while omitting to prefix &quot;continuous.&quot;

He says: &quot;Dirichlet defined y as a (one-valued) function

of x in the interval (a, b) when to every value a^x^b
there corresponds a fixed value of y without regard to the

manner in which be effectuated the assignment of the y
values to the separate x s.&quot;

2

In these formulations of the so-called definition of

1 Vol. 1, p. 1.

2
Encyk. math. Wiss., Vol. 2, Part 1, p. 7.
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Dirichlet it is not intended to preclude y from having the

same value for two different values of x, though a reader

not already acquainted with the subject might well so

construe them. They would all however seem to exact

a requirement wrhich may be expressed in our terminology

by saying that when x has a quantity of a certain value,

a corresponding value must be represented in y by a

quantity of the latter variable; or, in a more conventional

phraseology, when x takes a certain value y must take a

corresponding value. All consentaneous functional rela

tions fulfill this requirement and some dissentaneous

ones can be found which do so. Thus with a dissentaneous

functional relation there might be several quantities in

x of each of certain values, and one of these quantities,

in the case of each value, might have a corresponding

quantity in y, while the duplicate # s did not, there being
moreover a unique y corresponding to every x not of one

of these values. But aside from this and a few other

cases, a relation between variables that we would express

by saying &quot;y
is a dissentaneous function of x&quot; would

seem to be excluded from the title &quot;functional relation&quot;

by the definition under discussion. The stipulation that

&quot;the function may be defined for certain values only of

x&quot; does not, if we interpret it rightly, have dissentaneous

functional relations in view. No specific explanation of

its meaning is given by the mathematicians who use this

and analogous phrases involving &quot;defined for a value,&quot;

but we apprehend the idea to be that when x is for a

moment hypothetically assigned a value between x and

Xi the interval between these being merely a range of

values including all possible values intermediate between

Xf, and Xi, without regard to whether x contains quantities

of each such value or not there may be found to be no

value of y corresponding to this value of x, in which case
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the hypothesis that x takes the value in question becomes

untenable. And the way this would be ascertained would

usually be by the functional formula no longer indicating

a possible process. Thus another author,
1 whose defini

tion we shall quote later on, says in a note to this defini

tion :

&quot;

For example, the function f(x) can be defined for

only the case in which x is an integral positive number.

This occurs when we put /(aO=T2+i~2+lh+ +^-&quot;

We think the interpretation just set forth of the clause

&quot;the function may be defined for certain values only
of x&quot; is more favorable to the authors who use it than

any other. For if we take it to mean that x may possess

a value within the interval without y possessing a corre

sponding definite value or values, this flatly contradicts

the previous statement that y must possess a definite

value or definite values for each value of x within the

interval. And it is no compliment to an author to suppose
he uses two contradictory statements to assert what any
one not absolutely illiterate would express by replacing

&quot;each of these&quot; in the first statement by &quot;each of some

or all of these,&quot; and omitting the second. Moreover,
it must be remembered that the authors who say

&quot;

y may
be defined for certain values only of a;&quot; say nothing from

which we can infer they regard their formulation of the

&quot;Dirichlet definition&quot; as fundamentally different from

that of such authors as Hankel and Dini.

We are not then unfair in holding all four of the quota
tions above (from Dini, from Harkness and Morley, from

Osgood and from Pringsheim) to so formulate the defini

tion attributed to Dirichlet that if y is a function of x
&quot;

in an interval,&quot; and if a value comprised in this interval

is represented in x, there must necessarily be in y a corre-

1
Durege.
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spending quantity of some value or other. Now with this

restriction, the definition cannot be regarded as the most

general possible definition of functional relation; it cannot

even be regarded as general enough to accord with ordinary

usage, and as Dirichlet may have perceived this and on

that account used the phrase &quot;stetige oder continuirliche

Function&quot; instead of the word &quot;function&quot; without an

adjective, we think it unjust to ascribe to him an erroneous

definition that he did not give. That the definition is

erroneous can be made plain to the veriest tyro in Mathe
matics. For if the variable y is a function of the variable

x, the functional formula being y = \f/(x), and we differ

entiate and obtain^=^ (2) &amp;gt; dx or y *s nere a third variable,

which like y is said by mathematicians to be a function

of x. Suppose x comprises quantities of certain values,

for instance suppose x contains a unique quantity of every

protomonic abstract value, and for each quantity of x

there is a corresponding quantity in y. In this case it

would be said that whenever x &quot;takes&quot; a protomonic
abstract value, y possesses a definite value corresponding.

Will any mathematician contend that -r- must likewise

&quot;possess a definite value&quot; for every value of x that is

abstract and protomonic? Or will any one say that if

^ fails to &quot;possess a definite value&quot; for every protomonic

abstract value of x, usage does not justify us in terming

? a function of x? What can be said is that in such cases
ax

-r would not be called a continuous function of x,
1 on which

ax
1 It might of course be a continuous function of x throughout

an interval smaller than that comprising all protomonic abstract

values. In other words, in such cases ^ is not a continuous function

of x throughout the whole of the original interval, though it may
be this throughout one or several sub-intervals.
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account Dirichlet does not stand convicted of the errors

of his successors. It may also be noted that while in

defining continuous functional relation the introduction

of the phrase &quot;in an interval&quot; has a purpose, since for

one interval y may be a continuous function of x and for

another not, its use in connection with a general definition

of functional relation is quite absurd. A variable y cannot

be a function of a second variable x in one interval and

not be a function of x in another interval. Of course,

when y is a function of x, for a given interval of values

there may or may not be representatives of these values

in x, and in the former case there may or may not be corre

sponding quantities in y. But to say, that y, though a

function of x, is not a function of x in a certain interval,

because no values of this interval are represented in x

by quantities having corresponding quantities in y, is

a clumsy and misleading manner of speaking, and has no

compensating advantages that we are able to perceive.

