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From the preface to the first (German) edition.

There is no general agreement as to where an account of the theory

of infinite series should begin, what its main outlines should be, or what

it should include. On the one hand, the whole of higher analysis may
be regarded as a field for the application of this theory, for all limiting

processes including differentiation and integration are based on

the investigation of infinite sequences or of infinite series. On the other

hand, in the strictest (and therefore narrowest) sense, the only matters

that arc in place in a textbook on infinite series are their definition, the

manipulation of the symbolism connected with them, and the theory

of convergence.
In his "Vorlesungen uber Zahlcn- und Funktioncnlehre", Vol. 1,

Part 2, A. Pringsheim has treated the subject with these limitations.

There was no question of offering anything similar in the present book.

My aim was quite different: namely, to give a comprehensive
account of all the investigations of higher analysis in which infinite series

are the chief object of interest, the treatment to be as free from assump-
tions as possible and to start at the very beginning and lead on to the

extensive frontiers of present-day research. To set all this forth in as

interesting and intelligible a way as possible, but of course without in

the least abandoning exactness, with the object of providing the student

with a convenient introduction to the subject and of giving him an idea

of its rich and fascinating variety such was my vision.

The material grew in my hands, however, and resisted my efforts

to put it into shape. In order to make a convenient and useful book,

the field had to be restricted. But I was guided throughout by the ex-

perience I have gained in teaching I have covered the whole of the

ground several times in the general course of my work and in lectures

at the universities of Berlin and Konigsbcrg and also by the aim

of the book. It was to give a thorough and reliable treatment which would

be of assistance to the student attending lectures and which would at the

same time be adapted for private study.

The latter aim was particularly dear to me, and this accounts for

the form in which I have presented the subject-matter. Since it is gener-

ally easier especially for beginners to prove a deduction in pure
mathematics than to recognize the restrictions to which the train of

reasoning is subject, I have always dwelt on theoretical difficulties, and



VI Preface.

have tried to remove them by means of repeated illustrations; and

although I have thereby deprived myself of a good deal of space for

important matter, I hope to win the gratitude of the student.

I considered that an introduction to the theory of real numbers
was indispensable as a beginning, in order that the first facts relating
to convergence might have a firm foundation. To this introduction I

have added a fairly extensive account of the theory of sequences, and,

finally, the actual theory of infinite series. The latter is then constructed
in two storeys, so to speak: a ground-floor, in which the classical part
of the theory (up to about the stage of Cauchy's Analyse algebrique)
is expounded, though with the help of very limited resources, and a super-
structure, in which I have attempted to give an account of the later

developments of the 19th
century.

For the reasons mentioned above, I have had to omit many parts
of the subject to which I would gladly have given a place for their own
sake. Semi-convergent series, Euler's summation formula, a detailed

treatment of the Gamma-function, problems arising from the hypjr-
geometric series, the theory of double series, the newer work on power
series, and, in particular, a more thorough development of the last chapter,
that on divergent scries all these I was reluctantly obliged to set

aside. On the other hand, I considered that it was essential to deal with

sequences and series of complex terms. As the theory runs almost parallel
with that for real variables, however, I have, from the beginning, for-

mulated all the definitions and proved all the theorems concerned in

such a way that they remain valid without alteration, whether the "arbi-

trary" numbers involved are real or complex. These definitions and
theorems are further distinguished by the sign .

In choosing the examples in this respect, however, I lay no
claim to originality; on the contrary, in collecting them I have made
extensive use of the literature I have taken pains to put practical

applications in the fore-front and to leave mere playing with theoretical

niceties alone. Hence there are e. g. a particularly large number of exer-
cises on Chapter VIII and only very few on Chapter IX. Unfortunately
there was no room for solutions or even for hints for the solution of
the examples.

A list of the most important papers, comprehensive accounts, and
textbooks on infinite series is given at the end of the book, immediately
in front of the index.

Kdnigsberg, September 1921.
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From the preface to the second

(German) edition.

The fact that a second edition was called for after such a remarkably
short time could be taken to mean that the first had on the whole been

on the right lines. Hence the general plan has not been altered, but

it has been improved in the details of expression and demonstration on

almost every page.

The last chapter, that dealing with divergent series, has been wholly

rewritten, with important extensions, so that it now in some measure

provides an introduction to the theory and gives an idea of modern work

on the subject.

Kdnigsberg, December 1923.

Preface to the third (German) edition.

The main difference between the third and second editions is that

it has become possible to add a new chapter on Euler's summation formula

and asymptotic expansions, which I had reluctantly omitted from the

first two editions. This important chapter had meanwhile appeared in

a similar form in the English translation published by Blackie & Son

Limited, London and Glasgow, in 1928.

In addition, the whole of the book has again been carefully revised,

and the proofs have been improved or simplified in accordance with the

progress of mathematical knowledge or teaching experience. This applies

especially to theorems 269 and 287.

Dr. W, Schobe and Herr P. Securius have given me valuable assist-

ance in correcting the proofs, for which I thank them heartily.

Tubingen, March 1931.

Preface to the fourth (German) edition.

In view of present difficulties no large changes have been made for

the fourth edition, but the book has again been revised and numerous

details have been improved, discrepancies removed, and several proofs

simplified. The references to the literature have been brought up to

date.

Tubingen, July 1947.
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Preface to the first English edition.

This translation of the second German edition has been very skil-

fully prepared by Miss R. C. //. Young, L. es Sc. (Lausanne), Research

Student, Girton College, Cambridge. The publishers, Messrs. Blackie

and Son, Ltd., Glasgow, have carefully superintended the printing.

In addition, the publishers were kind enough to ask me to add a

chapter on Enter's summation formula and asymptotic expansions. I agreed
to do so all the more gladly because, as I mentioned in the original pre-

face, it was only with great reluctance that I omitted this part of the sub-

ject in the German edition. This chapter has been translated by Miss

W. M. Deans, B.Sc. (Aberdeen), M.A. (Cantab.), with equal skill.

I wish to take this opportunity of thanking the translators and the

publishers for the trouble and care they have taken. If as I hope

my book meets with a favourable reception and is found useful by English-

speaking students of Mathematics, the credit will largely be theirs.

Tubingen, February 1928.

Konrad Knopp.

Preface to the second English edition.

The second English edition has been produced to correspond to the

fourth German edition (194/7).

Although most of the changes are individually small, they have none-

theless involved a considerable number of alterations, about half of the

work having been re-set.

The translation has been carried out by Dr. R. C. H. Young who
was responsible for the original work.
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Introduction.

The foundation on which the structure of higher analysis rests is

the theory of real numbers. Any strict treatment of the foundations of

the differential and integral calculus and of related subjects must in-

evitably start from there; and the same is true even for e. g. the cal-

culation of roots and logarithms. The theory of real numbers first creates

the material on which Arithmetic and Analysis can subsequently build,

and with which they deal almost exclusively.

The necessity for this has not always been realized. The great

creators of the infinitesimal calculus Leibniz and Newton l and

the no less famous men who developed it, of whom Eider 2
is the chief,

were too intoxicated by the mighty stream of learning springing from

the newly-discovered sources to feel obliged to criticize fundamentals.

To them the results of the new methods were sufficient evidence for

the security of their foundations. It was only when the stream began
to ebb that critical analysis ventured to examine the fundamental con-

ceptions. About the end of the 18th century such efforts became stronger
and stronger, chiefly owing to the powerful influence of Gauss 3

. Nearly
a century had to pass, however, before the most essential matters could

be considered thoroughly cleared up.

Nowadays rigour in connection with the underlying number concept
is the most important requirement in the treatment of any mathematical

subject. Ever since the later decades of the past century the last word

on the matter has been uttered, so to speak, by Weierstrass 4 in the

sixties, and by Cantor 5 and Dedekind 6 in 1872. No lecture or treatise

1
Gottfried Wilhelm Leibniz, born in Leipzig in 1646, died in Hanover in

1716. Isaac Neivton, born at Woolsthorpe in 1642, died in London in 1727. Each
discovered the foundations of the infinitesimal calculus independently of the other.

2 Leonhard Eider, born in Basle in 1707, died in St. Petersburg in 1783.
3 Karl Friedrich Gauss, born at Brunswick in 1777, died at Gottingen in 1853.
4 Karl Weierstrass, born at Ostenfelde in 1815, died in Berlin in 1897. The

first rigorous account of the theory of real numbers which Weierstrass had expounded
in his lectures since 1860 was given by G. Mittag-Leffler, one of his pupils, in his

essay: Die Zahl, Einleitung zur Theone der analytischen Funktionen, The Tohoku
Mathematical Journal, Vol. 17, pp. 157209. 1920.

5
Georg Cantor, born in St. Petersburg in 1845, died at Halle in 1918: cf.

Mathem. Annalen, Vol. 5, p. 123. 1872.
6 Richard Dedekind, born at Brunswick in 1831, died there in 1916: cf. his

book: Stetigkeit und irrationaJe Zahlen, Brunsuick 1872.

1
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dealing with the fundamental parts of higher analysis can claim validity

unless it takes the refined concept of the real number as its starting-

point.

Hence the theory of real numbers has been stated so often and

in so many different ways since that time that it might seem superfluous
to give another very detailed exposition

7
: for in this book (at least in

the later chapters) we wish to address ourselves only to those already

acquainted with the elements of the differential and integral calculus.

Yet it would scarcely suffice merely to point to accounts given elsewhere.

For a theory of infinite series, as will be sufficiently clear from later

developments, would be up in the clouds throughout, if it were not

firmly based on the system of real numbers, the only possible foundation.

On account of this, and in order to leave not the slightest uncertainty
as to the hypotheses on which we shill build, we shall discuss in the

following pages those idsas and data from the theory of real numbers
which we shall need further on. We have no intention, however, of con-

structing a statement of the theory compressed into smaller space but

otherwise complete. We merely wish to make the main ideas, the most

important questions, and the answers to them, as clear and prominent
as possible. So far as the latter are concerned, our treatment throughout
will certainly be detailed and without omissions; it is only in the cases

of details of subsidiary importance, and of questions as to the complete-
ness and uniqueness of the system of real numbers which lie outside the

plan of this book, that we shall content ourselves with shorter indications.

7 An account which is easy to follow and which includes all the essentials

is given by H. v. Mangoldt, Einfuhrung in die hohere Mathematik, Vol. I, 8th edition

(by K. Knopp), Leipzig 1944. The treatment of G. Kozvalezvski, Grundziige
der Differential- und Integralrechnung, 6th

edition, Leipzig 1929, is accurate and

concise. A rigorous construction of the system of real numbers, which goes into

the minutest details, is to be found in A. Loezvy, Lehrbuch der Algebra, Part I,

Leipzig 1915, in A. Pnngsheim, Vorlesungen uber Zahlen- und Funktionenlehre,

Vol. I, Part I, 2n(1
edition, Leipzig 1923 (cf. also the review of the latter work by

H. Hahn, Gott. gel. Anzeigen 1919, pp. 321 47), and in a book by E. Landau

exclusively devoted to this purpose, Grundlagen der Analysis (Das Rechnen mit

ganzen, rationalen, irrationalen, komplexen Zahlen), Leipzig 1930. A critical account

of the whole problem is to be found in the article by F. Bachmann, Aufbau des

Zahlensystems, in the Enzyklopadie d. math. Wissensch., Vol. I, 2nii
edition, Part I,

article 3, Leipzig and Berlin 1938.



Part I.

Real numbers and sequences.

Chapter I.

Principles of the theory of real numbers.

1. The system of rational numbers and its gaps.

What do we mean by saying that a particular number is "known"

or "given" or may be "calculated"? What does one mean by saying

that he knows the value of 1/2 or n>> or lnat ne can calculate 1/5?
A question like this is easier to ask than to answer. Were I to say

that \/2 = l-414, I should obviously be wrong, since, on multi-

plying out, 1-414 X 1-414 does not give 2. If I assert, with greater

caution, that 1/2 = 1-4 142 135 and so on, even that is no tenable

answer, and indeed in the first instance it is entirely meaningless. The

question is, after all, how we are to go on, and this, without further

indication, we cannot tell. Nor is the position improved by carrying

the decimal further, even to hundreds of places. In this sense it

may well be said that no one has ever beheld the whole of "V/2,

not held it completely in his own hands, so to speak whilst a

statement that 1/9 = 3 or that 35-7-7 = 5 has a finished and thorough-

ly satisfactory appearance. The position is no better as regards
the number n, or a logarithm or sine or cosine from the tables.

Yet we feel certain that 1/2 and n and log 5 really do have quite definite

values, and even that we actually know these values. But a clear

notion of what these impressions exactly amount to or imply we do

not as yet possess. Let us endeavour to form such an idea.

Having raised doubts as to the justification for such statements

as "I know 1/2", we must, to be consistent, proceed to examine
how far one is justified even in asserting that he knows the number

^ or is given (for some specific calculation) the number ~. Nay
more, the significance of such statements as "I know the number 97"

or "for such and such a calculation I am given a = 2 and 6 = 5" would
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require scrutiny. We should have to enquire into the whole significance

or concept of the natural numbers 1, 2, 3, ...

This last question, however, strikes us at once as distinctly trans-

gressing the bounds of Mathematics and as belonging to an order of

ideas quite apart from that which we propose to develop here.

No science rests entirely within itself: each borrows the strength

of its ultimate foundations from strata above or below it, such as experi-

ence, or theory of knowledge, or logic, or metaphysics, . . . Every science

must accept something as simply given, and on that it may proceed to

build. In this sense neither mathematics nor any other science starts

without assumptions. The only question which has to be settled by
a criticism of the foundation and logical structure of any science is what

shall be assumed as in this sense "given"; or better, what minimum of

initial assumptions will suffice, to serve as a basis for the subsequent

development of all the rest.

For the problem we are dealing with, that of constructing the system
of real numbers, these preliminary investigations are tedious and trouble-

some, and have actually, it must be confessed, not yet reached any entirely

satisfactory conclusion at all. A discussion adequate to the present

position of the subject would consequently take us far beyond the limits

of the work wre are contemplating. Instead, therefore, of shouldering
an obligation to assume as basis only a minimum of hypotheses, we

propose to regard at once as known (or "given", or "secured") a group
of data whose deducibility from a smaller body of assumptions is familiar

to everyone namely, the system of rational numbers, i. e. of numbers

integral and fractional, positive and negative, including zero. Speaking

broadly, it is a matter of common knowledge how this system may be

constructed, if as a smaller body of assumptions only the ordered

sequence of natural numbers 1, 2, 3, . . .
,
and their combinations by

addition and multiplication, are regarded as "given". For everyone knows
and we merely indicate it in passing how fractional numbers arise

from the need of inverting the process of multiplication, negative
numbers and zero from that of inverting the process of addition 1

.

The totality, or aggregate, of numbers thus obtained is called the

system (or set) of rational numbers. Each of these can be completely and

literally "given" or "written down" or "made known" with the help of at

most two natural numbers, a dividing bar and possibly a minus sign.

For brevity, we represent them by small italic characters; #,&,...,
x, y, . . . The following are the essential properties of this system:

1 See the works of Loewy, Pringsheim, and Landau mentioned in the Intro-

duction; also O. Holder, Die Anthmetik in strenger Begrundung, 2"J edition, Berlin

1929; and O. Stolz and J. A. Gmeiner, Theoretische Arithmetik, 3 r<l
edition, Leipzig

1911.
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1. Rational numbers form an ordered aggregate; meaning that

between any two, say a and 6, one and only one of the three relations

a < b. a = b, a > b

necessarily holds 2
; and these relations of "order" between rational

numbers are subject to a set of quite simple laws, which we assume known,
the only essential ones for our purposes being the

Fundamental Laws of Order.

1. Invariably
3 a a.

2. a b always implies b - a.

3. a = b
y
b c implies a = c.

4. a ^ b
y
b < c, or a < b, b < c

y implies
4 a < c.

2. Any two rational numbers may be combined in four distinct

ways, referred to respectively as the four processes (or basic operations)

of Addition, Subtraction, Multiplication, and Division. These operations

can always be carried out to one definite result, with the single exception

of division by 0, which is undefined and should be regarded as an entirely

impossible or meaningless process; the four processes also obey a number
of simple laws, the so-called Fundamental Laws of Arithmetic, and further

rules cleducible therefrom.

These too we shall regard as known, and state, concisely, those

Fundamental Laws or Axioms of Arithmetic from which all the others may
be inferred, by purely formal rules (i. e. by the laws of pure logic).

I. Addition. 1. Every pair of numbers a and b has invariably associ-

ated with it a third, c, called their sum and denoted by a + b.

2. a = a', b b' always implv a
\

b -- a' + b'.

3. Invariably, a + b b + (Commutative Law).
4. Invariably, (a + b) + c = a + (b + c) (Associative Law).
5. a < b always implies a + c < b + c (Law of Monotony).

II. Subtraction.

To every pair of numbers a and b there corresponds a third number

c, such that a + c b.

8 a > b and b < a are merely two different expressions of the same relation.

Strictly speaking, the one symbol "<" would therefore suffice.
3 With regard to this seemingly trivial "law" cf. footnote 11, p. 9, remark 1

, p. 28,

and footnote 24, p. 29.
4 To express that one of the relations of order: a < b, a 6, or a > b, does

not hold, we write, respectively, a^b ("greater than or equal to", "at least equal

to", "not less than"), a -t= b ("unequal to", "different from") or a *- 6. Kach of

these statements (negations) definitely excludes one of the three relations and leaves

undecided which of the other two holds good.
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III. Multiplication.

1. To every pair of numbers a and b there corresponds a third

number c, called their product and denoted by a b.

2. a a', b b' always implies a b = a' b'.

3. In all cases ab = ba (Commutative Law).
4. In all cases (ab) c =-- a (b c) (Associative Law).
5. In all cases (a + b) c a c + b c (Distributive Law).
6. a < b implies, provided c is positive, a c <.b c (Law of Mono-

tony).

IV. Division.

To every pair of numbers a and b of which the first is not there

corresponds a third number c, such that a c = b.

As already remarked, all the known rules of arithmetic, and

hence ultimately all mathematical results, are deduced from these

few laws, with the help of the laws of pure logic alone. Among these

laws, one is distinguished by its primarily mathematical character, namely
the

V. Law of Induction, which may be reckoned among the fundamental

laws of arithmetic and is normally stated as follows:

If a set S
3)t of natural numbers includes the number 1, and if, every

time a certain natural number n and all those less than n can be taken to

belong to the aggregate, the number (n h 1) rniy be inferred also to belong
to it, then $)J includes all the natural numbers.

This law of induction itself follows quite easily from the following

theorem, which appears even more obvious and is therefore normally
called the fundamental law of the natural numbers :

Law of the Natural Numbers. In every set of natural numbers that

is not "empty" there is always a number less than all the rest.

For if, according to the hypotheses of the Induction Law, we con-

sider the set 9i of natural numbers not belonging to $)?, this set W must

be "empty", that is, $ft must contain all the natural numbers. For other-

wise, by the law of the natural numbers, 1U would include a number less

than all the rest. This least number would exceed 1, for it was assumed

that 1 belongs to s
l)i; hence it could be denoted by n + 1. Then n would

belong to 3)i, but (n + 1) would not, which contradicts the hypotheses
in the law of induction.5

In applications it is usually an advantage to be able to make state-

ments not merely about the natural numbers but about any whole numbers.

6 The following rather more general form of the law of induction can be
deduced in exactly the same way from the fundamental law of the natural numbers.
If set >j.)j of natural numbers includes the number 1, and if the number (n -|- 1)

can be proved to belong to the aggregate provided the number n does, then Wl con-

tains all the natural numbers.
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The laws then take the following forms, obviously equivalent to those

above :

Law of Induction. If a statement involves a natural number n (e. g.

"if n ^ 10, then 2W > n*", or the like) and if

a) this statement is correct for n = p t

and

b) its correctness for n = p, p -{- I, . . . ,
k (where k is any natural

number >; p) always implies its correctness for n = k -f- 1, then the

statement is correct for every natural number ^ p.

Law of Integers. In every set of integers all r p that is not "empty",
there is always a number less than all the rest.

6

We will lastly mention a theorem susceptible, in the domain of

rational numbers, of immediate proof, although it becomes axiomatic

in character very soon after this domain is left; namely the

VI. Theorem of Eudoxus.

If a and b are any two positive rational numbers, then a natural

number n always exists 7 such that n b > a.

The four ways of combining two rational numbers give in every

case as the result another rational number. In this sense the system
of rational numbers forms a closed aggregate (naturlicher Rationalitats-

bereich or number corpus). This property of forming a closed system \\ith

respect to the four rules is obviously not possessed by the aggregate of

all natural numbers, or of all positive and negative integers. These are,

so to speak, too sparsely sown to meet all the demands which the four

rules make upon them.

This closed aggregate of all rational numbers and the laws which hold

in it, are then all that we regard as given, known, secured.

As that type of argument which makes use of inequalities and absolute values 3.

may be a little unfamiliar to some, its most important rules may be set down here,

briefly and without proof:

I. Inequalities. Here all follows from the laws of order and monotony.
In particular

1. The statements in the laws of monotony are reversible; e. g. a -f- c

< b -|- c always implies a < 6; and so does a c < b c
, provided c > 0.

2. a < b, c < d always implies a -f c < b -f d.

3. a < b, c < d implies, provided b and c are positive, a c < b d.

4. a < b a!ways implies b < a,

. . . 11
and also, provided a is positive, , < -.

b a

To reduce these forms of the laws to the previous ones, we need only con-

sider the natural numbers m such that, in the one case, the statement in question
is correct for n (p 1) -f m, or, in the other, that (p 1) -f m belongs to the

non-"empty" set under consideration.
7 This theorem is usually, but incorrectly, ascribed to Archimedes ; it is already

to be found in Euclid, Elements, Book V, Def. 4.



8 Chapter I. Principles of the theory of real numbers.

Also these theorems, as well as the laws of order and monotony, hold (with

appropriate modifications) when the signs "S", "-*", "__-" and <c
^=

l>
are sub-

stituted for "<", provided we maintain the assumptions that c> b and a are posi-

tive, in 1, 3, and 4 respectively.

II. Absolute values. Definition: By \
a |, the absolute value (or modulus)

of a, is meant that one of the two numbers -\-a and a which is positive, sup-

posing a 3= 0; and the number 0, if a 0. (Hence | |

-^ and if a = 0, |
a

\

> 0.)

The following theorems hold, amongst others:

3.

a\ ---
\

-
a\. 2.

|
ab

\

=-

1

a a , provided a =f= 0.

J 4.
\
a + b

[
:_j,

\ a\ + \
b \; |a + 6|^|a|- |6|, and indeed

|
a + b

\

^ \a\ -|6|(.

5. The two relations
|
a

\
< r and r < a < r are exactly equivalent;

similarly for
|
x a

\
< r and a r <. x < a -\- r.

0.
|

a b
|

is the distance between the points a and b, with the represen-
tation of numbers on a straight line described immediately below.

Proof of the first relation in 4: a ^
\

a
|,

b <
|
b

|, so that by 3, I, 2,

(a -\ b) ^ |

a
| -f- |

6 |,
and hence

|
a -\ b

\ ^ |
a

\ -}-
|
b |.

We also assume it to be known how the relations of magnitude
between rational numbers may be illustrated graphically by relations

of positions between points on a straight line. On a straight line or

number-axis, any two distinct points arc marked, one O, the origin (0)

and one U
9 the unit point (1). The point P which is to represent a number

a = *-
(q > 0, p ^ 0, both integers) is obtained by marking off on the

axis,
| p |

times in succession, beginning at O, the
<?

th
part of the dis-

tance O U (immediately constructed by elementary geometry) either in

the direction O U, if p > 0, or if p is negative, in the opposite direction.

This point
8 we call for brevity the point a, and the totality of points

corresponding in this way to all rational numbers we shall refer

to as the rational points of the axis. The straight line is usually

thought of as drawn from left to right and U chosen to the right of O.

In this case, the words positive and negative obviously become equiva-
lents of the phrases: to the right of O and to the left of O, respectively;

and, more generally, a < b signifies that a lies to the left of b, b to the

right of a. This mode of expression may often assist us in illustrating

abstract relations between numbers.

8 The position of this point is independent of the particular representation

of the number a
t i. e. if a p'/q' is another representation with </'

*> and p' ^
both integers, and if the construction is performed with q', p' in place of qt p, the

same point P is obtained.
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This completes the sketch of what we propose to take as the

previously secured foundation of our subject. We shall now regard

the description of these foundations as characterizing the concept of
number; in other words, we shall call any system of conceptually well-

distinguished objects (elements, symbols) a number system, and its

elements numbers, if to put it quite briefly for the moment we

can operate with them in essentially the same ways as we do with rational

numbers.

We proceed to give this somewhat inaccurate statement a precise

formulation.

We consider a system S of well-distinguished objects, which we
denote by a, /?,.... S will be called a number system and its elements

a, j3, . . . will be called numbers if, besides being capable of definition

exclusively by means of rational numbers
(i.

c. ultimately by means of

natural numbers alone)
9
, these symbols a, jS, . . . satisfy the following four

conditions :

1. Between any two elements a and /3 of S one and only one of the

three relations 10

a < 0, a = a >

necessarily holds (this is expressed briefly by saying that S is an ordered

system) and these relations of order between the elements of S are subject

to the same fundamental laws 1 as their analogues in the system of rational

numbers u .

2. Four distinct methods of combining any two elements of S are

defined, called Addition, Subtraction, Multiplication and Division. With

a single exception, to be mentioned immediately (3.), these processes

can always be carried out to one definite result, and obey the same Fun-

damental Laws 2, I IV, as their analogues in the system of the rational

9 We shall come across actual examples m 3 and 5; for the moment, we
n.ay think of decimal fractions, or similar symbols constructed from rational numbers.

See also footnote 10, p. 12.

10 Cf. also footnotes 2 and 4.

11 As to what we may call the practical meaning of these relations, nothing
Is implied; "<" may as usual stand for "less than'*, but it may equally well mean
"before", "to the left of", "higher than", "lower than", "subsequent to", in fact

may express any relation of order (including "greater than"). This meaning merely
has to be defined without ambiguity and kept consistent. Similarly, "equality"
need not imply identity. Thus, for example, within the system of symbols of the

form p/q, where/), q are integers and q =4= 0, the symbols 3/4, 0/8, I)/ 12 are

generally said to be "equal"; that is, for certain purposes (calculating, measuring,
and so on) we define equality within our system of symbols in such a way that 3/4 -=

6/8-= -9/-12, although 3/4, 0/8, -9/-12 are in the first instance different

elements of that system (see also 14, note 1).
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numbers 12
. (The "zero" of the system, which must be known in order

that the elements can be divided into positive and negative, is to be defined

as explained in footnote 14 below.)

3. With every rational number we can associate an element of S

(and all others "equal'
'

to it) in such a manner that, if a and b denote

rational numbers, a, ft their associates from S:

a) the relation 1. holding between a and ft is of the same form as

that holding between a and b.

b) the element resulting from a combination of a and ft (i. e. a + ft,

a ft, a ft, or a -f- ft) has for its associated rational number the result

of the similar combination of a and b
(i.

e. a + b, a b, a b, or a -^ b

respectively).

[This is also expressed, more shortly, by saying that the system S
contains a sub-system S' sivnilar and isomorphous to the system
of rational numbers. Such a sub-system is in fact constituted by those

elements of S which we have associated with rational numbers 13
.]

In such a correspondence, an element of S associated with the rational

number zero, and all elements equal to it, may be shortly referred to as

the "zero" of the system of elements. The exception mentioned in 2.

then relates to division by zero 14
.

12 With reference to these four processes it should be noted, as in the case

of the symbols < and -, that no practical interpretation is implied. We also

draw attention to the fact that subtraction is already completely denned in terms

of addition, and division in terms of multiplication, so that, properly speaking,

only two modes of combining elements need be assumed known.
13 Two ordered systems are similar if it is possible to associate each element

of the one \\ith an element of the other in such a way that the same one of the

relations 4, 1 as holds between two elements of the one system also holds between
the two associated elements of the other, they are tsomorfihous relatively to the

possible modes of combining their elements, if the element resulting from a com-
bination of two elements of the one system is associated with that resulting from
the similar combination of the two associated elements of the other system.

