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PREFACE

HIS tract is written in connection with the previous tract, No. 4 of
this series, on Projective Geometry, and with the same general
aims. In that tract, after the statement of the axioms, the ideas
considered were those concerning harmonic ranges, projectivity, order,
the introduction of coordinates, and cross-ratio. In the present tract,
after the statement of the axioms, the ideas considered are those
concerning the association of Projective and Descriptive Geometry by
means of ideal points, point to point correspondence, congruenc:a,
distance, and metrical geometry. It has been my object in both
tracts to extend the investigations just far enough to assure the reader
that the whole of Geometry is really secured by the axioms stated.
My hopes for a comparative freedom from typographical ‘errors are

based upon my experience of the excellence of the University Press.

A NW

CAMBRIDGE.
March, 1907.
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CHAPTER 1

FORMULATIONS OF THE AXIOMS

1. TaE general considerations which must govern a mathematical
investigation on the foundations of Geometry have been explained in
Chapter I of the previous tract of this series, on the Axioms of
Projective Geometry*. It is explained there that °Descriptive
(reometry ’ is here used as a generic term for any Geometry in which
two straight lines in a plane do not necessarily intersect. Also it is
pointed out that the purely classificatory portions of a Descriptive
Geometry are clumsy and uninteresting, and that accordingly the idea
of order is introduced from the very beginning.

There are three main ways by which this introduction of order
can be conveniently managed. In one way, which is represented by
Peano’s axioms given below (§§ 8—6), the class of points which lie
between any two points is taken as a fundamental idea. It is then

. easy to define the class of points collinear with the two points and
lying beyond one of them. Thus these three classes of points, namely
the two classes lying beyond the two points respectively and the class
lying between the two points, together with the two points themselves
form the straight line defined by the two points. Then a set of axioms
of the straight line are required, concerned with the idea of ‘ between,’
and also axioms are required respecting coplanar lines.

Another way, which was pointed out by Vailatit and Russellf, is
to conceive a straight line as essentially a serial relation involving two
terms. The whole field of such a relation, namely the terms which are
thus ranged in order by it, forms the class of points on the straight
line. Thus the Geometry starts with the fundamental conception of a

* In the sequel this tract will be referred to as ¢ Proj. Geom.’
+ Of. Rivista di Matematica, vol. 1v.
+ Cf. Principles of Mathematics, § 876.



2 THE INTRODUCTION OF ORDER [cH. 1

class of relations. The axioms of the straight line are the axioms
which secure that each of these relations is a serial relation. The
points are the entities occurring in the fields of any of these relations.
The axioms of the plane are the same as in the previous mode of
development.

The third way, recently developed by Prof. O. Veblen¥*, is to
consider the science of Descriptive Geometry as the study of the
properties of one single three-termed relation of order. The entities
forming the field of this relation are the points. When this relation
holds between three points 4, B, and C, it is said that ‘the points
A, B, and C, are in the linear order 4 BC.’ This method of conceiving
the subject results in a notable simplification, and combines advantages
from the two previous methods. Veblen’s axioms will be stated in full

(cf. § 8).

2. The enunciation of the axioms of Descriptive Geometry, which
is given in the sections (§§ 3-—6) immediately following, is that due to
Peanot. His formulation is based upon that of Pasch §, to whom is due
the first satisfactory systematic exposition of the subject. The unde-
fined fundamental ideas are two in number, namely that of a class of
entities called ‘points,” and that of the ‘class of points lying between
any two given points.’ It has already been explained§ that this
undetermined class of points is in fact any class of entities with inter-
relations, such that the axioms are satisfied when considered as referring
to them.

The symbol 4B will represent the class of points lying between
the points A and B. This class will be called the segment 4B.

The first group of axioms, eleven in number, secure the ordinary
properties of a straight line with respect to the order of points on it,
and also with respect to the division of a line|| into three parts by any

* Cf. A System of Axioms for Geometry, Trans. of the Amer. Math. Soc., vol. v.,
1904.

+ Cf. I principii di Geometria, Turin, 1889. These axioms are repeated by
him in an article, Sui fondamenti della Geometria, Rivista di Matematica, vol. 1v.,
1894. In this latter article the minute mathematical deductions are omitted, and
their place is taken by valuable observations on the main points to be considered.
Also a treatment of congruence is given which does not appear in the earlier
tract. This article should be studied carefully by every student of the subject.

1 Cf. Vorlesungen iber neuere Geometrie, Leipzig, 1882. This treatise is the
olassic work on the subject.

§ Cf. Proj. Geom. § 2.

|| Note that ‘line’ will be habitually used for straight line.’
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two points on it, and into two parts by any single point on it. The
Dedekind property* is not secured by them, but, compactnesst is
secured by axiom IV,

3. Peano’s axioms of the straight line are as follows :

I. There is at least one point. -

II. If A is any point, there is a point distinct from 4.

III. If A is a point, there is no point lying between 4 and 4.

It follows that the class 4.4 possesses no members.

IV. If A and B are distinct points, there is at least one point
lying between A4 and B.

Thus the class 4 B is not the null class.

V. If the point C lies between 4 and B, it also lies between
B and A.

It easily follows that the classes 4B and BA are identical.

VI. The point 4 does not lie between the points 4 and B.

Thus the class, or segment, 4B does not include its end-points
A4 and B.

Definition. If A and B are points, the symbol 4’8 represents the
clags of points, such as C, with the property that B lies between
A and C. Thus A'B is the prolongation of the line beyond B, and
B’ A is its prolongation beyond 4.

VII. If 4 and B are distinct pomts, there exists at least one
member of A'B.

VIII. If A and D are distinct points, and € is a member of A.D,
and B of AC, then B is a member of 4 D.

IX. If A and D are distinct points, and B and €' are members of
A D, then either B is a member of AC, or B is identical with C, or B
is & member of CD.

X. If A and B are distinet points, and € and D are members of
A’'B, then either C is identical with D, or C is a member of BD, or D
is a member of BC.

XI. If A4, B, C, D are points, and B is a member of AC, and C
of BD, then C is a member of 4.D.

Definition. The straight line possessing 4 and B, symbolized by
str (4, B), is composed of the three classes 4'B, AB, B'A, together
with the points 4 and B themselves.

Then by the aid of the previous axioms the usual theorems,

* Cf. Proj. Geom. § 19, and § 9 of the present tract.
+ Cf. Proj. Geom. § 16.
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excluding the Dedekind property, respecting the order of points on a
line can be proved. Also any two points are both contained by one
and only one line.

4. Peano uses the following useful notation which is an extension
of his notation for segments and prolongations. If A is a point and
u is a class of points, then Au is the class of points lying on the
segments between A4 and points of u, and A'u is the class of points on
the prolongations of these segments beyond the points of w.

Then in conformity with this notation the seven regions into which
a plane is divided by three lines are as in the figure.

B'(C4)

C'(4'B) / 4'(BC) 4'(BC)

The plane determined by the three non-collinear points 4, B, C—
written ple (4, B, C)—is defined to be the class of points consisting of
the points on the three lines str (BC), str (C4), and str (4 B), and
of the points in the seven regions A (BC), A'(BC), B'(CA), C'(4B),
A'(B'0), B'(C'A), C'(4'B).

5. Three axioms are required to establish the Geometry of
a plane.

XII. If r is a straight line, there exists a point which does not
lie on 7.

Note that it would be sufficient to enunciate this axiom for one
straight line.

XIII. If A, B, C are three non-collinear points, and D lies on
the segment BC, and E on the segment A D, there exists a point #
on both the segment AC and the prolongation B'E (cf. fig. i, p. 5).

XIV. If A4, B, C are three non-collinear points, and D lies on the
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segment BC, and F on the segment AC, there exists a point £ lying
on both the segments 4D and BF (cf. fig. ii).

A

[+ C
Fig. i.

With these axioms all the usual properties of the division of a
plane by a line, and of the inside and outside of a plane closed figure,

A

[}

8 D

Fig. ii.

can be proved. Thus if 4BC form a triangle and a coplanar line

intersect the segment BC, it must intersect one and only one of the
segments C4 and 4B.

Also any three non-collinear points lie in one and only one plane ;
and the line determined by any two points lying in a plane lies entirely
in that plane. But, as the case of Euclidean Geometry shews, we
cannot prove from these axioms that any two lines in a plane
intersect.

6. For three-dimensional Geometry two other axioms are required.
XV. A point can be found external to any plane. The enuncia-
tion of this axiom can be restricted to a particular plane.
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XVI. Given any plane p, and any point 4 outside it, and any
point @ on it, and any point B on the prolongation 4'Q, then, if X is
any other point, either X lies on the plane p, or AX intersects the
plane p, or BX intersects the plane p.

The annexed figure illustrates the axiom, the points X, X,, X3
being positions of X which illustrate the three alternatives contem-
plated in the axiom. Thus X; lies on the plane p; X. lies on the

A

same side of p as B, so that AX, must cut p in some point Z; X
lies on the same side of p as A4, so that BX,; must cut p in some
point M.

Axiom XVI secures the limitation to three dimensions, and the
division of space by a plane. It can also be proved from the axioms
that, if two planes intersect in at least one point, they intersect in
a straight line.

7. A point will be said to divide a line into two half-rays which
emanate from it.

A line will be said to divide a plane into two half-planes which
are bounded by it.

A plane will be said to divide space into two half-spaces which are
bounded by it.
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A sheaf of lines is a complete set of coplanar lines concurrent
at one point (the vertex). A sheaf of half-rays is a complete set of
coplanar halfrays emanating from one point (the vertex).

A bundle of lines is a complete set of lines concurrent at one point
(the vertex). A bundle of halfrays is a complete set of half-rays
emanating from one point (the vertex).

If p, g, r are three half-rays belonging to a sheaf of half-rays, then
r is said to ‘lie between’ p and ¢, if points 4 and B can be found on
» and ¢ respectively, such that the segment A4 B intersects ».

It can be proved that if » lies between p and g, then p does not
lie between » and q.

The complete set of planes through a given line (the axis) is called
a sheaf of planes. The axis divides each plane into two half-planes.
These half-planes form a sheaf of half-planes.

If p, ¢, r are three half-planes belonging to a sheaf of half-planes,
then 7 is said to ‘lie between’ p and ¢, if points A and B can be found
on p and ¢ respectively, such that the segment 4 B intersects -

It can be proved that if » lies between p and g, then p does not lie
between  and g¢.

The theorems indicated in this and in the preceding sections, and
allied theorems, are not always very easy to prove. But their proofs
depend so largely upon the particular mode of formulation of the
axioms, that it would be outside the scope of this tract to enter into
a consideration of them. In the séquel we shall assume that the whole
class of theorems of the types, which have been thus generally indi-
cated, can be proved from the axioms stated.

8. Formulations of the axioms of Descriptive Geometry have also
been given by Hilbert*, and by E. H. Mooret, and by B. Russellf,
and by O. Veblen§. Veblen’s memoir represents the final outcome of
these successive labours, and his formulation will be given now. The
axioms are stated in terms of ‘points’ and of a relation among three
points called ‘order.” Points and order are not defined.

I There exist at least two distinct points.

* Grundlagen der Geometrie, Leipzig, 1899, English Translation by E. J.
Townsend, Chicago, 1902.

t On the Projective Axioms of Geometry, Trans. of the Amer, Math, Soe.,
vol. 1., 1902,

I The Principles of Mathematics, Cambridge, 1908, ch. xLvI.

§ 4 System of Azioms for Geometry, Trans. of the Amer, Math. Soe., vol. v.,
1904.
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II. If the points A, B, C are in the order ABC, they are in the
vrder CBA.

III. If the points 4, B, C are in the order A BC, they are not
in the order BCA.

IV. If the points 4, B, C are in the order 4BC, then 4 is
distinct from OC.

V. If A and B are any two distinet points, there exists a point €
such that 4, B, C are in the order A BC.

Definition 1. The line AB (A + B) consists of A and B, and of
all points X in one of the possible orders ABX, AXB, XAB. The
points .Y in the order A.X'B constitute the ‘segment’ 4B. A and
B are the ‘end-points’ of the segment, but are not included in it.

VI. If points C and D (C'+ D) lie on the line A B, then A4 lies on
the line CD.

VII. If there exist three distinct points, there exist three points
A, B, C not in any of the orders 4 BC, BCA, or CAB.

Definition 2. Three distinct points not lying on the same line are
the ‘vertices’ of a ‘triangle’ A BC, whose sides are the segments 4B,
BC, CA, and whose ‘boundary’ consists of its vertices and the points
of its sides.

VIII. If three distinct points 4, B, ¢’ do not lie on the same line,
and D and K are two points in the orders BCD and CEA, then a

A

8 ‘ ¢ ~o

point &' exists in the order A FB and such that D, &, F lie on the
same line,

Definition 5. A point O is ‘in the interior of ' a triangle, if it lies
on a segment, the end-points of which are points of different sides of a
triangle. 'The set of such points O is ‘ the interior’ of the triangle.

Definition 6. If A, B, C form a triangle, the ‘plane’ 4 BC
consists of all points collinear with any two points of the sides of the
triangle.
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IX. If there exist three points not lying in the same line, there
exists a plane ABC such that there is a point D not lying in the
plane ABC.

Definition 7. If A, B, C, and D are four points not lying in the
same plane, they form a ‘tetrahedron’ A4 BCD, whose ‘faces’ are the
interiors of the triangles A BC, BCD, CDA, DA B, whose * vertices’
are the four points A, B, C, and D, and whose ‘edges’ are the
segments 4B, BC, CD, DA, AC, BD. The points of faces, edges,
and vertices constitute the ‘surface’ of the tetrahedron.

Definition 8. If A, B, C, D are the vertices of a tetrahedron, the
space A BCD consists of all points collinear with any two points of the
faces of the tetrahedron.

X. If there exist four points, neither lying in the same line, nor
lying in the same plane, there exists a space 4 BCD, such that there is
no point & not collinear with two points of the space 4 BCD.

The above axioms of Veblen are equivalent to the axioms of Peano
which have been previously given. Both Peano and Veblen give an
axiom securing the Dedekind property (cf. § 9). Also Veblen gives an
axiom securing the ‘ Euclidean’ property (cf. § 10).

9. Dedekind’s original formulation* of his famous property applies
directly to the case of a descriptive line and is as follows :

“If all points of the straight line fall into two classes such that
every point of the first class lies to the left of every point of the second
class, then there exists one and only one point which produces this
division of all points into two classes, this severing of the straight line
into two portions.”

It is of course to be understood that the dividing point itself
belongs to one of the two classes.

It follows immediately that the boundary of a triangle consists of
points in a compact closed order possessing the Dedekind property as
already formulated for closed series t.

This definition may be repeated here to exhibit its essential in-
dependence of the special definition of projective segments upon which
the previous formulation rests.

Let 4, B, C be any three points of a closed series. Then by

* Cf. his Continuity and Irrational Numbers, ch. 111.; the quotation here is
from Beman’s translation, Chicago, 1901.
t COf. Proj. Geom. § 19 (a).
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hypothesis the series is such that there are two ways round from A
to C, namely, one throngh B and one not through B. Let segm (4.B0)

P

denote the points, excluding A and C, which are traversed from

A to € through B, and let segm (4BC) denote the remaining
points of the series. Again let a class « of the points of the series
be called a segment of the series, when (1) there is a point B of the
series which does not belong to », and (2) if P and @ be any two

points of u then segm (PﬁQ) belongs entirely to w.