To acquit Dirichlet of the errors made by his commen
tators is one thing; to say he furnished a satisfactory

definition of functional relation in general is quite another.

In reality, as we have seen, he did not even attempt to

formulate a general definition. Dirichlet s definition has

played an important part in broadening the ideas of mathe
maticians concerning functional relations, but it must

not on that account be looked upon as something it is not,

and was never intended to be. We might indeed suppose
from this definition of continuous functional relation that

Dirichlet was aware how functional relation in general

should be defined; in fact when he speaks of &quot;each x&quot;

he almost seems to have reached the point of realizing

that a variable, instead of being a quantity (or a symbol),
is composed of quantities. If however we assume he

knew all this, the question at once arises why he omitted
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to disclose his knowledge to the world? Why did he not

define &quot;variable,&quot; and refute the prevalent errors as to the

nature of variables? Why did he fail to give a general

definition of functional relation? If he held the correct

views he could have had no possible reason for failing to

give an exposition of them in his works; and the most

natural conclusion is that the doctrines one would read

into his words are not really there: that, though he had

attained a point of view which enabled him to avoid giving

an erroneous definition of functional relation, he was not

in a position to formulate a correct one. Similarly we may
infer that his ideas as to variables had not become suffi

ciently clarified to enable him to recognize their true nature.

In no work have we been able to find a discussion of the

difference between Dirichlet s definition and that which

wras designated as his by Hankel, or any recognition of the

fact that suppression of the word &quot;continuous&quot; from

Dirichlet s definition necessitates any other change
besides a change in the phrase &quot;varies gradually.&quot; In

none of the general definitions of functional relation that

we have seen is it clearly stated that there may be values

represented in x without there being corresponding values

represented in y, and as an author who recognized this

might be expected to make an unambiguous statement

to that effect, and distinguish his definition from those

usually laid down, we are compelled to conclude that

mathematicians have completely overlooked the glaring

defect of the so-called Dirichlet definition.

Durege, as we have seen, regards a variable as an aggre

gate, without however thereby attaining an insight into

the true nature of variables. His definition of function

does not avoid the usual errors, and indeed the aggregate

phraseology makes them if anything more apparent.

What he says is: &quot;The most general conception of func-
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tion . . . When a fixed number-value y is put into

correspondence [zugeordnet] with every member x of

an aggregate of numbers W, then y is called a function

of the quantity x, and the relation is expressed by the

notation y=f(x). It is herewith immaterial whether the

aggregate of numbers W is discrete or whether it is, at

least in an interval, pantachisch [ueberalldicht]. (The
function f(x) can for example be defined only for the case

of x being an integral positive number. This occurs when

we put /Or)=T*+-5f2+-5s+ . +!*) It is further im

material in what manner the correspondence is defined, it

is only essential that this shall be fixed unambiguously.&quot;
1

We even find this author on occasions deliberately going
back to the antediluvian error of speaking of a function as

an expression. Thus he says: &quot;By an integral rational

function of the complex variable z we understand in

harmony with the definition made use of in the domain

of the real variables an expression of the form

w=/0r)=co+ciz+c2z
2+c32

3+. -+cnz
n

where c
, c\, c2 ,

. . . signify any [beliebige] complex
constants. The quotient of two integral rational functions

we designate as a fractional function.&quot;
2

Equally plain in his promulgation of error is another

mathematician of high standing, Thomae, &quot;The quantity

y is said to be a function of x in the interval from a to b

when a number y is assigned [zugeordnet] to every number
x between a and b. Hence a function of # is a kind of

table in which for every number x a corresponding number

y is set down ... In general such a function is not

1
Op. cit., p. 23, 3.

2
Op. cit., p. 75.
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reversible, for, on the one hand, the value of y need not

coherently [? zusammenhangende] fill out an interval,

on the other, to one y there may belong an innumerable

aggregate of values of x so that for a y the x is not unam

biguously determined.&quot;
1 If we construe literally the second

sentence of this, we must understand that, when Thomae

says y is a function of x, he means by y not a variable,

but a table written or printed on paper. Of course he

means nothing of the sort, and his language seems due to

the too common impression that the only way to explain

the meaning of a name is to append to it a phrase beginning

with &quot;is.&quot;

In the Vorlesungen ueber Algebra of Dr. Gustav Bauer

(&quot;Geheimrat, O. Professor an der Universitaet Muen-

chen&quot;), published in 1910, we find: &quot;A quantity which

depends on one or more variables and hence is itself a

variable, since it alters its value when the value of the

variable alters, is called a function of this variable.&quot;
2

The blunder of thinking that in a functional relation be

tween two variables the one variable necessarily alters

its value when the value of the other alters is, we hope,

so far obsolescent as to be peculiar at the present day to

the learned ordentliche Professor of the University of

Munich. It may be a propos here to recall that even a

specific name &quot;invariability stretch&quot; [Tratta d invaria-

bilita; Invariantszuege] has been coined by mathematicians

for reference to intervals where there is no such alteration

in value of the dependent variable, though there is the

usual alteration in value of the independent.
The true author of the definition ordinarily attributed to

Dirichlet, in so far as it is erroneous is probably Riemann,

1
Einleitung in die Theorie der bestimmten Integrate, Halle, 1875,

p. 4.

P. 1, 1.
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though the latter may possibly have been anticipated in

error by some earlier writer we have overlooked. In

Riemann s Grundlagen fuer eine allgemeine Theorie der

Functionen einer veraenderlichen complexen Groesse, his

inaugural dissertation at Goettingen in 1851, we find a

definition which, though not purporting to have as wide a

scope as the general definitions of functional relation that

have just been examined, exhibits all the vices of these.