14 The third of the stipulations by means of which we here characterise the

concept of number is fulfilled, moreover, as a consequence of the first arid second.

For our purposes, this fact is not essential; but as it is significant from a systematic

point of view, we briefly indicate its proof as follows' By 4, 2, there is an element
for which a -f- a. From the fundamental laws 2, 1, it then quite eastl> follow^

tha one and the same element of S satisfies a -I-
-

a, for every a. This element

,
with all elements equal to it, is called the neutral element relatively to the process

of addition, or for brevity the "zero" in S. If a is different from this "zero", there

is, further, an element for which a e a; and it again appears thit this element
is the same as that satisfying n - a for any other a in S. This e, with all elements

equal to it, is called the neutral element relatively to the process of multiplication,

or, briefly, the "unit" in S. The elements of S produced bv repeated addition or

subtraction of this "unit", and any others equal to them, are then called "integers"
of S. All further elements of S (and all equal to them) which result fiom these

by the process of division then form the sub-system S' of S in question; that it

is similar and iamorphous to the system of all rational numbers is in fact easily

deduced from 4, i and 4, 2. Thus, as asserted, our concept of number is already
determined by the requirements of 4, 1, 2 and 4.
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4. For any two elements a and /3 of S both standing in the relation

">" to the "zero" of the system, there exists a natural number n for

which n j8 > a. Here n )3 denotes the sum ]8 -f- jf? + . . . -|- ]8 containing
the element ]8 w times. (Postulate of Eudoxus; cf. 2, VI.)

To this abstract characterisation of the concept of number we
will append the following remark l5

: If the system S contains no other

elements than those corresponding to rational numbers as specified

in 3, then our system does not differ in any essential feature from the

system of rational numbers, but only in the (purely external) designation

of the elements by symbols, or in the (purely practical) interpretation

which we give to these symbols; differences almost as irrelevant,

at bottom, as those which occur when we write figures at one time in

Arabic characters, at another, in Roman or Chinese, or take them to

denote now temperature, now velocity or electric charge. Disregarding
external characteristics of notation and practical interpretation, we
should thus be perfectly justified in considering the system S as identical

with the system of rational numbers and in this sense we may put a = a,

b --.&....
If, however, the system S contains other elements besides the above

mentioned, then we shall say that S includes the system of rational

numbers, and is an extension of it. Whether a system of this more com-

prehensive kind exists at all, remains for the moment an open question;

15 We have defined the concept of number by a set of properties characterising

it. A critical construction of the foundations of arithmetic, which is quite out

of the question within the limits of this volume, would have to comprise a strict

investigation as to the extent to which these properties are independent of one

another, i. e. whether any one of them can or cannot be deduced from the rest as

a provable fact. Further, t would have to be shuwn that none of these fundamental

stipulations is in contradiction with any other and other matters too would

require consideration. These investigations are tedious and have not yet reached a

final conclusion.

In the treatment by E. Landau mentioned on p. 2, footnote 7, it is proved with

absolute rigour that the fundamental laws of arithmetic which we have set up
can all be deduced from the following 5 axioms relating to the natural numbers:

Axiom 1 : 1 is a natural number.

Axiom 2: For every natural number n there is just one other number
that is called the successor of n. (Let it be denoted by n'.)

Axiom 3: We have always n' 1.

Axiom 4: From m' ~~ n'
t

it follows that m n.

Axiom 5: The induction law V is valid (in its first form).

These 5 axioms, first formulated as here by G. Peano, but in substance set up
by R. Dedektnd, assume that the natural numbers as a whole are regarded as given,

that a relation of equality (and hence also inequality) is defined between them,
and that this equality satisfies the relations 1, 1, 2, 3 (which belong to pure

logic).
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but an example will come before our notice presently in the system of

real numbers 16
.

Having thus agreed as to the amount of preliminary assumption
we require, we may now drop all argument on the subject, and again
raise the question: What do we mean by saying that we know the number

V2 or TT?

It must in the first instance be termed altogether paradoxical that

a number having its square equal to 2 does not exist in the system so

far constructed 17
, or, in geometrical language, that the point A of

the number-axis, whose distance from O equals the diagonal of the

square of side O U, coincides with none of the "rational points". For

the rational numbers are dense, i. e. between any two of them (which
are distinct) we can point out as many more as we please (since, if a ^ b

y

fo a
the n rational numbers given by a + v ,

for v = 1, 2, . . . , n, evi-
n -|- 1

dently all lie between a and b and are distinct from these and from one

another); but they are not, as we might say, dense enough to symbolise
all conceivable points. Rather, as the aggregate of all integers proved
too scanty to meet the requirements of the four processes of arithmetic,

16 The mode of defining the number-concept given in 4 is of course not

the only possible one. Frequently the designation of number is still ascribed to

objects which fail to satisfy some one or other of the requirements there laid down.

Thus for instance we may relinquish the condition that the objects under con-

sideration should be constructively developed from rational numbers, regarding

any entities (for instance points, or distances, or such like) as numbers, provided

only they satisfy the conditions 4, 1 4, or, in short, are similar and isomorphous
to the system we have just set up. This conception of the notion of number,
in accordance with which all isomoiphous systems must be regarded as in the ab-

stract sense identical, is perfectly justified from a mathematical point of view, but

objections necessarily arise in connection with the theory of knowledge. We
shall encounter another modification of the number -concept when we come to

deal with complex numbers.
17 Proof'. There is certainly no natural number of square equal to 2, as

I
2 - 1 and all other integers have their squares ^ 4. Thus V2 could only be a

(positive) fraction , where q may be taken ^ 2 and prime to p (i. e. the fraction

is in its lowest terms). But if -
is in its lowest terms, so is

(

-
J , which there-

Q W/ Q
'

q

fore cannot reduce to the whole number 2. In a slightly different form: For any
two natural numbers p and q without common factor, we have necessarily />

2
4- 2 q~.

For since two integers without common factors cannot both be even, either p is

odd, or else p is even and q odd. In the first case />
2

is again odd, hence cannot

equal an even integer 2 q
2
. In the second case p

2 = (2 p'Y is divisible by 4, but 2 q
z

is not, since it is double an odd number. So p'
2

=1= 2
r/
2
again. This Pythagoras is

said to have already known (cf. M. Cantor, Gesch. d. Mathem., Vol. 1, 2 lj

ed., pp.

142 and 169. 1894).
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so also the aggregate of all rational numbers contains too many gaps
18

to satisfy the more exacting demands of root extraction. One feels,

nevertheless, that a perfectly definite numerical value belongs to the point

A and therefore to the symbol V2. What are the tangible facts which

underlie this feeling?

Obviously, in the first instance, this: We do, it is true, know

perfectly well that the values 1-4 or 1*41 or 1*414 etc. for V2 are in-

accurate, in fact that these (rational) numbers have squares < 2, i. e.

are too small. But we also know that the values 1-5 or 1-42 or

1*415 etc. are in the same sense too large; that the value which we
are attempting to reach would have therefore to lie between the corres-

ponding too large and too small values. We thus reach the definite

conviction that the value of N/2 is within our grasp, although the given
values are all incorrect. The root of this conviction can only lie in

the fact that we have at our command a process, by which the above

values may be continued as far as we please; we can, that is, form

pairs of decimal fractions, with 1, 2, 3, ... places of decimals, one frac-

tion of each pair being too large, and the other too small, and

the two differing only by one unit in the last decimal place, i. e. by (y
1

^)
71

,

if n is the number of decimal places. As this difference may be made
as small as ive <please, by sufficiently increasing the number n of given
decimal places, we are taught through the above process to enclose

the value which we are in search of between two numbers as near

as we please to one another. By a metaphor, somewhat bold at the

present stage, we say that through this process V2 itself is "given",

in virtue of it, V2 is "known", by it, V2 may be "calculated", and

so on.

We have precisely the same situation with regard to any other value

which cannot actually be denoted by a rational number, as for instance

TT, log 2, sin 10 etc. If we say, these numbers are known, nothing more

is implied than that we know some process (in most cases an extremely

laborious one) by which, as detailed in the case of V2, the desired value

may be imprisoned, hemmed in, within a narrower and narrower space

between rational numbers, and this space ultimately narrowed down
as much as we please.

For the purpose of a somewhat more general and more accurate

18 This is the paradox, scarcely capable of any direct illustration, that a set

of points, dense in the sense just explained, mav already be marked on the number

axis, and yet not comprise all the points of the straight line. The situation may
be described thus: Integers form a first rough partition into compartments; rational

numbers fill these compartments as with a fine sand, which on minute inspection

inevitably still discloses gaps. To fill these will be our next problem.
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statement of these matters, we insert a discussion of sequences of rational

numbers, provisional in character, but nevertheless of fundamental im-

portance for all that comes after.

2. Sequences of rational numbers 1
.

In the process indicated above for calculating V2, successive well-

defined rational numbers were constructed; their expression in decimal

form was material in the description; from this form we now propose

to free it, and start with the following

5. Definition. If, by means of any suitable process of construction, we

can form successively a first, a second, a third, . . . (rational) number and

if to every positive integer n one and only one well-defined (rational) number

xn thus corresponds, then the numbers

X
l>

X2>
X

'3> >
Xm

(in this order, corresponding to the natural order of the integers 1
, 2, 3, ...

n, . .
.)

are said to form a sequence. We denote it for brevity by (xn)

or (*!, *2 ,
. .

.).

O Examples.

i u i*n ~~
] '* C * secluence > or ]

>

2' 3'

2. xn
-

2"; i. e. the sequence 2, 4, 8, 16, ...

3. xn an ; i. e. the sequence a, a 2
, a

3
,

. . . , where a is a given number.
- 4. xn

~ H 1 - (- 1 )
71

}; 1- e. the sequence 1, 0, 1, 0, 1, 0, ...

6. xn = the decimal fraction for V2, terminated at the wth
digit.

/ iyi i 111
6. xn - L_^.__

; i. e . the sequence 1,
-

i, + * - '
. . .

n & j *

7. Let x 1
=

1, x2
=

1, #3
= xl + #2

~ ^ and, generally, for n > 3, let

xn
~ xn-i + xn-z- We thus obtain the sequence 1, 1, 2, 3, 5, 8, 13, 21, . . . , ubually

called Fibonacci's sequence.

8.
l,2,},-8,-J,S,J,-3,-J,...
o 3 4 5 + I
A 2,3,3,...,

-
n ....

10
1 2 3 4 - 1

10 - U
'2'3'4' n"""

11. xn the wth prime number 2
; i. e. the sequence 2, 3, 5, 7, 11, 13, ... \

12. The sequence 1,
|, ^, g, ^ m wh.ch * =

(l
+

J
+ . . . +

i)

1 In this section all literal symbols will continue to stand for rational numbers

only.
2 Euclid proved that there is an infinity of primes. If plt p2 , . . . , pk are any

prime numbers, then the integer m -=
(/>,/>2 . . . pk) + 1 is either a prime different

from pi, pi, . . .
, pk ,

or else a product of such primes. Hence no finite set of prime
numbers can include all primes.



2. Sequences of rational numbers. 15

Remarks.

1. The law of formation may be quite arbitrary; it need not, in particular,

be embodied in any explicit formula enabling us to obtain xn , for a given n t by
direct calculation. In examples 6, 5, 7 and 11, clearly no such formula can be im-

mediately written down. If the terms of the sequence are individually given, neither

the law of formation (cf. 6, 5 and 12) nor any other kind of regularity (cf. 6, ll)

among the successive numbers is necessarily apparent.
2. It is sometimes advantageous to start the sequence with a "0th" term x ,

or even with a ( l)
th or ( 2)

th
term, x__ lt #_2 . Occasionally, it pays better to start

indexing with 2 or 3. The only essential is that there should be an integer m ^
such that xn is defined for every n ^ m. The term xm is then called the initial term

of the sequence. We will however, even then, continue to designate as the nih term

lhat which bears the index n. In 6, 2, 3 and 4, for instance, we can without further

difficulties take a th term or even ( l)
t}l or ( 2)

<h to head the sequence. The "first

term" of a sequence is then not necessarily the term with which the sequence begins.

The notation will be preferably (x0> *i> ) or (#-i #o> ) etc., as the case may be,

unless it is either quite clear or irrelevant where our enumeration begins, and the

abbreviated notation (xn) can be adopted.
3. A sequence is frequently characterised as infinite. The epithet is then

merely intended to emphasize the fact that every term is succeeded by other terms.

It is also said that there is an infinite number of terms. More generally, there is

said to be a finite number or an infinite number of things under consideration accord-

ing as the number of these things can be indicated by a definite integral number
or not. And we may remark here that the word infinite, when otherwise used in

the sequel, will have a symbolic significance only, intended as a concise expression
of some perfectly definite (and usually quite simple) circumstance.

4. If all the terms of a sequence have one and the same value c, the sequence
is said to be identically equal to c, and in symbols (xn)

~ c. More generally, we shall

write (xn)
== (xn ') if the two sequences (xn) and (xn ') agree term for term, i. e. for

every index in question xn ~ xn '.

5. It is often helpful and convenient to represent a sequence graphically

by marking off its terms on the number-axis, or to think of them as so marked.

We thus obtain a sequence of point*. But in doing this it should be borne in mind

that, in a sequence, one and the same number may occur repeatedly, even "in-

finitely often" (cf. 6, 4); the corresponding point has then to be counted (i. e. con-

sidered as a term of the sequence of points) repeatedly, or infinitely often, as the

case may be.

0. A graphical representation of a different kind is obtained by marking,
with respect to a pair of rectangular coordinate axes, the points whose coordinates

are (w, xn) for w = 1, 2, 3, ... and joining consecutive points by straight segments.
The broken line so constructed gives a picture (diagram, or graph) of the sequence.

To consider from the most diverse points of view the sequences hereby

introduced, and the real sequences that will shortly be defined, will be the

main object of the following chapters. We shall be interested more par-

ticularly in properties which hold, or are stipulated to hold, for all the

terms of the sequence, or at least for all terms beyond (or following) some

definite term 3
. With reference to this last restriction, it may sometimes

8 E. g. all the terms of the sequence 6, 9 are > 1. Or, all the terms of the

sequence 6, 2 after the 6th are > 100 (or more shortly: for n > 6, xn > 100).
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be said that particular considerations in hand are valid "a finite number

of terms being disregarded", or only concern the ultimate behaviour of

the sequence. Our first examples of considerations of the kind referred

to are afforded by the following definitions:

Definitions. I. A sequence is said to be bounded*, if there is a

positive number K such that each term xn of the sequence satisfies the

inequality
xn ^ K or

The number K is then called a bound of the sequence.

Remarks and Examples.

1. In definition 8, it is a matter of practical indifference whether we write
""

or "<K". For if
|
xn \ ^ K holds always (i. e. for every n in question),

then we can also find a constant K' such that
\

xn \
< K' holds always; indeed,

clearly any K.' > K will serve the purpose. Conversely, if
|
xn \

< K. always, then

a fortiori \
xn \

^ K. When the exact magnitude of the bound comes in of course

the distinction may be essential.

2. If K is a bound of (xn) t then so is any larger number K'.

3. The sequences 6, 1, 4, 5, 6, 9, 10 are evidently bounded; so is 6, 3, pro-
vided

|
a

| Si 1. The sequences 6, 2, 7, 8, 11 are certainly not so. Whether 6, 3

for every \a\ >1, or 6, 12, is bounded or not, i> not immediately obvious.

4. If all we know is the existence of a constant Klt such that xn < Klt for

every n t then the sequence is said to be bounded on the right (or above) and Kl is

called a bound above (or a right hand bound) of the sequence.
If there is a constant K2 such that xn > K2 always, then (xn) is said to be

bounded on the left (or below) and K2 is called a bound below (or a left hand bound)
of the sequence.

Here K and K2 need not be positive.

5. Supposing a given sequence is bounded on the right, it may still happen
that among its numbers none is the greatest. For instance, 6, 10 is bounded on
the right, yet every term of this sequence is exceeded by all that follow it, and none

can be the greatest
6

. Similarly, a sequence bounded on the left need contain no
least term; cf. 6, 1 and 0. (With this fact, which will appear at first sight para-

doxical, the beginner should make himself thoroughly familiar.)

Among a finite number of values there is of course always both a greatest and

a least, i. e. a value not exceeded by any of the others, and one which none of the

others falls below. (There may, however, be several equal to this greatest or least

value.)

(5. The property of boundedness of a sequence xn (though not the actual value

of one of the bounds) is a property of the tail-end of the sequence ; it is unaffected

by any alteration to an isolated term of the sequence. (Proof?)

4 This nomenclature appears to have been introduced by C. Jordan, Cours

d'analyse, Vol. 1, p. 22. Paris 1893.
6 The beginner should guard against modes of expression such as these,

which may often be heard: "for n infinitely large, xn 1"; "1 is the greatest

number of the sequence". Anything of this sort is sheer nonsense (cf. on this point

7, 3). For the terms of the sequence are 0, ,],},... and none of these is --
1, on

the contrary all of them are < 1. And there is no such thing as an "infinitely large n".
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II. A sequence is said to be monotone ascending or increasing 9.

if, for every value of n,

Xn ^ Xn+il

it is said to be monotone descending or decreasing if, for every n,

xn S Xn+l*

Both kinds will also be referred to as monotone sequences.

Remarks and Examples.

1. A sequence need not of course be either monotone increasing, or mono-
tone decreasing; cf. 6, 4, 6, 8. Monotone sequences are, however, extremely com-

mon, and usually easier to deal with than those which are not monotone. That

is why it is convenient to give them a distinguishing name.

2. Instead of "ascending" we should more strictly say "non-descending",
and instead of "descending", "non-ascending". This, however, is not customary.
If in any special instance the sign of equality is excluded, so that xn < xni l or

vn > xn} ,, as the case may be, for every n
t
then the sequence is said to be strictly

monotone (increasing or decreasing).

3. The sequences 6, 2, 5, 7, 10, 11, 12 and 6, 1, 9 are monotone; the first-

named ascending, the others descending. 6, 3 is monotone descending, if ^ a ^ 1,

but monotone ascending if a
"

. 1
;

for a < 0, it is not monotone.

4. The designation of "monotone" is due to C. Neumann (Ober die nach

Kteis-, Kugel- und Zylmderfunktionen fortschreitenden Entwickelungen, pp. 2(5,

27. Leipzig 1881).

We now come to a definition to which the reader should pay
the greatest attention, sparing no effort to make himself master of its

meaning and all that it implies.

III. A sequence will be called a null sequence if it possesses the fol- 10

lowing property: given any arbitrary positive (rational) number e, the in-

equality

|

xn |
< c

is satisfied by all the terms, with at most a finite number 6
of exceptions. In

other words : an arbitrary positive number e being chosen, it is always possible

to designate a term xm of the sequence, beyond which the terms are less than

e in absolute value. Or a number nQ can always be found, such that

|*|< for

Remarks and Examples.

1. If, in a given sequence, these conditions are fulfilled for a particular e,

they will certainly be fulfilled for every greater e (cf. 8, 1), but not necessarily for

any smaller e. (In 6, 10, for instance, the conditions are fulfilled for e = 1 and there-

fore for every larger e, if we put n =0; for e - } it is not possible to satisfy them.)
In the case of a null sequence, the conditions have to be fulfilled for every positive

8 Cf. 7, 3.
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, and in particular, therefore, for every very small e > 0. On this account, it is

usual to formulate the definition somewhat more emphatically as follows: (xn)

is a null sequence if, to every > 0, however small, there corresponds a number
n such that

|
xn |

< c for every n > n .

I
xn |

< c, provided n >

whatever be the value of e. It is thus sufficient to put na

Here w
()
need not be an integer.

2. The sequence 6, 1 is clearly a null sequence; for

-,

.

3. The place in a given sequence beyond which the terms remain numeri-

cally < e, will naturally depend in general on the magnitude of e; speaking broadly,
it will lie further and further to the right (i. e. nn will be larger and larger), the

smaller the given c is (cf. 2). This dependence of the number n on e is often

emphasised by saying explicitly: "To each given corresponds a number nQ w (t)

such that ..."

4. The positive number below which
|
xn \

is to he from some stage onwards
need not always be denoted by c. Any positive number, however designated, may
serve. In the sequel, where e, a, Kt . . . , denoting any given positive numbers, we

may often use instead
^, ^, ^, e2

,
a e, t

a
,
etc.

5. The sign of xn plays no part here, since
|

xn \

=
|
xn \. Accordingly

6, is also a null sequence.
6. In a null sequence, no term need be equal to zero. But all terms, whose

index is very large, must be very small. For if I choose e = 10~~, say, then for cver\

n > a certain n0t (
xn \

must be < 10~'5

. Similarly for e - - 10~10 and for any other e.

7. The sequence (a
n
) specified in 6, 3 is also a null sequence provided \

a
\
< 1.

Proof. If a 0, the assertion is trivial, since then, for every > 0, |
xn \

<
for every n. If <

|
a

\
< 1, then (by 3, 1,4). ---. > 1. If therefore we put

I

*
I

* = 1 4- p t then p > 0.
I
a

\

But in that case, for every n ^ 2, we have

(a) <l + #)n >! + #

For when n = 2, we have (1 4- />)
2 ^ 1 + 2/> -f pz > 1 -f 2p; the stated relation

therefore holds in that case. If, for n k ^ 2,

(!+/>)*> 1-1- kp,

then by 2, III, 6

therefore our relation, assumed true for n = kt is true for w = & + 1. By 2, V
it therefore holds 7 for every n ^ 2.

7 The proof shows moreover that (a) is valid for n ^ 2 provided only 1 4- P
> 0, i. e. p > 1, but =t=0. For p -- and for n = 1, (a) becomes an equality.

For />
> 0, the validity of (a) follows immediately from the expansion of the left-

hand side by the binomial theorem. The relation (a) is called Bernoulli's Inequality

(James Bernoulli, Propositiones arithmeticae de seriebus, 1689, Prop. 4).
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Accordingly, we now have

so that, however small c > may be, we have

I
xn I

^
I
aU

I
< for every n >

P

8. In particular, besides the sequence f ) mentioned in 2., ( -), (-- J,

//4\"\ .
W \ 2n/ \ 3fi/

( (?) )'i ui

9. A similar remark to that of 8, 1 may be appended to Definition 10: no
essential modification is produced by reading "5* e" for "< e" there. In fact,

if, for every n > w
() , |

xn \
< e, then a fortiori \

xn \ 5^ c; conversely, if, given any
e, ?2 can be so determined that

|

xn \ '^ e for every n > w 3 ,
then choosing any posi-

tive number e t < c there is certainly an n 1 such that
|
xn \ fg c l9 for every n > n^

and consequently

|
xn |

< for every n > n t ;

the conditions in their original form are thus also fulfilled. Precisely analogous
considerations show that in Definition 10 "> HO

" and "^ w
"

are practically inter-

changeable alternatives.

In any individual case, however, the distinction must of course be taken into

account.

10. Although in a sequence every term stands entirely by itself, with a definite

fixed value, and is not necessarily in any particular relation with the preceding
or following terms, yet it is quite customary to ascribe "to the terms xn", or "to

the general term'
1

any peculiarities in the sequence which may be observed on

running through it. We might say, for instance, in 6, 1 the terms diminish; in

6, 2 the terms increase; in 6, 4 or 6, 6 the terms oscillate; in 6, 11 the general

term cannot be expressed by a formula, and so on. In this sense, the character-

istic behaviour of a null sequence may be described by saying that the terms become

arbitrarily small, or infinitely small 8
; by which neither more nor less is meant than

is contained in Definition 9
10, viz. that for every > however small the terms

are ultimately (i. e. for all indices n > a suitable n
;

or from and after, or beyond,
a certain n

(t) numericallv less than e.

11. A null sequence is ipso facto bounded. For if we choose e I, then there

must be an integer n, such that, for every n > n i9 \
xn \

< 1. Among the finite

number of values
|
.v t |, |

x 2 1, . . . , !
.vnl |, however, one (cf. 8, 5) is greatest, M

say. Then for K M -f 1, obviously |
.vw |

is akvays < K.

12. To prove that a given sequence is a null sequence, it is indispensable
to show that for a prescribed e > 0, the corresponding wy can actually be proved
to exist (for instance, as in the examples that follow, by actually designating such

a number). Conversely, if a sequence (xn) is assumed to be a null sequence, it is

thereby assumed that, for every t, the corresponding n may really be regarded as

existent. On the other hand, the student should make sure that he understands

clearly what is meant by a sequence not being a null sequence. The meaning is

this : it is not true that, for every positive number *, beyond a certain point |
xn \

6 This mode of expression is due to A. L. Caitchy (Analyse algebrique, pp. 4

and 2G).
9 There need of course be no question here of the sequence being monotone.

Also, in any case, some
|
xn |

's of index 5* w may already be < c.
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is always < e; there exists a special positive number e,,, such that
|
xn \

is not, beyond
tiny // , always < c

() ; after every // there is a larger index n (and therefore an in-

finite number of such indices) for which
|
vn | ]> c .

1 3. Finally we may indicate a means of interpreting geometrically the special

character of a null sequence.

Using the graphical representation 7, 5, the sequence is a nuii sequence if

its terms ultimately (for n > nn) all belong to the interval 10 e . . . -f- . Let

us call such an interval for brevity an e-neighbourhood of the origin; then we may
state (xn ) is a null sequence if every c-neighbourhood of the origin (however small)

contains all but a finite number, at most, of the terms of the sequence.

Similarly, using the graphical representation 7, 6, we can state: (xn) is a

null sequence if every *-stnp (however narrow) about the a\ts of absci^ae contains

the entire graph, with the exception, at most, of a finite initial portion, the e-strip

being limited by parallels to the axis of abscissae through the two points (0, e).

14. The concept of a null sequence, the "arbitrarily small given positive

number c", to which we shall from now on have continually and indispensably to

appeal, and which may thus be said to form a main support for the whole super-
structure of analysis, appears to have been first used in 1055 by J. Walks (v. Opera
I., p. 3S2/3). Substantially, however, it is already to be found in Euclid, Elements V.

We are already in a better position to comprehend what is involved

in the idea, discussed above, of a meaning for V2 or TT or log 5. In

forming on the one hand (we keep to the instance of V2) the numbers

* 1 =l-4; *o=l-41; *a
= 1-414; *4 == 1-4142; ...

on the other, the numbers

yi = I'O; y* - 1-42; ^ - 1415; y, =-- 1-4143; . . .

we are obviously constructing two sequences of (rational) numbers (xn )

and (yn) according to a perfectly definite (though possibly very laborious)

method of procedure. These two sequences are both monotone, (xn)

increasing, (yn ) decreasing. Furthermore xn is <yn for every //, but the

differences, i. e. the numbers

yn xn =- dn

form, by 10, 8, a null sequence, since dn = n
. These are clearly the

facts which convince us that we "know" V2, and can "calculate" it
?

and so on, although as we said before no one has yet had the

value V2 completely within his view, so to speak. If we refer

again to the more suggestive representation on the number-axis, then,

obviously (cf. fig. 1, p. 25): the points x l and y determine an interval

10 The word interval denotes a portion of the number-axis between a definite

pair of its points. According as we reckon these points themselves as belonging
to the interval or not, this is termed closed or open. Unless otherwise stated, the

interval will always in the sequel be regarded as closed. (For 10, 13 this is immaterial,

by 10, 9.) Supposing a to be the left end point, b the right end point, of an interval,

we call this for brevity the interval a ... b.
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! of length d
l ;

the points x2 and jy2 similarly, an interval /2 of length

. Since

the second interval lies wholly within the first. Similarly, the points X3
and V3 determine an interval of length d3 , completely within /2 ,

and

generally, the points xn and yn determine an interval fn completely
inside Jn-V The lengths of these intervals form a null sequence; the

intervals themselves shrink up, one surmises, about a definite

number, contract to a quite definite point.