Then the series possesses the Dedekind property if any segment
such as » (which excludes more than one point of the series) must
possess two boundary points, that is to say, if there must exist points

A and C such that segm (Aﬁ’C), with the possible exception of either
or both of 4 and C, is identical with w. Here—as above—2B is a
point which does not belong to u.

Hence a sheaf of halfrays can also be considered as a closed
compact series with the Dedekind property. This is made immediately
evident by surrounding the vertex by a triangle in the plane of the
sheaf. Then each half-ray of the sheaf intersects the boundary of the
triangle in one and only one point. Also the order of the points on
the boundary is the order of the corresponding half-rays of the sheaf,
But the boundary of the triangle is a closed series with the Dedekind
property.

10. By the aid of the Dedekind axiom and of the preceding
axioms, it can now be proved that, if / be any line and 4 be any point,
not incident in /, then in the plane A/ at least one line can be drawn
through A4, which does not intersect /.



9,10] THE EUCLIDEAN AXIOM 11

For take any point B on /, and let p and ¢ be the two supplementary
half-rays of / which emanate from B. Consider the sheaf of half-rays,

vertex A, in the plane AL Some of these half-rays intersect p and
some intersect ¢, and these classes are mutually exclusive.

Also, from the Dedekind property, there exist two semi-rays which
are limits of the semi-rays intersecting p. AB is one of the semi-rays,
let 7 be the other. Now the semi-ray p has no end-point. Hence r is
not among the semi-rays intersecting p. Again by similar reasoning
there is a semi-ray s which is the limit of the semi-rays inter-
secting ¢, and s does not intersect g¢.

Now first let » and s be not collinear, and let »/ and s be the
half-rays supplementary to r and s respectively. Consider the set
(e, say) of lines through A with one set of their half-rays between
r and ¢, and therefore with their supplementary half-rays between
7' and s. There are an infinite number of such lines. Now all' half-
rays emanating from A4 and lying between the half-ray AB and r
intersect p, and no other half-rays from A intersect p. Similarly for
the half-rays 4B and s and ¢. Also if &' lie between the half-ray A B
and r, then +' lies between the half-ray AB and s; and in this case
every line of the set a intersects the line / twice, namely once for each
of its pair of supplementary half-rays emanating from 4. But this is
impossible. Hence neither the supplement of 7 nor that of s can
intersect . Secondly if » and s are collinear, then the complete line
formed by r and s cannot intersect .. For neither 7 nor s intersects /.

Thus taking any point 4 and any line /, the sheaf of lines,
vertex A and in the plane A4/, falls into two parts, namely the lines
which intersect /, called the lines ‘secant’ to /, and the lines which do
10t intersect /, called the lines ‘non-secant’ to /. The non-secant lires
of the sheaf may reduce to one line. The supposition that this is the
:ase is the ‘ Euclidean Axiom.’



CHAPTER 11

THE ASSOCIATED PROJECTIVE SPACE

11. WE have now to establish the relation of Descriptive Geometry
to an associated Projective Geometry. In a Projective Space let a
‘convex region’ be defined to be a region which (1) does not include
the whole of any line, and (2) includes the whole of one of the two
segments between any two points within it. It is easy to prove that
such regions exist. For remembering* that we can employ the
ordinary theory of homogeneous coordinates, the surface

) Pry+F—ur=0
is well known to enclose such a region. Let a quadric enclosing a
convex region be called a ‘convex quadric.” Again in two dimensions
let A, B, C be any three non-collinear points, and let 2 be any point
not collinear with any two of them. Let AP meet the line BC in L,
BP meet CA in M, CP meet AB in N.

Define the triangular region (ABC/P) to be the set of points
formed by the collection of segments such as segm (4@R)t, where
@ is any point on segm (BPM ), and R is the point where the line

* Cf. Proj. Geom. §§ 37 and 42.
+ Cf. Proj. Geom. § 13.
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AQ intersects BC. The points 4, B, C can be interchanged in this
definition without altering the region obtained.

Similarly in three dimensions, if A, B, C, D are the vertices of a
non-degenerate tetrahedron, and P be any point not on any of the
planes, ABC, BCD, etc., the ‘tetrahedral region’ (A BCD/P) can be
similarlydefined. From the ordinary theory of homogeneous coordinates,
it is well known that a triangular region in two dimensions, and a
tetrahedral region in three dimensions, are both convex regions.

Again the triangular region (4 BC/P) considered above has as its
‘boundary ’ the segments (BLC), (CMA), (ANB), together with the
points A4, By, €. Also considering the tetrahedral region (ABCD/P),
let AP intersect BCD in L, BP intersect CDA in M, CP intersect
DAB in N, DP intersect A BC in O. Then the ‘boundary’ of the
tetrahedral region (ABCD/P) consists of the triangular regions
(BCD|L), (CDAIM), (DAB/N), (ABC/0O), together with the
boundaries of these triangular regions.

It is now a well-known result from the use of coordinates that in
two dimensions any line through a point in a triangular region cuts
the boundary in two points only ; and that in three dimensions any
line through a point in a tetrahedral region cuts the boundary in two
points only.

12. Now consider a convex region, let it be either the region
within a convex quadric, or a tetrahedral region. Call the poiuts
within it ¢ Descriptive points’; and call the portions of lines within it
‘ Descriptive lines.” The projective order of points on a line becomes
an open order for Descriptive points on Descriptive lines. Then by
the use of coordinate Geometry it is easy to prove that all the
Descriptive axioms of the present tract, either in Peano’s form or in

Veblen’s form, are satisfied, including the Dedekind axiom, but exclud-
ing the Euclidean axiom. Thus in the figure the lines 4B and CD
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intersect at a point A in Descriptive Space; but the lines 4 B and EF
do not intersect in Descriptive Space, since A lies outside it. Also it
is evident that through any point P an infinite number of lines can be
drawn, coplanar with 4 B, and not intersecting it in Descriptive Space.

13. The previous article (§ 12) proves* the existence theorem for
Descriptive Space with the negation of the Euclidean axiom ; in other
words, it proves the independence of the Euclidean axiom.

The existence theorem for Descriptive Space with the Euclidean
axiom is immediately proved by considering the region of Projective
Space found by excluding all the points on one projective plane. The
region is convex according to the above definition; also all the
Descriptive axioms, together with the Dedekind axiom and the Euclidean
axiom, hold for itt.

14. The independence of the Dedekind axiom of the other axioms,
combined with the negation of the Euclidean axiom, is proved by con-
sidering, as in § 12, Descriptive Space to be a tetrahedral region in
Projective Space, but confining ourselves to the points whose co-
ordinates are algebraic numbers}, as in the corresponding proof for
Projective Geometry.

The independence of the Dedekind axiom of the other axioms,
combined with the Euclidean axiom, is similarly proved by considering
Descriptive Space to be the region in Projective Space found by

* Cf. Proj. Geom. § 43.

t Inthelater Greek period, and during the seventeenth and eighteenth centuries,
the discussion of the foundations of Geometry was almost entirely confined to
attempts to prove the Euclidean axiom. The explicit recognitions of its inde-
pendence by Lobatschefskij (1828), and by J. Bolyai (1832) laid the foundation of
the existing theories of non-Euclidean Geometry. For the literature of the whole
question cf. Stéickel and Engel, Die Theorie der Parallellinien von Buklid bis auf
Gauss, Leipzig, 1895, and also their Urkunden zur Geschichte der Nichteuklid-
ischen Geometrie, I. Lobatschefskij, Leipzig, 1898.

t Of. Proj. Geom. § 48 (@). An oversight in this proof may be here corrected.
The proof, as printed, proceeds by considering only points with rational coordinates.
But then a difficulty arises as to the theory of segments given in Chapter IV. of
Proj. Geom. For it is necessary that the real double points of a hyperbolic
involution should belong to the points considered. But these double points are
given by a quadratic equation. Thus algebraic numbers (i.c. numbers which can
ocour as the roots of equations with integral coefficients) should be substituted for
rational numbers. THe proof proceeds without other alteration. I am indebted to
Mr G. G. Berry of the Bodleian Library for this eorrection.
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excluding a particular plane ; and further, as before, we confine our
consideration to the points whose coordinates are algebraic numbers,

15. It has been proved in § 12 and 13 that a convex region of a
Projective Space is a Descriptive Space. The converse problem has
now to be considered in this and in the next chapter; namely, given
a Descriptive Space, to construct a Projective Space of which the
Descriptive Space is part. This effects a very considerable simplifica-
tion in the investigation of the properties of Descriptive Space owing
to the superior generality of the analogous properties of Projective
Space. Thus a Projective Space affords a complete interpretation of
all the entities indicated in coordinate geometry. It is in order to
gain this simplification that the *plane at infinity’ is introduced into
ordinary Euclidean Geometry. We have in effect to seek the logical
justification for this procedure by indicating the exact nature of the
entities which are vaguely defined as the ‘points at infinity’; and the
procedure is extended by shewing that it is not necessarily connected
with the assumption of the Euclidean axiom. This investigation is
the Theory of Ideal Points*, or of the generation of ‘Proper and
Improper Projective Points’ in Descriptive Geometry. The Euclidean
axiom will not be assumed except when it is explicitly introduced.
The remainder of this chapter will be occupied with the general
theorems which are required for the investigation. !

16. If A be any point and / be any line not containing A, then
the plane A/ divides the bundle of half-rays emanating from 4 into
three sets, (1) the half-rays in the plane A/, (2) the half-rays on one
side of the plane, (3) the half-rays on the other side of the plane,
The sets (2) and (3) are formed of half-rays supplementary one to
the other.

Lemma. With the above notation, it is possible to find a plane
through the line / and intersecting any finite number of the half-rays
either of set (2) or of set (3).

For let ay, ... @, be n half-rays of one of the two sets. Let B, be
any point on @, and B, be any point on @,. Then either the plane

* Originally suggested by Klein (extending an earlier suggestion of von Staudt),
Math. Annal. vols. 1v. and vr., 1871 and 1872; first worked out in detail by Pasch,
loc. cit., §§ 6—9. In the text I have followed very closely a simplification of the
argument given by R. Bonola, Sulla Introduzione degli Enti Improprii in Geometria
Projectiva, Giornale di Matematiche, vol. xxxvirr., 1900.
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B, lies between the planes B,/ and A/, or the plane B,/ lies between
the planes B, and A/, or the planes B,/ and Bl are identical. But
in either of the first two cases the intermediate plane intersects both
semi-rays @, and @,. Hence a plane is found through /, intersecting
both ¢, and a@,. Call it the plane B,l. ‘Again take any point B; on a,;
and the same argument shews that at least one of B, and Byl inter-
sects @;, @y, and a;. Proceeding in this way, a plane is finally found
which intersects each of the n semi-rays.

17. Desargues’ Perspective theorems* can be enunciated in the
following modified forms :

(1) If two coplanar triangles ABC and A'B’C’ are such that
the lines A.A', BB’', CC' are concurrent in a point O, then the three

intersections of BC and B'C’, CA and C"A’, AB and A'B, if they exist,
are collinear.

* COf. Proj. Geom. § 7.
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(2) If the pairs of homologous sides of the two coplanar triangles
ABC and A'B'C’, namely, BC and B'C’, CA and C'A’, AB and A'B,
intersect in three collinear points, then the lines A A’, BB, CC', if any
two intersect, are concurrent in the same point.

Considering the first proposition let AB and A'B' intersect in Z,
BC and B'C'in M, C4A and ¢4’ in N. Now it is not possible both
for A’ to lie on the segment OA, and for A to lie on the segment 04'.
Assume that 4’ does not lie on the segment OA. Let R be any point
external to the given plane (o, say). Now by the lemma of § 16, it is
possible to find a plane through L2, lying between the planes LMR and
LMA (i.e. the plane o), and intersecting the three lines 24, BB, RC,
say, in the points A", B”, C" (in the figure C" is not shewn). Then
evidently 4" must lie in the segment RA. Hence A'A”, since 4’
does not lie in the segment OA, must intersect OR in the segment OR.
Thus the intersection of the lines 4’4" and OR is secured. Let it
be the point 0. Again the lines O'A’ and O'B’ are the projections
from R on the plane .1'O’'B of the lines OA’ and OB. Now A"B”
passes through L. Hence B" lies on the plane A'A"B', i.e. on the
plane O4'B. Hence B" is on the projection of the line OB’ on the
plane O’ A'B’, i.e. B” lies on O'B’. Thus B B" passes through 0.

Reasoning in exactly the same way for BC and B'C’, it follows that
C'C" passes through O'. The same figure has now been constructed as
in the proof of the corresponding theorem for Projective Geometry*,
Accordingly the theorem follows by the same reasoning.

In order to demonstrate the converse theorem, we proceed exactly
as above, except that, L, M, N are now assumed to be collinear, O is
the point of intersection of 44" and BB'. Then the same construc-
tion is made as before, and it is successively proved by similar reasoning
that every pair of the lines 4’4", B'B", C'C" intersect. But the lines
are not coplanar. Hence they intersect in the same point 0. But O’
must lie on RO. Thus CC’ passes through O.

Corollary. The enunciation of the first theorem can be modified
by removing the assumption that AC and A’C” intersect, but by adding
the assumption that 4 C intersects LM.

18. A trihedron is the figure formed by three lines concurrent
in the same point, and not all coplanar. The three lines form the
edges of the trihedron ; the three planes containing the lines, two by

* Cf. Proj. Geom. § 7.
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two, form the faces of the trihedron ; the point of concurrence of the
three edges is the vertex of the trihedron.

It follows (cf. § 6) that, if two trihedrons have the same vertex, any
two faces, one from each trihedron, must intersect in a line through
the vertex ; also that any two planes each containing two edges, one
edge from each trihedron, must intersect in a line through the vertex.

Desargues’ theorems can be applied to two trihedrons with the
same vertex ; only in this case, as in Projective Geometry, there are
no exceptional cases depending on non-intersection.

The enunciations are as follows :

(1) Ifa, b canda), ¥, ¢ are the edges of two trihedrons with the
same vertex, such that the planes containing & and @', b and ¥, ¢ and ¢’
are concurrent in a line s (4.¢. belong to the same sheaf), then the three
intersections of the planes bc and b'¢’, ca and ¢/, ab and a'b’ are
coplanar,

(2) Ifa, b, cand &, b, ¢ are the edges of two trihedrons with the
same vertex, such that the three intersections of the planes b¢ and
b'c¢, ca and ¢, ab and &b’ are coplanar, then the three planes
containing @ and &', b and ¥, ¢ and ¢ belong to the same sheaf.

These propositions immediately follow from the case of triangles
by noticing that, by the lemma of § 16, the six edges of the trihedrons
can be cut by a plane, not through the vertex. Hence by the previous
remarks on trihedrons, Desarguesian triangles are obtained without the
exceptions due to non-intersection.