Riemann says: &quot;Let by 2 be understood a variable

quantity which can in turn take all possible real values,

if to each of its values there corresponds a single value

of the undetermined quantity [unbestimmte Groesse]

w, w is then called a function of z, and if while z continu

ously [stetig] passes through all values lying between two

fixed values w also varies continuously, then this function

within the interval is said to be continuous [stetig oder

continuirlich].&quot;
1 Riemann then goes on to make the usual

remarks, that under this definition when w has been fixed

for a certain interval, nothing is thereby implied as to the

manner of its continuation beyond this interval, and that

it is immaterial whether one defines the dependence of

w on z given arbitrarily, or as conditioned through fixed

quantitative operations. The two concepts are &quot;con

gruent,&quot; since there have been found to be analytical

expressions by means of which there can be represented
for a given interval any continuous function whatever

[eine jede stetige Function]. Riemann designated as a

dependence expressible by quantitative operations [Groes-

senoperationen] &quot;any dependence expressible by means
of the four most simple operations of calculation [Rech-

nungsoperationen] addition and subtraction, multiplica
tion and division. The expression quantitative operation

1 Gesammelte mathematische Werke, 2nd. Ed. Lpz., 1892, p. 1.

13
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designates (in opposition to numerical operation [Zahlen-

operation] such operations of calculation with which the

commensurability of the quantities does not come into

consideration.&quot;

Riemann however, holds that &quot;matters are quite dif

ferent when the variation of the quantity z is not restricted

to real values, but is allowed to take complex ones of the

form x-\-yi.&quot;
Here it is true that

&quot;

no matter in what way
w may be defined as a function of z by combinations of

the simple quantitative operations the value of the differ

ential quotient -^ will always be independent of the

particular value of the differential dz&quot; but &quot;if the depend
ence of the quantity w on z is fixed arbitrarily&quot; the rela

tion
fa&amp;lt; dyl [u+vi being put for w, and x-\-yi for z] will

generally speaking alter with the values of dx and
dy.&quot;

And evidently then one cannot take &quot;any dependence
he chooses of the complex quantity w on the complex

quantity z and express it by combinations of the simple

quantitative operations.&quot; On this account Riemann

lays down the following definition: &quot;A variable complex

quantity w is called a function of another variable complex

quantity z when the former so varies with the latter that

the value of the differential quotient -7- is independent

of the value of the differential &amp;lt;fe.&quot;

In this last definition &quot;variable complex quantity&quot; is

used, not in reference to a variable composed of complex

quantities, as one might suppose on merely reading the

definition, but to designate a variable which may take

complex values (and here probably Riemann understood

by &quot;complex value&quot; any value not protomonic, whether

it be neomonic or truly complex). And, as to say that

complex values are admissible [zugelassen] with a variable
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does not necessitate this variable actually taking such

values, a complex variable in Riemann s sense may be

composed entirely of protomonic quantities, or composed

entirely of neomonic quantities, or composed entirely

of complex quantities, or composed of both complex and

neomonic quantities, or of both complex and protomonic

quantities, or of both protomonic and neomonic quan
tities, or finally may contain complex quantities, neomonic

quantities and protomonic quantities. In short
&quot;

variable

complex quantity&quot; or &quot;complex variable&quot; means nothing
more or less than the single word &quot;variable.&quot; The

phraseology can hardly be regarded as conducive to clear

ness, but inability to use language with precision seems to

be a failing endemic among mathematicians, and Riemann
was not immune. Of course if fellowship in error be

accepted as a justification, Riemann can be wholly

absolved, since this absurd use of &quot;complex variable&quot;

is with mathematicians the rule rather than the exception.

The definition in which Riemann lays down the conditions

under which one &quot;complex variable&quot; is to be termed a

function of another cannot however be admitted to be a

general definition of functional relation, since, though z

and w be two variables, the expression ^- (and the name

&quot;differential quotient)
&quot;

is utterly without meaning unless

w be a function of z (that is, unless there be a like order

of corresponding quantities of w and z).
1 The definition

in question then simply specifies a particular type of func

tional relation (in designating which the adjective &quot;mono-

1 Any one who takes the step of denying that consideration of

functional relation is necessary in the theory of differentiation might
as well go further, and deny the conception of functional relation

to be of any service to Mathematics. For in no part of mathematical

science is this conception more indispensable than in the theory
of differentiation.
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genie&quot; is sometimes used) ;
a type that is to be the subject

of the investigations of Riemann s dissertation, and is to

be there (by another wanton misuse of language) called

by the name &quot;function&quot; to the exclusion of other types.

We might hence expect to find a general definition given

by Riemann elsewhere in the dissertation, but none is

at hand. One might almost think that he failed to see

his definition of a function of a complex variable would

involve the fallacy of circulus in definiendo unless it rested

on a previous definition of functional relation in general,

and that he regarded his two definitions, this one per

taining to cases in which complex values are admissible

with z, and the definition previously given pertaining

to cases in which z can take only real values, as together

constituting a satisfactory general definition of functional

relation, which would thus be defined as anything belong

ing to either of the two species. We shall not however

impute this gross absurdity to Riemann, but he cannot

be acquitted of the use of language slovenly enough to

imply it. Differentiation having not yet been taken up,

we cannot now fully discuss Riemann s remarks concern

ing -fa
and its independence of or dependence on dz,

but we may say here that such a dependence of
-^ on

dz can only be said to exist by giving to the symbol &quot;dz&quot;

a non-natural significance. In the cases where such a

dependence is said to exist, the value of ^ at Zi, a specified

quantity of z, depends in fact on the path of differentiation.