It only remains to examine how near this surmise is to truth. With

this purpose in view, we state, more generally, the following:

Definition. To express the fact that a monotone ascending sequence 11.

(xn) and a monotone descending sequence (yn ) are given, whose terms for

every n satisfy the condition

xn ^yn

and for which the differences

dn=yn
-

Xn

form a null sequence, we say for brevity that we are given a nest of
intervals (Intervallschachtelung)*. TJie nth interval stretches

from xn to yn and has length dn . The nest itself will be denoted by ( /) or

by (# | yn )-

The conjecture which we made above now finds its first confirma-

tion in the following:

Theorem f . There is at most one (rational) point s belonging to all 12.

the intervals of a given nest, that is to say satisfying, for every n t the in-

equality

*n^s^ yn >

Proof: If there were, besides $, another number s
f

differing from

it, and also satisfying the inequality

for every , then, for every , besides

xn <Ls< yn,

* A set or series of similar objects is said to form a nest or to be nested (inein-

ander geschachtelt) when each smaller one is enclosed or fits into that which is next

in size to it. The word nest is here used with the additional (ideal) characteristic

implied, that the sizes diminish to zero. When this is not implied, we shall use the

more explicit phrase that each is contained in the preceding (or we might say that

they are nested).

f We note here for future reference that this theorem continues to hold un-

altered when the numbers which occur are arbitrary real numbers.
2 (051)
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we should also have (v. 3, I, 4)

by 3, I, 2 and 3, II, 5, the inequalities

would therefore hold for every n. Choosing =
|

s s
r

|,
dn would never

(a fortiori not for every n beyond a certain // ) be < . This contradicts

the hypothesis that (dn ) is a null sequence. The assumption that two

distinct points belong to all the intervals is therefore inadmissible 11
.

Q. E. D.

Remarks and Examples.

1. Let*n = "-"--, y = ^J; that is to say,/,,
- 5J=J

. . .

"-J-

1
, dn = ?

We can at once verify that we actually have a nest of intervals here, since

2
xn ^ xn+i "^ yn+i ^ Vn ^or every n

t
an<^ since, for every n >

, we have dn < t

however > be chosen.

The number 5=1 here belongs to all the / 's, since
n

~~-- < 1 < -
~

* n n n

for every n. No number other than 1 can belong therefore to all the intervals.

2. Let fn be defined as follows 12
: / is the interval ... 1; /l the left half

of A; Jz the right half ofy^ y3 the left half ofy2 ; and so on. These intervals are

obviously each contained in the preceding; and sinceJn has length dn k>n ,
tmd

these numbers form a null sequence, we have a nest of intervals. A little considera-

tion shows that the sequence of the xn 's consists of the numbers

0>
4' 4 10

~~

16' 4
+

T6
~*~

G4
""

6T
* * '

each taken twice running; and that the sequence of yn 's begins with 1 and con-

tinues with

1 ~"
2
=

2
J

l ~
2
~

8
^

8'

~
2

""

8
~~

32
^

32*
* ' *

each taken twice running. Now

1,1,1, ,
1 1 A 1\ ^ 1

4 16 Ci
' ' ' P =

3
~

4*- 3
~

4*-)

11 From a graphical point of view, what the proof indicates is that if $ and
$' belong to all the intervals, then each interval has a length at least equal to the

distance
|
s s'

|
between s and s' (v. 3, II, 6); these lengths cannot, therefore,

form a null sequence.
12 Here we let the index start from (cf. 7, 2).
13 For any two numbers a and b, and every positive integer k

t the formula

afc - bk = (a - b)(a
k~ l + ak~* b+ ... + a bk~2 + *fc~ 1

)

is known to hold. Whence, more particularly, for a =t= 1, the formulae

1 + a + . . . + ak~* = !
~ **

and a + a* + . . . + ak = \
" a*

. a.
l o 1 a
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Hence, for every n t xn < J < yn \ thus s J is the single number which belongs
to all the intervals. Here, therefore, (/n) "defines" or

"
determines*

'

the number i,

or (yn) shrinks up to the number J.

3. vf we are given a nest of intervals (/n), and a number s has been recog-
nised as belonging to all the /n's, then by our theorem, 5 is quite uniquely deter-

mined by ( /n). We therefore say, more pointedly, that the nest (/n) "defines" or

"encloses" the number s. We also say that 5 is the innermost point of all the intervals.

4. If s is any given rational number and we put, for n 1
, 2, . . . , xn ~ s

1
n

and yn s + -, then (xn \ yn) is evidently a nest of intervals determining the number

s itself. But this is also the case if we put, for every n, xn -^ s and yn s. Mani-

festly, we can, in the most various ways, form nests of intervals defining a given

number.

This theorem, however, only confirms what we may regard as one

half of our previously described impression; namely, that if a number

s belongs to all the intervals of a nest, then there is none other besides

with this property, s is uniquely determined by the nest.

The other half of our impression, namely, that there must also

always be a (rational) number belonging to all the intervals of a nest,

is erroneous^ and it is precisely this fact which will become our induce-

ment for extending the system of rational numbers.

This the following example shows. As on p. 20, let x l 14; x.> 1-41
; . . .;

y l
1 >; y z

= 1-42; . . . Then there is no rational number s> for which xn !L A "? yn
for every n. In fact, if we put

v ' v a v 7 v 2xn xn Vn ~
3>n

then the intervals /n
' xn

'
. . . yn

'
also form a nest 11

. But xn
f

x^ < 2 for all n,

and yn
' -- yn

2 > 2 for all n (because this was how xn and yn were chosen), i. e.

xn
f < 2 < yn '. On the other hand, if xn ;< s ^-_ yn we should have, by squaring

(as we may, by 3, 1, 3), xn
'

? s2 ^ yn
'
for all n. By our theorem 12 this would in-

volve s2 = 2, which is however impossible, by the proof given in footnote 17 on

p. 12. Here, therefore, there is certainly no (rational) number belonging to all the

intervals.

In the following paragraphs, we will investigate what, in a case such

as this, should be done.

3. Irrational numbers.

We must come to terms with the fact that there is no rational

number whose square is 2, that the system of rational numbers is too

defective, too incomplete, too full of gaps, to furnish a solution for the

14 For it follows from xn ^ xn l < yn+ i ^ yn since all the numbers are

positive, so that squaring (cf. 3, I, 3) is allowed that xn
' ^ *v'n+1 < y'nf i ^ yn ';

further yn
' xn

' -- (yn + xn)(yn .vn); therefore, since .v
r}
and yn are certainly

< 2 for every n, yn
' xn

' <
--^n

,
i. e. < s, provided J)n

<
; and this, by 10, 8,

is certainly the case for every n > a certain w .
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equation x2 2. Indeed, this is only one of many equations for whose

solution the material of the system of rational numbers proves insufficient.

Almost all the numerical values which we are in the habit of denoting

by \/n t log n, sin a, tan a and so on, are non-existent in the system of

rational numbers and can no more be immediately "obtained", or "deter-

mined", or be "stated in figures", than can V2. The material is too coarse

for such finer purposes.

The considerations brought forward in the preceding paragraphs

point to means for providing ourselves with more suitable material.

We saw, on the one hand, that, behind the conviction that we do

know V2, there lay no more, substantially, than the fact that we possess

a method by which a perfectly definite nest of intervals may be

obtained ;
for its construction, the solution of the equation x2 2 of

course gave the occasion lr>
. We saw, on the other hand, that if a

nest (/n) encloses any number s capable of specification at all (this still

implying that it is a rational number) then this number s is quite uniquely

defined by the nest ( /n),
- so unambiguously, indeed, that it ia entirely

indifferent, whether I give (write down, indicate) the number directly,

or give, instead, the nest (/) with the tacit addition that, by the latter,

I mean precisely the number s which it uniquely encloses or defines. In

this sense, the two data (the two symbols) are equivalent, and may
to a certain extent be considered equal

16
,
so that we may write in-

deed:

(/n) = * or (xn | yn) = s.

15 The kernel of this procedure is in fact as follows: We ascertain that

I 2 < 2, 2 2 > 2, and accordingly put # 1, y ~
2. We then divide the interval

k
JQ

=- x . . . y into 10 equal parts, and taking the points of division, 1 + , for

k -= 0, 1, 2, . . . , 9, 10, determine by trial whether their squares are > 2 or < 2.

We find that the squares corresponding to k 0, 1, 2, 3, 4 are too small, those

corresponding to k = 5
y G, . . . ,

10 too large, and accordingly we put Xi =1-4 and

y t
== 1-5. Next, we divide the interval /j. x l . . . y l into 10 equal parts, and go

through a similar test with regard to the new points of division and so on. The
known process for extracting the square root of 2 is intended mainly to make the

successive trials as mechanical as possible. The corresponding treatment of,

for instance, the equation 10* = 2 (i. e. determination of the common logarithm
of 2) involves the following nest of intervals: Since 10 < 2, 10 l > 2, we here pu:
XQ = 0, y = 1 and divide / = # . . . y into 10 equal parts. For the points of

division,
lftt

we next test whether 10*/10 < 2 or > 2, that is to say, whether 10fc

< 210 or > 210 . As a result of this trial, we shall have to put x^ ~ 0-3, y^ ^ 0-4.

The interval /l xl . . . y l is again divided into 10 equal parts, the same pro-
3 k

cedure instituted for the points of division ^ -}- . and, in consequence, x z put

equal to 30 and y a to 31 and so on. This obvious procedure is of course
much too laborious for practical calculations.

16 The justification for this is provided by Theorems 14 to 19.
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Consequently, we will not say merely: "the nest (/n) defines the number

s" but rather "(/) is only another symbol for the number $", or in fine,

"(/n) is the number s" exactly as we are used to look upon the decimal

fraction 0-333 ... as merely another symbol for the number
,
or as being

precisely the number itself.

It now becomes extremely natural to introduce tentatively an

analogous mode of expression with regard to those nests of intervals

which contain no rational number. Thus if xn , yn denote the numbers

constructed previously in connection with the equation x2 = 2, one

might seeing that in the system of rational numbers there is not

a single one whose square =2 decide to say that this nest (xn \ yn)
determines the "true" "value of V2 "

though one incapable of being

symbolised by means of rational numbers, that it encloses this

X

U -J J

Fig. 1.

value unambiguously in fine, "it is a newly created symbol for this

number", or, for brevity, "it is the number itself". And similarly in every
other case. If (/n) (xn \ yn) is any nest of intervals and no rational

number s belongs to all its intervals, we might finally resolve to say that

this nest encloses a perfectly definite value, though one incapable of

being directly symbolised by means of rational numbers, it deter-

mines a perfectly definite number, though one unfortunately non-

existent in the system of rational numbers, it is a newly created symbol

for this number, or briefly: is the number itself; and this number, in

contradistinction to the rational numbers, would then have to be called

an irrational number.

Here certainly the question arises: Can this be done without

further justification ? Is it allowable ? May we, without more ado,

designate these new symbols, the nests (xn \ yn), as numbers? The fol-

lowing considerations are intended to show that to this course there is

no obstacle whatever.

In the first instance, a simple graphical illustration of these facts

on the number-axis (see fig. 1) gives every appearance of justification to

our resolution. If, by any construction, we have marked a point P on

the number-axis (e. g. by marking off to the right of O the length
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of the diagonal of a square of side O U) then we can in any number

of ways define a nest of intervals enclosing the point P. We may
do so in this way, for instance. First of all we imagine all integers

^ marked on the axis. Of these, there will be exactly one, say p,

such that our point P lies in the stretch from p inclusive to (/>+!)
exclusive. Accordingly we put x -= p, y p + 1, and divide the

interval JQ
= x . . . yQ into 10 equal parts

17
. The points of division

k
are p + -

(with k = 0, 1, 2, . . . , 10), and among them, there will again

k k
be exactly one, say p + - J

,
such that P lies between xt p -[-

*

inclusive and y^ = p + *

-y~
exclusive. The interval J^ xl . . . y^

is again divided into 10 equal parts, and so on. If we imagine this process

continued indefinitely, we obtain a perfectly definite nest (Jn ) all of whose

intervals Jn contain the point P. No other point P' besides P can lie in all

the intervals Jn . For, if that were so, all the intervals would have to con-

tain the whole stretch PP', which is impossible, as the lengths of the

intervals (jn has length J
form a null sequence.

For every arbitrarily given point P on the number-axis (rational or

not) there are thus nests of intervals obviously, indeed, any number

of such nests which contain that point and no other. And in the

present instance, i. e. in the graphical representation on the number-

axis the converse appears most plausible; if we consider any nest

of intervals, there seems to be always one point (and by the reasoning

above, only this one) belonging to all its intervals, which is thus deter-

mined by it. We believe, at any rate, that we may infer this directly from

our conception of the continuity, or gaplessness y of the straight line 18
.

Thus in this geometrical representation we should have complete

reciprocity: every point can be enclosed in a suitable nest of intervals

and every such nest invariably encloses one and only one point.

This gives us a high degree of confidence in the adequacy of our

resolve to consider nests of intervals as numbers, which we now for-

mulate more precisely as follows:

13. Definition. We will say of every nest of intervals (Jn)
or (xn \ yn),

that it defines or, for brevity, it is, a determinate number. To represent

17 Instead of 10 we may of course take any other integer ^ 2. For furthei

detail, see 5.

18 The proposition, by which the "continuity of the straight line" is expressly

postulated for a proof cannot be here expected, since it is essentially a description

of the form of our concept of the straight line which is involved is called the

Cantor-Dedekind axiom.
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ity
we use the symbol denoting the nest of intervals itself, and only as an ab-

breviation replace this by a small Greek letter, writing in this sense 19
, e. g.

(Jn) or (xn \yn ) - a.

Now, in spite of all we have said, this cannot but seem a very arbi-

trary step, the question has to be repeated most insistently: will it

pass without further justification? These purely ideal objects which we
have just defined these nests of intervals (or else that still extremely

questionable 'something' which such a nest encloses or determines) can

we speak of these as numbers? Are they after all numbers in the same
sense as the rational numbers, more precisely, in the sense in which

the number concept was defined by our conditions 4?

The answer can only consist in deciding, whether the totality or

aggregate of all conceivable nests of intervals, or of the symbols (/n) or

(xn \ yn) r <* introduced to denote them, forms a system of objects satis-

fying these conditions 4 20
; a system therefore to recapitulate these

conditions briefly whose elements are derived from the rational numbers,
and 1. are capable of being ordered; 2. are capable of being combined

by the four processes (rules), obeying at the same time the fundamental

laws 1 and 2, I IV; 3. contain a sub-system similar and isomorphous
to the system of rational numbers; and 4. satisfy the Postulate of Eud-

oxus.

If and only if the decision turns out to be favourable, all will be

well; our new symbols will then have vindicated their numerical char-

acter, and we shall have established that they are numbers, whose

totality we shall then designate as the system or set of real numbers.

Now the decision in question does not present the slightest diffi-

culty, and we may accordingly be brief in expounding the details:

Nests of intervals or our new symbols (xn \ yn) are certainly

constructed by means of rational number-symbols alone; we have there-

fore only to settle the points 4, 1 4. For this, we shall go to work in

the following way: Certain of the nests of intervals define a rational

number 21
, something, therefore, for which both meaning and mode of

combination have been previously established. We consider two such

rational-valued nests, say (xn \ yn) s and (xn
f

\ yn ')
= s'. With the two

rational number-symbols s and s', we can immediately distinguish whether

the first s is <, = or > the second s'; and we can combine the two by
the four processes of arithmetic. Essentially, what we have to do is to

endeavour directly to recognise the former fact, and to carry out the latter

processes, on the two nests of intervals themselves by which s and s' were

19
<7 is an abbreviated notation for the nest of intervals ( /n) or (xn \ yn).

20 The reader should here read these conditions through again.
81 We will describe such nests for brevity as rational-valued.
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given, and finally to extend the result to the aggregate of all nests of intervals.

Each provable proposition (A) relating to rational-valued nests will ac-

cordingly give rise to a corresponding definition (B). We begin by setting

down concisely side by side these pairs of propositions (A) and

definitions (B)
22

.

14. Equality: A. Theorem. If(xn \yn) = 5 and (xn
f

\yn') = s' are two

rational-valued nests of intervals, then s = s' holds if, and only if,

besides

*n ^ yn and xn
'

<^ yn
'

9

we have 23

for every n.

On this theorem we now base the following:

B. Definition. Two arbitrary nests of intervals cr (#n |j>n) and

a .= (xn
f

| yn ')
are said to be equal if and only if

or every n.

Remarks and Examples.

1. The numbers xn and \n
' on the one hand, yn and yn

'
on the other, need

of course have nothing whatever to do with one another. This is no more sur-

prising than that rational numbers so entirely different in appearance as
, g'A,

and 375 should be referred to as "equal". Equality is indeed something which

22 The import of proposition and definition should in each case be interpreted

in relation to the number-axis.
23 Into the very simple proofs of the propositions 14 to 19 we do not propose

to enter, for the general reasons explained on p. 2. They will not present the

slightest difficulty to the reader, once he has mastered the contents of Chapter II,

whereas at this stage they would appear to him strange; moreover they will serve

as exercises in that chapter. Merely as a specimen and example for the solution

of those problems, we will here prove Theorem 14:

a) If s = s' t then we have both xn ^ $ ^ yn and xn
' ^ s ^ yn

'

y whence at

once, xn < yn
' and xn

' ^ y^
for every n.

b) If conversely xn 5$ yn
'
for every n, then s ^ s' must hold. For if we had

s > s', i. e. s s' > 0, then, since (yn xn) is a null sequence, we could so choose

the index p, that

yp
- xp < s s/ r XP

- s
' > y*

- *

As however s is certainly ^ yp , this would imply xp s' > 0. We could therefore

choose a further index r for which

y/ - */ < * -
s'.

Since xr
' ^ $', this would imply yr

' < x^ Choosing an integer m exceed-

ing both p and r, we could deduce, in view of the respective ascending and descend-

ing monotony of our sequences of numbers, that a fortiori ym
' < xm ,

which con-

tradicts the hypothesis that xn ^ y^ for every n. Thus s ^ $' is ensured.

By interchanging throughout the above proof the accented and non-accented

letters, we deduce in the same manner that if xn
' < yn for every n, then s' ^ s

If then we have both xn
' ^ yn and xn yn

'

holding for every ,
then s

~
s

necessarily follows. Q. E. D.
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is not fixed a priori, but needs to be established by some form of definition, and
it i> perfectly compatible \vith marked dissimilarity in a purely external aspect.

2. The two nests I
^ 3 )

anc* *^ ~ are ctlual m accordance with

our present definition

3. By 14, we may write e. g. (s s -\-
J
= s --=

(s \ s), the latter symbol

denoting a nest all of whose intervals ha\e both their left and their right endpomts

s. In particular, f - (0 | 0) = 0.
w/

4. It still remains to establish but the proof is so simple that vve will not

go into it further that (cf. Footnote 23), in consequence of our definition, we
have a) a a (Footnote 24), b) a -= a' always implies a' = a, and c) a a

7

,
a' a"

involve a = a".

Inequality: A. Theorem. If (xn \ yn )
= s and (xn

f

\ yn ')
s' are 15

two rational-valued nests, then we have s < s', if and only if

xn ^ yn
'

for every //, but not xn
f

5^ yn for every ;/,

* e - y>n < xm for <** feast one M.

B. Definition. Given any two nests of intervals a = (xn \ yn) and

a (xn
r

| yn '),
then we shall say a < o-', if

xn f yn
'

for every ;/, but not xn
' ^ yn for every n,

i. e. for at least one m, ym -- xm'.

Remarks and Examples.

1. It is clear that by 14 and 15 the totality of all conceivable nests is ordered.

For if a and a' are any two of them, either there is equality, a a
7

, or, for at least

one p, we have yv <*
.Vj/, implying a < a7

,
or finally, for at least one r, yr

' < .v|f

implying a' < a. The last two cases cannot occur simultaneously, since, for m
greater than r and />, we should then have, a fortiori, v

?// <. v
7/1 ',

which is impossible.

Thus between a ard a' one and only one of the three relations

always holds, and the totality of these new symbols is thus ordered by 14 and 15.

2. Here again it would have to be established in all detail that the laws of

order 1 continue to hold good with the adopted definitions of equality and in-

equality. Taking as model the proof in the footnote to Theorem 14, this presents
so few essential difficulties that we will not enter into it further: The laic* of order

do, effectually^ all remain valid.

3. In consequence of 14 and 15 we now have, therefore, for every n

A n < c yn .

What does this mean r It means that each of the rational numbers xn is, in ac-

cordance with 14 and 15, not greater than the nest a ~ (xn \ yn). Or: if we con-

24 Here it may be clearly recognised that this "law" is by no means trivial:

it has indeed to be proved that with the given definition of equality every nest of

intervals is effectually "equal" to itself, that is to say that the conditions of that

definition are fulfilled, when the same nest is taken for both of the nests of intervals

which we are comparing.
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sider any particular one of the numbers xn> say xp , and denote it for brevity by x,

then we may write (see 14, Rem. 3)

(v;) -) x - x - - x +
fj

or - (x | x)

and our statement takes the form

(*!*) <.!*,).

We may prove it as follows. If it were not true, then for at least one r,

yr < x, i. e. yr < x^

and so a fortiori, if m is greater than r and p y

ym < *m.

which certainly cannot be the case. In the same way we see that a < yn . Accord-

ingly, a is to be regarded as lyin^ between xn and yn for each n, in other word*, v con-

tained within the intervalJn .

The fact that no other number a', besides a, can possess the same property
is now easily proved. If in fact there were a second nest of intervals a' -

(\ n
'

\ yn ')

such that for every definite index /> we also had xp ^ a' < yp ,
then the left hand

inequality means, more precisely (cf 3), that (v^ |

vp) r^ (vn
'

| yn ') and so, by 14

and 15, xp ^ yn
'
for every n. Since this must hold in particular for // p, we

deduce x9 ^1 yv
'

for every p, which signifies, by 14 and 15, that a ^ a'. In the

same manner the right hand inequality is seen to imply that a' jj <* Thus neces-

sarily a a', which was what we set out to prove.

4. By 15, a is > 0, i. e. "positive", if and only if (xn \ yn) > (0 | 0), that is

to say, if for some suitable index p, xv > 0. But in this case, as the .vw
f

s increase

with n, we have a fortiori xn
^ for every n > p. We may therefore* say : a

(vn | yn) is positive if, and only if, all the endpomts ,vw , yn are positive from and

after a definite index. The exact analogue holds of course for a < 0.

5. If or > 0, and, for every n ^ p, xn > 0, let us form a new nest (xn
'

\ yn')

= a' by putting x x\ . . . *V-i all equal to xp , but every other xn
'

and

yn
'

equal to the corresponding xn and yn . By 14, obviously a a'; and we may
say: If a is positive, then there are always nests of intervals equal to it, for which

all the endpoints of intervals are positive. The exact analogue holds for a < 0.

So far then, in respect of the possibility of ordering them, our nests

of intervals may be said to vindicate their character as numbers com-

pletely. It is no more difficult to establish a similar conclusion with regard

to the possibilities of combining them.

16. Addition: A. Theorem 2r>
. If(xn \yn)

and (xn'\yn
f

)
are any two nests

of intervals, then (xn + #n '> yn + yn ')
w also one, and if the former are both

rational-valued and respectively
= s and = s\ then the latter is also rational-

valued, and determines the number s + s''.

B. Definition. If (xn \ yn) a and (xn
f

\ yn')
~ &' are any two nests

of intervals and a" denotes the nest (xn + xn ', yn + yn ')
deduced from them,

then we write

a" = a + a'

and a" ts called the sum of a and a'.

18 With regard to the proof, cf. footnote 23.
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Subtraction: A. Theorem. If (xn \ yn) is a nest of intervals, then so 17.

is ( yn |

xn); and if the former is rational-valued s, then the latter

is also rational-valued, and determines the number s.

B. Definition. If a = (xn \ yn) is any nest of intervals and a' de-

note the nest of intervals
( yn \

xn) t
we write

a' = -a
and say v is the opposite of cr. By the difference of two nests of inter-

vals we then mean the sum of the first and of the opposite of the second.

Multiplication: A. Theorem. If(xn \ yn) and (x^ \ yn ') are any two 18.

positive nests of intervals, replaced, if necessary, (in accordance with

15, 5) by two nests of intervals equal to them, for which all the endpoints

of intervals are positive (or at least non-negative), then (xn xn
r

\ynyn')
is also a nest of intervals; and if the former are rational-valued and respec-

tively s and = s', then the latter is also rational-valued, and determines the

number s s'.

B. Definition. If (xn \ yn) a and (xn
r

\ yn
f

) a are any two

positive nests of intervals for which all the endpoints of intervals are positive

which is no restriction, by 15, 5 and a" denote the nest (xn xn
'

\ynyn')

derived from them, then we write

a" = <T- a'

and call o-" the ^product of a and cr'.

The slight modifications which have to be made in this definition if

one or both of a and or' are negative or zero, we leave to the reader, and

henceforth consider the product of any two nests of intervals as defined.

Division: A. Theorem. // (xn \ yn ) is any positive nest of intervals 19.

for which all endpoints of intervals are positive, (cf. 15, 5) then so is (
J;Vn xn'

and if the former is rational-valued, and = s, the latter is also rational-

valued, and determines the number -.

B. Definition. If (xn \ yn)
= a is any positive nest of intervals for

which all endpoints are positive, and a' denote the nest (-- ), then we
\yn xj

write

and say a' is the reciprocal of a. By the quotient of a first by a second

positive nest ofintervals we then mean the product of thefirst by the reciprocal

of the second.

The slight modifications necessary in this definition, if a (in the one

case) or the second of the two nests of intervals (in the other) is negative,
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we may again leave to the reader, and henceforth consider the quotient

of any two nests of intervals of which the second is different from 0, as

defined. If (xn \ yn) a = 0, then the above method fails to produce
a "reciprocal" nest: division by is here also impossible.

The result of the preceding considerations is thus as follows: By
definitions 14 to 19, the system of all nests of intervals is ordered in the

sense of 4, 1, and admits of having its elements combined by the four

processes in the sense of 4, 2. In consequence of the theorems 14 to 19,

as stated in each case, this system possesses further, in the aggregate of

all rational-valued nests, a sub-system, similar and isomorphous to the

system of rational numbers, in the sense of 4, 3. It remains to show that

the system also fulfils the Postulate of Eudoxus. But if (xn \ yn)
= a and

(xn I yn)
~ v are any two positive nests for which all endpoints of in-

tervals are positive (cf. 15, 5), let xm and ym
f

be a definite pair of these

endpoints; the theorem of Eudoxus ensures the existence of an integer

p, for which p xm > ym', and the nest p a, or (p xn \ p yn), in accordance

with 15, is then effectually > a'.

The next step should be to establish in all detail (cf. 14, 4 and 15,

2) that the four processes defined in 16 to 19 for nests of intervals obey
the fundamental laws 2. This again offers not the slightest difficulty and

we will accordingly spare ourselves the trouble of setting it forth 26
. The

Fundamental Laws of Arithmetic, and thereby the entire body of rules valid

in calculations with rational numbers, effectually retain their validity in the

new system.

By this, our nests of intervals have finally proved themselves in

every respect to be numbers in the sense of 4: The system of all

nests of intervals is a number-system, the nests themselves are numbers 27
.