19. The two theorems of the present and next articles are the
central theorems of the whole theory of Ideal Points.

(4]

e /L [ N\ R Q
a b ¢

If the lines a, b, ¢ are the intersections of three planes o, B3, y of a
sheaf with a plane =, not belonging to the sheaf, and if O be any
point not incident in =, then the three planes Oa, 0b, Oc belong to
one sheaf.
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If the axis (r) of the sheaf intersect the plane = in a point S, then
the three lines a, b, ¢ pass through S, and the line OS is evidently
contained in Oa, Ob, Oc, and thus forms the axis of the new sheaf.

Consider now the case when the axis (r) of the sheaf does not
intersect =. Then @, b, ¢ are not concurrent, and no two of them
intersedt. Hence one of the three (b, say) must lie between [Z.e. any
segment, joining a point on @ and a point on ¢, intersects 4] the other
two. Take any two points L and N on @ and ¢ respectively, then the
segment LNV intersects b in a point M. Take two other points P and
Q on LN so that we have the order P, L, M, N, §. Take any point
D on ¢; then the segment PD must intersect @ and 6 in two points
A and B respectively; and the segment A¢ must intersect the
segment DN in a point C. Then the line BC must intersect the
segment V@ in a point B. Thus a triangle ABC has been formed,
whose vertices lie on @, b, ¢, and whose sides AB, AC, BC pass
through P, ¢, R respectively.

By taking another point D’ on ¢, another triangle A'B'C’ can be
similarly formed, whose vertices lie on @, b, ¢, and whose sides 4'B’
and A'C’ pass through P and @ respectively.

We have first to shew that B'C’ passes through E. For taking
any point 7" on the axis (r) of the sheaf, the lines 74, T'B, T'C form
the edges of one trihedron, and the lines 774’, T8, T'C" form the
edges of another trihedron with the same vertex.

Also the planes 744', TBEB, TCC’ belong to the samd sheaf.
Hence the three intersections of the pairs of planes TAB and TA'H,
TAC and TA'C’, TBC and TB'C" are coplanar ; hence they lie in
the plane 7’PQ. Hence B’C’ passes through A.

Now considering the two trihedrons with edges 04, OB, OC, and
0A4', OB, 0OC', the intersections of the pairs of faces 04 B and OA'B,
0AC and 0A'C’, OBC and OB'C’' are respectively OP, 0Q, OR;
and these are coplanar. Hence by the converse part of Desargues’
theorem for trihedrons, the planes 04 A4’, OBB’, OCC’ belong to the
same sheaf. Hence Oz, Ob, Oc belong to the same sheaf (i.e. have
a common line of intersection).

20. If any two of the lines @, &, ¢ are coplanar, but the three
lines are not coplanar, and similarly for the lines «, &, d, then ¢ and d
are coplanar.

If @ and b intersect, the theorem is evident; for a, 6, ¢ are con-
current, and a, b, d are concurrent. Hence ¢ and d are concurrent.

9_9

-—
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Assume that ¢ and b do not intersect. Then it is easy to prove
that no two of the lines intersect. It follows that no one of the lines
¢, b, d can intersect any of the planes ab, ac, ad in which it does
not lie.
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Hence it follows that either ¢ and d lie on opposite sides of the
plane ab, or d and b on opposite sides of the plane ac, or 4 and ¢ on
opposite sides of the plane ad.

First, let ¢ and d lie on opposite sides of the plane ab (cf. fig. 1).
Take any point C on c. Then the plane Cd must intersect the plane
ab in a line, d’, say. Then the lines @, b, d’ are the intersections of
the three planes da, db, dC' with the plane ab ; and these three planes
belong to the same sheaf. Hence (cf § 19) the three planes through
the lines a, b, d’ respectively and through any point not on ab belong
to the same sheaf. But C is such a point. Hence the planes Ca,
Cb, Cd’ belong to the same sheaf. But ¢ is the common line of Ca
and Cb. Hence Cd’ contains the line c. Hence ¢ and d are coplanar.

Secondly, let the plane ad lie between 6 and ¢. Then the plane bc
must intersect the plane ad in some line, d’, say. Thus the three lines
b, d’, ¢ are the intersections of the three planes ab, ad, ac with the
plane bc. These three planes belong to the same sheaf. Hence
(cf. §19), if D is any point on d, not on be, the planes Db, De, Dd’
belong to the same sheaf. But Db and Dd’ intersect in the line d;
hence D¢ passes through the line d. Thus ¢ and & are coplanar.

Thirdly, let the plane ac lie between b and d. Then the proof is
as in the second case, interchanging ¢ and d.



CHAPTER III

IDEAL POINTS

21. Definition. An ‘Associated* Projective Point,” or an Ideal
Point,’ is the class of lines which is composed of two coplanar lines,
« and b, say, and of the lines formed by the intersections of pairs
of distinet planes through @ and b respectively, and of the lines in the
plane @b which are coplanar with any of the lines of the projective
point not lying in the plane ab.

It follows immediately from § 20 that the lines forming a projective
point are two by two coplanar ; and further that (with the notation
of the definition) the lines of the projective point lying in the plane
ab are the lines in b coplanar with any one of the lines of the
projective point not lying in «b.

Definition. A projective point is termed ‘proper,’ if the lines
composing it intersect. Their point of intersection will be called the
‘vertex’ of the point.

Thus a proper projective point is simply a bundle of lines, and
every bundle is a proper projective point.

Definition. A projective point is termed ‘improper,’ if the lines
composing it do not intersect.

It is proved (cf. §§ 24—30) that Projective Geometry holds good of
projective points as thus defined, when a fitting definition has been
given of a ‘projective line.’

Dqﬁm'te'on; A projective point will be said to be ¢coherent with
a plane, if any of the lines composing it lie in the plane.

Definition. A ‘projective line’ is the class of those projective
points which are coherent with two given planes. If the planes

* The word ¢ Associated’ will usually be omitted.
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intersect, the projective line is called proper’; and the line of inter-
section is the ‘axis” If the planes do not intersect, the projective
line is called ‘improper.’

Since Projective Geometry has been developed* from the two
fundamental ideas of ‘point’ and straight line,’ the other definitions
of projective elements must simply be those which have been given
in considering Projective Geometry. Thust a projective plane is the
class of those projective (ideal) points, which lie on any projective
line joining any given projective point A to any projective point on
any given projective line not possessing the given projective point A.

Definition. If a projective plane possesses any proper projective
points, it will be called a ‘ proper projective plane.” Otherwise it is an
‘improper projective plane.’

The vertices of all the proper projective points on a proper pro-
jective plane will be seen to form a plane (cf. § 26 ().

Definition. A proper projective point and its vertex are said to be
“associated,” so likewise are a proper projective line and its axis, and
dlso a proper projective plane and the plane constituted by the vertices
of its proper projective points.

22. Since any two lines belonging to a projective point are
coplanar, it easily follows that any two lines of the projective’ point
can be used in place of the two special lines (@ and b) used in the
definition (cf. § 21). Hence it can easily be proved that any plane,
containing one line of a projective point, contains an infinite number
of such lines. In other words, if a projective point is coherent with
a plane, an infinite number of the lines of the projective point lie
in the plane. In fact it follows that, through each point of the plane,
one line passes which belongs to the projective point.

23. If three projective points are incident in the same projective
line, then with any plane, with which two of the projective points
cohere, the third projective point also coheres.

First, if the three projective points are proper, the theorem is
immediately evident.

Secondly, let two of the projective points, M and N, say, be
proper, and let the third projective point, L, say, be improper. Let

* Cf. Proj. Geom. + Cf. Proj. Geom. § 4.
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the projective line possessing L, M, N be defined by the two planes
w and =’ (cf. Definition of § 21). Then the three projective points cohere
with = and #".  Let #” be any third plane with which two of the three,

L

Fig. 1.

L, M, and N, cohere. Let M, and N, be the vertices of the proper
points, M and N. Then M, N, is a line in the plane = (cf. fig.* 1);
also the line MV, belongs to L. Again (cf. § 22) another line »
exists in = belonging to Z; and M, and N, must lie on the same
side of . Let ¢’ be any line in = belonging to Z, and on the opposite
side of the line  to M, and ,; such a line exists (cf. § 22). Let O
be any point of 7 on the side of # remote from M, and N,. Then
the segment OM, intersects » and +, in 4 and A4, say; and the

* Note in drawing an illustrative figure, it is convenient to make the assump-
tion of § 12, and to consider Descriptive space as & convex region in a larger
Projective Space. This region is marked off by an oval curve in the figure, and an
ideal point, such as L, is & point outside the oval. Note that the existence of L,
as an analogous entity to 3; and N;, must not be assumed in the present
reasoning,
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segment ON, intersects » and 7, in B and B, say. The segments
AN, and BM, intersect, in C, say; the segments B'M, and A'N,
intersect, in (", say. Now project from any point O’ in =, and two
trihedrons are formed, namely 0’4, O'B, O'C, and O'A’, OB, OC,,
with the same vertex O'. Also the homologous faces intersect in the
three coplanar lines O'L, O'M,, O'N,. Hence the three planes 0’4 4’,
OBPB, 0'CC’ are concurrent in a line. Hence the plane O'CC’ con-
tains the line 0'0. Therefore CC’ passes through O. Again project
from any point O” in =", and consider the trihedrons 0”4, 0"B, 0"C,
and 0"4’, O"B’, 0"C’". 'Then the planes 0”4 4’, O"BE, 0"CC’ are
concurrent in the same line 0"0. Thus the three lines 0" L, 0"M,,
O"N, are coplanar. Hence if two of them lie in =", the third must do
so also. Hence if two of L, M, N cohere with =", the third also
does so.

/

Fig. 2.

Thirdly, let either two or three of L, M, N be improper. Thus
let L and M be certainly improper (cf. figs. 2 and 3). In the plane »



26 A PROPERTY OF IDEAL LINES [cH. 111

form a triangle ABC, such that its sides 4B, BC, CA belong to
L, M, N respectively. Thus if NV is a proper point, CA passes
through IV, the vertex of NV : also since the lines BC and 4 B do not
intersect the line N, ML, the points 4, B, C lie on the same side
of this line (cf. fig. 2): also since the lines BC and BA do not
intersect the line V, ML, either C lies on the same side of the line AB
as Ny, or A lies on the same side of the line BC as N;. Assume that
C lies on the same side of A B as N; (cf. fig. 2). The rest of the proof
for figures 2 and 3 is now identical. In the plane =, let » be any line

Fig. 3.

belonging to L, on the side of 4B remote from €. In the plane =,
take any point O on the side of r remote from C. Then the segments
OA and OB intersect r, say in A’ and B. Also the line 4'N
intersects the segment 04, and does not intersect the segment 4C';
hence it must intersect the segment OC, say in C'. Then, by pro-
jecting from any point O’ in the plane =’ and by similar reasoning
to that in the second case, it is proved that the line B’C" belongs
to M. Then, as in the second case, by projecting from any point
0" in =", it follows that, if any two of the projective points Z, M, N
cohere with =", so also does the third.

24. (a) It follows from § 23 that any two planes, with which
both of two given projective points cohere, define the same projective
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line as any other pair of such planes. Hence two projective points
determine not more than one projective line.

(B) Two projective points determine at least one projective line.
For if the points are proper, this is immediately evident. But in any
case let the projective points be 4 and B, and let O be any point.
There are at least two lines, @, and a,, which are members of 4 and
such that the plane «,@, does not contain O. Then the planes Oa,
and Oa, intersect in a line which passes through O and is a member of
A. Hence through any point there passes a line which is a member of
a projective point. Hence through O there are lines belonging to 4
and B respectively. But these lines determine a plane, with which 4
and B both cohere. Similarly a second such plane can be determined.
Hence there is a projective line possessing both 4 and B.

25. 'The Axioms of Projective Geometry* can now be seen to be
true for the ‘Projective Elements’ as thus defined. Thus we have the
following theorems corresponding to those axioms of the previous tract,
of which the numbers are enumerated in the initial brackets.

(I, II, IIL.) 'There is a class of Projective Points, possessing at
least two members.

(IV, V, VI, VII, VIII.) If 4 and B are Projective Points, there
is a definite projective line 4B, which (1) is a class of projective
points, and (2) is the same as the projective line BA, and (3) posdesses
A and B, and (4) possesses at least one plojective point distinct from
.4 and B.

Note that two improper projective points may possess no common
line,

(IX and X.) If A and B are projective points, and C is a pro-
jective point belonging to the projective line AR, and is not identical
with A, then (1) B belongs to the projective line AC, and (2) the
projective line AC is contained in the projective line AB.

(XL) If 4 and B are distinet projective points, there exists at
least one projective point not belonging to the projective line 4.B.

26. Before considering the proof of the ‘axioms’ of the projective
planet, some further propositions are required.

(«) Since a line exists through any given point and belonging
to any given projective point, it easily follows that the set of projective

* Cf, Proj. Geom. §§ 4, 7, 8, 14.
+ Cf. Proj- Geom., Axioms XII, XIII, XIV.
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points cohering with a plane form a proper projective plane ; and that
conversely, any proper projective plane is the set of projective points
cohering with some plane.

(B) Any projective line intersects any given proper projective
plane. For through the vertex of any proper projective point on the
projective plane, a plane passes with which every point of the
projective line coheres (cf. § 23). This plane intersects the plane
associated with the projective plane in a line. Two such planes can
be found. The two lines in the plane associated with the projective
plane define a projective point which lies both in the projective line
and the projective plane.

(y) Two projective lines in a proper projective plane necessarily
intersect.

For let m and = be the projective lines and « be the proper
projective plane, and a, its associated plane. Take any point O
outside ;. Then two planes Om and On exist, with which re-
spectively all projective points of m and n cohere. These planes
intersect in a line through O, 7, say. Let A be any point in a,.
The plane Al intersects a, in a line, ’, say. The two lines / and I’
define a projective point which lies in both the projective lines m
and 7.

(8) Desargues’ Theorem holds for triangles formed by projective
lines and projective points in a proper projective plane.

By (y) immediately above, no exception arises from non-intersec<
tion. Then by taking a point external to the associated plane, two
trihedrons can be formed for which the theorem holds. Hence the
theorem holds for the proper projective plane.

(¢) The projections upon a proper projective plane of three
projective points belonging to the same projective line also belong to
a projective line.

The theorem is immediately evident, if the centre of projection,
or if any one of the three projective points, is proper. Assume that
all the projective points are improper. Let L, M, N be the three
projective points, and & the projective point which is the centre of
projection. Let = be the proper projective plane on to which Z, M, N'
are to be projected. Let o be any plane with which L, M, N all
cohere. On a construct figure 8 of § 23. Project (remembering (B8)
above) the whole figure of associated projective points from S on to the
plane =. Then by the first case of the present theorem, all collinear
groups of projective points which possess a proper projective point are
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projected into collinear groups. Let 4, B, ... M, N be projected
intO Al} Bl’ e M:I, M-

Thus, in the plane =, two homological triangles A,B,C, and
A/B)/C/ are obtained, A,4,, BB, C,C/ being concurrent in O,;
also B1 4, and B/A,, B,C,and B/C/, 4,0, and A,C, are concurrent
respectively in Z,, M,, N,. Hence, by (8) above, Z,, M;, N, belong
to the same projective line.