That is, if Zi has adjacent to it more than one domain

throughout which it is approached or inversely approached
as a limit, each such domain (each path) usually gives

rise to a different
-^-

at z1? the difference being not merely

one as to identity but also as to value. By arbitrarily
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assigning to each of the different
-^ s (of course not

merely at this particular z but everywhere) a correspond

ing quantity (which is usually most conveniently made a

non-zero) and including all the latter quantities in a

variable which is improperly called
&quot;dz,&quot;

one may speak

of the variables
-^ ,

z and dz as being in functional rela

tion, and hence of -^ as dependent on dz as well as on z.

But evidently this is giving a most unnatural significance

to
&quot;dz,&quot;

which would naturally signify a variable com

posed of zeroes, of the limits of the Az variables. We
hardly think that the average student would be likely,

from Riemann s remarks, to attain a knowledge of the

actual facts in the case, and he would even be very liable

to get a confused idea that -^ was dependent on (was

in functional relation with) a Az variable.

It is possible that Riemann regarded as the general

definition of functional relation what one obtains by

omitting from his first sentence the clause &quot;which can in

turn take all possible real values.&quot; We have then sub

stantially the definition usually attributed to Dirichlet,

and in what is thus obtained all that is good must be

credited to Dirichlet, the part that seems original with

Riemann being hopelessly, irredeemably bad. We need

not however take this liberty with Riemann s text as

even without so doing his definition can be seen to contain

all the vices of the so-called Dirichlet definition. For

even of we restrict our attention to variables containing

only protomonic quantities, it is not true that mathe

matical usage permits us to call the variable w a function

of the variable z only when there is a value of w corre

sponding to every value possessed by z. And the fact

that in the next breath Riemann proceeds to define
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continuous functional relation (in reference to protomonic

variables) only aggravates the blunder, since any one of

moderate intellectual capacity might be reasonably

expected to perceive the role played by &quot;continuous&quot;

in Dirichlet s definition when he had once given attention

to the matter.

One more definition we shall quote: that of Tannery.
&quot;This is the most general notion that one can have of

the function of a variable: it consists in the correspond
ence of the numbers of another aggregate (the values

of the variable) and the formula y=f(x) indicates no

other thing than this determined correspondence.&quot;
1 This

definition fails to plainly state that two variables may be

in functional relation and yet there be components of the

one variable having nothing corresponding in the other;

moreover the inference may be drawn that this was not

in the mind of the author, as there is a total absence of

any remark to indicate that his definition was put forward

as essentially different from the conventional one. We
may sum up then our examination of definitions of func

tional relations by saying that in none of them hitherto

given is there to be found a distinct recognition of any
functional relations save those we have termed consenta

neous, and in none is anything at all stated as to the

arrangement in order of the variables concerned, a matter

of paramount importance with functional relations. For

it will hardly be contended that to speak of putting the

objects of two sets into correspondence is to say any

thing about a likeness or unlikeness in order. Likeness

in order implies correspondence, but correspondence does

not imply likeness in order, and may subsist wiiere the

latter does not.

1
Mathematiques Pure (in De la Methode dans les Sciences}, p. 56.
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FUTURE PARTS OF FUNDAMENTAL CONCEP
TIONS OF MODERN MATHEMATICS.

That portion of Fundamental Conceptions of Modern
Mathematics dealing with Algebraic Mathematics will

consist of thirteen parts. A synopsis of the contents of

the last twelve of these parts is here given. The authors

would be glad to have any suggestions toward improving
the present redaction of these later parts that may occur

to a reader of this synopsis and would also appreciate
comments in criticism of Part I.

1

PART II. DOMAINS AND RANGES.

Need of a name to denote a portion of a variable. Domain the

most suitable. Current use of domain [Bereich]. Sub-domains.

Adjacent previously and subsequently. Invariant domains.

Monotonous and univariant domains. Increasingly and decreasingly
univariant. Panvariant domains. Ranges. Intervals. Domains
covered by an interval. Collinear and tralinear. Invariability

stretches and points of invariability. Diagrams. Coherent diagrams
Closed diagrams. Contours. Linear and superficial figures. Closes.

Regions. T-regions [Open regions]. B-regions [Closed regions,

Complete regions]. Office of the adjective in the phrase &quot;complete

region.&quot; Determinatives, restrictives, amplifiers, explicatives, alien-

atives, dilitatives. Alienatives, explicatives and dilitatives quite

common in Mathematics, and liable to give rise to confusion of

thought if the true offices of such adjectives are not clearly recognized.

Partially closed region. Other species of regions. Superficial ranges.

Diagrammatic ranges. Lacunary spaces. Realms. Neighborhoods.

Sinistro-lateral, dextro-lateral, bilateral and panlateral neighbor
hoods. Environments and vicinities.

1 Communications may be addressed to either R. P. Richardson,
5010 Parkside Ave., Philadelphia, Pa., or E. H. Landis, Cynwyd, Pa.
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PART III. LIMITS, BOUNDS AND APPANAGES.

Use of &quot;innumerable&quot; in preferance to &quot;infinite.&quot; Difficulties in

accepting, as existent, variables containing innumerable quantities.