26 As regards addition, for instance, it should be shown that:

a) Addition can always be carried out. (This follows at once from the defini-

tion.)

b) The result is unique; i. e. a a', T = T' (in the sense of 14) imply
a -f- r a1

\- r'
, if the sums are formed in accordance with 16 and the test

for equality carried out in accordance with 14. In the corresponding sense, it should

be shown further that

c) a + T = T -f- a always.

d) fe + a) + T = g -|- (o- + T) always.

e) a < a' implies a -\- T < a' 4* T always.
And similarly for the other three processes of combination.
27 Whether, as above, we regard nests of intervals as themselves numbers,

or imagine some hypothetical entity introduced, which belongs to all the intervals

Jn (cf. 15, 3) and thus appears to be in a special sense the number enclosed by
the nest of intervals and, consequently, the common element in all equal nests

this at bottom is a pure matter of taste and makes no essential difference. The
equality a -- (xn \ yn) we may, at any rate, from now on, (cf. 13, footnote 19) read

indifferently either as "a is an abbreviated notation for the nest of intervals (xn \ yn)" 9

or as "a is the number defined by the nest of intervals (xn \ yn)".



4. Completeness and uniqueness of the system of real numbers. 33

This system we shall henceforth designate as the system of real numbers.

It is an extension of the system of rational numbers, in the sense in

which the expression was used on p. 11, since there are not only rational-

valued nests but also others besides.

This system of real numbers is in one-one correspondence with

the whole aggregate of points of the number-axis. For, on the strength
of the considerations set forth on pp. 24, 25, we can immediately assert

that to every nest of intervals a corresponds one and only one point,

namely that common to all the intervals /n ,
which on account of the Cantor-

Dedekind axiom is considered in each case as existing. Also two nests of

intervals a and cr' have, corresponding to them, one and the same point,

if and only if they are equal, in the sense of 14. To each number cr (that

is to say, to all nests of intervals equal to each other) corresponds exactly

one point, and to each point exactly one number. The point corresponding
in this manner to a particular number is called its image (or representative)

point, and we may now assert that the system of real numbers can be uniquely
and reversibly represented by the points of a straight line.

4. Completeness and uniqueness of the system of real

numbers.

Two last doubts remain to be dispelled
28

: Our starting point in

3 was the fact that the system of rational numbers, by reason of its

"gaps", could not satisfy all demands which would appear in the course

of the elementary processes of calculation. Our newly created number-

system the system Z as we will call it for brevity is in this respect

certainly more efficient. E. g. it contains 29 a number a for which cr
2 2.

Yet the possibility is not excluded that the new system may still show

gaps like the old, or that in some other way it may be susceptible of still

further extension.

Accordingly, we raise the following question: Is it conceivable that

a system Z, recognizable as a number-system in the sense of 4, and con-

taining all the elements of the system Z, should also contain additional

elements distinct from these? *

28 Cf. the closing words of the Introduction (p. 2).
29 For if CT = (xn | yn) denote the nest of intervals constructed on p. 20

in connection with the equation A?
3 = 2, then by 18 we have aa

(xn
2

\ yn*). Since,

however, #n
2 < 2 and yn

2 > 2, it follows that a2 = 2. Q. E. D.
80

I. e. Z would have to represent an extension of Z in the same sense as Z
itself represents an extension of the system of rational numbers.
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It is not difficult to sec that this cannot be so, so that we have in

fact the following theorem:

20. Theorem of completeness. The system /, of all real numbers is in-

capable of further extension compatible with the conditions 4.

Proof: Let Z be a system which satisfies the conditions 4 and

contains all the elements of /. If a denote an arbitrary element of Z,

then 4, 4 in which we choose for ft the number 1, contained in Z,

and also, therefore, in Z shows that there exists an integer p > a,

and similarly another p' > a. For these 3l we have p' < a < p.

Considering successively the (finite number of) integers between p'

and />, starting with -
/>', we know that we must come to a last one which

is still ^ a. If this be called g, then

By applying to this interval g . . . g + 1 the method, already re-

peatedly used, of subdivision into ten parts, a perfectly definite nest of

intervals (xn \ yn) is obtained. And a repetition word for word of the

proof in 15, 3 shows that the number thus defined can neither be > nor

< a. Every element of / is therefore equal to a real number, so that Z
can contain no elements other than real numbers.

A final objection might be this: We have succeeded in forming the

system Z in a comparatively natural, but after all an arbitrary, manner.

Other measures, obviously, might be adopted for filling up the gaps in

the system of rational numbers. (In the very next section we shall come

across other, equally ready means to this end.) It is conceivable that

a different method would lead to other numbers, i. e. to number-systems

differing, in more or less essential particulars, from the one constructed

by us. The question thus indicated may be given a precise formulation

as follows:

Let us suppose that we have somehow, starting with the system
of rational numbers, succeeded in constructing a system <

of elements

which, besides still satisfying the conditions 4, as is the case with our

system Z, and therefore deserving the name of a number-system, also

fulfils a further requirement, usually referred to as the Postulate of

completeness, on account of the theorem proved above. On the

strength of 4, 3, ^ contains elements, corresponding to the rational numbers.

Let (xn | yn) be any nest and let \ n and n be the elements of associated

with xn , yn in accordance with 4, 3; the stipulation then runs thus:

shall always contain at least one element # satisfying, for every n
y
the con-

ditions rn ^ cs ^ *)n .

In exact form, our problem is now: Can such a system <5 differ in

[ At this point, the Postulate of Eudoxus gains its axiomatic significance.
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any essential particulars from the system Z of real numbers, or must the

two systems be regarded as substantially identical, in the perfectly definite

sense that they can be brought into relation as similar and isomorphous
to one another?

The theorem stated below, by solving this problem in the sense

which we should anticipate, closes the construction of the system of real

numbers.

Theorem of Uniqueness. Every such system & is necessarily similar 21.

and isomorphous to the system Z of real numbers as constructed by us. Essen-

tially, only one such system therefore exists.

Proof. By 4, 3, contains a sub-system <', which is similar and

isomorphous to the system of rational numbers contained in Z, and whose

elements may therefore be called, for short, the rational elements of ^
If a (xn \ yn) is any real number, 5 rnust, according to our new stipula-

tion, contain an element a, which for every n satisfies the conditions

in ?? * ^ Wn if \ n and
\jn are the elements of S corresponding to the

rational numbers xn and yn .

Also, these conditions define g uniquely. For if a second element

/, simultaneously with *, satisfied the conditions \ n ^ $ <* \^n for every

,
then it would follow, word for word as in the proof of 12, that for

every n

i. e. ^ the non-negative one of the two elements & $' and $' .

Let r stand for an arbitrary positive rational number, and i for the cor-

responding element in > (therefore in 5'); then, on account of the similarity

and isomorphism of >' with the system of rational numbers, we must

have, simultaneously with yp xp < r, the relation
\jp r^ < v holding

for a suitable index p. For every such r therefore

If therefore tj denotes one particular such i and if rn ,
n = 1, 2, . . . ,

denotes the element (certainly present in >', by 4, 2) which, when repeated

n times, yields the sum r lf we see, after writing down the above inequality

for r = vn and adding it to itself n times, that for every n = 1, 2, . . .
,

n
|
d $'

|
^ t!

must also hold. Since, however, satisfies the postulate 4, 4, it follows

that = *'.

If we proceed to associate this uniquely defined clement g and

the real number cr, it becomes clear that contains a sub-system 5* $

similar and isomorphous to the system /, of all real numbers. That

such a system 5* is n t susceptible of further extension compatible
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with the conditions 4, but must be identical with cij), was the import

of the previously established theorem of completeness. Thereby, it is

proved that 5 and %, arc similar and isomorphous to one another,

and therefore may be regarded, in all essentials, as identical: Our system

Z of all real numbers is in all essentials the only one possible satisfying both

the conditions 4 and the postulate of completeness.

After these somewhat abstract considerations, the main result of our

whole investigation may be summarised as follows:

Besides the rational numbers with which we are familiar, there exist

others, the so-called irrational numbers. Each of them may be enclosed

(determined, given, . . .) by a suitable nest of intervals and this indeed

in many ways. These irrational numbers fit in consistently with the

rational numbers, in such a manner that the conditions stated in 4 are

fulfilled by the joint system of all rational and irrational numbers, with

which, to be brief, all calculations may be effected, formally^ exactly as

with the rational numbers alone, but with greater success.

This wider system is moreover incapable of any further extension

compatible with conditions 4, and is in all essentials the only system of

symbols which satisfies these conditions 4 and also the postulate of com-

pleteness.

We call it the system of real numbers.

It is with the elements of this system, with the real numbers\ that

we work (at first exclusively) in the sequel. We consider a particular

real number as given (known, determined, defined, calculable, . .
.)

if

either it is a rational number and so can be literally written down with

the help of integers inserting if need be a fractional bar or a minus

sign or (and this holds in any case) we are given
32 a nest of intervals

defining the number.

We shall very soon see, however, that many other ways and means,
besides the nests of intervals, exist, for defining a real number. In pro-

portion as such ways become known to us, we shall widen the above-

mentioned conditions, under which we consider a number as given.

32
I. e. by the complete explicit specification of the (rational) endpomts in

the manner just described*
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5. Radix fractions and the Dedekind section.

A few of the methods for defining real numbers may be mentioned

at once, as particularly important from the points of view of both theory
and practice.

In the first place, a nest of intervals need not always be given in

the form (xn \ yn) considered by us
;

it may often be written in a more

convenient form. Thus, as we have already seen, a decimal fraction,

e.g. 1-41421 . . .
, may be immediately interpreted as a nest of intervals,

with the assumptions

1 =l-4; #a=l-41; ar3
= 1-414; ...,

and, generally, xn equal to the decimal fraction broken off after the

if"
1

digit; yn being derived from xn by raising the last digit by one,

i.e. yn -- xn -f-
1(yw

- Practically, we may thus say that decimal fractions

represent a peculiarly clear and convenient specification of nests of

intervals 33
.

It is obviously quite an unessential part that the base or radix 10

of the ordinary scale of notation plays in this connection. If g is any

integer ^ 2, we have the exact analogue for fractions in a scale of

radix g or radix fractions with base g. To begin with, given a real

number o-, an integer p (>, =, or < 0) is uniquely defined by the

condition

p^cr <p |-1.

The interval yo between p and p -f- 1 is next divided into g equal

parts, and each of these parts considered both hero and similarly

in the following steps as including its left endpoint, but not its

right one. Then cr belongs to one, and to one only, of these parts,

i. e. among the numbers 0, 1, 2, . . . , g I there is one and

only one which we shall call for brevity a "digit" and denote by

#! for which

33 The drawback to it is that we can seldom perceive the law of succession

of the digits, i. e the law of formalion of the .vw 's and >'n 's.
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The interval /x thus defined we proceed to divide again into g equal parts,

and a will, as before, belong to one, and to one only, of these parts, i. e.

a definite "digit" x2 will be found for which

The interval /2 thus defined we proceed to divide again into g equal parts,

and so on. The nest of intervals (/n)
=

(xn \yn) determined by this pro-

cess, for which

* 4- f 4- 4- --"=* 4-
g
+

g
* + --- +

gn
- l +

zn

(n = 1, 2, 3, . . .)

clearly defines the number cr, so that M a (# | jyw). But on the analogy
of decimal fractions we may now write

o ---- p I O-*! .

where of course the base g of the radix fraction must be known from

the context.

We have therefore the

22. Theorem 1. Every real number can be represented in one and essen-

tially only one 35
way by a radix fraction in the scale of base g.

We mention the following theorem relating further to this represen-

tation, but shall make no use of it in the sequel:

Theorem 2. The radix fraction for a real number a whatever be

31 That we have a nest of intervals is immediately obvious, since xn_ 1
<

Xn <*" yn ^ yn_ 1 throughout, and yn vn
-
n forms a null sequence, by 10, 7.

r> The slight alteration in our method, required if all the intervals are con-

sidered as including their right and not their left endpomts, the reader will doubtless

be able to carry out for himself. The two results differ if, and only if, the given

number a is rational, and can be written as a fraction having, as denominator, a

power of g t
so that the point a is an endpoint of one of our intervals. Actually

the two nests of intervals

p -f 0-afi ar, . . . *r_i (~r
~ J) (g

-
1) (#

-
1) and / -I- O^ ar t . . . *,._, zr 00 . . . ,

where the digit zr is supposed ^ 1, are equal by 14. In every other case, two radix

fractions which are not identical are unequal, by 14. The reader will easily prove

for himself that, except m this case, the representation of any real number a as

a radix fraction with base g is absolutely unique.
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the chosen radix g 2g 2 will prove periodic (or recurring) if and only if

a is rational**.

A particularly advantageous choice to make is often g = 2 ; the pro-

cess for expressing the number a is then called briefly the method of

bisection and the resulting radix fraction, whose digits can in that case

only be or 1, is called a binary fraction. The method, in a somewhat

more general light, is this: we start from a definite interval / and, in

accordance with some particular rule or point of view, definitely select

one of its two halves, calling it J\ we then again make a definite choice

of one of the two halves of ylf calling it /2 ; and so on. By so doing, we

specify, in every case, a well-defined real number, determined with ab-

solute uniqueness by the method which regulates at each stage the choice

between the two half-intervals 37
.

In radix fractions, just as in decimal fractions, we accordingly see

a peculiarly clear and convenient mode of specifying nests of intervals.

They shall accordingly in future be admitted for the definition of real

numbers on the same footing as decimal fractions.

The distinction lies somewhat deeper between nests of intervals and

the following method of definition of real numbers.

We suppose given, in any particular way
as

,
two classes of numbers

A and B, subject to the following three conditions:

1) Each of the two classes contains at least one number.

2) Every number of the class A is 5^ every number of the class B.

3) If an arbitrary positive (small) number e is prescribed, then two

numbers can be so chosen from the two classes, a
', say, from A and

b', say, from B, that 39

b' a < e.

Then the following theorem, holds :

30 Here for simplicity we regard terminating radix fractions as periodic with

period 0. That every rational number can be represented by a recurring decimal

fraction was proved by J. Walhs, De Algebra tractatus, p. 3<>4, 1G (J3. That conversely

every irrational number can always, and in one way only, be represented as a non-

recurring decimal fraction was first proved generally by O. Stolz (Allgememe Anth-
metik I, p. 119, 1885).

37 An example was given in 12, 2.

88 E. g. A contains all rational numbers whose cube is < 5, B all rational

numbers whose cube is > 5.

30 \ye sav for short: the numbers of the two classes approach arbitrarily
near to one another. In the example of the preceding footnote, we see at once that

conditions 1) and 2) are satisfied; that 3) is also satisfied we recognise from the

possibility of calculating (by the method of partition into tenth parts, for instance)
two decimal fractions ,vn and yn with n places of decimals, differing only by a unit

in the last place, and such that xn
3 < 5, yn

* > 5; n being so chosen that ,
(
.n < e.
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Theorem 3. There exists one and only one real number a such that

for every number a in A and every number b in B the relation

a-^v^b
is always true.

Proof. It is again obvious that no two different numbers cr, <r'

with this property can exist. For putting |

a a'
\ r, we should have

> 0, yet b a ^ c for every pair of elements a and b from A and B
respectively, contrary to condition 3.

There exists then at most one such number a. We find it in the

following way: By hypothesis, there is at least one number a
l

in A and

one number b in B. If a = 6X ,
then the common value is manifestly

the number a which we are in search of. If a l 4= b
ly and therefore by

2), a l < b
ly

then we choose two rational numbers xl f^ a ly and y ^ b l

and apply the method of bisection to the interval /l which they deter-

mine; we denote the left or right half by /2 , according as the left half

(endpoints included) does or does not still contain a point of the class B. By
the same rule we next select one of the halves of /2 , calling it /3 , and

so on.

The intervals /1? /2 ,
. . .

, ./, . . .
, being obtained by the method of

bisection, necessarily form a nest

( A) = (xn I yn)
= *

From their mode of formation, they possess moreover the property that

no number of B can lie to the left of any of their left endpoints, and no

number of A to the right of their right endpoints.

But from this it follows at once that the number a enclosed by them

is the number required by theorem 3. In fact, if, contrary to the assertion

in that theorem, a particular number a of A were > cr, so that a a > 0,

then we could choose from the succession of intervals Jn a particular one,

saY /i>
-~ XP ypy Wlth length < a a. Since xv 5g a ^ yp ,

this would

imply

yp or <; y9 xv <. a a, i. e. y9 < a,

whereas, actually, no point of A lies to the right of the right endpoint

yp of yp . If on the other hand, in any instance, b < cr, it would similarly

follow that for a suitable index q, b < xqy whereas actually no point of

B lies to the left of the left endpoint of an interval Jq . Hence we must in-

variably have a ^ u fg b. Q. E. D.

As a special corollary, we have the following theorem, which sup-

plements Theorem 12, forming an extension of it to the case when the

numbers there occurring are arbitrary real numbers. In the formulation,

we anticipate the obvious definitions 23 25 of next paragraph.



5. Radix fractions and the Dedekind section. 41

Theorem 4- If (xn ) is a monotone ascending, and (yn ) a monotone des-

cending, sequence of (any) real numbers
; //, further, xn <^ yn for every n,

and the differences yn xn dn form a null sequence-, then there is invariably

one and only one real number a, such that for every n

We then say, as before (cf. Definition 11), that the two given sequences define

a nest of intervals (xn \ yn) and that a is the number which it (uniquely) deter-

mines.

Proof. If with all the left endpoints xn we constitute a class A,

and with all the right endpoints yn a class #, of real numbers, these clearly

satisfy conditions 1) to 3) of Theorem 3, from which the correctness of

the above statement at once follows.

Remarks and Examples?.

1. Instead of 3), it is often more convenient to stipulate that e.g. every

rational number should belong either to A or to B (as \\as the case in the

example of last footnote). In fact, in that case, since rational numbers arc

dense on the number axis, the requirement 3) is fulfilled of itself. To see this,

we have only to imagine the \\hole number-axis subduidcd into equal portions of

length < e/2. Now consider any one of the portions containing an element from

A, and, to the right of it, take another portion containing an element from B
, together

with these two portions, take the finite number of portions, if any, between them.

One of these considered portions must be the first of them to contain an element

b from B. Either this particular portion, or the preceding one, will contain an element

a from A, and we have b a ^ .

2. It is often still more convenient to divide till real numbers into tsvo classes

A and B. In that case of course 3) is, a fortion, also satisfied of itself.

3. If the two classes A and B are given in one of the last-mentioned ways,
then we say that a Dedekind section, is made in the domain of either rational or

real numbers, as the case may be 10
. The someuhat more general specification of

two classes ll involved in our theorem 3 \\i\\ also for brevity be termed a section

and denoted by (A \ B). Our theorem 3 can then be stated briefly in the form:

A section (A \ B) invariably defines a determinate real number. And its proof consists

simply in pointing out that the specification of a section carries with it the speci-

fication of a nest of intervals, which furnishes a number a with the properties required.

4. Seeing then that every section immediately provides a definite nest of

intervals, we shall henceforth regard sections as permissible means of defining

(determining, specifying, . . .) real numbers; also, we now write, if the section

(A | B) defines the number a,

(A\B) a.

40 Cf. p. 1
,
footnote 0.

41 This was given in the above form by A. C\it>elli% Giornale di Matematici,
Vol. 35, p. 209, 1897.
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5. The converse is of course equally true and even more easily proved. Given
a nest (xn \ yn) = cr, we can consider all left endpoints xn as forming a class A,
and right endpoints a class B, and these two classes evidently furnish a section, which
defines the same numher a as the nest itself. A nest can accordingly be regarded
as a particular kind of section.

(>. By our last remark, the method of sections (for the definition of real

numbers) is superior in generality to that of nests. It is also quite as convenient

from the intuitional point of v lew. For if we take, say, the section (A \ B) in the

somewhat more special form, mentioned in 2, of a section in the domain of real

numbers, then what our theorem implies is this. If we imagine all points of the

number-axis separated into two classes A and B, thinking e. g. of points of the

one class as marked black and those of the other as white; and if, when this is

done, (I) there is at least one point of each kind, (2) every black point lies to the

left of every white point, and (3) every point on the number-axis is effectually

coloured either black or \\hite, then the t\\o classes must come into contact at a

perfectly definite place, and to the left of this place all is black, to the right of it all

is \\hite.

7. We must take care, however, not to accept the illustration just given as

a proof. Had we not already with the help of nests of intervals invented the class

of real numbers, our theorem could not be proved at all any more than it could

be proved that every nest defines a number. We simply agreed and were amply
justified by the result to regard every nest as a number. In exactly the same

way we can agree and this is actually the course followed by JR. Dedekmd 42

in his construction of the system of real numbers to regard every section in the

domain of rational numbers as a "real number" , and we should then, exactly as

in our investigations in 3, only have to examine whether this is permissible; i. e.

we should have to make sure whether the totality of all such sections (A \ Z?) forms
a number system in the sense of conditions 4 which is not more difficult than

the analogous investigations carried out in 3.

Henceforward and for the present exclusively real numbers

form our working material. We may even, if we please, drop the word

"real": For the present, "number" shall invariably mean a real number.

Exercises on Chapter I.

1. From the fundamental laws 1 and 2 deduce the most important of the

further arithmetical rules, e. g. (a) the product of two negative numbers is positive;

(b) a .+ c < b + c invariably implies a < b
; (c) for every a we have a -=

;

etc.

2. When in 3, II, 4 are the signs of equality correct?

3. Express the following numbers as binary and as ternary fractions (i. e.

in scales of notation of which the bases are respectively 2 and 3) :

1 3 1 1 10

2' 8' TV 7' 17 ;

find the first few figures of the binary and ternary fractions for V2, V3, ir and e.

42
Stetigkeit und irrationale Zahlen, Brunswick 1872,
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an __ an
4. In the sequence 6, 7 prove xn o t

where a and ft are the roots

of the quadratic equation x2 x -f- 1. (Hint: the sequences (a
n
) and ()3

W
) have

the same law of formation as the sequence 6, 7.)

5. Form the sequence (vn) of numbers given, for \: 1, by the formula

.vnfl
---= axn -| A \ n_,,

where a and A are given positive numbers and the initial terms #, xl 0, 1
; 1, 0;

-- 1, a; 1, j3; or are arbitrary. (Here a and j3 denote respectively the positive

and the negative root of the equation x2 a x -}- b ) In each of the four cases

give an explicit formula for xn .

6. If / , /!, /2 ,
... is a sequence of nested intervals (i. e. each contained

in the preceding) about whose lengths nothing further is known, then there is at

least one point which belongs to all the /n's.

7. A real number or is irrational, if we can find an ascending sequence of

integers (<yn), such that qna is not an integer for any H, but if, \\hcn pn stands for

the integer nearest to qna, ( ffna Pn) 1S a null sequence.

8. Prove that (vn | yn) is a nest in each of the following examples:

n , .....

b) < A:, < 3-, and for every n ^ 1, vnfl *'rn yn , vn H -- } (VM -f- .vn );

c) < x,
<-

v, ,
vnM -

i (vw f Vn). yn+i
~ VY M .vw :

d) ^ Xt <>'! ,>'wf i

-
1 (xn i Vn), V/M r v/ v̂n 3'w 1 1 J

e) < .Y! < >'! ,. ,
A W-H - ^vn .vn , 3'n+i

=
2 (vnf i + yn);

g) < v, < Vi ,3'nM i (Vw h 3'w ), V,H_,
-- Vw ''Vw

.

3'w+i

Evaluate the numbers defined in examples (a) and (g). (Cf. problems 91

and 92.)

Chapter II.

Sequences of real numbers.

6. Arbitrary sequences and arbitrary null sequences.

We now resume our considerations of 2, and generalise them

by allowing all the numbers which there occur to be arbitrary real numbers.

Since, with these, we may operate precisely as with rational numbers,
both the definitions and the theorems of 2 will, in all essentials, remain

unchanged. We may accordingly be brief.



44 Chapter II. Sequences of real numbers.

23. Definition 1
. If to each positive integer 1, 2, 3,..., corresponds

a definite real number
A:,,, then the numbers

are said to form a sequence.

Examples 6, 1 12, may, of course, also serve here. Similarly, the Remarks

7, 10 retain full validity. We give a few more examples, in which it is not im-

mediately apparent whether the numbers in question are rational or not.

Examples.

1. Let a 0,:W10 . . .
,

i. e. equal to the decimal fraction whose first few

digits were obtained in a footnote (p. 24) from the equation 10 l
2; and put

xn -~= an for n =--
1, 2, ;}, . . .

2. With the same meaning for a, let xn =

3. Apply the method of .successive bisection to the interval / ... 1,

taking first the left half, then twice running the right half, then for the next three

steps again the left half, then four times running the right half, and so on. Denote

the number 2 so defined by 6 (\\h\t is its value, approxim itely
5
), and put foi xn ,

successively,

+*,-*,+;, -j, +*, -*, +i. -;, -i *....

4. With the same meaning for b, put for xn , successively,

1 - b, 1 + b, 1 - b*, 1
| b\ 1 - b\ 1 + 63

, . . .

5. WT

ith the same meaning for a and 6, let v t b'j the middle point of the stretch

between them, i. e. x l J (a f 6); x z the middle point between je
t and 6, # 3 ,

that between * 2 and a, x4 ,
that between #, and b; i. e. generally, xn+l ,

the middle

point between xn and either a
t
or b

y according as n is even or odd.

Definitions: 1. A sequence (xn )
is said to be bounded if a constant

K exists, such that the inequality

is satisfied for every n.

2. A sequence (xn)
is said to be monotone increasing if xn 5^ xn+l for

every n\ monotone decreasing, if xn ^ xn+1 for every n.

All remarks made in 8 and 9 retain their full validity.

1 For the meaning of the mark cf. the preface, as also later the beginning
of 52.

2 Written as a binary fraction, 6 ^ 01 10001 1 1 10 ...
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Examples.

1. The sequences 23, 1, 2, 4 and 5 are evidently bounded. Sequence 3 is

not bounded, and in fact neither on the left nor on the right; for we certainly have

< 6 < - and therefore ,^ > 2m > m, and accordingly ,- < m. Terms

of the sequence may therefore always be found, which are > K or < K
y
how-

ever large the constant K is chosen. For 5, the boundedness follows from the

fact that all the terms lie between a and b.

2. The sequences 23, 1 and 2 are monotone decreasing: the others are not

monotone.

The definition 10 of a null sequence and the appended remarks

which the student should read through again carefully also remain

unchanged.

Definition. A sequence (xn) shall be termed a null sequence if, 25.

subsequently to the choice ofan arbitrary positive numbers, a number nQ = n (e)

may always be assigned, such that the inequality
3

is fulfilled for every n > .

Examples.

1. The sequence 23, 1 is a null sequence, for the proof 10, 7 is valid for any
real a, for which

|

a
\
< 1.

2. 23, 2 is also a null sequence, for here
|

xn \
< , therefore < e, provided

. 1
n

n > .

e

For null sequences these will later on play a dominating part

a number of quite simple theorems, which will be continually applied in

the sequel, will also be proved here. The following two, in the first place,

are obvious enough:

Theorem 1. If (xn) is a null sequence and the terms of the sequence 26.

(
xn')> for wery n beyond a certain value m, satisfy the condition

\

xn
f

\
^

|

xn \ 9

or, more generally, the condition

\ Xn'\^K-\xn \,

in which K is an arbitrary (fixed) positive number, then xn
'

is also a null

sequence. (Comparison test.)

3 Given any positive real number e, a positive rational number e' < e can be

designated; in fact, by the fundamental law 2, VI, we can find a natural number

n >
, and e' satisfies the requirements. From this it follows that, for rational

sequences, the above definition is equivalent to the definition 10, in spite of the.

fact that only rational e were allowed there.
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Proof. If the condition
|

xn
'

\
^ K \

xn \

is satisfied for n > m
and e > is given, then by the assumptions we can assign HO > m, so

that for every n > nQ ,
|

xn \
< . Since for these values of n we then

/C

also have
|

xn
'

\

< , (xn
f

) is therefore a null sequence.

The following theorem is only a special case of the preceding:

Theorem 2. If (xn) is a null sequence, and (an) any bounded sequence,

then the numbers
xn

f = an xn
also form a null sequence.

On account of this theorem we say for short: A null sequence "may
1 *

be multiplied by a bounded factor.