27. The next group of propositions correspond to the three axioms
concerning the projective plane,

(XIL.) If A, B, C are three projective points, which do not
belong to the same projective line, and .1’ belongs to the projective
line BC, and B’ to the projective line C'4, then the projective lines
AA'" and BB’ possess a projective point in common.

If the projective plane ABC is proper, the theorem follows from
§ 26 (y). If the projective plane A BC is improper, consider any plane
with which all the projective points of the projective line BB’ cohere.

A

Y

B A’ (o]

Such planes exist. Thus the associated projective plane of such a
plane is a proper projective plane containing the line BA. But by
§ 26 (B) the projective line 4.4’ intersects this proper projective plane,
in the projective point D, say. ~ Also by § 26 (¢) the projections of
B, A, C from A on to this proper projective plane belong to the
same projective line. Hence D belongs to BB'. Thus A4’ and BB
intersect.

(XIIL.) If A4, B, C are three projective points, not belonging to
the same projective line, then there exists a projective point not
belonging to the projective plane ABC.

This follows immediately from Peano’s Axiom XV given in § 6
above. -
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28. The theory of Harmonic Ranges must now be considered.

Let 4, B be any two points, C a point in the segment AB. Take
F any point outside the line AB, and H any point on the segment
FC, and let EG be as in figure 1. Then the point D, if it exist, is

Fig. 1.

the harmonic conjugate of C with respect to 4 and B. By considering
the associated projective points and the associated projective lines, the
requisite harmonic conjugate (as a projective point) always exists.
Thus, on the basis of the axioms of Projective Geometry already
proved, the proof for the uniqueness of the harmonic conjugate in the
associated projective geometry holds good*. Thus in the original
Descriptive Geometry, the harmonic conjugate, if it exist, is unique.

Furthermore, since H is on the segment FC, £ and G are re-
spectively on the segments A ¥ and FB. Hence D, if it exist, cannot
lie on the segment A B. Conversely, if D is any point on the line 453,
say on the side of B remote from A, take & any point on the segment
AF, then DE must intersect the segment BF. Hence AG and BE
must intersect in H, on the segments AG and BE. Therefore FH
intersects the segment A B. Thus the harmonic conjugate with respect
to A and B of any point on the line AB, not on the segment 4 B,
must exist, and lies on the segment 4 5.

Furthermore, if D lies on the side of B remote from 4, and €’
lies on the segment BC, let FC' and EB intersect in H'; and AH’
intersect the segment FB in G', Then since ' lies in the segment
BC, H' lies in the segment BH, and G’ lies in the segment BG.
Hence I exists and lies in the segment BD. Thus as C moves
towards B, D also moves in the opposite direction towards B't.

* Of. Proj. Geom. §§ 6 and 7. 1 Cf. Proj. Geom. § 17 (8).
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Hence it is easily seen that the segment A B is divided into three
parts by reference to the harmonic conjugates of points in it with
respect to A and B. The part formed by the segment 4 K, (cf. fig. 2),

. Ce . . hdl
-] K K, ) A

Fig. 2.

exclusive of 4 and K, contains the points whose harmonic conjugates
lie on the side of 4 remote from B ; the segment BK,, exclusive of
B and K, contains the points whose harmonic conjugates lie on the
side of B remote from 4 ; the segment K, K, inclusive of &; and K,
contains the points for which the harmonic conjugates do not exist.
It is not necessary that the points X, and K, be distinct. If they
coincide, the segment K, K, inclusive of K; and K,, shrinks into a
single point K. Thus in Euclidean Geometry the middle point of any
segment A B is this degenerate portion of the segment.

It immediately follows that Fano’s axiom* is satisfied for proper
projective lines. Hence, remembering that the harmonic relation is
projective T, we have :

(XIV.) If A and B are distinet projective points, and € is a
projective point of the projective line A B, distinct from 4 and B,
then the harmonic conjugate of C, with respect to 4 and B, is
distinct from C. ’

Also the restriction to three dimensions follows at once from
Peano’s Axiom XVI of § 6, giving the same restriction for Descriptive
Geometry. Hence we find:

(XV.) If a be any projective plane, and 4 be any projective point
not lying in o, any projective point P lies on some line joining A4 to
some projective point on a.

29. The order of the projective points on a projective line must
now be cousidered.

If the projective line is proper, the order of the proper projective
points on it will be defined to correspond to the order of the associated
points. Thus (cf. fig. 2 of § 28) if the points marked in the figure are
projective points, as €' moves from 4 to K, excluding K, the projec-
tive point D), which is the harmonic conjugate to € with respect to 4
and B, moves from C through all the proper projective points on the

* Cf. Proj. Geom. § 8, + Cf. Proj. Geom. § 9 (5).
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side of 4 remote from B; and as C moves from K,, excluding K,
to B, D moves towards B through all the proper projective points
on the side of B remote from A.

Now let the order of the improper projective points be defined so
as to make the above theorem hold generally : thus as ¢ moves from
K, to K,, including K, and K, let the order of the improper
projective points through which D moves be such that D passes
continually in the same direction round the line from the proper
projective points on the side of A remote from B to the proper
projective points on the side of B remote from A.

Then by theorem (a) of § 17 of the Tract on Projective Geometry,
the order as thus defined agrees with the order as defined in §§ 14
and 15 of that Tract. Also the order on the improper projective
lines is obtained from the order on the proper projective lines by
projection. Since the harmenic property is projective, the orders
obtained thus by different projections must agree. Also from Peano’s
axioms of the segments of the Descriptive line given in § 8 above,
it follows that the Projective axioms of order* are satisfied, namely :

(XV1.) If A, B, C are distinct projective points on the same
projective line, and /7 is a projective point on segm (AﬁC’)f, not
identical either with A4 or C, then D belongs to segm (BCA).

(XVIL) If 4, B, C are distinct projective points on the samne
projective line, and D is a projective point belonging to both
segm (BCA) and segm (CAB), then D cannot belong to segm (4 BC).

(XVIIL.) If A, B, C are distinct projective points on the same
projective line, and D is a projective point, distinct from B, and
belonging to segm (4 BC) [which excludes A and C], and E belongs
to segm (A.DC), then & belongs to segm (ABC).

30. Finally, the Dedekind propertyf for the projective line
follows immediately from its assumption for Descriptive Geometry
(cf. § 9 above).

Thus all the axioms for Projective Geeometry, including the axioms
of order and the Dedekind property, are satisfied by the Projective
Points and the Projective Lines. Furthermore the proper projective
points evidently form a convex region in the projective space formed
by the projective points. Also the geometry of this convex region of

* Cf. Proj. Geom. § 14.
+ i.e. on the segment between 4 and C not possessing B, cf. Proj. Geom. § 13.
1 Of. Proj. Geom. § 19 ().
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proper projective points corresponds step by step with the geometry of
the original descriptive space. Thus the geometry of descriptive space
can always be investigated by considering it as a convex region in a
projective space. This simply amounts to considering the associated
proper projective points and adding thereto the improper projective
points. A particular case arises when the Euclidean axiom (cf. § 10,
above) is assumed. 'The improper projective points then lie on a single
improper projective plane. Thus in Euclidean Geometry when the
‘plane at infinity’ is considered, the associated projective geometry has
been introduced, and this plane is the single improper projective plane.



CHAPTER 1V

GENERAL THEORY OF CORRESPONDENCE

31. In this chapter the general ideas of Correspondences, or
Transformations, and of groups of transformations are explained, and
thus the idea of continuous motion is led up to.

Consider any proposition respecting two entities p and ¢ ; let it be
denoted by ¢ (p, ¢). The proposition may be varied by replacing
p and ¢ by two other entities, say w and v, so that the new proposition
i8 ¢ (u, ). Thus we arrive at the notion of a constant form common
to all the propositions of the type ¢ (z, y), where « and y are any two
entities such that a significant proposition results when 2 and y replace
pand ¢in ¢(p, ¢). Note that a false proposition is significant ; an
insignificant proposition is not in truth a proposition at all, it is a
sequence of ideas lacking the type of unity proper to a proposition.

The constant form of the proposition ¢ (z, %), as 2 and y vary, may
be said to constitute a relation between # and y, in those special cases
for which ¢ (2, ) is a true proposition. The order of 2 and y in
respect to this relation represents the special roles of # and ¥
respectively in the proposition ¢ (2, y). Thus if this relation is called
R, ‘x has the relation R to »,’ or more briefly #Ry, is equivalent to
the proposition ¢ (2, ¥), however # and y be varied. It is evident that
we might have considered the relation indicated by the proposition in
such form that, if it be denoted by R’, y B’ represents ¢ («, y). Then
R and R’ are called mutually converse relations. It is evident that
each relation has one and only one corresponding converse relation.

When Ry holds,  is called the referent and y the relatum. A
relation is said to be a one-one relation when to each referent there is
only one relatum, and to each relatum there is only one referent. For
example, if e Rb and ¢ Rc both hold, where b and ¢ are distinct entities,
then the relation £ is not one-one.
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The class of all the referents in respect to a relation is called the
domain of the relation, and the class of all relata is the converse
domain. In mathematics a one-one relation is often spoken of as a trans-
formation (or correspondence) of the members of its domain into (or
with) the corresponding members of the converse domain. The corre-
spondence is definite and reversible, and constitutes a rule by which
we can pass from any member of one class to a corresponding definite
member of the other class.

For example, the equation

20+ 3y=4

constitutes a one-one relation of all real numbers, positive or negative,
to the same class of real numbers. This brings out the fact that the
domain and the converse domain can be identical.

Aguin, a projective relation between all the points on one line of
projective space and all the points on another (or the same) line
constitutes a one-one relation, or transformation, or correspondence,
between the points of the two lines. Any one-one relation of which
both the domain and the converse domain are each of them all the
points of a projective space will be called a one-one point corre-
spondence.

32. By reasoning* based upon the axioms of Projective Geometry,
without reference to any idea of distance or'of congruence, coordinates
can be introduced, so that the ratios of four coordinates characterize
each point, and the equation of a plane is a homogeneous equation of
the first degree. Let X, Y, Z, U be the four coordinates of any
point ; then it will be more convenient for us to work with non-
homogeneous coordinates found by putting 2 for X/ U, y for Y/,
z for Z|/U. Accordingly the actual values of @, g, z are, as usual, the
coordinates characterizing a point. All points can thus be represented
by finite values of 2, y, z, except points on the plane, &’=0. For these
points some or all of z, y, and z are infinite. In order to deal with
this plane either recourse must be had to the original homogeneous
coordinates, or the limiting values of z to ¥ to z must be considered as
they become infinite.

The plane, =0, is called the yz plane, the line, y=0, 2=0, is
called the axis of #, and the plane, =0, is called the infinite
plane.

* Cf. Proj. Geom. chs. v1. and vi1.
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When the fundamental tetrahedron is changed, the coordinates are
changed according to the formula
X -—olonX+apY +asZ+a,Ul},
Y z=clugX+anY +anZ +a,U},
Z' =clag N +an Y +ayZ +a,l/)},
U=cloy X+ay, Y+a, Z+a, Ul
Hence the non-homogeneous coordinates are transformed by the
formula
& = (U@ + Ayl + a2 + ) (2 + auy + 35 + ay),
Y =(AnZ + doyly + Ay + o) /(12 + Wy + 35 + @),
= (an® + @Y + 0ns + ay) /(08 + @y + @5 + ay).
But if the infinite plane is the same in both cases, the formula for
transformation becomes
T = @+ Q) + Gy + Oy
with two similar equations.

33. A one-one point correspondence can be characterized by
formule giving the coordinates of any relatum in terms of those of
the corresponding referent. It must be remembered that every point
is both a relatum and a referent. Let the correspondence under
consideration be called 7', then the coordinates of the relatum of any
point z, y, # will be written 7%, Ty, 7=. 'Thus we have

Te=d(v,9,2) Ty=ds(2,9,2), To=¢;5(2, 9, 2),
where the functions ¢, ¢,, ¢; are defined for every point of space and
are single-valued. Furthermore, since the correspondence, being one-
one, is reversible, it must be possible to solve these equations for .z, ¥,
and 2z, obtaining

v=9 (T2, Ty, T2), y=v.(Tx, Ty, T2), =z=ys(T2, Ty, Tz).

Let this converse relation be written 7', and let the coordinates of
the relatum of any point #, y, 2 be written 7T\2, T\y, T'z. Then

we=TTe=TTz, y=TTy=TTy, z=TTe=TT2

Then, remembering that by properly choosing , ¥, = we can take
Tz, Ty, Tz to be any point of space, we find

Tiz=yy(x, 9, 2), Ty=vu(2,9,2), Tiz=y, (2, 9, 2),
where y,, Y., ¥, are defined for every point of space and are single-
valued.
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34. Consider* the one-one point correspondence (7) defined by

Te=¢ (2,9, 2 m, a...q,), Ty=¢:(2, 9, 2, a, s, ... @),
Tz=¢5(2, 9, 2, @, A, ... @),
where a,, @,, ... @, are » parameters. Let the parameters be assumed to
be effective, so that two different choices of special values for them
necessarily produce different correspondences. Then by varying the
parameters an assemblage of correspondences is produced, each corre-
spondence being defined by.a particular choice of the parameters

Uy Ugy «oo Ay

Now let § and 7' be any two members of this assemblage. Then
8T, i.e. S(Tz), STy, and ST% obviously are the coordinates of a point
which is related to the point (z, 7, z) by a one-one point correspondence.
This correspondence is denoted by 87° Now, if S§7 is necessarily a
member of the assemblage whenever & and 7' are both members of it,
the assemblage is called a group. When each correspondence of the
group is defined by » effective parameters, where r is a finite number,
the group is called finite and 7-limbed. The group is said to be
continuous, if, § and 7" being any two different transformations of the
group, whenever the parameters of § vary continuously and ultimately
approach those of 7" as their limits, then, for every value of 2, 7, %,
also S, Sy, Sz vary continuously and approach 7z, T%, T% as ‘their
limits. '

The assumption that ¢;, ¢., ¢, are analytical functions of their
arguments, 1, ¥, 5, o, @y, ... @,, secures that the group is continuous.

35. The identical one-one point correspondence, 2 say, is such
that, for every value of #, 7, 2,

Qe=x, Q=y, Qe==2...iivenninnn. (1).

Finite Continuous Transformation Groups exist which do not
contain the identical transformation. But the chief interest of the
subject is concerned with those which do contain it. Let a°, ¢, ... @,°
be the value-system of the parameters for which the corresponding
transformation of the group is the identical transformation @, so that

Qr=x=¢, (1,9, 2, &', A0 ... &°) «ccvrvvrenen. (2),

with two similar equations.