Conceivability of such cases. Mathematics takes all conceivable

cases into account, and must begin by considering those ruled by the

simplest laws. Such cases, however, are not what usually come to

hand in our actual universe. Two types of hypothesis should be

recognized by science; those of one type being capable of verification

or refutation; those of the other (examplified by any hypothesis

concerning the existence of innumerable objects) being capable of

refutation but never of verification. Incoherent use of &quot;infinite&quot; by
certain mathematicians. Approach to a limit. This is not necessarily

incessant. Definition of incessant approach to a limit. Necessity
of speaking of domains of approach. A variable may approach
the same limit throughout several different domains. Number of

quantities in a domain of approach. Limits are not included in

their domains of approach. In reference to limits, predesignated
non-zero should be used where most authors use assignable quantity.
Two species of limits: terminals, which are limits present in their

variables; and confines, which are not present. Limiting values.

In the quadrature of curvilinear figures certain limiting values are,

not inferentially but by definition, the values of the areas of these

figures. The like holds as to lengths in the rectification of curved

lines. Definition of approach to a limit. Inverse approach and
inverse limits. Incessant increase and decrease to a limit. Oscilla

tion to a limit. Gyration to a limit. Incessant increase without

upper and incessant decrease without lower bound. Increase with

out upper and decrease without lower bound. Numerical approach
and numerical limits. Recession from an anti-limit. Approach
not the only relation of a domain to its limit. Conformity to a

limit. Vacillation to a limit. Inverse conformity and vacillation.

Erroneous view that so-called limiting points are perfectly analogous
to limits. Definitions based on this view found in current mathe
matical works, and what they improperly sanction including under

the title limit. Convergence to a limit includes approach, vacilla

tion and conformity. Convergent sequences. Non-convergent

sequences are divergent or aberrant. Wanton misuse by mathe
maticians of divergent in sense of non-convergent as well as in its

proper sense. Convergence with multiplicative sequences. Se

quences of numerable terms are not convergent or divergent or
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aberrant. Backward sequences. Numerical convergence, diver

gence and aberrance. Pesudo-divergence. Absolute and non-

absolute convergence. Conditional and unconditional convergence.

Consideration of the so-called upper and lower Limes and Grenze

is necessary in a discussion of limit. Improper use of upper and

lower limit for upper and lower Grenze. Most suitable names are

upper and lower bound. Maxima and minima. Extremes. Maxi-

mants and minimants. Use of maximum and minimum in Differ

ential Calculus. Summit and immit preferable for such cases.

Definition of Du Bois Reymond. Sub-domains as summits and

immits. Definitions of upper bound and lower bound. Pringsheim s

treatment of limits and upper and lower Limes. Upper and lower

Limes with domains not necessarily discrete. Inceptive and desitive

sub-domains. Sinistro-lateral and dextro-lateral upper and lower

Limes at a. Deviation of these definitions from those now current.

Inadequacy of the treatment given limits in the Encyklopaedie

der mathematischen Wissenschaften. The process which Pringsheim

regards as generalization of the concept Limes, and its relation to

true generalization. Defects of the limit and Limes terminology

accepted in the Encyklopaedie. As names, upper and lower appanage
are preferable to upper and lower Limes. Use of limit in sense of

frontier frontiers of integration. So-called limits of the roots of

an equation, more suitably called diorisms.

PART IV. CONTINUITY AND THE INCOMMENSURABLE QUANTITIES.

Scientific treatment of continuity of point aggregates first due

to Cantor and Dedekind. This doctrine not the exact counter

part of the true doctrine of continuity with variables. Cantor s

view of continuity. Concatenated and perfect point aggregates.

Concatenated unifarious domain. Links. Derogative [Ableitung]

of an aggregate. Points of accumulation. Perfect, complete and

dense with point aggregates. Complete unifarious domain. Semi-

dense. Sinistro-laterally, dextro-laterally, unilaterally dense. Our
use of dense not in harmony with Cantor s. Perfect unifarious

domain. A point aggregate if concatenated and complete is neces

sarily dense, but this is not the case with a domain of a variable.

For a unifarious domain to be continuous it is not sufficient that it

be concatenated, dense and complete. The fourth requisite. Pan-

tachisch and apantachisch. Incommensurable quantities. Effable

and ineffable quantities. Surds. Cantor s method of dealing with
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the incommensurables. Our method. A new Postulate necessary.
Du Bois Reymond s Principle of the Decimalbruch Grenze; it is

inadequate. The Cantor-Dedekind Axiom. Quasi-continuity.
Coherence. Cantor s use of coherence and adherence. Diverse

use by Cantor of in sich dicht, abgeschlossen, perfect and Funda-
mentalreihe in 1883 and 1895. Hauptelement, Grenzelement.

Isolated. Separated. Reducible.

PART V. THE TRANSFINITES.

Articulate [wohlgeordnet] aggregates. Inversely articulate.

Cantor regards articulations [Ordnungszahlen] and other arrange
ments as quantities Ordnungstypen. Cantor s failure to dis

tinguish between likeness and identity with articulations. Ar
ticulations of the same type. Commutation and permutation.

Improper use by Cantor of same symbols for articulation values as

for abstract values. Transfinite articulations. Cantor s erroneous

belief that there are fractional articulations. Impletions [Maechtig-

keiten]; these are abstract. Abzahlbar. The transfinite impletion
values: Alef-null, Alef-eins, etc. Transfinites should not be called

quantities. Cantor s transfinites do not justify designating increase

without upper bound as increase towards infinity as limit.

PART VI. SYMBOLS, SIGNS AND SIGLA.

Sameness and identity in Lexicology. Symbols and signs. Im

proper use of &quot;signs&quot; for what might conveniently be termed sigla.

Affixes. Compound algebraic expressions. Ligatures. Algebraic

dictions. Members of dictions. Formulas. Operators. Operand

expressions. Sameness and identity with operations. Two neglected

operations: finding an equal and finding an adversant. Sign of

adversation. Adversative double signs. Signs of prosthapheresis.