Examples.

1. If (xn) is a null sequence,

io* lf fa 10*3, fa
10 *6 ...

is also a null sequence.

2. If (xn) is a null sequence, so is (| xn |).

3. A sequence, all of whose terms have the same value, say c, is certainly

hounded. If (xn) is a null sequence, (c xn) is therefore also a null sequence. In

particular, f-J, (c a
n
) for

|

a
\
< 1, etc. are null sequences.

The next propositions are less obvious:

27* Theorem 1. If (xn)
is a null sequence, then every sub-sequence (xn

f

)

of (xn) is a null sequence
4

.

Proof. If, for every n > n
, |

xn \
< z, then we have, ipso facto,

for any such n,

since kn is certainly > , when n is.

Theorem 2. Let an arbitrary sequence (xn) be separated into two

sub-sequences (xn
f

) and (xn"), so that, therefore, every term of (xn ) belongs

to one and only one of these sub-sequences. If (xn') and (xn") are both null

sequences, then so is (xn) itself.

4 If ki < k2 < k3 < . . . < kn < . . . is any sequence of positive integers, then

the numbers

xn
' = xkn (n = 1, 2, 3, . . .)

are said to form a sub-sequence of the given sequence.



6. Arbitrary sequences and arbitrary null sequences. 47

Proof. If a number e > be chosen, then by hypothesis a num-

ber n exists, such that for every n > n, |#n'| < <e, and also a num-

ber n"y such that for every n > w",
| #"!< ^nc terms #n

'
with

index <^ n' and the terms #n
" with index <Ln", have definite places,

i. e. definite indices, in the original sequence (xn )
. If nQ is the higher

of these indices, then for every n > MO , obviously
|

xn \
< e, q. e. d.

Theorem 3. // (#n) is a null sequence and (xn') an arbitrary

rearrangement* of it, then (xn')
is also a null sequence.

Proof. For every n > w ,
|

xn \

< e. Among the indices belong-

ing to the finite number of places which the terms x
lt

#
a , . . ., xn

occupy in the sequence (#n'), let ri be the largest. Then obviously,

for every n > n', |#n'| < e; hence (xn
f

)
is also a null sequence.

Theorem 4. // (xn] is a null sequence and (xn ') is obtained from
it by any finite number of alterations*, then (xn

f

) is also a null se-

quence t.

The proof follows immediately from the fact, that for a suitable

integer />^0, from some n onwards we must have xn
' = xn+ . For

if every xn for n ^> n
l
has remained unchanged, and #,?1

has received

the index nf
in the sequence (xn')> then in point of fact for every

n > ri,

if we put p = Wj n

Theorem 5. // (xn') and (xn") are two null sequences and if the

sequence (#n) is so related to them that from a certain m onwards

then (xn] is also a null sequence.

Proof Having chosen e > 0, we can chose n >> m so that, for

every n > nQt
e < xn

' and a?n
"
-< + e. For these ris we then have,

ipso facto, e < xn < + , that is
|

xn \
< e', q. e. d.

6 If ki t
k 2 , . . ,

fen , ... is a sequence of positive integers such that every in-

teger occurs once and only once in the sequence, then the sequence formed by

is said to be a rearrangement of the given sequence.
6 We will describe this concept as follows: If we alter any sequence, by

omitting, or inserting, or changing, a finite number of terms (or by doing all three

things at once), and then renumber the altered sequence, \vithout changing the

order of the terms left untouched, so as to exhibit it as a sequence Cv rt '), then >\e

shall say, (xn') is obtained or has resulted from (xn) by a finite number of alterations.

7
It is precisely because of this theorem that one may say of a sequence that

the property of being a null sequence concerns only the ultimate behaviour of its terms

(cf. p. 10).
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Calculations with null sequences, finally, are founded on the

following theorems:

88. Theorem 1. // (xn) and (xn') are two null sequences, then

i. e. the sequence whose terms are the numbers yn = xn -f- xn', is also

a null sequence. Briefly. Two mill sequences "may" be added term

by term.

Proof. Ife>0 has been chosen arbitrarily, then by hypothesis

(cf. 10, 4 and 12) a number n
1
and a number w 2 exist such that for every

n > !, |
xn |

< ?, and for every n > 2 , |

xn
'

\
< . If w is a number

2i &

? //! and 2g 2 then for n > nQ

I yn \

=
I *. + *.' I

=
I

*
I
+

1

*'
I
<

I
+

g
= *

(yn) is therefore a null sequence
8
.

Since, by 26, 3 (or 10, 5), ( a?/) is a null sequence if
fa^') is,

(yn')
= (xn asn') is then by the above also a null sequence, i. e. we

have the theorem-

Theorem 2. // (a?n) and (xn')
are null sequences, then so is

(yn')
==

(xn xn'). Or briefly: null sequences "may" be subtracted term

by term

Remarks.
1. Since we may add two null sequences term by term, we may also do

so with three or any definite number of null sequences. For supposing this prov-

ed for (p I) null sequences (a^
1

), (#")> > (&%*

~ X)

) ,
i. e. supposing the

sequence

to be already recognised as a null sequence, Theorem 1 ensures that the

sequence (xn), for which

is also a null sequence. The theorem thus holds for every fixed number of null

sequences.
2. That two null sequences "may" also be multiplied term by term, is

immediately clear from 26, 1, since null sequences, by 10, 11, are necessarily
bounded.

3. Term by term division t on the contrary, is in general not allowed, as

is already obvious, for instance, from the fact that when xn =}= 0, is con-
Xn11 x

stantly = 1 . If we take xH *=
9 xJ = = ,

then the ratios ~ do not even pron n* xm
f

vide a bounded sequence.

8 For the last inequality 3, II, 4 is used.
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4. In the case of other sequences (xn) also, little can be said in the first

instance about the sequence ( ) of the reciprocal values. The following is
\xn /

an obvious, but often useful theorem:

o Theorem 3. // the sequence (\ xn \) of absolute values of the terms of (xn >

have a positive lower bound, if, therefore, a number y > exists, such that for

every n,

then the sequence { ) of reciprocal values is bounded.
\xnJ

In fact, from
|

xn
|

> y > it at once follows that for K = we have

<K
xn

for every n.

In order to increase the scope both of the application of our con-

cepts and of the construction and solution of examples, we insert P.

paragraph on powers, roots, logarithms and circular functions.

7. Powers, roots and logarithms. Special null sequences.

As, in the discussion of the system of real numbers, it was not

our intention to give an exhaustive treatment of all details, but lather

to put fundamental ideas alone in a clear light, assuming as known,

thereafter, the body of arithmetical rules and concepts, with which

after all everyone is thoroughly conversant, so here, in the discussion

of powers, roots and logarithms, we will restrict ourselves to an exact

elucidation of the basic facts, and then assume known the details of their

application.

I. Powers with integral exponents.

If x is an arbitrary number, we know that the symbol xk for positive

integral exponents k ^ 2 is defined as the product of k factors, all equal

to x. Here we have therefore only another notation for something we know

already. By x1 we mean the number x itself, and if x =}= 0, it is convenient

to agree, besides, that

x represents the number 1, x~* the number -^ (k = 1, 2, 3, ...y,

so that x9 is defined for every integral p^O. For these po \\crs*

with integral exponents, we merely emphasize the following facts:

1. For arbitrary integral exponents p and q ($0) the three 29.

fundamental rules hold:

* xp is a power of base x and exponent p. This continental use of the
word power cannot be here dispensed with, in spite of the slight ambiguity
resulting- from by far the most frequent use of the word in English to designate
the exponent. This sense should be entirely discarded from the reader's mind,
notably for 35, 2 a and others. (Tr.)
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from which all further rules may be deduced, which regulate calcu-

lations with powers .

2. Since, in a power with integral exponent, merely a repeated

multiplication or division is involved, its calculation has of course to

be effected by 18 and 19. If therefore x is positive and defined

for instance by the nest (xn \yn), with all its endpoints ^> (cf. 15, 5),

then we have simultaneously with

-fcJyJ' x * =
(
xk
n \y

k
n)

at once >

for all positive integral exponents: and similarly with appropriate
restrictions for x <^ or k <I o .

3. For a positive x we have furthermore

according as xl
as we at once deduce from #^1, if we multiply (v. 3, I, 3) by x".

And quite as simply we find:

If x^ y a;
a
and the integral exponent k are positive, then

x*^x according as a^^Sg.

4. For positive integral exponents n and arbitrary a and 6 we
have the formula

+ (n\ n-lt -ik i I fn\ jn

(*)*
b H t-y*.

where [? ) , for l^Lk^n, has the meaningR

fn\ _ n (n
-

1) (n
- 2) . . . (n

-
fe-f 1)W 1 - 2 3 ... k

and
(Q]

will be put=l. (Binomial Theorem.)

II. Roots.

If a be any positive real number, and k a positive integer, then

shall denote a number whose & th power = a . What interests us here

is solely the existence question: Is there such a number, and to what

extent is it determined by the problem thus set?

This is dealt with in the

9 In this, the value for the base x or y is only admissible if the cor

responding exponent is positive.
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Theorem. There is, invariably, one and only one positive number f 30.

satisfying the equation ft = * (a > o)
IP --

We write g= y and call { the & th root of a.

Proof. One such number may immediately be determined by a

nest of intervals, and its existence thereby established We use the

decimal-section method. Since 0* = < a, but, p denoting any positive

integer > a, p
16 ^ p > a , there is one and only one integer g ^>

for which 10
k .

, ,
.

fc

g ^<(g+1)
I he interval / determined by g and (g -f- 1) we divide into 10 equal

parts and obtain, in the manner now repeatedly worked out, a defi-

nite one of the digits 0, 1, 2, . .., 9, which we may denote, say, by zv
and for which

and so on, and so on. We therefore obtain a nest of intervals

(^J
= (xn | y^ whose endpoints have definite values of the form

and

v a -L
*

-L- **--]_____L **-_ J_ ? 1
yn 6 i jo

^ 102 r ~r 10 ,,_i r 10

If f = (aj^ | yj be the number thereby determined, then since here all

endpoints of intervals are ^> 0, it at once follows by 29, 2 that

But, by construction, xk
<^a <^y

k for every n, hence, by 5, Theorem 4,

we must have ,.
* = *.

That this number f is, moreover, the only positive solution of the

problem, follows directly from 29, 3, since it was there pointed out

that for a positive ^ ={=, necessarily f* 4s *> i e. 4=^-
If & is an even number, then is also a solution of the

problem. We shall not, however, take this into account in the follow-

ing pages, but interpret the th root of a positive number a as

meaning only the positive number f, completely and uniquely deter-

mined by 3011
. For a = 0, we may also put Va = 19

10
g is the last of the numbers 0, 1, 2, ..., p whose &th power is <.

11 In accordance with this we have, for instance, ^ x* not always =#,
but always =

|

x
\

.

fc

19 For negative a's we will not define y a at all; we can, however, if

h is odd, write |/T=
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We will not enter further into the rules for calculations with roots,

but consider them as familiar to every one, and will only prove the

following simple theorems:

29, 3 gives at once the

* ^ *

il. Theorem 1. // a > and a
x > 0, then V a ^ Va

l , according as

a ^ a . Further we have the

Theorem 2. If a > 0, then \V a) is a monotone sequence; and

we have, more precisely,
/

3/~-a>\a>V a >>!, if a >1,
to*

r- 3
/

a<v/a<Vfl <<!, ^f a <l.

(For a = 1 , //* sequence ^s of course = 1
.)

Proof By 29, 3, a> 1 involves a71^ 1 > a
n
>1, and thereiore

by the preceding theorem, taking w (w -j- l)
th roots

,

n n-H

Va > l/a>l.

Since for a < 1 aW the ir equality signs are reversed, this proves the

whole statement. Hence finally we deduce the

Theorem 3. If a > , then the numbers

xn = # a" 1

/om a nw/J sequence (monotone by the preceding theorem).

Proof. For a=l, the assertion is trivial, as then x
n= Q. If

n.

a > 1, and therefore Va > 1, i. e. xn = Va 1 > 0, then we reason

n
as follows: By the inequality of Bernoulli

(v. 10, 7), Va = 1 + B

glVCS
a = (l+*J">l + nan >***..

Consequently a;n
=

| n |

< ~, therefore (xj, by 26, 1 or 2, is a null

sequence.

If 0<a<l, then >1, and so, by the le^ult obtained,
a

is a null sequence. If we multiply this term by term by the factors Va,
n

which certainly form a bounded sequence, as a < V a < 1 , then

it at once follows, by 26, 2, that

(l Vaj, and therefore also (#n),

as a null sequence, q. e. d.
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III. Powers with rational exponents.

We again regard as substantially known, in what manner one may
pass from roots with integral exponents to powers with any rational

- >
exponent: By aq , with integral p~Q, q > 0, we mean, for any posi-

tive a, the positive number uniquely defined by

1L

If p > 0, then a may also be == 0; a q must then be taken to have

the value 0.

With these definitions, the three fundamental rules 29, 1, i.e. the

formulae

a? ar> = ar+ r
'; ar br = (a b)

r
; (a

rY = arr>

remain unaltered, for any rational exponents, and therefore calculations

\vilh these powers are formally the same as when the exponents are

integers.

These formulae contain, at the same time, all the rules for working
with roots, since every root may now be written as a power with a

rational exponent. Of the less known results we may prove, as

they are particularly important for the sequel, these theorems:

Theorem 1. When a > 1 , then ar > 1 , if, and only if, r > . 32.

Similarly, when a < 1 (but positive), then ar is < 1 if, and only if,

r>0.

Proof. By 31, 2, a and V'a are either both greater or both less

than 1; by 29 the same is true of a and \V a) = ar if and only if

p> 0.

Theorem la. // the rational number r > 0, and both bases are

positive, then ar

^a1
r

, according as a a^.

The proof is at once obtained from 31, 1 and 29, 3.

Theorem 2. If a > 0, and the rational number r lies between the

rational numbers r' and r", then ar also always lies between ar' and

ar" 13
, and conversely, whether a be <, =or>l, and /<,

= or >r".
Proof. If, firstly, a > 1 and r' < r", then

13 The term "between" may be taken, as we please, either to include

or exclude equality on both sides, excepting when a = 1, and therefore all

the powers a r also = 1.

3 (061)
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By Theorem 1, this already proves the validity of our statement for this

case, and in the other possible cases the proof is quite as easy. From
this proof we deduce, indeed, more precisely, the

Theorem 2 a. If a>l 9 then to the larger (rational) exponent also

corresponds the larger value of the power. If a < 1 (but positive)

then the larger exponent gives the smaller power. In particular:

If the (positive) base a=%=! 9 then different exponents give different

powers. Hence we deduce, further,

Theorem 3. // (rn)
is any (rational) null sequence, then the

numbers
xn =* n -l, (fl>0)

also form a null sequence. If (r^ is monotone, then so is (#n).

Proof. By 31, 3, \ty~a ij and
\y

-

l)
are null sequences.

If therefore e > be given, we can so choose M
A
and n% that

! n

for n>n1 , \Va 1

I

n
/l

and for n > n.,, I
V 1

-
|

* a

If m is an integer larger than both n
l

and n 9 then the numbers

\am I/ and \a m I/ both lie between e and -|-g, i. e
i i

am and a m lie between 1 e and 1 + e

By Theorem 2, ar then lies between the same bounds, if r lies be-

1 .
,

1
tween and

-|
.

Wl Wl

that for every n > n ,

tween -- and -I-- . By hypothesis we can, however, so choose # ,

'.
or -<^< ;

for w>n ,

r<> is therefore between 1 e and 1-J-e. Hence, for

these w's, .

I

a n 1
I

< e,

proving that (a
r

1)
is a null sequence. That it is monotone, if

(rn) is, follows immediately from Theorem 2 a.

These theorems form the basis for the definition of

IV. Powers with arbitrary real exponents.

For this we first state the

88. Theorem. // (xn \yn)
is any nest of intervals (with rational end-

points) and a is positive, then

for a ;> 1, o = (a*
n

\

av )

and for a<l> o = (a
Vfl

\

a*n
)
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is also a nest of intervals. And if (xn \yn) is rational valued and = r,

then o = ar
.

Proof. That in either case the left endpoints form a monotone

ascending sequence, the right endpoints a monotone descending se-

quence, follows at once from 32, 2 a. By the same theorem, a*n < aVn>

in the one case (a J> 1) and aVn < a n in the other (a
<

1), for every n.

Finally, that in both cases the lengths of the intervals form a null

sequence, follows, with the aid of 26, from

for here the first factor, by 32, 3, is a null sequence, because (yn xn)
is by hypothesis a null sequence with rational terms; and the second

factor is bounded, because for every n

< a*n <; ayi

in the one case (a 2> 1),

<U"
in the other (a <jl).

Now if (#w |jyw)
= y, then r lies between xn and yn ,

for every n,

and so by 32, 2, ar lies between a* and aVn , for every n; hence by

5, Theorem 4, necessarily a = ar .

In consequence of this theorem, we may agree to the following

Definition 14
. If a > 0, and Q = (xn I ^n )

is an arbitrary real

number, then:
'

a*n aVn it a > 1
a* = <7, i. e.

if

This definition can of course only be regarded as appropriate,

if the concept of a general power thereby determined obeys substan.

tially the same laws as the type of power so far considered, that

with rational exponents. That this is so, in the fullest sense, is shewn

by the following considerations.

1. For rational exponents, the new definition gives the same result 34.
as the old.

2. If e (?', then 15 a? a?'.

14 This combination 33 of theorem and definition is, from the point
of view of method, of exactly the same kind as those set forth in 14 19:
What is demonstrable in the case of rational exponents is raised, in the

case of arbitrary exponents, to the rank of a definition, whose appropriate-
ness has then to be verified.

16 This assertion, formally rather trivial in appearance, when put some-
what more explicitly, runs thus: If (xn \ yn) = (> and (xn

f

\ y^ =
(>' are two nests

of
intervals, which may be regarded as equal in the sense of 14, then so are

those nests of intervals equal (again in the sense of 14), which by Definition 33
give the powers a e and a e

'.
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3. For two arbitrary real numbers Q and Q', and positive a and 6,

the three fundamental rules

hold, so that with the general powers now introduced we may cal-

culate formally in precisely the same way as with the special types

hitherto used.

Into the extremely simple proofs of these facts we will, as

emphasized on p. 49, not enter further 16
; we will also, so far as

concerns the extension of theorems 32, 1 3 to general powers, now

immediately possible, content ourselves with the statement and a few

indications of the proof. We have therefore the theorems, generalized

from 82, 13:
85. Theorem 1. When a > 1, we have a Q > 1 if, and only if, Q > 0.

Similarly, when a <. 1, (but positive), we have aQ < 1 if, and only

if, Q>0.
For by 82, 1, we have e. g. for a > 1, a*n > 1 if, and only if,

xn >0.
Theorem la. // the real number Q is > 0, and both bases are

positive, then a Q
^ a?, according as a ^ a .

Proof by 82, la and 15.

Theorem 2. // a > and Q is between Q' and Q", then a^ is al-

ways between a&' and ae". The proof is precisely the same as

82, 2. It yields, more exactly, the

Theorem 2 a. // a > 1, then to the larger exponent corresponds

the larger value of the power \ if a < 1 (but positive), then the larger

exponent gives the smaller power. In particular: If a + 1> then different

exponents give different powers. And from this theorem, exactly as

in 32, 3, follows the final

16 As a model we may sketch the proof of the first of the three fundamental

rules: If Q = (xn \
yn) and Q'

=
(xn

'

\
yn*),

then by 16, o -J- Q'
=

(xn + xn
'

\
yn -fy^

and therefore we assume a > 1 :

Since all endpoints (as powers with rational exponents) are positive, we

have, by 18,

a e. a e' = (a
Xn -a x*

\
a v -aVn

").

Since, however, for rational exponents, the first of the three fundamental rules

has already been seen to hold, this last nest of intervals is not only equal, in

the sense of 14, to that defining ae+e , but even coincides with it term

by term.
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Theorem 3. // (pn) is any null sequence, then the numbers

form a null sequence. If (gn) is monotone, then so is (xj.
As a special application, we may mention the

Theorem 4. // (#n) is a null sequence with all its terms positive,

then for every positive a,
/*. ' _ rfXn ~ Xn >

is also the term of a mill sequence. Thus
( )

for every a > is a

null sequence.
^n '

i

Proof. If s > be given arbitrarily, ea is also a positive number. By
hypothesis, we can choose nQ so that, for every n > nQ (cf. 10, 1 and 12),

For n > n , by 35, la, we then also have, however,

which at once proves the whole statement.

The above theorems comprise the main principles used in cal-

culations with generalized powers.

V. Logarithms.

The foundation for the definition of logarithms lies in the

Theorem. // a > and b > 1 are two real, and in all further 36.

respects quite arbitrary numbers, then one and only one real number f

always exists, for which

b* = a.

Proof. That at most one such number can exist, already follows

from 35, 2 a, because the base b with different exponents cannot give

the same value a. That such a number does exist, we show con-

structively, by assigning a nest of intervals which determines it,

thus for instance by the method of decimal sections: Since b > 1,

(b~
n
)
=

fp-J
is a null sequence, by 10, 7, and there exists, conse-

quently, since a and are positive, natural numbers p and q for which

b~
p <a and b"

9 < or b
9 > a.

a

If, now, we consider the various integers between p and -(- q in

succession, as exponents of &, there must be one, and can be only
one call it g for which

b
a

a, but
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The interval JQ =- g . . . (g -[- 1) thereby determined we divide into 10

equal parts and obtain, just as on p. 51, a "digit" z , for which

r
,

but b'*"*r

By repetition of the process of subdivision we find a perfectly definite

nest of intervals

\

xn == S+ jo + + io-i ' 10*'

*-(*.|yJ. w"h L_ g + + ..+>-, + , + i

f

for which

for every n, for which, therefore, in accordance with 33,

This theorem justifies us in the following

Definition. // a > and b > 1 are arbitrarily given, then the real

number f , uniquely determined by

b * === #

t's called the logarithm of a to the base b; and, symbolically,

(g is also called the characteristic, and the set of the digits zl9 z, z
>A
...

the mantissa, of the logarithm.)

We speak of a system of logarithms, when the base b is assum-

ed fixed once for all and the logarithms of all possible numbers are

taken to this base 6. The suffix b in log & is then usually omitted

as superfluous. Very soon a particular real number, usually denoted

by e, appears quite naturally as the most convenient for all theo-

retical considerations; the system of logarithms built up on this

base is usually called the system of natural logarithms. For practical

purposes, however, the base 10 is, as we know, the most convenient;

logarithms to this base are called common or Briggs' logarithms. These
are the logarithms found in all the ordinary tables 17

.

The rules for working with logarithms we assume, as we did

with powers, to be already known, and content ourselves with a mere
mention of the most important of them. If the base b > 1 is arbitrary,

17 As a matter of course, a system of logarithms may also be built up on a

positive base less than 1. This, however, is not usual. The first logarithms cal-

culated by Napier in 1014 were, however, built up on a base b < 1, which presents
some small advantages, particularly for logarithms of trigonometrical functions.
Neither Napier nor Briggs, however, really used any base. The idea of logarithms
as the inverse of powers only developed in the course of the 18th century.
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but assumed fixed in what follows, and if a, a', a" ... denote any

positive numbers, then

1. log (a! a")
= log 0' + log a". 37,

2. log 1=0; log = log a; log 6 = 1.

3. log a Q = Q log a (Q arbitrary, real).

4. log a^ log 0', according as a 5 a'; in particular,

5. log 0^0, according as 0^1.
6. If b and ^ are two different bases (> l),

and and
x

the

logarithms of the same number a to these two bases, i. e.

then

as follows at once from (a =) b% = fr^
1

, by taking logarithms on both

sides to ihc base b and taking account of 87, 2 and 3

7.
ff -)>

n = 2, 3, 4, ... is a null sequence. In fact
^

< ,

provided log w > , that is, n> b e
.

VI. Circular functions.

To introduce the so-called circular functions (the sine of a given

angle
18

, with the cosine, tangent, cotangent etc.)
in an equally strict

manner, i e. avoiding on principle all reference to geometrical in-

tuition as element of proof and founding solely on the concept ot

the real number, is at this stage not yet possible. This question will

be resumed later
( 24). In spite of this, we will unhesitatingly enlist

them to enrich our applications and enliven our examples (but of

course never to prove general propositions), in so far as their know-

ledge may be presupposed from elementary work.

Thus e. g. the following two simple facts can at once be ascertained: 37tt.
1. If a, ,

<x2 ,
. . ,, an ,

. . . are any angles (that is to say, any numbers), then

(sin an) and (cos )

are bounded sequences; and

18 Angles will in general be measured in radians If in a circle of radius

unity we imagine the radius to turn from a definite initial position, then we
measure the angle of turning by the length of the path which the extremity
of the moving radius has traversed taking it as positive when the sense of

turning is counterclockwise, otherwise as negative. An angle is accordingly a

pure number; a straight angle has the measure -J- n or n y
a right angle the

measure -f- -~- or
-,-

. To every definitely placed angle there belongs an
It a

infinite number of measures which, however, differ from one another only by

integral multiples of 2jt, i. e. by whole turns. The measure 1 belongs to the

angle, the arc corresponding to which is equal to the radius, and which there-

fere in degrees is 57 17' 44"-8 nearly.
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2. the sequences

and

are (by 26) null sequences, for their terms are derived from those of the

null sequence f
J
by multiplication by bounded factors.

VII. Special null sequences.

As a further application of the concepts now defined, we will

examine a number of special sequences:

88. 1. // \a\ < 1, then besides (a
n
) even (nan

) is a null sequence.

Proof. Our reasoning is analogous to that of 10, 7 19
: For

a = 0, the assertion is trivial; for 0<|<z|<l, we may write,

with Q > 0,

101 = ,-4--, and therefore \a
n

\

=
1+c

Since here in the denominator each term of the sum is positive, we
have for every n > 1,

i ni 1 tr i ni 1-2
</-TN >

therefore wa < ___.

Thus we have

\na
n
\<.e, as soon as -

( '-^.11
(
n 1)0

i. e. for every

The result thus proved is very remarkable: it asserts, in fact,

that for a large n the fraction . n
is very small, and its denominator

therefore very much greater than its numerator. This denominator is

however constant (= l)
for o = 0, and when Q is very small (and

positive), it only increases very slowly with n. Nevertheless, our result

shows that provided only n be taken sufficiently large, the deno-

minator is very much larger than the numerator 20
. The point % from

which
|

n a
n

\

=
i^r-y

lies below a given e we found n = 1 + i

does indeed lie very far to the right, not only when e, but also when

Q = p 1, is very small
(i.

e.
|

a
\
very near to

l). Substantially this

19 Except that a and Q need no longer be rational.
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and only this is true : However
|
a

\
< 1 and e > may be given, we

have always, from a readily assignable point onwards,
|

n an
\
< s.

From this result many others may be deduced, e. g. the still more

paradoxical fact:

2. // |
a

|
< 1 and a real and arbitrary, then (n* an

) is also a null

sequence.

Proof. If a <I 0, then this is evident from 10, 7, because of 26,
j_

2; if a > 0, write
|

a
\

a al9 so that by 35, la, the positive number
a 1 is also < 1. By the preceding result, (n a n

) is a null sequence. By
35, 4

[na^
1

]*, i.e. n^
\

a
\

n or
|

n* an
\

,

therefore, finally, (by 10, 5), n* an itself is also the term of a null sequence
21

.

3. If a > 0, then
( /*)

is a null sequence
22

,
to whatever base b>l

the logarithms are taken.

Proof. Since b > 1, a > 0, we have (by 35, la), b >1. There-

fore (j^n) is a null sequence, by 1. Given > 0, we have consequently

from a certain point onwards, say for every n > m

n < e' =
(ft')

n
"

tP

But, in any case,

if g denote the characteristic of log n (so that g rg log # < f- 1). If,

therefore, we take n > bm , log n, and # fortiori g + 1, is > wz. Hence the

last value above, with our choice of w, is

< e for every ;/ > ;/ = 6m.