. Cf. Vorlesungen iiber Continuierliche Gruppen, by Lie, ch. vi. § 2.
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For brevity put

(oELam®)) gy, 2=t =120
aa,, a)l,...ar®

0 %
(_‘_#2_(_3', Y %, ar}) =0 (Y, 2) =0, (R=1,2,...0) )
aan a,", w0

(8).
o, )a.“, mar‘,= Ll ,2)=¢,(n=1,2,... 7)J

Now any transformation (7') of the group can be expressed in the
form

(@% (@9.% 0, ...a0)

Tr=¢, (2,9, 2 a°+ ot al +&t, ..., a,° + ¢,t)
Ty=a(@, 9, 2, a0 + €18, @ + a8, ..., @0+ €ub) [ oevneoee (4).
Tz =¢s(z, 4, 2, a4 + ey, ad + 058, ... ,@,° + ¢,8)
Hence, since the functions ¢,, ¢., ¢; are analytic, if ¢ is not too
large, we find, remembering equations (2) and (3),
Te=z+t(e,é +edy+ ... + ¢,&,) + terms involving &, &, ete.
Ty=y+t(esm +em, + ... + €.1,) + terms involving £, #, ete. - (5).
Tz =z+t(e,& + 6.5+ ... + €,.4,) + terms involving £, #*, ete.

Hence in the limit when # diminishes indefinitely, writing

Te=xz+ dg—ft, ete.,
we find

da .
i b +ed+ ..+ e,é,.}

%’-"’1"71 e t... +¢wrs

dz -
Z-abrelt.  +al

These equations define the infinitesimal transformations of the

group, every value-system of ratios of e, e,, ... ¢, defining one Infini-
tesimal Transformation.

36. Couversely by integrating equations (6) of § 385, it can be
proved that the form of any finite transformation of the group can be
recovered. Assume that we have found in this way

14 =f; (t, 013 Ch 03)1 3’=.ﬁ2 (ty Cylp 029 Cs)s z=.f8 (t3 Cla 02: Cs)’
where C;, C;, C; are the constants introduced by the integration. Let
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Zo, Yo, % be the values of z, y, # when £=0. Then from the above
equations it can be proved to be possible, owing to the properties of
the continuous group of one-one transformations, to solve for C,, C:, C;
in terms of , ¥, 2. Thus we obtain again equations (4) of § 35,
namely

&=y (Zoy Yo, 20y @+ €12, ... @0 + &:t),

with two similar equations, where w«,, %, 2, now correspond to z, g, =
in those equations, and @, 3, = to T, Ty, T-.

But it is not true that, if any equations of the same ‘form as
equations (6) of § 35 be written down, where &,...,{, are any
arbitrarily chosen functions of z, ¥, 2, the integral forms give the finite
transformations of an r-limbed finite continuous group. For in
equations (6) of § 85, &, ..., ¢ are derived from equations (3) of § 35,
that is to say, they are partial differential coefficients of functions with
special properties. The enunciation of the conditions to be satisfied
by &, ---» &, so that a finite continuous group of transformations may
result from the integration of the corresponding equations, is called the
Second Fundamental Theorem of the subject. It is not required here.

Also if ¢, e, ... e are kept unchanged, then the assemblage of
transformations found by the variation of ¢ in equations (4) of § 35
form a one-limbed continuous group, which is defined by the single
infinitesimal transformation which it contains, namely that one corre-
sponding to the given value-system of ¢, e,,...¢,. Also every finite
transformation is a member of the one-limbed group produced by the
indefinite repetition of some infinitesimal transformation.

37. A latent point of a transformation is a point’which is trans-
formed into itself. A latent curve or surface is such that any point of
it is transformed into some point on the same curve or surface.

It is evident that the latent points, lines, and surfaces of any
infinitesimal transformation are also latent for every finite transfor-
mation belonging to the one-limbed group defined by it. They are
called the latent points, lines, and surfaces of the group.

The transformations which leave a given surface latent must form
a group, for the successive application of two such transformations still
leaves the surface latent. Also the assemblage of the infinitesimal
transformations which leave a surface latent must be the infinitesimal
transformations of a continuous transformation group.
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38. If a reentrant single-branched curve a (which may be a straight
line) is transformed by an infinitesimal transformation of a continuous
group into a curve B, then the senses* round, or directions round, the
curves correspond in a perfectly definite manner, the same for all such
infinitesimal transformations.

In order to make clear the correspondence of directions round any
two reentrant single-branched curves o and B, let OP,L and OP,L
define two complementary segments round e, and let '@, M and 0'Q, M
define two complementary segments round B. Now consider any
one-one point transformation which (1) transforms « into 8, (2) trans-
forms segments of « into segments of B, (8) transforms O into O'.
Then one of the two following mutually exclusive cases must hold, either
one of the two, O'Q), M and the relatum of OP, L, contains the other, or
one of the two, O'Q,M and the relatumn of OF, L, contains the other.
If one of the two, O’'Q, M and the relatum of OP, L, contains the other,
then the segments OP, L and 0'Q, M will be said to correspond in sense
where O and O’ are corresponding origins. Also we shall consider an
arbitrary small portion of a containing O as the neighbourkood of O;
thus O divides its neighbourhood into two parts, one lying in the
segment OP, L, and the other in the segment O/, L. Similarly O’
divides its neighbourhood ou B into two parts. Then the case con-
templated above, when the segments OP, L and O’'Q, M correspond in
sense with O and O as corresponding origins, will also be expressed by
saying that O corresponds to O and the neighbourhood of O in the
segment OF, L corresponds to the neighbourhood of O in the segment
o'Q. M.

Now considering the case of an infinitesimal transformation, the
curve 8 must lie infinitesimally near to the curve @, so that the point
(), may be assumed to be a point infinitesimally near to the point P,
and the point @, to be a point infinitesimally near to the point 2,.
Then no point of the segment OP, L which is infinitesimally near to £,
is infinitesimally near to any point on the segment O0'Q,3. Hence the
segments OP, L and O'Q, M must correspond in sense with O and O’ as
corresponding origins. Thus only one of the two cases of corre-
spondence in sense is now possible.

Notice that for this theorem the curves a and 8 need not be distinet,
nor need the points O and O'.

If a straight line [ is latent for a transformation, and O is a latent
point on it, and segments with origin O correspond in sense with

* Cf. Proj. Geom. § 15, extended to any reentrant lines.
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themselves, then the line is said to be transformed directly in the
neighbourhood of O, in the other case it is said to be transformed
inversely in the neighbourhood of O.

Thus it follows as a corollary from the above proposition that an
infinitesimal transformation, which leaves latent a line and also a
point O on it, transforms the line directly in the neighbourhood of O.
Hence also it follows that any finite transformation of the one-limbed
group defined by the infinitesimal transformation, transforms the line
directly in the neighbourhood of O.

Similar theorems hold with respect to surfaces. It is sufficient for
us to consider a transformation for which (1) a given straight line /7 is
latent and also a point O on it, and (2) the relata of planes through !
are planes and the relata of straight lines through O are straight lines.
The general extension is obvious.

The portion of a plane through O, which lies within an arbitrarily
small convex surface (cf. § 11) which contains O within it, will be

called the neighbourhood of 0. The axis / divides into two parts the
neighbourhood of O on a plane p through /; call them p, and p.. Let
the plane ¢ be the relatum of p with respect to the transformation, and
let the two parts of its neighbourhood, as divided by /, be ¢, and g..
Let a line-through O in p cut the convex surface in 2y, £2,; and let
the relatum of the line in ¢ cut the surface in @, @.; also let 0P,
stand for the segment of the line in the neighbourhood p,, and so on.

Then (assuming that continuous lines are transformed into con-
tinuous lines) if OP, and 0@, correspond in seuse, the same must hold
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for all similar parts of corresponding lines through O in the neighbour-
hoods p, and ¢,. The neighbourhoods p, and ¢, will then be said to
correspond in sense. Also if p is latent, it will be said to be trans-
formed directly in the neighbourhood of O with / as axis, if the
neighbourhood p, corresponds to itself in sense.

Now, if the transformation is infinitesimal, it follows at once from
the case of curves, that a definite one of the two neighbourhoods
¢: and ¢, must correspond in sense with p,, and that, if the plane p is
latent, it must be transformed directly in the neighbourhood of O with
{ as axis.

39. The general projective group of one-one point correspondences
is the group of those transformations which transform planes into planes.
Such transformations must therefore transform straight lines into
straight lines, and must leave unaltered all projective relations between
sets of points on lines.

Now, if in such a transformation three points 4, B, C on a line /
are known to be transformed into 4’, ', C’ on a line ', the relatum
on !’ of every point on / is determined. For, by the Fundamental
Theorem* one and only one projective relation can be established
between the points on / and those on /', such that A corresponds to 4,
B to B',and C to C". 'Thus the given transformation must transform
! into I’ according to this relation.

Hence it follows that if four points, 4, B, C, D on a plane p, no
three of which are collinear, are known to be transformed into A°, &',
C’, D' on a plane p', the relatum on p' of every point on p is determined.
For let AD meet BC in L, and A’D’ meet B'C’' in K. "Then £’
corresponds to £. Hence 4, B, £ on AB correspond to A’, B, £ on
A'B'’. Hence the relatum on 4'B’ of every point on 4 B is determined,
and similarly for BC and B'C’, and for C4 and C'A’. But through any
point P on p a line / can be drawn cutting BC, CA, AB in L, M, N.
Thus the relata on p’ of L, M, N, namely L', M’, N' on ', are deter-
mined. Thus the relatum of every point on / is determined. Hence
the relatum of £ is determined.

Similarly, if 4, B, C, D, K are five points, no four of which are
coplanar, and if for any projective transformation their relata are
determined, then the relatum of every point is determined. Accordingly
a projective transformation is completely determined when the relata
of five points, no four of which are coplanar, are determined.

* Cf. Proj. Geom. § 9 (v).



38-40] INFINITESIMAL PROJECTIVE TRANSFORMATIONS 43

40. Now consider transformations of the type

T = (un& + @y + @ + @)/ + @y + @,z + 1)
Ty = (Gn2 + QY + A5 + @) (T + 2y + @35 +1) (1),
Tz = (ane + Ay + A + Wy) (2 + QY + @5+ 1)

They obviously belong to the general projective group as defined
above. Also there are fifteen effective parameters. But if we
substitute for .z, , ~ the coordinates of a given point 4, and for
Tz, Ty, Ts the coordinates of a given point A’, three equations are
obtained between the parameters. Let the same be done for B and B,
Cand ¢, D and D', E and E'. 'Then in all fifteen equations are
found. Also if no four of 4, B, C, D, E are coplanar, and no four of
A, B, €', D', E' are coplanar, these equations are consistent, and
definitely determine the transformation 7. Hence (cf. § 39) the
equations (1) can, by a proper choice of parameters, be made to
represent any assigned transformation of the general projective group.
Hence the transformations represented by them are those of the whole
general projective group.

It is obvious from the form of these equations that the group is
a fifteen-limbed continuous transformation-group. To find its infini-
tesimal transformations, put

@y =1+ayt, @y = apt, My = at, €= ayl, @, = at, @=asl, a; = a4, ete.

Then we find that the analogues of equations (6) of § 35 are
dz :
- and' + GplY + 0Tt oy —& (@ + ayy + ay2)

o

d—z =a_,1,r+a_,zy+aa_3:+a9,—y(a1'l‘+ ay + agz) ......... (2)

~

3
= A+ Al + G+ Ay — & (02 + @l + 0y2)

dt

These equations give the general form of an infinitesimal trans-
ormation of the general projective group.
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AXIOMS OF CONGRUENCE

41. 'THE logical analysis of the method of superposition as applied
to geometrical proofs is now to be undertaken. In this method a
figure is said to move unchanged till it arrives at coincidence with
some other tigure. But what moves? Certainly not the points of the
space. For they remain where they are. If it is some physical body
occupying space which moves, then the assumption, that the body
remains wnchanged in its motion, involves the very comparison
between the assemblage of points occupied in one position with that
occupied in another position, which the supposition was designed to
explain. Accordingly we find that Pasch* in effect treats ‘congruence’
as a fundamental idea not definable in terms of the geometrical concepts
which we have already acquired. He states ten axioms of congruence
in a form applicable to Descriptive Geometry. They are as follows,
where the single capital letters represent points, and the figures are
the ordered assemblages of the points mentioned, ordered in the order
of mention.

I 'The figures AB and B4 are congruent.

II.  To the figure A BC, one and only one point B’ can be added,
so that A5 and A B’ are congruent figures and B’ lies in the segment
AC or C in the segment A B'.

III. If the point C lies in the segment A4 and the figures
ABC and A'B'C’ are congruent, then the point €’ lies in the segment
A'B.

IV. If the point C lies in the segment A A, and the segment AC;
is lengthened by the segment C,C; which is congruent to it, and AC,
is lengthened by the segment C,C;, congruent to 4 C), and so on, then
finally a segment C,C,;, is arrived at which contains the point B.

* loc. cit. § 18.
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V. Ifin the figure 4 BC the segments .{C and BC are congruent,
then the figures A BC and BAC are congruent.

VI If two figures are congruent, so also are their homologous
parts congruent.

VII. If two figures are each congruent to a third figure, they are
congruent to each other.

VIII. If of two congruent figures one is enlarged by the addition
of a point, the other can be similarly enlarged so that the enlarged
figures are congruent.

IX. If AB and FGH are any two given figures, &, G/, H being
not collinear, and A B is congruent to £, then in any plane containing
A B exactly two points C and ) can be found such that the figures
ABC and ABD are each congruent to F'GH, and furthermore the
segment CD has a point in common with the line 4B.

X. Two figures 4 BCD and A BCK which are not plane figures
are not congruent.

42. 'These axioms at once suggest the analysis and definition of
congruence in terms of our previcusly stated geometrical concepts.
This analysis was first successfully achieved by Lie*.

Any point of space may be supposed to move with the rigid figure
when the method of superposition is applied. Accordingly, considering
the explanations of chapter IV, we see at once that a superposition
is in fact a one-one point transformatipn. Let this special class of
point transformations be called motions. We have now to consider
whether the peculiar properties of motions can be defined in terms of
the geometrical ideas already on hand.

If a rigid body is transferred from position o to position B, and
then from B to y, the final transformation defined is the same as if it
were transferred directly from a to y. Thus the successive application
of two motions produces a motion. But this is the characteristic group
property.

What Lie has succeeded in doing is to define in geometrical terms
the properties which must be possessed by s complete group of motions.
But now the explanations of the preceding paragraphs are found to be

* Cf. two papers by Lie in the Leipziger Berichte, 1890. These investigations
are reproduced in a much enlarged form in the Theorie der Transformationsgruppen,
vol. i1, part v. But Lie’s line of thought was not that suggested above. He starts
from an almost successful solution of the same problem by Helmholtz, of. Ueber die
Thatsachen, die der Geometrie zu Grunde liegen, Gott. Nachr, 1868, and Collected
Works, vol, 11.



46 LIE'S FIRST SOLUTION [cm. v

to some extent faulty. For they implicitly assume that there is one
definite group of motions, as indeed our sensations of the physical
world do in fact seem to give us special intelligence of one such definite
group in physical space. However it will be found that an indefinite
number of groups of one-one point transformations exist which satisfy
Lie’s definitions of the properties of a complete group of motions.
Accordingly a motion when one special group is being considered is not
a motion when another such group is considered.