Number of quantities resulting from an operation when results

of only one value are admissible; when results of several values are

admissible. Cauchy s notation for the latter case. Poly-addition

and other poly-operations. Use of value symbols as individual

symbols. Monomials and polynomials. Limit symmative ex

pressions and simple monomials. Constituents [&quot;Terms&quot;]. Ele

ments [of a determinant]. Positive and negative expressions. Cata-

phantic, apophantic and ancipital constituents. Degree. Homo
genous, quasi-homogenous and heterogeneous.
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PART VII. THE DICTIONS OP ALGEBRA AND IN PARTICULAR
THE EQUATIONS.

Application of the names diction and equation to written propo
sitions. The siglum = in its customary use not concerned solely

with the relation of equality, but with identity or equality or both.

The sigla of equality, identity, equa-identity, coextension. Equa
tions of correspondence and of sameness. Sylvester s &quot;disjunctive&quot;

equations. Universal and indefinite equations. Schroeder s notation.

Equate. Vanishing of an expression. Definition of equation. De
finitions of various authors. Siglum of numerical equality. Siglum
of excess. Inequations. Proportions. These are not equations.

Hyperlogisms and hypologisms. Questive and dative symbols.

Unjustified use of variable in sense of unknown quantity. Zetetic

and exegetic equations. Zetetic and exegetic symbols. The so-

called literal and numerical equations. Impropriety of these names.

The characteristic of a &quot;literal&quot; equation is not that it involves

letters, but that it has other equations subalternate to it in a certain

way. Eminential and paraval as substitutes for literal and numerical.

Eminential and paraval expressions. Restrictions, on the meanings
of symbols, extrinsic and intrinsic to the dictions in which they

appear. Individual symbols. Value symbols. Figures. Numerals.

Cardinal and ordinal. Fractional numeral. Mixed numeral.

Alternatives presented by double signs and double affixes. Systems
of dictions. Simultaneous dictions. Solving problems and solving

equations. Roots and solutions. Symbolic solutions. Satisfy.

Number of roots of an equation. True and untrue dictions. Dictions

untrue through being meaningless or false. Possible diction. Im

possible diction. Compatible and incompatible dictions. Self-

consist. Chimerical. Inconsistent. Consistent. Connected.

Independent. Equivalent. Identical and conditional; these

adjectives unsuitable as applied to equations. Redditive as a sub

stitute for determinate conditional. Recusant as a substitute for

identical. Discursive as a substitute for indeterminate conditional.

Equations are redditive, discursive or recusant, not absolutely, but

with respect to a specified symbol or set of symbols. In this classi

fication, instead of the three species ordinarily accepted, there are

really seven. Definitions of current text-books. Standard forms of

equations. Nilfactum. Pandative [Absolute] constituent. Homo-

geneum comparationis. Homogeneum adficiens. Homogeneum.
Coefficients. Efficient. Proximate and ultimate coefficients. Fac-
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turn expression. Factor expression. Factor, Aliquot, Aliquant.

Contrafactor. Contraficients. Vieta s use of power, scalar and

parabola. Gradual and subgradual coefficients. Parodic degrees.

Epanophora. Peciprocal scalars. Reciprocal equation. Parodic

constituent. Complete and incomplete equations. Pure and ad-

fected equations. Adfected directly and inversely; per affirmation

and per negation. Absolutely and climatically pure. Polypathic
and monopathic equations.

PART VIII. TRANSFORMATIONS.

Transformations of dictions. Mutation. Metathesis. Dissocia

tion. Association. Transposition [Antithesis]. Avulsion. Para-

plerosis. Egestion. Ingestion. Abbreviation. Inversion. Abso

lute inversion. Distribution. Composition. Transversion. Vieta s

parabolism and hypobibasm; neglect by modern mathematicians

of the important distinction marked by these words. Cancellation.

Enantiosis. Climacticism. Climactic descent, ascent and inter-

scent. Nomenclature with transformations of proportions. Alterna

tion. Inversion. Syllepsis. Dialepsis. Commixion. Transforma

tions concerned with more than one diction. Libration, perturbed
and unperturbed. Syncrisis; Vieta s use of the term. Correlate

equations with Vieta. Substitution. Metastasis. Hypostasis

Duplicate hypostasis and parabolic hypostasis with Vieta. Trans-

mutatio per alterationem radicis. Expurgatio per uncias. Uncia.

Proton-eschaton. Anastrophe. Consideration of transformations

in light of their purpose. Abridgment. Isomeria [Conversion].

Elevation. Depression. Plasma. Expansion. Development. In-

velopment. Binomial expansion. Diagonals and complements with

Oughtred. Gnomons. Contraction. Aggregation. Dissemination.

Elimination. Eliminants. The vanishing of the eliminant, usually

regarded by mathematicians as a necessary and sufficient con

dition for the consistency of the equations from which the

eliminant is derived, is in truth neither a necessary nor a sufficient

condition. Limitative [Restrictive] coefficient as used by Cauchy.

Dialytic method of Sylvester. Dialysis. Canonization. Harriot s

original, canonical and common equations. Use of canonical form

in the Theory of Quantics. Epanorthosis. Segregation. Reversion.

Transformations of the Theory of Quantics and of the Theory of

Groups. Operations of the latter theory. Transformations. Trans

form. Transformee [Primitive]. Spurious [Identical] transforma-
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tion. Improper use of &quot;unchanged&quot; and &quot;same transformation&quot;

by mathematicians. Equiergic transformations. Inverse. Con

jugate. Transforming a transformation. Linear, quadratic, cubic,

etc., transformations. Primitives. Modulus of transformation.

Unimodular. Singular. Like [Similar, Concurrent] transformations.