20
Writing as above

|
a

|

=
f"T^~ I

w an
|

-^
^-^ .> we may also say:

(1 -f- g)
n becomes for a positive g more pronouncedly large, or, also more pro-

nouncedly infinite, than n itself, by which we again (cf. 7, 3) mean nothing more
and nothing less than that our sequence is precisely a null sequence. For future

reference we remark here that the results proved in 1 and 2 arc also valid for a

complex a, provided only |
a

\
< 1.

21 With the same change of notation as above, we may say here: "(I + 0)
n

becomes more pronouncedly infinite than every (fixed) power however large of n
itself".

28
Or, in words, "log n becomes less pronouncedly large than every power, how-

ever small (but determinate and positive), of n itself".

3 ( G 51 )
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4. // cc and
f>

arc arbitrary positive numbers, then

"\

7
is a null sequence , however large cc and however small ft may be 23

.

Proof. By 3.,
( fi^ ]

is a null sequence, because > 0; by

35, 4, therefore, so is the given sequence.

5. (a? n)=(Vn ij is a mill sequence. (This result is also very
remarkable. For when n is large, we have a large number under

the V ' the exponent of the V is, it is true, also large; but it is

not at all evident a priori which of the two radicand or exponent

will, so to speak, prove the stronger.)
n

Proof. For n > 1, we certainly have \n > 1, therefore
n

xn = Vn 1 certainly ;> 0. Hence in

all the terms of the sum are positive. Consequently we have, in

particular,
n(n 1) 9" -

or 24

.. - 1 _ n

Hence

_
so that (xn)

= V/w 1 is in fact by 26, 1 and 35, 4 a null sequence.

6. // (#J is a mill sequence whose terms are all > 1, then for

every (fixed) integer k, the numbers

also form a mill sequence

3 "Every power of log n, however large, (but fixed) becomes less

pronouncedly large than every power of n itself, however small (but fixed).

84 The substitution, when n > 1 , of the value n ^- for (n 1) which
6

it cannot exceed, is an artifice often useful in simplifying
1

calculations.
a& By the assumption that all a?n 's >> 1, we merely wish to ensure that

the numbers xn
' are defined for every n. From a definite point onwards

this is automatically the case, since (xn) is assumed to be a null sequence and

therefore from some point certainty |
xn \ <[ l f

and hence xn > 1.
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Proof. From the formulae set forth on p. 22, Footnote 13, where
k .

we put a = i/1 -f- xn and 6 = 1, it follows that 2fl

therefore, since the terms in the denominator are all positive and

the last is 1,

Irr 'I < I r
I

xn I ^ I

X
n >

whence, by 26, the statement at once follows.

7. // (xn) is a null sequence of the same kind as in 6., then

the numbers

JfH= log (l + .r,t)

also form a null sequence.

Proof. If b > 1 is the base to which the logarithms are taken, and

e > is given, we write

so that we have z l
-=- b* 2 > 2 > 0. We then choose n so large, that

for every n > w
,

|

xn \
< s2 . For those w's we have, a fortiori,

therefore (by 35, 2 or 37, 4)

with which the statement is proved.

8. // (xn ) is again a null sequence of the same kind as in 6.,

then Hie numbers

also form a null sequence, if Q denote any real number.

Proof. By 7. and 26, 3, the numbers

form a null sequence. By 35, 3 and 37, 3 the same is true of the numbers

6*"-l = (l + sJ*--l = *n , q-e.d.

We assume ft >: 2, since for k = 1 the assertion is trivial.
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8. Convergent sequences.

Definitions.

So far, when considering the behaviour of a given sequence, we have

been chiefly concerned to discover whether it was a null sequence or not.

By extending this point of view somewhat, in a manner which readily

suggests itself, we reach the most important concept of all with which

we shall have to deal, namely, that of the convergence of a sequence.

We have already (cf. 10, 10) described the property which a sequence

(xn) may have, of being a null sequence, by saying that its members

become small, become arbitrarily small, with increasing n. We may also

say: Its terms, as n increases, approach the value 0, without, in general,

ever reaching it, it is true; but they approach arbitrarily near to this

value in the sense that the values of its terms (that is to say, their differences

from 0) sink below every number e (> 0), however small. If we substitute

for the value in this conception any other real number
,
we shall be

concerned with a sequence (xn) for which the differences of the various

terms from the definite number that is to say, by 3, II, G, the values

I

xn | > sink, with increasing ,
below every number s > 0, how-

ever small.

We state the matter more precisely in the following:

39. Definition. If (xn) is a given sequence, and if it is related to a

definite number in such a way that

(*
- 6

forms a null sequence \ then we say that the sequence (xn) converges
to

,
or that it is convergent. The number is called the limiting value

or limit of this sequence; the sequence is also said to converge to 1-, and

zee say that its terms approach the (limiting) value , tend to
,
have the

limit . This fact is expressed by the symbols
xn -> 5 or lim xn = .

To make it plainer that the approach to is effected by taking the index n

larger and larger, we also frequently write 2

xn ->^ for n -> oo or lim xn .

w->o&

Including the definition of a null sequence in the new definition,

we may also say:

xn -> for n -> oo (or lim xn = ) if for every chosen e > 0, we can
n >x>

always assign a number nQ
= nQ (e), so that for every n > ,

we liave

1 Or (f xn) or
|
xn f |; by 10, 5 the result is exactly the same.

2 Read: "xn (tends) towards f for n tending to infinity" in the one case, and

"Limit xn for n tending to infinity equals f" in the other. In view of the definitions

40, 2 and 3, it would be more correct to write here "n -> + oo"; but for simplicity

the -f sign is usually omitted.



8. Convergent sequences. t>5

Remarks and Examples.

1. Instead of saying "(#n) is a null sequence", we may now, more shortly,

write "xn -> 0". Null sequences are convergent sequences with the special limiting

value 0.

2. Substantially, all remarks made in 10 therefore hold here, since we are

concerned only with a very obvious generalisation of the concept of a null sequence.
3. By 31, 3 and 38, 5, we have for a >

'Y/a f 1 and -\/n
-> 1.

4. If (xn | yn)
-^

(7, then xn -> a and yn -> <r. For both

|
* a

|
and also

| yn - a
\

are ^
\ yn - xn \ ,

so that both, by 26, ], form null sequences together with (yn xn).

/_ |\n 14365
5. For xn = 1 - -

n
-

, that is, for the sequence 2,
^, y ^ ^ ft

, . . . ,
xn ->> 1,

for
|
xn 1

|
forms a null sequence.

6. In geometrical language, xn -> f means that all terms with sufficiently

large indices he in the neighbourhood of the fixed point . Or more precisely (cf.

10, 13), m every e-neighbourhood of f, the whole of the terms, with at most a finite

number of exceptions, are to be found 3
. In applying the mode of representation

of 7, 6, we draw parallels to the axis of abscissae, through the two points (0, f e)

and may say : xn
- >

,
if the whole graph of the sequence (xn), with the exception

of a finite initial portion, lies in every s-strip (however narrow).

7. The lax mode of expression: "for n = oo
, xn = f" instead of xn -> f,

should be most emphatically rejected. For an integer n = oo does not exist and

vn need never be f . We are concerned merely with a process of approximation,

sufficiently clear from all that precedes, which there is no ground whatever for

imagining completed in any form. (In older text books and writings we frequently

find, however, the symbolical mode of writing: "lim xn f", to which, since it

W~00

is after all meant only symbolically, no objection can be taken, excepting that

it is clumsy, and that writing "n oo" must necessarily create some confusion

regarding the concept of the infinite in mathematics.

8. If xn -*
,
then the isolated terms of the sequence (xn) are also called

approximations to ,
and the difference xn is called the error corresponding to

the approximation xn .

9. The name "convergent" appears to have been first used by J. Gregory

(Vera circuit et hyperbolae quadratura, Padua 10(37), and "divergent" (40) by Bernoulli

(Letter to Leibniz of 7. 4. 1713). It was through the publications of A. L. Cauchy

(see p. 72, footnote 18) that a limiting value came to be denoted generally by the

prefixed symbol "lim". The arrow sign (->), which is so particularly appropriate,

came into common use after 1906, through the works of G. H. Hardy, who himself

referred it back to J. G. Leatham (1905).

To the definition of convergence we at once append that of diver-

gence:
Definition 1. Every sequence which is not convergent m the sense 40.

of 39 is called divergent.

3
Frequently this is expressed more briefly: In every e-neighbourhood of

? "almost all
n

terms of the sequence are situated. The expression "almost all"

has, however, other meanings, e. g. in the Theory of Sets of Points.
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With this definition, the sequences tt, 2, 4, 7, 8, 11 are certainly

divergent.

Among divergent sequences, one type is distinguished by its

particularly simple and transparent behaviour, e. g. the sequences (n*}>

(n), (a
n
)

for a > 1, (logn), and others. Their common property is

evidently that the terms increase with increasing n beyond every bound,

however high. For this reason, we may also say that they tend to -| oo,

or that they (or their terms) become infinitely large. This we put

more precisely in the following

Definition 2. // the sequence (#M) has the property that, given an

arbitrary (large) positive number G, another number nQ can always be

assigned such that for every n > w

then 4 we shall say that (xn ) diverges to |- oo
,
tends to + oo

,
or is definitely

divergent
5 with the limit + oo

; and we then write

xn -> + oo (for n > oo) or lim xn + oo or Km xn + oo.
M >'

We are merely interchanging right and left by defining further:

Definition 3. // the sequence (xn) has the property that, given an

arbitrary negative number G (large in absolute value), another number

nQ can always be assigned such that for every n > w

*<-<?,
then we shall say that (xn) diverges to oo, tends to oo or is definitely

divergent
5 with the limit GO, and we write

xn -> oo (for n -> oo) or lim xn oo or lim xn ~ oo.
n-

Remarks and Examples
1 The sequences (n), (n*), (n

n
)

for a > 0, (log*), (log n)
a

for a>0,
tend to H-OO; those whose terms have these values with the negative sign
tend to OO.

2. In general- If # >-f-oo, then yn
f = xn -> QO, and conversely.

It is therefore sufficient, substantially, to consider divergence to +CO in what

follows.

3. In geometrical language, xn * + OO means, of course, that however a

point G (very far to the right) my be chosen, all points xn , except at most a

linite number of them, remain beyond it on the right. With the mode of

4 Notice that here not merely the absolute values \xn \,
but the numbers xn

themselves, are required to be >> G.
6 It is sometimes even said, with apparent distortion of facts, that

the sequence converges to -f oo. The reason for this is that the behaviour

described in Definition 2 resembles in many respects that of convergence (39).
We will not, however, subscribe to this mode of expression, although a mis-

understanding would never have to be feared. Similarly for OO.
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representation in 7, 6, it means that* however far above the axis of abscissae

we may have drawn the parallel to it, the whole graph of the sequence (xn)

excepting- a finite initial portion, lies still further above it.

4. The divergence to ^ CO need not be monotone; thus for instance the

sequence 1, 2 1
, 2, 2 s

3, 2 3
, 4, 2 4

, ..., A, 2*, ... also diverges to + 00.

5. The succession 1, 2, +3, 4, ..., ( l)"~
1
n, ... does not diverge

to -foo or to OO. This leads us to the further

Definition 4. A sequence (xn), which either converges in the sense

of definition 39, or diverges definitely in the sense of the defini-

tions 40, 2 and 3, will be said to behave definitely (for n+oo).
All other sequences, which therefore neither converge, nor diverge defini-

tely, will be called indefinitely divergent or, for short, Indefinite*.

Remarks and Examples.
1. The sequences [(-I)"], [(-2)"], (a") for a<-l, and likewise the se-

quences 0, 1, 0, 2, 0, 3, 0, 4, ... and 0, 1, 0, 2, 0,
-

3, . . ., as also the se-

quences 6, 4, 8 are obviously indefinitely divergent.

2. On the contrary, the sequence (|
n

|)
for arbitrary a, and, in spite of

all irregularities in detail, the sequences (3
n
-f-( 2)

n
), (n-\- ( l)

n
log n),

(n
9

-j-( l)
n
w), show definite behaviour.

3. The geometrical interpretation of indefinite behaviour follows imme-

diately from the fact that there is neither convergence (v. 39, 6) nor definite

divergence (v. 40, 3, rein
3).

4. Both from xn * + 00 and from #n -> oo it follows, provided every

term 4=
7

,
that -* 0; for

|

xn
\ > G = evidently implies < *. On

xn s xn

the other hand, xn + in no way involves definite behaviour of
(- )\ xn /

(-i)
n /n

Example: For xn ,
we have a?n ->0, but (

J
indefinitely diver-

n \ xnJ

gent. We have however, as is easily proved, the

Theorem: // (xn ) is a null sequent e whose terms all have the same sign,

then the sequence (

J
is definitely divergent; and of course to -foo or

\Xfi/

OO, according as the xn 's are all positive or all negative.

9 We have therefore to consider three typical modes of behaviour of a

i equence, namely: a) Convergence to a number f, in accordance with 39;

')) divergence to OO, m accordance with 40, 2 and 3; c) neither of the

i wo . Since the behaviour b) shows some analogy with a) and some with
c),

modes of expressions in use for it vary. Usually, it is true, b) is reckoned as

ilivergence (the mode of expression mentioned in the last footnote cannot

be consistently maintained) but "limiting values" -J-oo and oo are at the

name time spoken of. We therefore speak, in the cases a) and b), of a de-

inite, in the case c) of an indefinite, behaviour; in case a), and only in

his case, we speak of convergence, in the cases b) and c) of divergence.

Instead of "definitely and indefinitely divergent", the words "properly and im-

properly divergent" are also used Since, however, as remarked, definite di-

vergence still shows many analogies to convergence and a limit is still spoken
of in this case, it does not seem advisable to designate this case precisely as

that of proper divergence.
7 From some place onwards this is certainly the case
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To facilitate the understanding of certain cases which frequently

occur, we finally introduce the following further mode of expression:

Definition 5. // two sequences (%n)and(yn} 9 not necessarily con-

vergent, are so related to one another that the quotient

Xn

yn

tends, for *-|-oo, to a definite finite limit different from
zero 8

, then we shall say that the two sequences are asymptotically

proportional and write briefly

// in particular this limit is 1, then we say that the two sequences are

asymptotically equal and write, more expressively

*n^y-
Thus for instance

__ I

V"
a
4- 1 * *

*
1 (5 w" + 23) ~ log n , \'n + 1 - ^/n ~v -

,

1/n

1 -f 2 H-----h n~ ri
2

, l-4-2 2 + .**4-na ^- j n
3

.

These designations are due substantially to P. dw Bois-Reymond (Annali
di matematica pura ed appl. (2) IV, p. 338, 1870/71).

To these definitions we now attach a series of simple, but quite

fundamental

Theorems on convergent sequences.

41. Theorem 1. A convergent sequence determines its limit quite

uniquely
9

.

Proof. If xn +!;, and simultaneously xn ', then (xn f) and

(xn ')
are null sequences. By 28, 2,

is then also a null sequence, i. e. | = f, q. e. d. 10

8 xn and yn must then necessarily be =}= /n?w some place onwards. This

is not required for every n in the above definition.
9 A convergent sequence therefore defines (determines, gives . . .) its

limit quite as uniquely as any nest of intervals or Dedekind section defines the

number to which it corresponds. Thus from this point we may consider a real

number as given if we know a sequence converging to it. And as formerly we
said for brevity that a nest of intervals

(a;,, | yn) or a Dedekind section (A \ B)
or a radix fraction is a real number, so we may now with equal right say that

a sequence (xn) converging to f is the real number f ,
or symbolically: (#n) = { .

For further details of this conception, which was used by G. Cantor to construct

his theory of real numbers, see pp. 79 and 95.
10 The last step in our reasoning, by which the reader may at first sight

be taken aback, amounts simply to this: If with respect to a definite numerical

value a we know that, for every e>0, we always have
|
a

| < e, then we
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Theorem 2. A convergent sequence (xn) is invariably bounded. And

if |

xn |
5g K, then for the limit we have u

| |
^ /.

Proof. If xn -> ,
then we can, given e > 0, assign a number m,

such that for every n > m
f-e<*n < + e.

If therefore Kl is a number greater than the m values
|

xl [, |

x2 |,
. . .

,

|
xm |

,
and greater than

| |
+ e, then obviously

I
*

i
< *i

for every n. Now let K be any bound of the numbers
|
xn \.

If we had

| |
> Ky

then
| |

K > and therefore, from some place onwards

in the sequence,

\t\-\*n \^\*n -t\<\e\-K
and therefore

|

xn \
> K, which is contrary to the meaning of K.

Theorem 2a. xn -> f implies \

xn \

->
\ |.

Proof. We have (v. 3, II, 4)

therefore ( |

xn \ \ \ ) is by 26, 2 a null sequence when (#n ) is.

Theorem 3. If a convergent sequence (xn) has all its terms different

from zero> and if its limit g is also 4= 0, then the sequence () is bounded;
\xn/

or in other words, a number y > exists, such that
\

xn \
^ y > for every

n; the numbers
\

xn \ possess a positive lower bound.

Proof. By hypothesis, J | |

= e > 0, and there exists an integer

m, such that for every n > m,
\

xn |
< e and therefore

|

xn \
> % \ g \

12
.

If the smallest of the (m + 1) positive numbers
|

x
|, |

x2 |,
. . .

,
|

xm \

and i
| ^ |

be denoted by y, then y > 0, and for every n, \
xn \

^ y,

= l
-, q. e. d.

If, given a sequence (#n) converging to , we apply to the null se-

quence (xn ) the theorems 27, 1 to 5, then we immediately obtain

the theorems:

necessarily have a 0. For is the only number whose absolute value is less than

every positive e. (In fact
| |

< c is true for every e > 0. But if a 4= 0, so that

|
a

|

> 0, then
|
a

|
is certainly not less than the positive number e = J |

a
|.) Simi-

larly, if we know of a definite numerical value a that, for every e > 0, we always
have a ^ K + e, then we must have further a g K. The method of reasoning
involved here: "Iffor every z > 0, we always have

|
a

|
< e, then necessarily a 0"

is precisely the same as was constantly applied by the Greek mathematicians (cf.

Euclid, Elements X) and later called the method of exhaustion
11 Here the sign of equality in "| f | *g K" must not be omitted, even when,

for every n
t \

xn \
< K.

12 For n ^ m, all the xn's are therefore necessarily 4= 0.
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Theorem 4. // (xn') is a sub-sequence of (xn), then

xn +t; implies xn'>.
Theorem 5. // the sequence (xn] can be divided into two sub-

sequences of which each converges to , then (x^ itself converges to .

Theorem 6. // (#') is an arbitrary rearrangement of xn , then

xn -> implies xn
' -> f .

Theorem 7. // x
n >f and (#n') results from (#n) by a finite

number of alterations, then xn'+$.
Theorem 8. // #n

'

*l and #n"-*f, and if the sequence (x^ is

so related to the sequences (xn') and (xn") that from some place onwards,

(i.
e. for every n^>m, sayt)

rr
' < r < v "Xn ^ Xn ^ Xn >

then xn +.
Calculations with convergent sequences are based on the following

four theorems:

Theorem 9. xn > f and yn *
r\ always implies (xn+ yn)

~* f+ ^ *

and the corresponding statement holds for term by term addition of any

fixed number say p of convergent sequences.

Proof. If (xn |) and (yn rf)
are null sequences, then so, by

28, 1, is ((xn + yn) (f -{- 17)).
In the same way, 28, 2 gives the

Theorem 9 a. xn + f and yn +r], always implies (xn yn)
+ f rj .

Theorem 10. xn >| and yn +ri> always implies xn yn +r)>
and the corresponding statement holds for term by term multiplication

of any fixed number say p of convergent sequences.
In particular: xn * implies cxn +c, whatever number p

denote.

Proof. We have

and since here on the right hand side two null sequences are multi-

plied term by term by bounded factors and then added, the whole

expression is itself the term of a null sequence, q. e. d.

Theorem 11. xn * and yn +r] always implies, if every xn =^Q
and also f 4=

yn jv

**~*f
'

Proof. We have

yn ri ___ y S-xH rj __ (yn
~

>y) g
-

(xn
-

g) 17

18 Or three, or any definite number.
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Here the numerator, for the same reasons as above, represents a null

sequence, and the factors - are, by theorem 3, bounded. Therefore
S' xn

the whole expression is again the term of a null sequence. Only
a particular case of this is the

Theorem 1 1 a 14
. xn - > g always implies, if every xn and also are

4=0,
, !

These fundamental theorems 8 11 lead, by repealed application,

to the following more comprehensive

Theorem 12. Let R = R (x
(l)

, z 2)
, x(3)

, . . ., xW) denote an ex-

pression built up, by a finite number of additions, subtractions, multi-

plications, and divisions, from the letters x(1)
, o?

(9)
, ... 9 x (&, and arbitrary

numerical coefficients
1
*; and let

be p given sequences, converging respectively to (1)
, f

(3)
, . . ., f& }

. Then

the sequence of the numbers

provided neither in the evaluation of the terms Rn , nor in that of the

number R(
(1)

,

(2)
, >

(p)
),

division by is anywhere required.

These theorems give us all lhat is required for the formal mani-

pulation of convergent sequences: We give a few more

Examples.
1. -> implies, if a>0, invariably, 42,

a*"-*a.
For

a*- a*^ (<***-*-- x)

fs a null sequence by 35, 3

2. a:-*-f implies, if every . and also are >-0, that

log acm -* log | .

Proof. We have

log o:,,
- log log^ = loff

(l
+ *"

which by 38, 7 is a null sequence, since xn > implies ~-~- > 1 .

14 In theorems 3, 11 and lla, it is sufficient to postulate that the limit of
the denominators is 4= 0, for then the denominators are, from some index m on-

wards, necessarily 4= 0, and only "a finite number of alterations" need be made,
or the new sequence need only be considered for n > m, to ensure this being the
case for all.

lfi More shortly: a rational function of the /> variables .\;
(1)

,
vw

, . . . ,
.x-
(p) with

arbitrary numerical coefficients.
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3. Under the same hypotheses as in 2., we also have, for arbitrary real Q,

Proof. We have

\ x%
Q = l

\

which by 38, 8 is a null sequence
16

, since *"-p-^
> 1 and tends to as n ~> QO.

(This is to a certain extent further completed by 35, 4.)

Cauchy's theorem of limits and its generalisations.

There is a group of theorems on limits 17
essentially more pro-

found than the above, and of great significance for later work, which

originated in their simplest form with Cauchy
16 and have in recent

times been extended in different directions We have first the simple

43. Theorem 1. // (# , x19 ...) is a null sequence, then the arith-

metic means
~. 9 %o ~r xi ~r "r % r\ - QXn n-f- 1

'
* * *'

also form a null sequence.
Proof. If s is given > 0, then m can be so chosen, that for

every n > m we have la; I < --
. For these n's, we then have

n
-

n+1 T- 2 n + 1'

Since the numerator of the first fraction on the right hand side now
contains a fixed number, we can further determine n , so that for

n > w that fraction remains <
-|-.

But then, for every n > nQ , we

have
|

#n
'

|
<C e, and our theorem is proved. Somewhat more

general, but nevertheless an immediate corollary of this, is the

Theorem 2. // xn *, then so do the arithmetic means

ltt Examples 1. to 3. mean in the language of the theory of functions

that the function ax is continuous at every point, the functions log a; and XQ

at every positive point.
17 The reader may defer the study of these theorems until, in the later

chapters, they come into use.
18

Augustin Louis Cauchy, born 1789 in Paris, died 1857 in Sceaux. In

his work Analyse alg&bnque, Paris 1821 (German edition, Berlin 1885, Julius

Springer) the foundations of higher analysis are for the first time developed
with full rigour, and among them the theory of infinite series. In what follows

we shall frequently have to refer to it; the above theorem 2 may be found on

p. 59 of that treatise.
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Proof. By theorem 1,

/fa-e + fe-g)+...+(*.-m = ^ ' _
|)

is a null sequence when (xn ) is, q. e d.

From this theorem, the corresponding one for geometric means
now follows quite easily.

Theorem 3. Let the sequence (y , ya , . .
.) ^77, and have all its

members and its limit r\ positive. Then also the sequence of geo-

metric means

/ -,"/:

Proof. From yn ^, since all the numbers are positive, we

deduce, by 42, 2, that

By theorem 2, it follows that

a; _ *i*+n
-+* _ log ^yi y2 ...^ = log yn'- log 17.

By 42, 1, this at once proves the truth of our statement.

Examples.

'+!'--4
1. -----*0, because --*0.

w n

2. V
f = l--"-~-* 1 ' because

n_
yn n _

8. --------> 1, because y n -* 1 .

/ i \

4. Because ( 1 -^
--

)
-

(v. 46a in the next
),
we have by theorem 3,

.

-2
- V^T-

- --" also

or, therefore,
i n_ i

JLyM!^,n r e
'

n_ n
a relation which may also be noted in the form "^n\^. ".
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Essentially more far-reaching, and yet as easily proved, is the

following generalisation of Cauchy's theorems 1 and 2, due to

$. Toeplitz:
Theorem 4. Let (XQ , #j , . .

.)
be a null sequence and suppose

the coefficients aflv of the system

(A)

satisfy the two conditions:

(a) Every column contains a null sequence, i. e. for fixed P^O
flnp

>0 when n >-{-oo.

(b) There exists a constant K, such that the sum of the absolute

values of the terms in any one row , i. e., for every n, the sum

kaol + KiH-----
\-\ann \

remains < K.

Then the sequence formed by the numbers

Xn = <*nO X + *nl Xl + an* X
* H-----H <*nn Xn

is also a null sequence.
Proof. If e is given > 0, determine m 50 that for every n>m

\

x
\

<^- 'Ihen for those w's,

By the hypothesis (a),
we may now (as m is fixed) choose n > m,

so that for every n > n
{}

, we have
|

anQ x ~{
-----

1- anm xm \
< y . Since

for these w's
|

xn
'

\

is then -< e, our theorem is proved.
In applications it is useful to have the following

Complement. If, for the coefficients a^ t are substituted other

numbers a^ = a*i *^ x ^, obtained from the numbers a^\ by multiplication

19
Cauchy's Theorem 1 has been generalised in several ways, in particular

by J. L. W. V. Jensen (Cm en Satning af Cauchy, Tidsknft for Mathematik, (5)
Vol. 2, pp. 81 84. 1884) and O. Stolz (t)ber erne Verallgemeinerung eines Satzes
von Cauchy, Mathemat. Annalen, Vol. 33, p. 237. 1889). The above formulation,
due to O. Toephtz (Uber hneare Mittelbildungen, Prace matematycznofizyczne,
Vol. 22, p. 113 119. 1911), is in a certain sense a final generalisation, for this reason
that it shows (1. c.) the conditions, recognised in Theorem 5 as sufficient, to be
also tiecf\\ary, tor \n

- - to imply xn
' -* in all cases (cf. 221, and the work of /.

Sthur: Cber hneare Transformationen in der Theorie der unendlichen Reihen, Jour.
f.d. reine u. angew. Math., Vol. 151, pp. 79111. 1920).
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by factors X A M in absolute value less than a fixed constant a,

then the numbers

/0m a null sequence.

Proof The a^'s also satisfy the conditions (a) and
(b) of

theorem 4; for, if p is fixed, a'np -+Q by 26, 1, and the sums

o + i+"- + n remain <K=--aK.

From Theorem 4 we may now deduce the

Theorem 5. // xn >f, a^ tfci coefficients a^ v satisfy, besides

the conditions (a) an^ (b) of Theorem 4, //t further condition

also the sequence formed by the numbers

Proof. We now have

whence our statement at once follows, in consequence of condition
(c),

by theorem 4.

Before giving examples and applications of these important theorems,

we may prove the following further generalisation, which points in a

new direction.