A group of motions is called a congruence-group, and the
definitions of the characteristics of such a group are called the axioms
of Congruence.

43. Lie's results, as expressed by himself, are as follows :

Definition®. A finite continuous group in the variables z,, z, ...z,
is called transitive, if in the space (), #, ... #,) an n-fold extended
region exists, within which each point can be transformed into any
other point through at least one transformation of the group.

Definitiont. A real continuous group of three-fold extended
space possesses at the real point £ free mobility in the infinitesimal,
if it satisfies the following conditions : If a point P and an arbitrary
real line-element passing through it are fixed, continuous motion is still
possible ; but if, in addition to # and that line-element, an arbitrary
real surface-element, passing through both is held fixed, then shall no
continuous motion be further possible.

Theorem?}. (1) If a real continuous projective group of ordinary
three-fold extended space possesses without exception in all real points
of this space free mobility in the infinitesimal, then it is six-limbed and
transitive, and consists of all real projective transformations throngh
which a not-exceptional imaginary surface of the second degree, which
is represented by a real equation [e.g. #*+3®+2%+1=0], remains
invariant (latent).

(2) If a real continuous projective group of ordinary three-fold
extended space possesses free mobility in the infinitesimal, not in all
real points of this space but only in all real points of a certain region,
then it is six-limbed and transitive and is either the continuous real
projective group of a not-exceptional real not-ruled surface of the

* Cf. Theorie der Transformationsgruppen, vol. 1. § 58.
+ Of. loc. cit. vol. ur. § 98.
+ Cf. Lie, loc. cit. vol. 1m1. § 98.
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second degree [%.c. with this surface latent], or it is by means of a real
projective transformation similar to the group of Euclidean motions.

The above constitutes what Lie calls his ‘first solution of the
Riemann*-Helmholtz Problem.’

The axioms which are implicit in this solution appear to be the
following :

(1) A congruence-group is a finite continuous group of one-one
point transformations, containing the identical transformation.

(2) It is a sub-group of the general projective group.

(8) An infinitesimal transformation belonging to it can always be
found satisfying the condition, that any definite line and any definite
point on the line are latent.

(4) No infinitesimal transformation of the group exists such that
a line, a point on it, and a plane through it, shall all be latent.

44. Lie'st ‘second solution of the Riemann-Helmholtz Problem’
consists of the theorem that the following axioms completely
characterize a complete assemblage of Euclidean or non-Euclidean
Motions :

(1) The motions form a real continuous group defined by in-
finitesimal transformations.

(2) If any arbitrary real point (9% y, ) is fixed, then the real
points (2, #», 5), into which it is possible to move any real point
(z, &, @), satisfy a real equation of the form

W (32, 4%, 4 @8, 20, &5 a1, @, @) = 0,
which is not satisfied by @ =9, z,=y, #; =95, and which represents
a real surface passing through (2, 25, ).

(3) Round any point (%, ¥’ ¥°) a finite three-fold region exists,
such that, when (%, %<, %,*) is fixed, any other point (2, @, =)
can be moved through an irreducible continuous sequence of points up
to any point satisfying the above equation of (2).

45. The conception of a finite continuous group, though it is
simple enough analytically, does not seem to correspond to any of the
obvious and immediate properties of congruence-transformations as
presented by sense-perceptions. 'The following set of axioms conform
more closely to the obvious properties of congruence-transformations ;

* Riemann’s work in this connection is contained in his Habilitationsrede,
Ueber die Hypothesen, welche der Geometrie zu Grunde liegen, 1854, of. his Collected

Works, and also a translation in the Collected Works of W. K. Clifford.
+ Cf. loc. cit. vol. 111. § 102.
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they are based upon, and are modifications of, a set of congruence-
axioms' given by Peano*.

(1) The assemblage of congruence-transformations is a sub-group
of the general projective group.

(2) The group contains the converse of every transformation
belonging to it.

(8) Given any two points O and O', and any two lines / and
through O and O respectively, and any two planes = and #' through
{ and 7' respectively, one and only one transformation of the group
exists which transforms O into O, { into ', = into #’, so that the two
neighbourhoods of O on / correspond in an assigned manner with the two
neighbourhoods of 0" on /', and the two neighbourhoods of O on = as
divided by ! correspond in an assigned manner with the two neigh-
bonrhoods of O’ on ' as divided by /'.

(4) Given any line and any point on that line, an infinitesimal
transformation of the group exists such that the line and the point
are latent. .

Comparing these axioms with those of § 43 which are required for
Lie’s ‘first solution,’ it will be found that practically ‘finite and
continuous’ is left out of the first axiom of § 43, but on the other
hand the fourth axiom is strengthened into the form of axiom (8) of
this article.

The following chapters will be based upon these axioms.

Proposition. It follows immediately from axioms (2) and (8) that
the identical transformation is the only member of the group for
which a given point is latent, and a given line through the point is
latent, being transformed directly in the neighbourhood of the point,
and a given plane through the line is latent, being transformed directly
in the neighbourhood of the point with respect to the line as axis.

For with the notation of axiomn (3) let 7 be such a transformation
with respect to the point O, the line /, and the plane =, Also let S be
the transformation of the group which transforms O, /, and =, into O,
', and =, in a specified way according to axiom (3); aud let S, be the
converse of S which also belongs to the group. Then the transforma-
tion ST belongs to the group, and transforms O, I, = into O, I, =
according to the same specified way as S. Hence by axiom (3), we
have 87=48. Thus operating with S, we have 8,87=8,8. But by
axiom (2) 8,87 and 8,8 belong to the group; also §,87=Q7 =T, and
S,8=0Q. Hence I'=0.

* Cf. loc. cit, Riv. Mat. vol. 1v.



CHAPTER VI

INFINITESIMAL ROTATIONS

46. A infinitesimal transformation of the projective group (cf.
§ 40, equations (2)), which leaves the origin and the axis of  latent, is
of the form

dx
gp =+ oy +ays =z (o + auy + asz)\[
cevnneens(1)

.

Gg = Ay +any—Y (0 &+ ayy + 0y2)

dz

= Uyl + ages — 2 (0,2 + aylf + 2y5) '

A
We proceed to consider the specialization necessary for the co-

efficients in order that this may be a ‘rotation round the axis of 2’ in
a congruence group.

There is in a congruence group only one infinitesimal rotation’
round any given line with a given point on the line latent. For consider
the motion of the plane, y=pz, round the axis of # with the origin
latent ; after the infinitesimal transformation (1), we have

dy_,9%, o
it P& % a
Substitating from (1), and putting y =pz, we find

dj
dlg = Gy + (ag — ag) p — ayp®.

Hence when p is changed to p + dp by the infinitesimal transformation
(1) we find

dp
dt=——n e X
! Ay + (2 — ag) p—ayp® @)
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Now consider a second infinitesimal transformation of similar form
to (1), only with ay’, a, etc. as coefficients. Let dot be the incre-
ment of ¢ requisite to change p into p+dp. Then we have

dp
t = ’ ’ ’ ’
o aw+(a22—ass)l"‘132p2
Now consider the transformation

dz = <?1_‘::)1d1t _‘ (l%)a b,

with two similar equations; where (%‘—:) comes from the first trans-
1

formation, and (‘%‘—:) from the second. But this transformation leaves
2

the plane, y = pz, latent. Hence by the proposition of § 45, it is the
identical transformation, Thus we find de =0, dy =0, dz = 0, for every
value of #, ¥, z, and p. Thus
I + Ay + 032~ Z (02 + 0y + a,2)
g + (0g9 — az3) P— app?
_ 0 '@+ ayy + oy 2— (02 + 0y + 0)z)
' + (0n' — agy’) P — agy p?
with corresponding equations for y and z. 'These three equations hold
for every value of #, y, z, and p. Hence it is easy to prove that

b

a,  ay ay ag
n _ O )
=T m L E T ELLT v e, (4).

Gy Oy Qg3 ag

Thus the infinitesimal transformations are identical.

47. 'The plane, my + nz = 0, is latent for the rotation of § 46 (1),

if m %% + n%: 0 is satisfied whenever the point (z, 4, z) lies on the

plane. Hence
Magy + Mgy = oM,
MOy + Nagy = on,
and o is given by
(0 —049) (0 —0g5) — 5053 =0 ceeevrennrnnnnnnn., (1).

But by the proposition of § 45, there can be no real latent plane of
this form. Hence the roots of equation (1) are imaginary. Thus

4 (09055 — Qog0isy) — (O + €g5)?> 0 vevvnnnninnnnnnns (2).
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48. In the neighbourhood of the origin the rotations of § 46 (1)
can be expressed by

ZZ‘ =an® + al‘}y +a1,2’\'

i = Oy + Bl e, (1)
dz
a—t- = amy +aul

Thus, writing y o« 6%, 2o ¢*, p satisfies equation (1) of § 47. Hence
p is complex. Thus we may write

y =t an)l (4 cos vt + ¢ sin ve))
Z2= e%(a-gg‘f‘%s)t(zo cos vt + q, Sin Vt)[
where v = \/{anos — agap — (am + )%, and ¢ and ¢’ can be determined

in terms of g5, %, and of the coefficients. Thus, putting A = g} (au+aw 7/s,
when £ = /v,

ceenen(2),

_”/‘—"“‘Ayo, Z"—'—MG ..................... (3),
and when ¢ = 2n/v, =M =X (4).

By the proposition of § 45, the equations (4) must reduce to
Y¥=%0, 2=%. Hence A=1, and therefore
L | I PN () )
Thus for a value of ¢, not zero, the integral form of equatlonq (1) yields
the identical transformation. .
Also equations (2) become

Ao + C3Zp
14

Y =YoCos v + sin v¢

@Yo+ Cn
v

Z=2,co8 vl + sinve

Hence a value of £ can be found such that by the corresponding
transformation of the type of equations (6), any plane y, = po2, i trans-
formed into any plane y = pz, the axis of # being transformed directly,
and the neighbourhoods of O on the planes as divided by the axis of
corresponding in assigned mauners. Hence by axiom (3) of § 45, this
is the only transformation of the group for which these conditions are
fulfilled.

Hence the transformations for which the origin and the axis of #
are latent, the axis of # being transformed dircctly in the neighbour-
hood of the origin, form a one-limbed continuous group produced by
the infinitesimal transformation which fulfils these conditions.

4—2
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49. The transformation of § 46 (1) on the latent axis of 2
(i.e. y=0, 2=0) is given by

dx
?i—t-=auw—a1w2.

If a,, + 0, the solution is
. d xo_ et
ay =02 Oy — ok

If a; = 0, the solution is

1.1 =,
z
But (cf. § 48) when ¢=2x/v, we find 2 - z, for every value of a,.
Hence a; =0, a;=0.

Thus every point on any line is latent for a rotation round it with
one point of it latent. This fundamental theorem will be cited by
the shortened statement, that ‘every point on an axis of rotation
is latent.’

Thus equations (1) of § 46 for the infinitesimal rotation round the
axis of z, reduce to

dx )

i Oyl + 0535 — 2 (a9 + asz)’

dy

d“; =ayy + aasz-y(a»zwasz)} ............... (1)

dz )
gp = o0l + s =2 (ay +a5)

where a +ay =0
. o e 0} ....................... ).
50. The condition that
lz+my+nz=0, (I+0) .coooiiinninnnnnn, (1),
should be a latent plane for the rotation (1) of § 49 is that
de dy dz .
l%+m%+n%—0 ........................ (2),
whenever (1) is satisfied. Hence substituting for
de dy do
dt’ dt’ dt’
and using (1), we find
0yl + @y + agn =0
e o 0} ........................ (3).
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From the inequality (2) of § 49, it follows that the solution of this
equation satisfies the condition 7+ 0.

Let this plane be taken to be the plane of yz, ¢.e. the plane z = 0.
This requires

=0, aE=0.ciiiiiiiiiiiini, (4)
61. With this specialization of the plane of yz, the condition that
lz+my+nz+1=0 .oocerneennn..n, ceens(1)
should be a latent plane for the rotation (1) of § 49 is that

l %‘%" +m % +n g—: =0,
whenever (1) is satisfied. Hence substituting from equations (1) of
§ 49 and using equation (1), we find (cf. § 50, equation (4))
amm+amn+ag=0} @)
o+ aum 4= 0f T e .
Hence there is a family of latent planes of the form (1), where / is
the variable parameter, and m and n are definitely determined in terms
of the coefficients of the infinitesimal rotation. Now let one member
of this family be taken to be the infinite plane. Then from equations
(2), we find
=0, 03=0 .iiiiiiiiriiiiiiniinininens (3).
Hence with these choices for the plane of yz and for the infinite

plane, the infinitesimal rotation round the axis of # is reduced to the
form

- )
dp = ol ead & ........................ (4),

7 = 0my + G2

where ay tay = 0}
Og 053 = Ggyagy > ()
Then every plane of the family Az + p =0 is latent.

52. Any infinitesimal motion, which keeps the origin fixed, is of
the form

z—‘: =& + €Y + €37 — & (T + &Y + e,z)}

with two similar equations
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If the line, # =lo, y = mo, 2 = no, is latent, then
de _,do dy_  do  dz_ do
dt " dt’ dt T dt’ dt " dt’

Hence putting p for %%% , the equations (1) become

(en—p) I+ eum+ eyn — ol (] + &m + &n) = 0,
with two similar equations.
These equations hold for all values of o. Accordingly, near the
origin, when ¢ is very small,
(1= p) e+ eam + g5n =0,
with two similar equations.

Hence p, in the neighbourhood of the origin, satisfies

n—p, € y &3
€ 5, €u—p, €y =0.
| e > €3, €3—p
But this equation has always one real root. Thus there is always
one real latent line through the origin. Hence every infinitesimal
motion for which one point is latent possesses an ‘axis.” Also (cf. § 49)

every point on this axis is latent. Accordingly for every point on the
axis, = lo, y = mo, z =no, we have

de dy dz _
a#=" #=% F-

dt
Hence el + &m + 0 — o (le, + me, + ney) = 0,
with two similar equations.

0.

These equations hold for every value of o, Thus

‘ul + €M + €N = 0
€l + emm+e,3n=0.L
enl + €um + €xn = 01
al +em +en =0 ‘
Hence we find the equation, |e,|=0, and that the values of

{:m :n which satisfy the first three equations, must satisfy the
fourth
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53. The infinitesimal rotation round the axis of y as axis is of the
form (cf. § 49, equations (1) and (2))

(}% =Pu + Bz — 2 (B + Bs2)

%=ﬂmx+ﬂmz_y(ﬁlw+ﬁ3z) ............... (l),

d.
(th = Buz + Bus — 5 (Bix + B32)

where Bn +Bs = 0}
and Bnﬁss = Bufa>0

Then, since (cf. § 45, axiom (1)) the motions form a group, by
combining this infinitesimal rotation with that round the axis of «,
another infinitesimal rotation of the group is found. Thus (cf. § 51,
equations (4)) an infinitesimal rotation of the group, assuming the
special axes and infinite plane of § 51, is of the form

%f = Bua + Pz — 2z (Biz + Bs2) \l

% = Bu@ + kany + (Bs+ raz) s~y (B + B52) bovnnnn. (3),
|

Z—: = B + Kagy + (B + kag) = - *(Bl‘v+ﬁ“z)) '

A
where « has any arbitrary value.
Hence (cf. § 52) we have

i B, 0, Bu I
Ba, Kam, PButkom =0 ..........(4).
Bn, Kam, Bgt+ Koy |
But equation (4) holds for every value of x. Hence
B (05 — ay05) = 0.
Hence (cf. § 51, equations (5))

Thence, again from equation (4), we find

BusBnay— BuBnon=0 ........cccee.e...(6).
From equations (2) and (5) we find
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54. Now (cf. § 50) the plane of yz is the latent plane through the
origin of the infinitesimal rotation round the axis of #, and the axes of
v and 2z are any distinct lines in this plane through the origin. Any
point on the latent plane, lz + my + nz =0, of the rotation round the
axis of y satisfies (cf. § 53, equations (1), (5), and (7))

1Bz + m (Bua + Byuz) + nfu2 = 0.