Impropriety of using inverse in this case. Cogredient. Contra-

gredient. Groups of linear transformations. Automorphic ex

pressions. Interchanges [Substitutions]. Monocyclic [Circular]

and polycyclic interchanges. Cycles. Transpositions. Regular.

Similar. Product of interchanges. Commutable [Permutable].

Commutative group. Commutators. Odd and even interchanges.

Symmetric expressions. Symmetric groups. Alternating groups.

Alternating expressions. Homotypical expressions. Requirement
exacted of transformations constituting a group. Equivalent

expressions. Degree and order of a group. Simply isomorphic

groups. Holohedrally [Multiply] and merohedrally isomorphic.

Cogredient and contragredient isomorphism of a group with itself.

PART IX. FUNCTIONAL RELATIONS.

Essential characteristics of a functional relation. Consentaneous

and dissentaneous functional relations. One-valued and multi

valued. Use of per. Monotropic and polytropic. Branch of a

variable of a functional relation. Monodromic and polydromic.

Independent and dependent variables. Definitions of &quot;Function&quot;

given by Leibnitz, Bernouilli, Euler. Dirichlet s definition. The
definition called Dirichlet s by Hankel. Dini, Harkness and Morley,

Osgood, Pringsheim on Dirichlet s definition. Error of the so-called

Dirichlet definition. Durege, Thomae and Bauer on the definition

of &quot;Function.&quot; Rieman. Definition given by Tannery. Func
tional dictions. Ostensive and inostensive functional relations.

Partitively ostensive. Ostensible and inostensible. Functional

relations explicit per a variable. Implicit per a variable. Implicit

functional relations. Euler s use of &quot;implicit&quot; as an alienative and
of &quot;explicit

&quot;

as an explicative. Changing the formula of a functional

relation should be held to change the functional relation itself into

a new one. Inverse functional relations. Notation y &amp;lt;p(x)
and

&amp;lt;p(y,x)=Q.
An equation, to render a functional relation ostensive,

must not be recusant [&quot;identical&quot;] as regards the symbol of any
of the variables. And with at least one variable the recusant and
discursive instances of the equation must all be evaluable. The
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equation may be redditive [&quot;determinate conditional&quot;] as regards
the symbols of all the variables. Range of ostensibility of a formula.

Indeterminate forms. The form $ is not discursive
[&quot;
indetermin-

nate&quot;], but recusant [&quot;identical&quot;]. Ought such forms as 2^ be

called indeterminate? Evaluation . Function improperly defined .

Limitary functional relations. Direct, indirect and indirect limiting

functional values. Symbols of constants; these sometimes denote

variables. Hyperfunctional formulas. Parameters. Other use of

&quot;parameter.&quot; Parametric equations. Unicursal curves. Uni-

cursal surfaces. Transcendental and algorithmetic [algebraic]

functional relations. Stirpal [rational] and radical [irrational].

Fractional and integral misnomers as used in reference to &quot;func

tions.&quot; Serials and serial functional relations. The latter are not

necessarily limit functional relations; and serials (so-called series)

may be polynomials or simple monomials. A serial may represent
series but it does not denote them. A limit serial denotes the limits

of the series it represents. Power serials. In ascending and decend-

ing powers. Positive integral and negative integral power serials.

Laurent serials. Fractional serials. Recurrent serials. Determin
ants are improperly called &quot;functions.&quot; They are not necessarily

even functional expressions. Quantics likewise are not &quot;functions.
&quot;

Use of designations &quot;differential coefficient&quot; and &quot;variable&quot; with

quantics. Cossic a more suitable name than &quot;variable.&quot; So-called

numerical and literal coefficients. The use of &quot;literal&quot; especially

bad. Intactual a suitable substitute. Uncial coefficients. Inun-

cials. Uncial, inuncial and pan-intactual coefficients. Intactual

degree [Degree] and cossic degree [Order]. Degorder. Unipartite
and multipartite quantics. Tantipartite. Binary, ternary, quater

nary, etc. Syzygetic, quadric, cubic, etc. Definition of unipartite

quantic. Algebraic form. Equation of a quantic. Nilfactum.

Linear and quadratic, and the distinction between these and syzy-

getic and quadric.

PART X. DIFFERENTIATION.

Consideration properly due first to specific functional relations

and their differentiation rather than to general formulas (which are

all that the text-books consider). Axi variables. Ayi variables.

A?/i
T variables. Limits of these variables. First derived quantity
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at XL First derivative. Primitive [Anti-derivative]. Second, etc.,

derived quantities and derivatives. Differential equations. Definite

or quantitative differentiation and formula differentiation. Differen

tial coefficients. The conventional mathematical works deal with

hyperfunctional formulas; not with specific functional relations.

dy Ay
Absurdity of terming -/ the limit of . . Even when only a single

Ay
functional relation is in question, is usually a class name for a

host of variables. Cases of dissentaneous functional relations.

Cases in which y and x are not abstract and are of different sorts.

Here what are really dealt with are the corresponding quantuplicity

variables. Derivative quantities. Derivate variables: total,

sinistro-lateral, dextro-lateral. Du Bois Reymond s middle derivate

quantity. Agnate quantities and agnate variables. Differentiation

in Quaternions. Here the variable obtained by differentiation is a

derivate, not a derivative, and a third variable enters the derived

functional relation. This third variable is masked by the con

ventional formula. Only collinear domains taken into account in

Quaternion differentiation. Advantage in leaving other domains

out of account. Differentials. Their use a minor matter and not

really characteristic of Quaternion differentiation. When used to

di/
denote a differential dx is taken in a non-natural sense, -7- not being

dependent on dx properly speaking, but on the path of differentiation.