Theorem 6. // the coefficients a
fiv of the system (A) satisfy,

besides the conditions (a), (b) and (c) mentioned in Theorems 4 and 5,

the further condition, that

(d) the numbers in each of the "diagonals" of A form a null

sequence, i.e. for fixed p, ann _ p
>0 when n+-\-<x>,

then it follows from xn -^> and yn +r] that the numbers

Proof. Since

x v = (x -"V jnv \~v

we have
n

Zn
=

J|j #n' ynv\Z
v=0

10 In the applications, we shall generally have An = 1.

11 For positive a^v, this theorem may be found in a paper by the author

"Uber Summen der Form a bn -f at 6,,^ + -
-f- aw 6

"
(Rend, del circolo mat.

di Palermo, Vol. 32, p. 95-110. 1911).
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Here the first sum tends to zero, by Theorem 4 and its complement,
for (xv f) is a null sequence and the factors yn_ y are bounded.

And if the second sum be written in the form

v=0 v=0

we see, by theorem 5, that this, and thereby also zn , tends +$rj;
for the numbers a'nv = ann- v satisfy, in consequence of

(d), precisely

the condition (a) there stipulated.

44. Remarks, applications and examples.
1. Theorem 1 is a particular case of Theorem 4; we need only put, in

the latter,

a0 = ani = - = ann = ^~T\ > (n = 0, 1, 2, . .
)

Theorem 2 is derived in the same way from Theorem 5. The conditions

(a), (b), (c) are fulfilled.

2. If
,
aa ,

. . . are any positive numbers, for which the sums

it follows 22 from xn -> f that

In fact, we need only put, in theorem 5,

a _x /
= 0, 1,2, ...

n'~on \ - = 0,1 n

to see that the statement is correct. The conditions (a), (b), (c) are fulfilled.

For <xn == 1 , we again obtain Theorem 2.

2 a. The theorem of no. 2. remains true for f = + oo or f = oo . The
same remark holds for the general theorem 5, provided all the a^v's are >:

there. For if xn + + oo and, as in the proof of Theorem 4, m be so chosen,

given G>0, that for every n^>m we have
rt > G-|- 1, then for those n's

we have
xn

' >(G -f 1) (amm+l + . . . -f ann)
- ano \

x
\

- . . .
- an m

\

xm
\

.

In consequence of the conditions (a) and (c) in Theorems 4 and 5, we may
therefore so choose n that for every n>w we have aj/>G. Hence
*'-> + 00.

u
3. Instead of assuming the an's positive and an -> + GO ,

it suffices [by (b)]

to require onlv that
|

a
|
-f

| a, | + . . . +
|

an |

-> -f O, with the proviso, however,
that a constant K exists, such that 23 for every n

I o I + I i I + . - + I n I

< K '

|

a + a, + . . . + an |.

(For positive an , J=l gives all that is here required.)

84 O. 5<o/z, loc. cit. Of course it also suffices, that the an's be from
some point onwards >0, provided only on ->-foo. The #n"s must then be con-

sidered from that point onwards, after which an is > 0.

88
Jensen, loc. cit. If ocm is the first of the a's to be

=j= 0, then the xm"s
are defined only for w>w.
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4. If in 2. or 3 we put, for brevity, cen xn yny then we obtain:

o i
-

and provided the an 's satisfy the conditions given in 2. or 3.

5. If we write further y +yl -f- . - . +yn = ^n, and + <*t + + ** =4
then the last result takes the form:

v v _ v
-*, provided J-_Jua-*f,-^n ^n -n i

and provided the numbers ccn = An An _^ (n > 1, a = ^4
) satisfy the conditions

given in 2. or 3.

6. Thus we have, for instance, by 5.:

.. 1 + 2-I-...4-* .. n n 1
lim-K- = lim - = hm s-- = -^w^ w a

(n l)
a 2n 1 2

Similarly we have

l + 2 a +...+n 9
,.

n* 1
lim-------- = lim ------ - =

n 3 w a -(w I)
3 3

and generally

-^-.
2

,. L F -f- Z r
-j- . . . -J-W

lim : ! = lim

n*
* lim-

it p denotes a positive integer.

7. Similarly we find, if we anticipate the proof in 46a of the convergence

of the sequence of numbers
(
1 -\ )

!

\ n /

log 1-f- log 2 -{-...+ log n lognl . V
. ! ^ = . 1 I.e. Ino- -M! /-v/ loort _

^

nlogn log n n

8. The numbers

fulfil the conditions (a), (b) and (c) of the theorems 4 and 5; for if p be fixed,

*np+Qi seeing that it is

=
' and therefore < l (v- 38' 2>

while

toi every n. Therefore o;n --? always implies
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9. The same specialisations as were given in 1., 2., 3. and 8. for theorem 5

may of course also be applied to theorem 6. We merely mention the two

following theorems:

(a) From xn *> and yn -^-rj it always follows that

x, ?__! 4- a-g yn _ 2 -f ... j-xn y
fr

(b) If (#) and (yn) are two null sequences, the second of which fulfils

the extra condition that for every n

remains less than a fixed number K, then the numbers

form a null sequence. (For the proof we put anv = yn - v in theorem 4.)

10. The reader will have noticed that it is in no wise essential that the

rows of the system (A) of theorem 4 should break off exactly at the n ih term.

On the contrary, these lows may contain any number of terms. Indeed, after

we have mastered the first principles of the theory of infinite series, we shall

see that these rows may contain even an infinity of terms (ano , /tlT . . ., anv ,
. .

.),

provided only the other conditions imposed on the system be fulfilled. The
theorem hereby indicated will be formulated and proved in 221.

9. The two main criteria.

We are now sufficiently prepared to attack the actual problems of

convergence. There are two mam points of view from which we

propose, in what follows, to examine the sequences which come before

us. We have above all to consider the

Problem A. 7s a given sequence (xn ) convergent, or definitely

or indefinitely divergent? (Briefly: How does the sequence behave

with respect to convergence?) And if a sequence has pioved to

be convergent, so that the existence of a limiting value is ensured,

we have further to consider the

Problem B. To what limit $ does the sequence (#n), recognized

to be convergent, tend?

A few examples may make the significance of these problems
clearer: If for instance we are given the sequences

examination of their construction shows that there are always two (01

more) forces which here, so to speak, oppose one another and thereby
call forth the variation of the terms. One force tends to increase,
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the other to diminish them, and it is not clear at a glance which of

the two will get the upper hand or in what degree this will happen.
Every means which enables us to decide the question of convergence
or divergence of a given sequence, we call a criterion of convergence
or of divergence; these serve, therefore, to solve the problem A.

The problem B is in general much more difficult. In fact, we
might almost say that it is insoluble, or else is trivial. The latter,

because a convergent sequence (xn\ by theorem 41, 1, entirely deter-

mines its limit f , which may therefore be regarded as "given" by the

sequence itself
(cf. footnote to 41, 1).

On account, however, of the

boundless complexity and multiplicity of form which sequences show,
this conclusion does not seem very satisfactory. We shall wish, rather,
not to consider the limit | as "known", until we have before us a

Dedekind section, or still better a nest of intervals, for instance a radix

fraction, in particular a decimal fraction. These latter especially are the

methods of representing a real number with which we have always been
most familiar. If we regard the problem in this light, we may call

it the question of numerical calculation of the limit 1
.

This question, one of great practical significance, is usually in

theoretical considerations of very second-rate imporiance, for from a
theoretical point of view, all modes of representation for a real number

(nests, sections, sequences, . .
.)

are precisely equivalent. If we observe

further, that the representation of a real number by a sequence may
be considered as the most general mode of representation, our problem B
may be stated in the following form.

Problem B'. Two convergent sequences (#J and (#) are given,
how may we determine whether or not both define the same limit, or

whether or not the two limits stand in a simple relation to one another?

A few examples will serve to illustrate the kind of question referred to:

l - Let _/i J.1Y1 ^ ' fi^ *\ 45.

Both sequences are quite easily (v. 46 a and 111) seen to be convergent.
But it is not so apparent that if denotes the limit of the first sequence, that
of the second is = f *.

2. Given the sequence

_!_
3 ^ 17

41^
1

'
~2~' 5

'
"12

'

29
' "

in which the numerator of each fraction is formed by adding twice the nume-
rator of the last fraction preceding to the numerator of the last fraction but

one (e. g. 41 = 2-17 + 7), nnd similarly for the denominators. The question of

1 Numerical calculation of a real number= representation of that num-
ber by a decimal fraction. For further details, see chapter VII T.
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convergence again gives no trouble, nor does the numerical evaluation of the

limit, but how are we to recognise that this limit

and let xn be the perimeter of the regular polygon with n sides inscribed in

the circle of radius 1. Here also both sequences are easily seen to be con-

vergent. If f and f are their limits, how does one see that here ' = 8?
These examples make it seem sufficiently probable, that Problem B

or B' is considerably harder to attack than Problem A. We therefore

confine our attention in the first instance entirely to the latter, and to

begin with make ourselves acquainted with two criteria, from which

all others may be deduced.

First main criterion (for monotone sequences).
46. A monotone bounded sequence is invariably convergent; a mono-

tone sequence which is not bounded is always definitely divergent.

(Or, therefore: A monotone sequence always behaves definitely, and
is then and only then convergent, when it is bounded, and then and

only then divergent, when it is not bounded. In the latter case the diver-

gence is towards -f- oo or oo according as the monotone sequence is

ascending or descending.)

Proof, a) Let the sequence (#n) be monotone ascending and not
bounded. Since it is then (because xn ^ o^) certainly bounded on
the left, it cannot be bounded on the right; given any arbitrary (large)

positive number G, there is then always an index nQ , for which

But then, since the -sequence is monotone increasing, we have for

every n > n , a fortiori, xn > G, and so, by Definition 40, 2, actually
xn -+ + oo. Interchanging right and left, we see in the same way
that a monotone descending sequence which is not bounded must
diverge to oo. Thus the second part of the proposition is also proved.

b) Now let (xn) be a monotone ascending, but bounded sequence.
There is then a number K, such that

|

xn \
<; K for every n, so that

for every n. The interval J = aj
x

. . . K therefore contains all the terms
of (xn); to this interval we apply the method of successive bisection:

We denote the right or the left half of / by /9 , according as the

right half does or does not still contain points of (#J. From / we
select one half by the same rule, and call this /3 ; and so on. The
intervals of the nest so constructed have the properly

2
, that no point

The reader should illustrate the circumstances on the number-axis.
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of the sequence lies to the right of them, but at least one lies inside

each of them. Or in other words: the points of the sequence (while

monotonely progressing towards the right) penetrate into each interval,

but do not emerge from it again; in each of these intervals, therefore,

all points from a certain index onwards come to lie. We may there-

fore, if we suppose the numbers nif n^ y . . . properly chosen, say that:

In Jk lie all xn's with n > nk , but to the right of Jk lie no
more xn's.

If f is now the number determined by the nest (/M), it can at

once be shewn that a;w *f. For if e is given > 0, choose the index p
so that the length of / is less than 6. For n > n

p , all the xn's lie,

together with f , in / , so that for these ns we must have

(xn )
is therefore a null sequence, and xn *

, q. e. d.

By a suitable interchange of right and left, we see that monotone

descending bounded sequences must also be convergent. Thus every

part of the theorem is proved.

Remarks and Examples.
1. We first draw attention again to the fact that (cf. 41, 1) even when

I
%n

|
<Z K ,

we may have for the limiting- value the equality | |

= K .

2. Let

As

the sequence is monotone increasing-, and as xn <n>-T^^ ^ *s also bound-
n -f- 1

ed. // is therefore convergent. Of its limit f we know no more, so far, than that

37
for every n, which e. gf. for n = 3 becomes ~^< 1. Whether it has a ra-

tional value, or whether bears a close relation to a number appearing in any other

connection in short: an answer to problem B cannot here be perceived at

once. Later on we shall see that is equal to tt e natural logarithm of 2. I. e. the

logarithm of 2 whose base is the number e introduced in 46a below.

3. Let o?n =(l+-s- + -5--f-H ), so that the sequence (xn) is monotone
\ Jo n/

increasing (cf. 6, 12). Is it bounded or not? If G is given arbitrarily > 0,

chose w>2; then for n>2 OT

The sequence is therefore not bounded and consequently diverges + -f oo .
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4. If o = (xn |
yn)

is an arbitrary n'est of intervals, the left and right end-

points of the intervals respectively form two monotone, bounded and therefore

convergent sequences. We then have

lim rn = hm yn = (xn \
yn)

= a .

16a. As a particularly important example, we will consider the two

sequences whose terms are __- .*\ ^
v ~\ J^AAI/

* ;
*i

x

^v ~'
\

'

"
and =

* *.-

We have no means of perceiving immediately (cf.
the general remark

on p. 78) how the sequences behave as n increases.

We proceed to show first that the second sequence is monotone

descending, that is to say that for n I> 2

This inequality is in fact equivalent
3 to

or to

But the truth of //w's inequality is evident, since, by Bernoulli's in-

equality 10, 7 we have, for a > I, a
--\=

and every n > 1,

or in particular

As, moreover, yn > 1 for every n, the sequence (yj is monotone des-

cending and bounded, and therefore convergent Its limit will ofter

occur later on; it is, since Rulers time, denoted by the special
4 letter e.

As regards this number, we can only deduce for the present that

which for e. g. n = 5 becomes

. ^ 66

3 That is to say, each inequality follows from all the others.
4 Euler uses this letter to designate the above limit in a letter to Goldbach

(2.*). Nov. 1731) and in 1736 m his work: Mechanica sive motus scientia analytice

exposi ta, II, p. 251.
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The first of our two sequences, on the contrary, is monotone ascending.

In fact, #n_x < xn here means 5

(1 \n--l / l\n
1 +

,T--]

or

' e- l~^<
("

2

7 T =
(
l ~

Vf-n \ n2 / \ v

But, again by 10, 7, we have actually for every # > 1,

n+i

The sequence (xn) is therefore monotone increasing.

As, in any case,

(1
\ n

i+
i)

we have, for every w, A:W ^JVi, i- c. (jcw ) is also bounded and hence con-

vergent. As, finally, the numbers

are all positive and (by 26, 1) form a null sequence, we conclude at once

that (xn ) has the same limit as (j'n). Thus

lim xn = lim j>n
= .

And for this number e we have furthermore, as has appeared in the proof, in

a nest of intervals defining it. (It provides, for instance taking n 3,

the inequality of < e < 2
H
5
t-; we shall however become acquainted later

on ( 23) with other sequences converging to e
y
which are more convenient

for numerical calculation.)

This is the number e that (cf. p. 58) forms the base of the natural

logarithms. We shall accordingly agree to use the symbol log to mean

this natural logarithm to the base e, unless the contrary is expressly stated.

The fruitfulness of the first main criterion is due above all to the

fact that it allows us to deduce the convergence of a sequence of

numbers from very few hypotheses, and these such as are usually very

easy to verify namely, from monotony and boundedness alone. On
the other hand, however, it still relates only to a special, even though

particularly frequent and important kind of sequence, and therefore

5 Cf. footnote 3.
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appears theoretically insufficient. We shall therefore ask for a criterion

which enables us to decide quite generally as to the convergence or

divergence of any sequence. This is accomplished by the following

47. Second main criterion (1
st

form).

An arbitrary sequence (xn) is convergent if and only if, given

s > , a number n = n (e) can always be assigned, such that for any
two indices n and n' both greater than n , wz have in every case

\Xn Xn>\<e.
We first give a few

Explanations and Examples.
1. The remarks 10, 1, 3, 4 and 9 are also substantially applicable here;

and the reader is recommended to read them through once more in this con-

nection.

2. The criterion states to put it in intuitive language: all o;n's with

very high indices must he very close together.

3. Let o; = 0, xt
= 1

,
and let every term after these be the arithmetic

mean between the two terms which precede it, i. e. for n"^2

s

so that xa = ,
#8 = , o;4

=
jjr ,

. . .. In this evidently not monotone sequence it

is clear, on the one hand, that the differences between consecutive terms form
a null sequence; for it may be verified quite easily by induction that

_xn + 1 xn 2"

and so tends to 0. On the other hand, between these two consecutive numbers
all the following ones lie. If therefore, after s has been assigned ^>0, we

choose p so large that < ,
we have

2 p

I
Xn - Xn

'

|< 9

provided only n and n' are ^>p. By the 2 nd mam criterion the sequence (xn)

is therefore convergent. The limit { also happens to be easily obtainable. A little

reflection in fact leads to the surmise that f = J-.
In point of fact, the formula

2 ~ 2 (n1)**
1

*w~3~3* 2*

can immediately be proved by induction and shows that xn is actually a

null sequence.

Before trying to fathom the meaning of the 2 nd main criterion

further, we proceed to give its

Proof, a) That the condition of the theorem let us call it for

brevity its e condition is necessary, i. e. that it is always fulfilled

8 This is true for n = and 1. From gfc+a-sfc + 1
= ** + *

^-f.S-JIJLzA
& &

it follows that if proved for every n < k
,

it is true for n = k -|- 1 .
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if (#M) is convergent, is seen thus: If ", then (xn
-

)
is a null

sequence; given e > 0, we can so choose n that for every n > n ,

|

xn |
j

is < --
. If besides w, we also have n > W ,

then
|

;rn
j

is also <
-^

,
and so

which proves this part of the theorem.

b) That the e- condition is also sufficient is not so easy to see

We again prove it constructively, by deducing from the sequence (xn )

a nest of intervals (/J and then showing that the number determined

thereby is the limit of the sequence. This is done as follows:

Any e > being chosen,
|

xn xn '

\

must always be < e provided

only the indices n and n' both exceed some sufficiently large value.

If we suppose the one fixed and denote it by p, then we may also

say: Given any e > 0, we can always assign an index p (actually, as

far to the right as we please) so that for every n > P

If we choose successively =
-77, -r , ..., 7^, ... then we get:
& 4 u

1) There is an index p^ such that

for every n > p1 , we have
|

xn x
pi \
< ~

.

2) There is an index p t , which we may assume > plt
such that

for every n > p^ , we have
|

xn x
pi \
<

-^ ,

and so on. A th
step of this kind gives:

k") There is an index pk , which we may assume > pk^ If such that

for every n > pk , we have
|

xn xp |

< o*

Accordingly we form the intervals Jk :

1. The interval x
Pl | . . . x

Pi -f- | call /t ; it contains all the xn's
for n>plt

in particular, therefore, the point xp^.
It therefore contains

in whole or part the interval x
Pt

. . . #P2 + J, in which all xn's
with n >> p.2 lie. As these points also lie in /x , they lie in the common

part of the two intervals. This common part we denote

2) by /a
and may state: /2

lies in f and contains all points x
with n > p^. If in this result we replace p^ and p^ by pk _ and pk>

and denote therefore

k) by /fc
the portion of the interval

o:^ ^ . . . xp^ + ^ which

lies in /k-1 , we may then state: /fc
lies in /fc-1 and contains all

points xn with n >
fc

.

4 (G51)
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But (Jk )
is then a nest of intervals; for each interval lies in the

k>

preceding and the length of Jk is <^
~

.

Now if f is the number thus determined, we assert, finally, that

*-*
In fact, if an arbitrary e > be now given, we choose an index r so

large that < e. We then have
&

for every n > pr ,
|

xn f
|

is
" < e ,

since f, together with all xn's for n > pr
, lies in /r and the length

of Jr is < e. This proves all that was required
7

.

Further examples and remarks.

48. 1. The sequence 45, 3 can easily now be seen to be convergent For

we have here, if n'>w:
I 1 ( l)'-n-i\

If inside the bracket, we take the successive terms in pairs, we see (cf. later

81 c, 3) that the value of the bracket is positive, so that

It we now let the first term stand by itself and t ike the following- terms in

pairs, we see further that

Therefore
|
ay xn

\

is <, provided n and nf are both > ;j
The sequence

u

is therefore convergent.

2. If # = (l -f-
-- + H

J ,
we have already seen in 46, 3 that (xn) is

not convergent. With the aid of the 2 nd main criterion, this is dcducible fiom

the fact that here the e- condition is not satisfied for << . For however n
It

may be chosen, we have for n > w and n' 2 n (also therefore > w
)

not therefore < 8. The sequence is therefore divergent, and in fact definitely

divergent, since it is evidently monotone ascending.
3. The previous example shows at the same time that the contrary of the

fulfilment of the $- condition is the following (cf. also 1O, 12)": Not for every
choice of s>0 can n be so assigned that the e- condition is then fulfilled;
there exists on the contrary (at least) one particular number e > such that,

7 We shall become acquainted with other proofs of this fundamental cri-

terion. The proof given above leads immediately to the definition of the limit

by the aid of a nest of intervals. A critical account of earlier proofs of the

criterion may be found in A. Pnngsheim (Sitzungsber. d. Akad. Mlinchen, Vol. 27,

p. 303. 1897).
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above every number n
,
however large (therefore infinitely often) two positive in-

tegers n and nf

may be found for which

4. The 2 nd main criterion is now usually, after P. du Bois Reymond (Allge-

meinc Funktionentheorie, Tubingen 1882), called the general principle of conver-

gence. In substance, it originated with B. Bolzano (1817, cf. O. Stolz, Mathem.

Ann. Vol. 18, p. 259, 1881) but was first made a starting point, as an expressly

formulated principle, by A. L. Cauchy (Analyse algebrique, p. 125).

Our main criterion may also be given somewhat different forms,

which are sometimes more convenient in applications. We suppose
the notation for the numbers n and nf

so chosen that n > n, and

therefore we may write n' = n + k
,
where k is again a positive integer.

We then formulate thus the

Second main criterion (Form la). 49.

The necessary and sufficient condition for the convergence of the

sequence (xn] is that, given any e > 0, a number n = n
(e)

can always

be assigned so that for every n > n and every k^>l we always have

From this statement of the criterion we can draw further con-

clusions. If we suppose quite arbitrary natural numbers klf & 2 , . . .
, kn , . . .

chosen, then we must have, in view of the above, for every n > n

I *+*- *!<
But this implies that the sequence of differences

forms a null sequence. In order to make ourselves more readily

understood, we will call the sequence (dn)
for short a difference-sequence

of (XM). In it, dn is therefore the difference between xn and some de-

finite later term. Our criterion may then be formulated thus:

Second main criterion (2
nd

form). 59.

The sequence (#J is convergent if and only if every one of its

difference-sequences is a null sequence.

Proof. The necessity of this condition we have just proved; we
have still to show that it is sufficient. We accordingly assume that

every difference-sequence tends to 0, and have to show that (xn)
con-

verges. But if (#n) were divergent, there would, by 48, 3, exist a par-

ticular number e such that above every number nQ} however large,

two numbers n and n' = n -f- k would always he, for which the

difference

* was
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Since this must be the case infinitely often, "there would in contradic-

tion to the hypothesis exist difference-sequences
8 which did not tend

to 0; (xn) must therefore converge, q. e. d.

Remark. If (,vw) is convergent, and we choose a particular difference-sequence

(dn ), we therefore certainly have dn -> 0. But it should be expressly emphasized
that from dn -> alone the convergence of (xn) need not follow. On the contrary,

for this, it is only sufficient that every arbitrary difference-sequence (not merely
a particular one) should prove to be a null sequence.

If for instance the sequence (1, 0, 1,0, ],...) is considered, every difference-

sequence for which all kn
y

s (from some point onwards) are even numbers is a null

sequence. Nevertheless the sequence in question is not convergent. Similarly in

the divergent sequence (xn ) with xn 1 + J -f- . . . -f- evety difference-sequence

for which the indices kn are bounded forms a null sequence.

Extending somewhat further the last obtained formulation of the

criterion, we may finally formulate it thus:

51. Second main criterion (3
rd

form).

If "i> i'2 - > y> is any sequence of positive integers
9 which

diverges to -|- GO, and k^ k2 ,
. . .

,
kni . . . are any positive integers (with-

out any restriction), and if we again call the sequence of differences

n ~ X
'n+ l*n

X
'n

for short a difference-sequence of (xn ), then for the convergence of (xn)

it is again necessary and sufficient that (dn) is in every case a null sequence.

Proof. That this condition is sufficient is obvious from the pre-

ceding form of the criterion, since (dri ) must, in the present case also,

always be a null sequence when vn is chosen n. And that it is necessary

may at once be seen. For if e is chosen > 0, there certainly exists, if

(xn)
is convergent (v. Form la), a number m, such that for every n > m

and every k ^ 1, we have

I v Y I ^
I ^n+k ^n

I

^-

As vn diverges -> -|- GO, there must be a number n such that

for n > HO ,
we have always vn > m.

But then, by the preceding, we have, for n > w
, always

i. e. (dn)
is a null sequence, q. e. d.

8 For if we denote by n it n 2 , j, . . . the infinite number of values of n for

which that inequality (each time with a suitable choice of k) is assumed to be poss-

ible, a difference-sequence would exist whose Wj
th

,
w a

th
, 3

lh
, . . . terms were all in

absolute value ^ z
()
^ 0. This could not then be a null sequence.

&
Equal or unequal, monotone or not monotone.



10. Limiting- points and upper and lower limits. 89

10. Limiting points and upper and lower limits.

The concept of the convergence of a sequence of numbers as

defined in the two preceding paragraphs admits of another, some-

what more general mode of treatment, by which we shall at the same

time become acquainted with some other concepts, of the utmost

importance for all that comes after.

In #9, 6, we have already illustrated the fact of a given sequence

(# ) being convergent by saying that every e- neighbourhood (however

small) of f must contain all the terms of the sequence with the possible

exception of a finite number at most. There is therefore in eveiy

neighbourhood of , however small, certainly an infinite number of

terms of the sequence. For this reason, f may be called a limiting

point or point of accumulation of the given sequence. Such points

may, as we shall at once see, occur also in the case of divergent

sequences, and we define therefore quite generally:

Definition. A number shall be called a limiting point* of

a given sequence (#J if every neighbourhood of f , however small, contains

an infinite number of the terms of the sequence; or, therefore, if, for

any chosen e > 0, there is always an infinite number of indices n

for which

Remarks and examples.

1. The distinction between this defimt.on and the definition of limit given 53.
in 5JO lies, as already indicated, in the fact that here

|

rn
|
<^F needs to be ful-

filled not for every n after a certain point, but only for any infinite number

of w's, and therefore in particular for at least one n beyond every w . On the

other hand, in aceoi dance with &9, the limit of a conveigent sequence (.)
is always a limiting point of the sequence.

2. The sequence 6, 1 has the limiting; point 0; 6, 4, the limiting points

and 1. (Every number which occurs an infinite number of times in a

sequence (xn ) is ipio iacto a limiting point.) 6, 2, 7 and 11 have no limiting

point; 6, 9 and 10 have the limiting point 1.

3. We now form an example of more than illustrative significance: If p
is an integer > 2, there is obviously only a finite number of positive fractions

for which the sum of numerator and denominator =
/>, namely the fractions

- I
,
.... . Of these we suppose left out all those which are not

1 & p 1

in their lowest terms, and now consider in succession all the fractions thus

formed for p = 2, 3, 4, . . . . This gives the sequence, beginning with

W 1,2, 1,3, -1,4, 2>-J.T .....

which contains all positive rational numbers. If after each of these numbers
we insert the same number with sign changed and start with as first term,
we have in the sequence

* German: Jliiiifunffswert, Haitfungspunkt or Hdu/ungsstelle. (Tr.)
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(b) 0, 1, -1, 2, -2, *-, -A, 3, -3, J-, -3.4, -4,

A _A JL _JL JL
2

' "2*3' 3
*

4 '
' ' '

thus formed obviously all rational numbers occurring, each exactly once.

For this remarkable sequence every real number is a limiting point; for

every neighbourhood of every real number contains an infinity of rational

numbers (cf. p. 12).