Hence mBa + nfn =0, By +mPy=0.
Thus the equation of the latent plane is
BuBu — BuBuy + BauPuz=0 ...cooiiinii. (1).

But (cf. § 53, equations (2)) Bi;8u cannot vanish. Hence the
latent plane cannot contain the axis of y. Thus we may assume its
intersection with the plane, #=0 (i.e. with the latent plane of the
rotation round Oz), to be the axis of z. With this assumption we

have
Ba=0 oot (2)
Then from equation (6) of § 53, we find
Ao =0 eeiriee e (3).
And from equations (5) of § 51, we find
Gy = 0 ot eeeeeir e eaan 4)

A latent plane of an infinitesimal rotation round an axis will be
said to be perpendicular to the axis. The set of axes of coordinates
with any given origin, found by taking the axis of # to be any line,
the axis of y to be any line in the latent plane through the origin of
the infinitesimal rotation round the axis of #, and the axis of =~ to be
the line of intersection of the latent planes through the origin of the
infinitesimal rotations round the axes of . and y, will be said to be
mutually perpendicular, or mutually at right angles.

It has now to be proved that a set of axes mutually at right angles
have reciprocal properties in respect to each other.

556. With the mutually perpendicular axes of § 54, the equations
(2) of § 52, as applied to the infinitesimal rotation of equations (3) of
§ 53, become

Bun=0, (Bs+rkoy)n=0, Byul+xayms=0,
Bil+ Bn=0.
Hence « can be given any arbitrary value, and then the corresponding
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values of :m :n are to be found. Also By, Bsn, 9, @5 cannot
vanish.
Hence we have n=0, Ifxay=m(—By).

Thus Bi=0 oo (1).

56. Again, let Iz + my + nz + 1=0 be any one of the family of
latent planes of the rotation round the axis of . Then, for all points
on the plane
d W, L
dt T dt dt
Hence substituting from equations (1) of § 53, remembering that

Bll, Baa» ﬂmy Bl

have all been proved to vanish for the special axes, we have
B+ (B + mPo+ By) 5= 0
for all points on the plane. Also Bi;, Bx do not vanish. Hence
n=0, l=—(mBu+ L) P
Thus there is one latent plane for which m=0, n=0, { == By/Bu.
This is the plane
—Bsz+ Bi=0.

But this plane is a member of the family (cf. § 51) of latent planes
of the rotation round the axis of 2. Also the infinite plane has been
chosen to be any member of this family, Thus we now choose the
infinite plane to be the one common member of the two families of
latent planes of the infinitesimal rotations round the axes of # and of
y. 'This plane, since f3,;+ 0, can never pass through the origin. With
this choice, we find

! =0.

Then, with this special tetrahedron of reference, the equations
defining the infinitesiinal rotation round the axis of # are reduced to

dx di dz
;[’—t=- y a‘!‘tl=‘lzsz, (—lt‘-:ﬂ:yz.’l/ (2),
where By <O ooiniii (3).

Also the equations defining the infinitesimal rotation round the axis
of y are reduced to

dx di dz
'd} = Bmw, j? = B”z, ?d—t = lem ............... (4),
where BisBu <0 veevreniieriiiiiiieenis (5).
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57. The equations defining the infinitesimal rotation round the
axis of z are (cf. § 53, equations (1), (5) and (7))
d: \
d% =7y~ 2(nz+ 1Y) }

d
Jg =Ynl—Y (y,w + 72?/) ............ - .(1),

~
I

df YTt YnY — 2 (he +y29)

where Yieyn <0 oo +(2).

Thus the transformation found by combining three infinitesimal
rotations round the axes of z, of ¥, and of 2 is by equations (2) and
(4) of § 56,

dz
Et- = KgYY + Kgﬂmz —-& (Ka')'l €+ K3Yﬂy)

d D
Eg- = Kyyn & + (0gy + K3 835) 2 — Y (kg1 2 + K57,7) (3).
d;

3 = (aBu+ ki) @+ (aym + o) y ~ 2 (kinn2 —

Hence applying equatious (2) of § 52, we find

0 y KV ’ "23]3
KsYa , 0 , Gyt bi’.m =0.
KB + Kiyn, KoY+ @y O

This equation holds for every value of «, and «,.

Thus the term involving «.2x; yields 73884 =0. Hence, since
viz and By cannot vanish, we have

Y SRS ().

The term involving «;? yields yynes=0. Hence, since y,; and ay
cannot vanish, we have

Y = O .............................. (5).
The coefficient of «,2«, i8 ¥y Ba + Buymyss- Hence, using (4) and (5),
and noting that 8,; and y,, cannot vanish, we find

Y =0 i (6).
'The coefficient of «,x, gives

V120238 + Brsturyn =0vvivviiiniiiiinnnn, (D).
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Now equations (2) of § 52, applied to this case, become, after
simplifying by (4), (5) and (6),
KsY1aM + Ky Bizn =0,
"stl +aypn =0,
Ko Bl + agm =0,
kgy1d + ryyam = 0.

Hence a7 — % By = 0.
This equation holds for all values of «,, and oy, and B; do not vanish.
Hence 71=0, Y250 cveririnnn crereeeraeeenns (8).

Thus the infinite plane is the common latent plane of the three infini-
tesinal rotations round the three rectangular axes.

58. Thus using equations (4), (5), (6), (8) of § 57, the equations
for the infinitesimal rotations round the three mutually perpendicular
axes, the infinite plane being the common latent plane of the rotations,
are

%:(), g’%:aﬁz, (al-;=a3,y ............... (1),
%i: = Bus, % =0, 3: = Ba e (@),
‘;—’tf = Yl % =yal, % =0 e, ‘),
where apay <0, BuBa<0, Yiyn<0 .o (4),
and V128 B + Brs®er¥n =0 cevviiiini (5).

It at once follows from the symmetry of these equations, that a set
of axes mutually at right angles have reciprocal properties in respect to
each other.

The mention of equations (4) and (5) is avoided by altering the
unit points* on the axés, that is, by writing Az for @, uy for y, and
vz for z, where A, p, v are constants at our disposal. Let them be
chosen, so that

pag(v = —vag/p = v, (say),
and vBis A=~ ABy/v =, (say).

By equations (4), the ratios of A :p:v are real. Then by equation
(5), we have
Aya/p= — pyiofA = wy (say).

* Cf. Proj. Geom. § 42.
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Hence remembering that w,, w,, w; are arbitrary parameters, we find
that any infinitesimal rotation round an axis through the origin can be
expressed in the form

dz dy dz
P i A 77 = " @F T, 3-2=—wgw+wly «o(6).

The latent line of the rotation is given by

/ey = y/w, = 2[w,.
Thus this form gives one and only one infinitesimal rotation round any
line through the origin. Hence the form (6) can include no infini-
tesimal transformation other than those of the congruence group under
consideration.

A tetrahedron formed by three mutually perpendicular axes, with
the common latent plane of the three rotations round the axes for its
fourth plane, and with the unit points of its axes chosen so as to produce
equations (6), will be called a normal reference tetrahedron.

When the congruence group is given, the normal reference tetra-
hedrons are determinate, though infinite in number. But a congruence
group can be found so that any given tetrahedron is a normal reference
tetrahedron.



CHAPTER VII
THE ABSOLUTE

59. ConsiDER the surfaces which are latent for a rotation round
the axis of . Let the axis system form a normal reference tetrahedron.
Then the infinitesimal rotation can be written

dz dy _ dz

di-—-O, GO Ty e (1).
Let u — 0 be any latent surface. 'Then we have
oy Ou
- % b:;} +Y 5; =()

as the requisite condition. Solving this linear equation by Lagrange’s
rule, and remembering that z has been ‘“treated as a constant, we find
that the latent surfaces are of the form

S+ 2)=0 i, (2),

where / is an arbitrary function. Surfaces, whose equations are of the
form of (2), will be called surfaces of revolution round the axis of .

60. A necessary and sufficient condition, that a surface may be
latent for any congruence transformation which leaves the origin at
rest, is that the surface be a surface of revolution round each of the
three axes. Hence by equation (2) of § 59 this family of surfaces is
represented by

M+ +2) +p=0 oo ST 1),
where A and p are arbitrary parameters. Let these be called spheres,
with the origin as centre.

'The infinite plane is the common polar plane of the origin, with
respect to each of the spheres with it as centre. Thus transforming to
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homogeneous coordinates by putting z=X/U, y=Y|U, 2=Z|U,
where U=0 is the equation of the infinite plane, the equation of
the family of concentric spheres is

AMX2+ Y24+ ZH)+plU%=0 coovviiiieennnn (2).
Thus returning to the original coordinates, if ¢ (z, y, 2)=0 is the

equation of any sphere, centre at (2o, %, %), the equation of the family
of spheres with that centre is

0 0 0 ap\?
A (2, ¥, z)+p(woé$+g/o£+zoa%+£) =0 . (8),

where, as usual, ¢ is introduced to make the equation homogeneous
and is put equal to 1 after differentiation.

61. By recurring to equation (2) of § 60, we see that the plane
of yz, which is the plane perpendicular to the axis of z, is the plane
through the origin and through the common conjugate line of the axis
of # with respect to any of the spheres, centre the origin. Hence if
¢ (2, y, z) =0 is any sphere with centre A,(a,, %o, %), and A4, is the
point (.&y, 91, 21), then the plane through 4, perpendicular to 4,4, is

0 0 )
(o + Azy) 5%+(y,,+ M) £+(:o+)wl)g—f+(l +A) g:=0 (1),

reat o (2) o0 (2) 2 (), (D)

(7 o e .
and ¢, (5?;) , ete. are the results of substituting the coordinates of
L]

where

Ay in ¢ (2, y, 2), g%, ete.

Let the left-hand side of (1) be written (4,, 4,, P)s, where P is
the variable point (2, , ). Thus the equation of the plane, perpen-
dicular to the line 4,4, and through the point 4,, is

(Aoy Ay PYo=0.erorvrieeeeeesnnns ().

A quadratic surface of revolution round the axis of  is of the form
(cf. equation (2) of § 59)
b(P+2)+ar? + 292 +¢=0 ..oovvieiiinnnnn. (3).
This can be written in the form
Ma(@+y*+2°) + B+ a'a® + 29 + ¢’ = 0.
Thus, if ¢ (2, y, 2) =0 is the equation of a sphere, centre 4, (2, %, 20),
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the equation of a quadric surface of revolution round the line joining
Ay to A, (21, ¥,y 2,) 18

0 o ] a
A‘t‘("’/" Y, z)+l‘(Ao, A, P)2¢+V(Ao, A4, P)¢<w052+yoé§+zoi+ j"

0z ot
o L) ip ¢ 2__
+p(m05‘—¢+yoa7/-+z05;+-5?) =0.iiiiieiinn, (4)

The family of quadric surfaces of revolution round any line must
include every family of concentric spheres with its common centre at a
point on the line. Accordingly taking 4, to be the origin, and ¢ (2, Y, 2)
to be 2°+y*+ 2"+ 1, the family of spheres at any point (a, %, 2,) 18
included in the family

ME+P+ 2+ 1)+ p(n+ gy + 200 + 2 (@2 + g,y + 5,2) + p =0,
that is, in the family
M@+ g2+ 2%) + p (@ + gy + 202) + v (ma + iy +2,2) + 0 — 0 ... (5).

For this is the family of quadrics of revolution round the line joining
the origin to the point (z;, ¥, #).

62. Consider any two infinitesimal projective transformations in
the plane of xy. One transformation is defined by

dx
g =T ey~ (@7 + ayy)

N I (1).
ziz =0y + A2l + oy ——:’/(ala’“'- (&23/)
The other is defined by
%a; =byx+buy + by -z (b + bﬂy)}
............ @).

idg = b + Doy + by — y (b + b.,y)I

Now each of these transformations leaves a family of curves latent,
the locus of points, which eitker are the points of contact of members
of the respective families, or are points on a curve common to the two
families, is given by
Rt A e CE AL B A A e AT A B
bu@+ by + by~ (b2 +boy) ~ bnaw + buy + by—y bz + byy) "~
This locus is a cubic curve.

Now consider two rotations belonging to the congruence group
under consideration. Let one be about the point (0, 0, 0), and the
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other ahout the point (21, 1, 0), and let the plane of zy be latent for
them both. Then for the first rotation, the family of latent curves

(cf. § 60, equation (1)) in the plane of xy is given by
AP+ +p=0 e 4);
and for the second rotation, the family of latent curves (cf. § 61,
equation (5)) in the plane of 2y is included in the family
M@+ + e+ ny) + 2n(@a+py)+o=0 ... (5).
It is easy to prove that the locus of points where members of the
family (4) touch members of the family (5) is the line /2, = y/y.
Hence for the case of these two rotations the cubic curve of equation
(8) above becomes a straight line and a common member of the two
families (4) and (5). Thus these two families must possess a common

member. Let it be
) a@+y)+1=0.

Then (cf. § 60, equation (1), and § 61, equation (5)) the sphere,
G@P+P+H)+L=0 i, {6),
belongs to the family of spheres centre (0, 0, 0), and also to the family

of spheres centre (z,, 91, 0).
Hence any two distinct families of concentric spheres with different

centres possess one member in common.

63. Let (2, 11, #) and (24, 9, ;) be any two points which are
not collinear with the point (0, 0, 0). Let (cf. §62)

G +P+2)+1=0 s (1)
be the sphere common to the two families of spheres with centres at
(0, 0, 0) and (2,, g, #) respectively ; and let

@+ +2)+1=0 (i (2)
be the sphere common to the two families of spheres with centres at
(0, 0, 0) and (., ¥, 22) respectively. Then (cf. § 60, equation (3)) the
family of spheres, centre (2, g1, 1), is given by

Ma @+ 3 +2) + 1+ p e (@ + iy + 2,2) + 1P=0 ...(3),
and the family of spheres, centre (2;, 7., =), is given by

A {ea (2% + &+ 2%) + 1} + o {C2 (2@ + oy + 202) + 112 =0 ...(4).
But (cf. § 62) it is possible to find a common member of the families

(3) and (4). Then remembering that the two centres are not collinear
with the origin, it is easy to prove that we must have

My = O, o = O’ € =Cg teeseserescnncinnncas (5).
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Thus the three families of concentric spheres with centres at three
non-collinear points have one member in common. Hence it is easy to
prove that there is one sphere common to all families of concentric
spheres. Let this sphere be called ‘The Absolute.’