The Method of Infinitesimals. Berkeley s exposure of the errors of

Newton and Leibnitz. Merits of Berkeley s work seldom recognized

by mathematicians. No systematic account of the Infinitesimal

Method to be found. Infinitesimal and infinite quantities of the

first order, second order, etc. Relative greatness of infinitesimal

finite and infinite quantities of no real moment in the Infinitesimal

Method. The real essentials are certain laws of addition and

multiplication. Requirements by this method for the existence of a

first derived quantity. Unjustified assumption by Infinitesimalists

that these conditions are fulfilled when those of the Method of Limits

are fulfilled. Absurd introduction of limits in the Infinitesimal

Method. Error of thinking that in the Method of Limits Axi and

expressions involving it cannot be dropped from the equations at

an early stage. Those expressions can be dropped which represent

variables whose quotients by Axi are comminuent with the latter,

provided later on nothing analogous to &quot;division&quot; by a higher

&quot;power&quot; of Ax\ than the first is allowed to take place. Neglect
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to stipulate that such conditions must be fulfilled, in order for an

expression to be legitimately dropped, is a typical error of the

Infinitesimalist. Use of name infinitesimal to denote variables.

PART XI. INTEGRATION.

Quadrature of a functional relation over a continuous unifarious

domain. Numerical maximum of a set of links to which such a

quadrature pertains. Use of &quot;norm&quot; in a sense approximating to

this. Quadrature variables and their limits. Integrals. Functional

relation integrable over a domain. Quantitative [Definite] and
formula [indefinite] integration. The fundamental law of Integral

Calculus. Frontiers of integration. Upper integral. Lower integral.

Darboux s theorem. Integration over a unifarious domain whose

continuity is broken by the absence of frontier quantities : and by the

absence of quantities in one or more but not innumerable other

isolated places. Integration over a continuous unifarious domain

having no frontier at beginning or at end or at both on account

of its &quot;extending to infinity.&quot; Principal value of an integral.

The integration process of Lebesgue. Lebesgue quadrature variables.

Lebesgue integrals. Young s method of integrating. The Borel-

Lebesgue measure of a set of points. Descriptive and constructive

definition of this according to Lebesgue. Exterior measure. Com
plement of a set of points. Interior measure.

PART XII. CONTINUITY WITH FUNCTIONAL RELATIONS.

Conventional definition of function continuous at a point. Of

function continuous throughout a region and throughout an interval.

Partitively continuous. Forwardly and backwardly continuous.

The definition of function continuous throughout an interval not

based on any doctrine of continuity connected with Cantor s investi

gations. In the light of these the so-called definition is a mere criter

ion. And even as such it is not entirely satisfactory on its face.

Riemann s definition still worse. Fluctuation of a domain. Leap
of a unifarious domain at a quantity. Sinistro-lateral and dextro-

lateral leap. Leap values. Vibration of a unifarious domain at a

quantity. The leap definition of continuity of a function throughout
an interval. As a criterion it is as defective as Riemann s definition.

The usual definition even is, at most, a criterion for joint continuity

of x and y where x is panvariant. Precise meaning of
&quot;y

is a con-
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tinuous function of x throughout an interval.&quot; Functional relation

continuous throughout an interval of one of its variables. Definition

of continuity at a point is a criterion sometimes of continuity

around a quantity, but sometimes of what might be called co-

tinuousability around a quantity. Encircling domain of a quantity
of a variable. Radial domains of an encircling domain. Definitions

of continuity and continuousability around a quantity, at the right

hand side of a quantity, etc. Hankel s continuity of a function in the

immediate vicinity and up to the immediate vicinity of a point.

PART XIII. THE MONOGENIC AND ANALYTIC FUNCTIONAL
RELATIONS.

Definition of continuity based on derivability. Mixed curves and
the functional relations to which they correspond. Monogenic
functional relations. Polygenic. Cauchy s original definition.

Type. Monotypic. Want of accord among matematicians in the

use of &quot;monogenic,
&quot;

etc. Monogenic at a quantity. Derivable.

Differentiate . Orthoid. Anorthoid. Ordinary. Synectic. Reg
ular. Holomorphic. The original definition of holomorphic function

given by Briot and Bouquet differed from that laid down later by
Briot. An integral functional relation is not necessarily holomorphic.

Meromorphic. Poles and essential singularities. The definition of

Briot and Bouquet and that of Weierstrass. Geometrical methods

associated with the monogenic function nomenclature; algebraic

associated with the analytic function nomenclature. Term analytic
function originally due to Lagrange. He gave no definition.

The assumptions made by him as to the functions that occur in

analysis. What this amounts to if transformed into a definition,

taking, not Lagrange s doctrine of differentiation, but the limit

doctrine. Conditions stipulated by such a definition are held to be

sufficient, but not necessary, for a functional relation to be analytic
in the modern sense. Conditions under which a functional relation

should be termed analytic. Necessity of a stipulation as to con

tinuity when specific functional relations are taken into account.

This stipulation not necessary as far as the conventional hyper-
functional formulas are concerned. An analytic functional relation

may be ostensible by a polynomial or simple monomial involving
the symbol of the independent variable or even by a value symbol.
A single serial may cover several distinct analytic functional rela

tions. Customary method of defining analytic function. Elements
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of an analytic functional formula. Functional relation analytic at

a quantity. Natural boundaries of the range of ostensibility of a

serial. Continuation of an analytic function to the&quot;point of infinity.&quot;

Weierstrass s definition of monogenic analytic function. Error of

supposing an analytic function is monogenic in Cauchy s sense.

Other definitions of analytic function. Legitimate and illegitimate

functional relations. Suppositionless functional relation.
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