64. By a rotation round a suitable axis any point can be moved
to any neighbouring position. For, if

@+ P+ +1=0 i (1)
is the absolute, then (cf. § 63, equation (3))
c(@+yP+N)+1-{e(ma+py+25)+1P=0........ (2)

is the equation of the sphere, centre (2y, y,, %), touching at the origin
the plane
22+ 4y + 52 =0.
Hence if 2,/ = y,/m = z,/n, the sphere touches at the origin the plane
le + my + nz = 0.

Now let this be any plane through the origin and through the neigh-
bouring position to which the origin is to be displaced. 'Then it
follows that a rotation round a suitable axis through the point (2, ¥, )
can effect the required displacement of the origin.

Thus the effect of any infinitesimal congruent transformation can
be produced by combining a rotation round some line not passing
through the origin with a rotation round some line through the grigin.
Hence (cf. § 45, axiom (3)) the absolute is latent for any congruent
transformation of the group.

65. Conversely the group of projective transformations, for which
a given imaginary or couvex quadric is latent, forms a congruence group.
For take a tetrahedron, self-polar with respect to the given surface of
the second degree, as the fundamental tetrahedron. Then the equation
of the surface can be reduced to the form

C(@+P+2)+1=0 i (1),

and, when ¢= 0, the surface degenerates into the infinite plane.

The most general form of infinitesimal projective transformation is

dz

;= Ut anyt oS- (@, + a5y + ay2)

dy

P Y+ 0y + apy + 0y — Y (02 + 0gy +ayz) \.e.ennn, (2)
de

Zi:t =W+ oy @ + 0y + 0t — 2 (0@ + @,y + ag2)

w. : 5
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This is to satisfy g
dz y _ds
$Zz+y%+~%—0 ........................ (3),

when (1) is satisfied.
Hence (8) becomes, after simplifying by (1),

¢ (W + an & + a3y + a32) + ¢y (V + 0y & + any + ayz)
+es (W + ana + apy +ags) + (a@+ oy +a;8) =0 ...(4).

Then (4) must either be identical with (1), or must be an identity.
But it cannot be identical with (1). Hence it is an identity.

Thus cu +a; =0, v+ ay =0, cw + a3 =0,
cay =0, oag =0, coy =0,
clap+ay)=0, c(oytay)=0, ¢(oy+ay)=0.

Thus the general form of transformation is
dx
g Uy rester (uz + vy + ’wz)l

git/:v_wlz+wax+cy(uw+w/+wg)~ ............ ().

dz
i =W — 0,2 + oy + ¢z (Ux + vy + ws)

But when the origin is fixed, these equations reduce to the equations
(6) of § 58 for the general infinitesimal rotation round the origin of the
corresponding congruence group. Also it is easy to see that the
above equations give one and only one infinitesimal transformation
which transports the origin to a given neighbouring point (udt, vdt,
wdt), and at the same time transforms a given line / through the
origin, and a given plane = through /, into a neighbouring line and
plane respectively through the new position of the origin and the new
position of /. Thus by § 64 and by axiom (3) of § 45 all the transforma-
tions of the form (5) belong to the associated congruence group.

Hence these equations give the general form of an infinitesimal
congruence transformation, referred to a normal reference tetrahedron.
The equation of the absolute is then

@+ +2)+1=0 i (6).

It follows from equations (5) by applying the ‘Second Fundamental
Theorem’ (cf. § 36) that a congruence group is a six-limbed finite
continuous group.
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66. The congruence groups are divisible into three types.

In Type I, ¢ is positive. Then the absolute (cf. § 65, equation
(6)) is an imaginary quadric. The congruence axioms hold for the
transformation of all points of the projective space by any members
of such a congruence group. Such a congruence group is called
Elliptic.

In Type II, ¢ is negative. Then the absolute is a real convex
quadric. The congruence axioms only hold for all points within the
space enclosed by the absolute for transformations by any members
of the corresponding congruence group. Such a congruence group is
called Hyperbolic.

In Type I1I, the numerical value of ¢ has diminished indefinitely.
Groups of this type require further investigation. They are called
Parabolic.

67. In the Parabolic case, when ¢ diminishes indefinitely, the point
equation of the absolute

c(@+y+28)+1=0
reduces to that of the infinite plane. Hence for every parabolic group
a plane is latent.
Again in equation (3) of § 63 by putting Ae=a, p=40—A, we find
that the equation of any sphere, centre (#;, 4, %), can be written
a (B + 2+ 52— 2ma — 2,y — 22,2) + b +'¢ {(be — @) (12 + gy + 2,2)?
+2b (m + 9y +22))=0.
Hence when ¢ diminishes indefinitely, and the coefficient of no term
is infinite, the general equation for spheres, centre (z,, 7, 2,), becomes

(P + Y+ 2= 22— 20y —252)+b=0 ......... (1).

Hence every sphere cuts the infinite plane, which is latent for this

special choice of coordinates, in the imaginary conic where
Z+y+22=0

cuts it. Thus this imaginary conic in the infinite plane is also

latent.

Accordingly in the parabolic form the absolute is represented by
the latent infinite plane, and by the imaginary latent conic in the
infinite plane. A set of concurrent rectangular axes are a set of
concurrent lines intersecting the infinite plane at the angular points
of a triangle self-conjugate with regard to the absolute conic.
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The general form of the infinitesimal transformation (cf. § 65,
equations (5)), referred to a normal reference tetrahedron, reduces to

dx
VA wgz) '

% =0 - 0%+ 08 ( ....................... (2).
d—i:w "'(Dgal‘i‘wl:l/;



CHAPTER VIII

METRICAL GEOMETRY

68. THE theory of distance follows immediately from that of con-
gruence by noting two facts. In the first place let the anharmonic
ratio* of the range (PQRS) be denoted by {PQES}; then if

Ay, Ay Py, Py, Py
are collinear points, we have
{4, P Ay Py} x {A, Py A, Py} = {A, P APy,
or, in another form,
log {A, Py Ay Po} + log {4, P, A, Py =1og {A, Py A, Py} ...... (1.

In the second place, let 4, and A, be the two real or imaginary
points in which the line containing the points P, P,, P; meets the
real or imaginary absolute of some definite congruence group. Then
for any transformation of that group (a) the anharmonic ratios are
unaltered because the transformation is projective, and (8) the points
A, and A, are transformed into the points in which the transformed
position of the line P, P, P; cuts the absolute.

Thus if some multiplet of log {4,P4,P.} be defined as the
distance between the points P, and P, where A, and 4, are the
points where the line 2, P, cuts the absolute, then equation (1) secures
the characteristic addition property of distance in respect to collinear
points, and the second consideration secures the characteristic in-
variability of distances in a congruence transformation.

* Of. Proj. Geom. § 38.

+ This definition is due to Cayley, Sizth Memoir on Quantics, Phil. Trans.
1859 and Coll. Papers, vol. 11, and to Klein, Ueber die sogenannte nicht-euklidische
Geometrie, Math. Ann. vol. 1v. 1871.

5—3
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69. Now let P, be the point (@, 1, ), and P, the point
(22, 92, %). 'Then the coordinates of any point on the line P, P, take
the form

Az +pxy,  Mp+py,  As +pz,
A+p Adp A+p

Thus the points 4, and A4,, where the line P, P, cuts the absolute,
c(@+yP+25)+1=0,
are given by the roots Ai/p; and Ay/p, of the quadratic equation
Me (@2 + 92+ 210 + 1} + 2 p{c (Brze + 11 9a + 21 %) + 1}
+pi e (@l + YL+ 2+ 1 =00, (1).
For the elliptic case, when ¢ is positive, put

o c@a+ g+ mm)+1
cosf= fe(@2+ 92+ + 11 {e (@ + 92+ %) + 1
Then* 1A, Py Ao Py} = pyMofA po = €24
Thus the distance P, P,, written dist (P, P,), can be defined by

dist (P, £) = log {4 PLAs Py} oo, @).
Hence
P o
co8 dist(PP))  clmmtpprmm)+l G)
Y le(@i+ g2+ 29+ l}b le (@t + 2+ 27) + l}‘}

It is evident that there will be two distances, associated with the two
segments into which the point-pair P, and P, divides the line P, P,
If one distance, say the smaller, is called dist(P,P,), the other will
be wy—dist (P, P,). Thus the whole length of a straight line is my.
This system of metrical geometry embraces the whole of Projective
Spacet.

70. For the hyperbolic case, when ¢ is negative, put

cosh 6=- 1+ ¢(@2,+ 919s + 212)
{L+e(@l+ g+ af) L+ e (et + pd+ 2

* Ci. Proj. Geom. § 38.

+ The possibility of a Metrical Geometry with closed lines of finite length was
first suggested by Riemann, of. loc. cit. For a full account and amplification of
Riemann’s treatment of distance, ¢f. Forms of Non-Euclidean Space, by F. 8. Woods,
printed in The Boston Colloquium, New York, 1905.
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Then if P, and P, are both within the region enclosed by the absolute,
6 is necessarily real.

Hence (cf. § 69, equation (1))
{Al P1A21)2} = F'l)‘e/’\ll‘a =%,
Thus the distance P, P,, written dist (P, 2’,), can be defined by

dist (P, Py)=3vlog {4, P4 Py} weeoeeennnnn. (1).
Therefore
cosh dist (P,P) - l+¢ (%%I%%ti—zg)’ L (2)
Y {Lre(a+yl+ 2 {1 +c (@2 +y2 + 22}

There will only be one distance between /2, and #,. This must be
associated with the sole segment of the line 2, P, which lies wholly
within the region enclosed by the absolute. This system of metrical
geometry only embraces those points which lie within the region
enclosed by the absolute*. Any point in the region to which the

metrical geometry applies is at an infinite distance from every point
on the absolute.

71. The parabolic formula for the distance, arising when ¢ is in-
definitely diminished, can be derived as a limit from either of the other
two cases. Put y%¢=%1, according as ¢ is positive or negative, so
that y increases as ¢ diminishes numerically. Then expanding both
sides of equation (3) of § 69, or of equation (2) of § 70, and pro-
ceeding to the limit, we find

{dist (P Py = (21— @) + (1= 9"+ (21— 22) oo (1).
The parabolic system of metrical geometry embraces all projective
space with the exception of points on the latent plane, which is the

infinite plane in our system of coordinates. This is the ordinary
Buclidean Geowmetry.

72. Exactly the same procedure can be applied for the measure-
ment of the angle between planes. Let p, and p, be any two planes,
and let # and #, be the two real or imaginary planes through the
intersection of p, and p, and tangential to the absolute. When the

* Metrical Gieometry of this Hyperbolic Type was first discovered by Lobat-
schefskij in 1826, and independently by J. Bolyai in 1832. This discovery is
the origin of the modern period of thought in respeet to the foundations of
Geometry.
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congruence group is elliptic, or when the congruence group is hyper-
bolic, and the line of intersection of p, and p, passes through the
region enclosed by the absolute, then #; and ¢, are necessarily not real.

Then the angle between the planes is defined to be 21‘ log {¢, prts ps}.

Thus if the two planes are given by
b +my+mz+pr=0, bLa+my+nz+p,=0,
and 0 is the angle between them, we have
b+ UL R LR oV S (1).
{02+ m® + m® + c}o,“}4 {L2+ m + ng® + qo,’}ff
As before, there are two angles 6 and =~6; but it can be proved that
the whole angle round a line is 2=, owing to the existence of dia-

metrically opposite regions in the neighbourhood of the line.
In the parabolic case, when ¢ is indefinitely diminished, the angle

between the planes is given by

cos b =

cosf=—bRIMIL (@).
(02 + m®+m®)* (L2 + mg? +my?)

73. 'The same procedure can also be applied for the measurement
of the angle between two concurrent lines. Let 7 and [, be any two
concurrent lines in a plane p. Let # and ¢, be the real or imaginary
tangents from the point (4, . %) to the conic which is the section of the
absolute by the plane p. When the congruence group is elliptic, or when
the congruence group is hyperbolic and the point (4 . 2,) lies within the
region enclosed by the absolute, then £, and ¢, are necessarily imaginary.

Then the angle between the lines is defined to be él—Llog {t.ht,0,}. Thus

there are two angles 6 and = — 6 between two intersecting lines, and
the whole angle round a point is 2.

In the degenerate parabolic case the section of the absolute by
the plane p becomes two conjugate imaginary points in the plane at
infinity. These are known as the circular points at infinity. Then
t and ¢, are the imaginary lines from the point (. 4) to these points
respectively*,

* This projective view of Euclidean Metrical Geometry was elaborated by
Laguerre in 1853, previously to the rise of the general theory which is explained
here, .
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74. Thus Metrical Geometry is in fact the investigation of the
properties of a particular congruence group. Any set of axioms of
congruence (cf. §§ 43 to 45) form the definition of what we mean by
a congruence group. The investigations which are summed up in
equations (5) of § 65 and in equations (2) of § 67 form the proof of the
existence of congruence groups in a projective space for which the
axioms of order and of Dedekind continuity hold. It is proved that
to any convex quadric and to any imaginary quadric with a real
equation exactly one congruence group corresponds. Also there is
one congruence group corresponding to each imaginary conic lying in
a real plane and defined by a real equation.

If the absolute is a real quadric, the metrical geometry applies only
to the region within it. If the absolute is an imaginary quadric, the
metrical geometry applies to all the projective space. If the absolute
is an imaginary conic in a real plane, the wmetrical geometry applies
to the whole of the projective space with the exception of the real
plane.

75. It follows that in relation to DProjective Geometry no
additional geometrical axiom is required in order to establish netrical
properties. But the case is otherwise in respect to Deseriptive
Geometry. 'The transformations of a congruence group in Descriptive
Geometry are to be one-one transformations of descriptive points-into
descriptive poiuts, and all the other axioms of congruence can he
enunciated without change of form. Thus when the associated pro-
jective space is formed, associated congruence groups in the projective
space must exist, which however satisfy the further conditions (1) that
proper projective points are to be transformed into proper projective
points and (2) that the congruence conditions are to hold throughout
the whole region of the proper projective points.

It follows therefore that the convex boundary surface of the proper
projective points (cf. § 30) must be a quadric surface, or in the degene-
rate case a real plane. Unless this is the case no congruence group
can exist in the original descriptive space.

Thus the Euclidean axiom (cf. § 10) is sufficient to secure the
existence of parabolic congruence groups having as their latent plane
the single plane of improper projective points (the points at infinity).
Also with this axiom no other types of congruence groups can exist.
But it is to be noticed that alternative congruence groups exist, namely
one for each imaginary conic lying in the plane at infinity.
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In order to secure the existence of hyperbolic congruence groups an
axiom is required which secures that the boundary of the proper pro-
jective points is & quadric. Then it is to be noticed that one and only
one congruence group exists in the descriptive space, namely that one
which corresponds to this definite quadric. Perhaps the most direct
form of the axiom is to assert that a hyperbolic congruence group
exists,
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