4. We shall frequently make use of the principle of arrangement in order

applied in this example We therefore formulate it somewhat more generally:

Suppose that for every k of the series k = 0, 1, 2, ... a sequence

<fc) (fc) (&)
/Jfe 1 P 1Jtfn > &< ) && t * * *
(.**

~~ "| *
) &) * *

'}

is given. We can then, in many different ways, form a sequence (xn) which con-

tains every term of each of these sequences and contains it exactly once.

The proof consists simply in assigning a sequence (xn)
which fulfils what

is required. For this purpose we write the given sequences in rows one be-

low the other:

r (t) ^(fc) ..(*)

The "diagonal" of this system which joins the element x^ to the element x^
1

then contains all elements x* for which A -f n = p, and no others. They are

p 4- 1 in number. These terms we write down in succession, taking /> 0, 1, 2, . . .,

and describe each of the diagonals say from bottom to top. Thus we obtain

the sequence

a:< > x (l) x (0} z (2)
a: (1) a:

(0) x< rE<
2)

"'O
' ' 1 * * 1 *g * ' 1 ' * * * f

which evidently fulfils the requirements. (Arrangement by diagonals*).
Another arrangement frequently used is that "by squares". Here we

first write the elements x^ , a;j
p)

, ..., x^ of the p ib row, then the elements

standing vertically above x in the above system: as^""
1
*, . . ., ad*. These

groups of 2+ 1 terms are then written down in succession for p = 0, 1, 2, . . .,

and this gives, beginning with

:r
(0)

rr (1) x^ tf
(0) x (2) x (2} x (2) x XM X (Q)

^0 * ' 1 1 *0 ' 1 2 ' 2 f 2 '

the arrangement by squares**.
If some or all of the rows in the above system consist of only a finite

number of terms, or if the system consists of only a finite number of rows,
then the arrangements described above undergo slight and immediately ob
vious modifications.

* German: Anordnung nach Schrdglinien. (Tr.)
** German: Anordnung na<,h Quadraten. (Tr.)
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5. An example similar to 3. is the following: For every p^.2 there arc

exactly />- 1 numbers of the form -r-H-- for which the sum of the positive
/ ft Wl

integers k and m is equal to p. If we suppose these written down in succession,

for p = 2, 3, 4, . . .
,
we obtain the sequence

33 4 4
j5 _5 ^

'

2
'

2"' 3
' ' Y' 4' 6

'

G'
" '

We find that this sequence has the limiting points 0, 1, --,
^-, -j-,

. ..

and no others.

6. As in the case of the limit of a convergent sequence, the limiting

points of an arbitrary sequence may very well not belong to the sequence

itself. Thus in 3. the irrational numbers, and m 5. the value 0, certainly do

not belong to the sequence concerned. On the other hand, in both cases the

value -J,
for instance, is both a limiting point and a term of the sequence.

We proceed to give a theorem which is fundamental for our

purpose, due originally to B. Bolzano 10
, though its significance was first

fully recognised by K. Weierstrass u.

Theorem. Every bounded sequence possesses at least one limit- 54.

ing point.

Proof. We again determine the number in question by a suitable

nest of intervals. By hypothesis there exists an interval / which

contains all the terms of the given sequence (#tj)
To this interval

we apply the method of successive bisection and designate as /x
its

left or right half according as the left half contains an infinite
number of the terms of the sequence or not. By the same rule we

designate a definite half of /t
as /Q , and so on. Then the intervals

of the nest (/J so formed all have the property that an infinite

number of terms is contained in each, whilst to the left of their left

endpoint there is always at most a finite number of points of the

sequence. The point thus defined is obviously a limiting point;

for if e > is given arbitrarily, choose from the succession of inter-

vals Jn one, say ] }
, whose length is < K. The terms of (#M), in

number infinite, which belong to the interval / then lie ipso facto

in the e- neighbourhood of , which proves all that we require.

The similarity of the definitions of limiting point and limit (or

limiting value) in spite of the difference emphasized in 53, 1 ("every
limit is also a limiting point, but not conversely'') naturally creates

a certain relationship between them. This is elucidated by the

following

10 Rein analytischer Beweis des Lehrsatzes, dafi zwischcn je zwey Werthen,
die em entgegengesetztes Resultat gewUhren, wenigstens eine reelle Wurzel
der Gleichung liege, Prag 1817.

11 In Ins lectures.
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55. Theorem. Every limiting point of a sequence (a?n) may be re

garded as the limit of a suitable sub-sequence of (#n).

Proof. Since for every e > 0, we have, for an infinite number

of indices, \xn || < e, we have, in particular, for a suitable n = k^,

|

x
kl f

|
< 1; for a suitable n= 7e.2 > A1? we have similarly

| x^ |
< |,

and in geneial, for a suitable n = k v > v-i

1

For the subsequence (xn')
== (x^ thus picked out, we have xn'+t;,

as (xjtn |), by 26, 2, forms a null sequence.

The proof of the theorem of Bolzano-Weierstrass gives occasion

for a further most important remark: The intervals Jn of the nest

there constructed not only had the property that within them lay an

infinite number of terms of the sequence (xn ),
but as we noticed,

they had the further property that to the left of the left cndpoint of

any definite one of the intervals there lay always a finite number

only of the terms of the sequence. From this, however, it follows

at once that no further limiting point can lie to the left of the limiting

point already determined. For if we choose any real number ' < ,

we have e = ^(f f ') < 0; choosing an interval J of length < e, we

have the whole of the e- neighbourhood of the point
'

lying to the

left of the left endpoint of / and therefore containing only a finite

number of terms of the sequence. Therefore no point
'

to the left

of f can be a limiting point of the sequence (#J, and we have the

56.
% Theorem. Every bounded sequence has a well-defined least limit -

* ing point (i.
e. one farthest to the left).

If we interchange right and left in these considerations, we obtain 12

quite similarly the

57. Theorem. Every bounded sequence has a well-defined greatest limiting

point
13

(i. e. one farthest to the right).

These two special limiting points we will designate by a special

name.

58. Definition. The least limiting point of a (bounded) sequence will

be called* its lower limit or Mines inferior. Denoting it by x,

we write

Hm re = x or lim inf x = x

12 Or by reflection at the origin.
13 These theorems are again obvious except in the case in which the sequence

(xn) has an infinite number of limiting points, like e. g. the sequence 53, 5. For
among a finite number of values there must always be both a greatest and a least.

* The German text has "untere Haufungsgrenze, unterer Limes, Limes inferior",

(Tr.)
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(possibly omitting the subscript n *<x>). // p, is the greatest li-

miting point of the sequence, we write

lirn xn = p, or lim sup xn = /*
n-> n->

and call /t* the upper limit or limes superior of the sequence (#n).

We have necessarily always x^f*.
Since every e-neighbourhood of the point contains an infinite

number of terms of the sequence (zj, and since on the other hand

only a finite number of terms of the sequence can lie to the left of

the left endpoint of any such neighbourhood, K (or similarly fi)
is also

characterised by the following conditions:

Theorem. The number x (or p) is the lower (or upper) limit of 59.

the sequence (J if and only if, given an arbitrary e > 0, we have

still for an infinite number of n's,

xn < * + G
(
or > f*

~~ e
) f

but for at most a finite number 14
of n's,

xn < x e (or > fi + z).

Before we give a few examples and explanations of this theorem,

let us complete our definitions for the case of unbounded sequences.

Definitions. I. If a sequence is unbounded on the left, then we 60.

will say that oo is a limiting point of the sequence ; and if it is

unbounded on the right, we will say that -}-oo is a limiting point

of the sequence. In these cases, however large we choose the number

G > 0, the sequence has an infinity of terms 15 below G or above + G.

2. If therefore the sequence (xn) is unbounded on the left, then oo

is the least limiting point, so that we have to write

x = lim x
n
= co .

n->+oo

Similarly we have to write

fji
=. lim xn = + oo

if the sequence is unbounded on the right. In these cases, nowever

large we choose the number G > 0, we have, for an infinity of indices,

xn< G or xn>+ G -

* The German text has "obere Haufungsgrenze, oberen Limes, Limes superior".

(Tr.)
14 Or: There is an index nQ from and after which we never have xn < x e

(
>

/* + e) but beyond every index n, there is always another n for which xn < x + e

<>*-).
15 Here therefore and similarly in the following definitions the portion

of the straight line to the right of + G plays the part of an s-neighbourhood of

+ oo, the portion to the left of G that of an s-neighbourhood of oo.
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3. If, finally, the sequence is bounded on the left, but not on the

right and (besides + oo
j

has no other limiting point, then -f- oo is

not only its greatest, but at the same time its least limiting point, and

we shall therefore equate the lower limit also to -f-oo:

# = lima;n
= +00;

n->4-oo

and correspondingly we shall have to equate the upper limit to oo,

fj,
lim xn = oo

n->+co

if the sequence is bounded on the right, but not on the left, and (besides oo)

has no other limiting point. The former (latter) case occurs if and only

if, given any G > 0, the inequality

xn >G (Xn< -G)
holds for an infinite number of n

j

s, but the inequality

xn <G (x n >~G)
for at most a finite number of n's, that is to say therefore when xn -> + GO

(-00), Cf. 63, Theorem 2.

Examples and explanations.

61. 1. In consequence of the preceding definitions, every sequence of numbers
now of itself defines, absolutely uniquely, two determinate symbols * and p }

(which may now, it is true, stand for -f- oo or oo ,
and which bear the re-

lation x ~5 M to one another 16
. And the following examples show that * and n

may actually assume all finite or infinite values compatible with ihe in

equality x < |i.

2. The reader should note particularly that it is not contradictory to

theorem 59 that an infinite number of terms of the sequence should he to the

left of x or to the right of p. Thus for instance we have, for the sequence

'
^e. for the sequence -2, +-J,

~i
f +A, _

|. f
... evidently

18 We say of every real number that it is < + oo and > oo ,
and for

this reason we occasionally designate it expressly as "finite".
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K s 1 , p s=
-f- 1

>
and both to the left of and to the right of

fj,
lies an

infinite number of terms of the sequence (and between x and p lies no term of

the sequence I).
It is therefore not at all necessary that there should be only a

finite number of terms of the sequence outside the interval * .../^. Theorem
59 only asserts in fact that at most a finite number of terms of the sequence
can lie to the left of s or to the right of /w-f-e.

3. "A finite number of alterations" has no effect on the limiting points

of a sequence none, in particular, on its upper and lower limits. These
therefore represent an ultimate property of the sequence.

4. Since a sequence (xn) determines both the numbers x and /w with

complete uniqueness, and since their value, in connection with our definition, was
also enclosed by a well defined nest of intervals, we have herein a new legi-

timate means of defining (determining, giving) real numbers: a real number

shall henceforth also be regarded as "given", if it is the upper or lower limit of a

given sequence. This means of determining real numbers is evidently still more

general than the one mentioned in 41, 1 since now the sequence utilised need

not even be convergent, or be subject to any restriction whatever 17
.

As may be seen, in the light of 55, we have also the following

Theorem. The upper limit /i of the sequence (xn), /j
= lim xn , is 62.

also, in the case
JLI =j= oo, characterised by the two following conditions :

a) the limit
'

of every convergent sub-sequence (xn
f

) of (a?J is

invariably <
yw ; but there exists

b) at least one such stib-sequence, whose limit is equal to //;

and correspondingly for the lower limit.

A concept related to that of the upper and lower limits, though
one which must be sharply distinguished from it, is the concept of

upper and lower bounds of a sequence (#M), which is derived from

the following consideration: If no term of the sequence lies to the

right of //
= lima;n ,

so that for every n, #<[/*, then /i is a bound

above (8, 4) of the sequence, but one which cannot be replaced

by any smaller one; fi is therefore in this case the least bound above.

But such a least bound also exists if there is a term of the sequence

> p. For if for instance x is > /i,
then by 59 there is certainly

only a finite number of terms in the sequence which are ^> x
p , and

among these there is necessarily (8, 5) a largest one, say x . We
then have, for every n, x

n <^ x , i. e. x is a bound above of the se-

quence, but again one, which cannot be replaced by any smaller

one. Every sequence bounded on the right therefore possesses a definite

least bound above. Since, in the same way, every sequence bounded

17 Whereas therefore a nest of intervals (with rational cndpoints) was at

first to count as the only means of defining a real number, we have now
deduced quite a series of other means which we now admit as equally legi-

timate: Radix fractions, Dedekind sections, nests of intervals with arbitrary
real endpoints, convergent sequences, upper and lower limits of a sequence In

all these cases, however, we saw how at once to assign a nest ol intervals

(with rational endpoints) which encloses the given number.
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on the left must have a definite greatest bound below, we are justified

in the following

Definition. We define as the upper bound *
ofa sequence bounded

on the right the least of its bounds above (invariably determinate by our pre-

liminary remarks), and similarly as the lower bound *
of a sequence

bounded on the left the greatest of its bounds below. A sequence unbounded

on the right is said to possess the upper bound + <x>, one unbounded on the

left, to possess the lower bound oo .

The concepts of upper and lower limits are due to A. L. Cauchy (Analyse

alg<5hnque, p. 132. Paris 1821) but were first made generally known by P. du Bois-

Reymond (Allgemeine Funktionentheorie, Tubingen 1882). Both nomenclature

and notation have remained variable up to the present day. The particularly con-

venient notation hm and hm used in the text was introduced by A. Pnngsheim

(Sitzungsber. d. Akad. zu Munchen, vol. 28, p. 62. 1898), to whom the designations

of upper and lower limits are also due **.

It should be expressly pointed out again that the upper (and similarly the

lower) bound is not necessarily determined by the tail-end of the sequence. Thus

the upper bound of the sequence f
-
J

is 1, and is obviously altered if the first term of

the sequence is altered.

The previous investigations of this paragraph were carried out quite

independently of the considerations on convergence of 8 and 9, and

give us, for this very reason, a new means of attacking the problem of

convergence A of 9. It may be shewn that the knowledge of the lower

and upper limits x and /x of a sequence the knowledge, therefore, of

two numbers whose existence is a priori ensured entirely suffices to

decide whether or how the sequence converges or diverges. We have

in fact the theorems

63* Theorem 1 . The sequence (xn) is convergent if and only if its lower and

upper limits x and p are equal andfinite. If A is the common value (different,

therefore, from + GO or GO) of x and /z, then xn -> A.

Proof, a) Let x = // and their common value =- A. Then, by 59,

given e, there is at most a finite number of w's for which

* German: Obere, untere Grenze (frontier). The word "frontier" is not usual

in English writings, though sometimes found in French. The distinction between

any bounds and the narrowest bounds is emphasized chiefly by the article the in the

latter case; the upper bound and the lower bound always denoting the latter. For

fear of ambiguity, however, the word "bound" in the general sense is avoided as

much as possible in English text-books. (Tr.)
** We have omitted reference here to the untranslated term "Haufungsgrenze"

of the German text: "Die im Texte benutzte ausfuhrlichere Bezeichnung Hdufungs-

grerize soil nur den Unterschied zu der soeben defimerten unteren und oberen

Grenze starker betonen". (Tr.)
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and similarly at most a finite number of #'s for which

For every n ^ some w
,
we therefore have

A < #n < A + ,
or

|

#n A
|
< e,

i. e. the sequence is convergent and A is its limit.

b) If, conversely, lim xn A, then, given e > 0, we have, for every

n > n (s), A E < #n < A + Therefore the inequality

#n <A + (>A-e)

is satisfied for an infinite number of 's, but the inequality

xn < A (> A + )

for at most a finite number of n's. The former inequalities (with <) imply
Y. = A, the latter /z

~
A. This proves all that we required.

Theorem 2. The sequence (xn) is definitely divergent if, and only if,

its upper and lower limits are equal, but have the common value 18 + oo or

oo. In the former case it diverges to + oo, in the latter to oo.

Proof, a) If x = ft + oo (or oo ),
then this signifies, by

60, 2 and 3, that, given G > 0, we have from and after a certain w

*n > + G (<-G);

we therefore then have lim xn
= + oo ( oo).

b) If, conversely, lim xn
~ + oo, then, given G > 0, we have for

every n after a certain //
,
xn > -f G; therefore

the inequality xn < + G is satisfied for at most a finite number of

n's, whereas

the inequality xn > + G is satisfied for an infinite number of w's.

But this implies, by 60, that x + oo and ipso facto also
fj,
= + oo.

Therefore x /x + oo. And in precisely the same way we show that

if lim xn = oo
, then x ~ p = oo .

From these two theorems we at once deduce further:

Theorem 3. The sequence (xn) is indefinitely divergent if and only if

its upper and lower limits are distinct.

The content of these three theorems provides us with the following

Third main criterion for the convergence or divergence ofa sequence: 64.

The sequence (xn) behaves definitely or indefinitely, according as its

upper and lower limits are equal or distinct. In the case of definite behaviour,

it is convergent or divergent, according as the common value of the upper
and lower limits is finite or infinite.

18 In occasionally speaking of the symbols -f- and oo (which are cer-

tainly not numbers) as "values", we make use of a mere verbal licence, to which
no importance should be attached.
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The following table gives a summary of possibilities as regards the

convergence or divergence of a sequence and of the designations used

in this connection.

11. Infinite series, infinite products, and infinite

continued fractions.

A numerical sequence can be specified in the most diverse ways;
this is sufficiently evident from the examples which have been given.
In these, however, for the most part, the nth term xn was for conveni-

ence given by an explicit formula, enabling us to calculate it at once.

This is by no means the rule, however, in the applications of sequences
in all parts of mathematics. On the contrary, the sequences to be examined

generally present themselves indirectly. Besides several less important

kinds, three types especially come into consideration; of these we will

now give a brief discussion.

66. I. Infinite series. These are sequences given in the following

way. A sequence is at first assigned in any manner (usually by direct

indication of its terms), but without being intended itself to form the

object of discussion. From it a new sequence is to be deduced, whose
terms we now denote by sn , writing

so
== ao> si

= ao + a \\ ^2 ao + ai + #2>

and generally
sn "= ao + #1 -1- a2 -f . . . 4- an (n

= 0, 1, 2, . . .).

It is the sequence (sn) of these numbers which then forms the object of

investigation. For this sequence (sn) we use the symbolical expression
ft7.

a) a 4- ^ 4 a2 4 . . . 4 an 4- . . .

or more shortly

or still more shortly and more expressively:

n-O



11. Infinite series, infinite products, and infinite continued fractions. 99

and this new symbol we call an infinite series
\

the numbers sn are

called the partial sums or sections * of the series. We may therefore

state the

Definition. An infinite series is a symbol of the form 68.

QC

Zan or ~|-0 1
l+*2 + -"

W--0

or

00 + a l + a 2 + f an + '

by which is meant the sequence (sn)
of the partial sums

sn - *o + i + + <*n (n
=

0, 1, 2, . .
.)

\

Remarks and Examples.
1. The symbols

00 CO 00

fli -1 ^ "n ; -I- fli -I . . . -f tfm 4- an
M - M M j- 1

00

shall be entirely equivalent to Ean . The index n is called the index of summation.
w=-

Of course any other letter may take its place

GO CO

-27 av \
a

{} -f i -f <** +

The numbers an are the term* of the series. They need not be indexed from on-

wards. Thus the symbol
00

27 aA denotes the sequence (a lt a^ -f a 2,
a l -f a 2 + a3t . . .)

and more generally,

denotes the sequence of numbers sp , sv+l ,
sP+Zt . . . given by

sn = ap + av+ 1 + + n for n ^ P,P -I- !

Here p may be any integer
~ 0. Finally we also write quite shortly

av

when there is no ambiguity as to the values which the index of summation has to

assume, or when this is a matter of indifference.

2. For H = 0, 1, 2, . . . let an be

e
)
^ ""; = (- vn

> s) - (- i)
n
(2 + i);

=4= 0,
-

I,
~

2, ...

* German : Teilsummen oder Abschnitte.
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Sequences of real numbers.

We are then concerned with the infinite series

> J
o i

Esl + 7 +T + + "'
:

o> 1 111
1T2

+ 2^ + 3^4
+ * "

?

c) i + i + i_j-... ; d) 0+1 + 2 + 3H ;

^
r ^ *"+ l

~ * ~~
~2
+

"if

~
4~

~^ '

^(-1)^=1-1 + 1-1 + ; g) 1-3+5-7+9-.

, ^ 1 1.1.1
And we have in these simply a new and as will be seen, very con

venient symbol for the sequences (s ,
s

,
sa . . .

.)
for which sn is

b) ^TTo + oT^ + sTZ. 2
^

2 - 3
^

3 . 4
^

(n + 1 ) (* + 2)

n(n+l).
c;
= M + 1 ; d) = -2

;

(
cf- 45

>
3 and 48,1);

f) = H1 - (-l)n+1] (see footnote 19);

g) =(-l)n ("+ 1);

"' ~ a (a + 1)
T

(a + 1) (a + 2)
^ ' ' ' ^

(a + n) (a + n + 1)

/I 1 \ + /I 1_\ + _. + /._ * *

I -.
1

a a + n + 1"

3. We emphasise above all that the new symbols have no significance in them-

selves. Addition, it is true, is a well-defined operation, always possible, with regard

to two or any particular number of values, in one and only one way. The partial

sums sn therefore, however the terms an may be given, have under all circumstances

definite values. But the symbol fan has in itself no meaning whatever, not
n-O

even in a case as transparent, seemingly, as 2 a ; for the addition of an infinite number

of terms is something quite undefined, something perfectly meaningless. It must
be considered substantially as a convention that we are to take the new symbol
to mean the sequence of its partial sums.

lu Equal to 1 or 0, according as n is even or odd.
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4. The reader should take particular care to distinguish a series from a se-

quence
20

: A series is a new symbol for a sequence deducible by a definite rule from it.

5. The symbol with the sign of summation "JL can of course only be used

when the terms of the series are formed by an explicitly assigned law, or when a

particular notation is available for them. If for instance the numbers

or the numbers

are to be the terms of a series, we shall have to use the explicit symbols

and

3
'"

7
+

8
+

15
+

24
+

2(3
+

3l
+ ' ' *

and write down as many terms as necessary, till we may assume that the reader

has recognised the law of formation. For the first of these two series, this may
be expected after the term ^ : the terms arc the reciprocals of the successive prime
numbers. In the second example it will not be known even after the term }f how
to proceed : the denominators of the terms are meant to be the integers of the form

Pq - 1 (P,q=- 2, 3, 4, . . .)

in order of magnitude.

We now adopt the further convention that all expressions used to

describe the behaviour, in respect of convergence, of a sequence are to

be carried over from the sequence (sn ) to the infinite scries 2 an itself.

Thereby we obtain in particular the following

Definition. An infinite series 2 an is said to be convergent, definitely 69.

divergent or indefinitely divergent, according as the sequence of its partial

sums shows the behaviour indicated by those names. If, in the case of con-

vergence, sn -> s, then we say that s is the value or the sum of the convergent

infinite series and we write for brevity
cr

E av
= s,

v -0

00 t

so that av denotes not only the sequence (s n ) of the partial sums, as laid down
v~-0

in the preceding definition, but also the limit lim sn ,
when this exists 2i

. In

the case of definite divergence of (sn),
zve also say that the series is definitely

divergent and that it diverges to + oo or oo according as sn -> +
or -> oo. If finally, in the case of indefinite divergence of (sn), Y. and p
are the lower and upper limits of the sequence, then we also say that the series

is indefinitely divergent and oscillates between the (lower and upper) limits

Y. and
fji.

20 The additional epithet of "infinite** may be omitted when obvious.
21

Exactly as we may now, in accordance with the footnote 9 to 41, 1, write
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Remarks and examples.
1. It is at once obvious that the series 68, 2 a, b and h converge and have

for sums + 2, 1 and respectively; 2c and d are definitely divergent towards
a

+ oo ;
2 e is convergent and has for sum the number s defined by the nest 2a

(sve-i\ S2k)', 2 f, finally, oscillates between and 1, and 2g between oo and

H-oo.

2. As regards the term sum the reader must be expressly cautioned about

a possible misunderstanding: The number s is not a sum in any sense previously
in use, but only the limit of an infinite sequence of sums', the equation

27 = s or a + a
L -\ + H = s

n-O

is therefore neither more nor less than another way of writing

lim sn = s or sn > s .

It would therefore seem more appropriate to speak not of the sum but of the

limit or value of the series. However the term "sum" has remained in use

from the time when infinite series first appeared in mathematical science and
when no one had a clear notion of the underlying limiting processes or,

generally, of the "infinite" at all.

3. The number 5 is therefore no sum, but is only so named, for the sake

of brevity. In particular, calculations involving series will in no wise obey
all the rules for calculating with sums. Thus for instance in an (actual) sum
we may introduce or omit brackets in any manner, so that for instance,

1 _ i + i _ i = (i
_

i) + (i
_

i)
= i _ (i

_
i)
_ i = o.

But on the contrary

J; ( 1)"S3 1 1+1 1+
n=o

is not the same thing as

(1
-

1) + (1-1) + (1-1)+...= + + 0+
or as

1- (1-1) -(1-1) -(1-1) ==1-0-0-0

Nevertheless, calculations involving series will 'have many analogies with those

involving (actual) sums. The existence of such an analogy has, however, in

every particular case to be first established.

4. It is also, perhaps, not superfluous to remark that it is really quite
00

J
paradoxical that an infinite series, say J5o~" should possess anything at all

22

1
.

S that \< 5a<*6<---; similarly from s
2jfe

-
gTr+r

we deduce that 5 > 5 > 5 > Finallv

*2k~~ $2k-i
=
~^9TTT> if e> Positive and tending to 0. By 46, 4 and 41, 5,

we have sn
~*

(s^fc-i |

5
2Jt)'

^' ^ c ^ an<* ^j ** where these considerations

are generalised,
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capable of being called its sum. Let us interpret it in fourth- form fashion by
shillings and pence: I give some one first 1 s.

f
then 1

/2 s., then */4 s., then */8 s., and

so on. If now I never come to an end with these gifts, the question arises, whether

the fortune of the recipient must thereby necessarily increase beyond all

bounds, or not. At first one has the feeling that the former must occur; for

if I continue constantly adding something, the sum must it seems ulti-

mately exceed every value. In the case under consideration this is not so,

since for every n

sn
= 1 +

2
+ 4

-f . . . +
27j,

- 2 -
2n

remains < 2.

The total gift therefore never reaches even the amount of 2 s. And if we now, in

spite of this, say that 2! 2n
** equal to 2, then we are really only using an abbreviated

expression for the fact that the sequence of partial sums tends to the limit 2. Cf.

the well-known paradox of Achilles and the tortoise (Zenon's paradox).
5. In the case of definite divergence we can also, in an extended sense, speak

of a sum of the series, which then has the "value" +00 or -co. Thus for instance

the series

is definitely divergent, and has the "sum" hoc, because by 46, .3 its partial
2S sums

-* -f- oo . We write for short

oo I

n=l

which is only another mode of writing for

6. In the case of an indefinitely divergent series however, the word

"sum" loses all significance. If in this case litn sn x and lini sn fi (> x),

then we said, in the above, that the series oscillates between x and, //. But it

must be carefully noted (cf. 61, 2), that this refers only to a description of the

ultimate behaviour of the series. In fact the partial suras sn need not lie between

x and p. Thus, for instance, if a == 2, and for w]>0,

\ve can at once verify that

* = + + + = (- i)"jqrj (
= o, 1,2, ...)

and therefore lim sn = 1
,
lim sn = -f- 1 . But all the terms of the sequence (sn)

2a If therefore the payments discussed in 4. have the values 1 s.,
l
/ s.,

*/8 s.,
l
/4 s.,... the fortune of the recipient now does increase beyond all

bounds. It is not at first at all obvious to what it is due that in the case 4, the

sum does not exceed a modest amount, whereas in the present case it exceeds

every bound. The divergence of this series was discovered by John_J$ejyuiuUL^
and published by James Bernoulli in 1689; but seems to have been already known
to Leibniz m 1673.
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they must be taken, in a precisely similar manner to the infinite series just

considered, simply as a new symbolic form for the well-defined sequence
of the partial products

/>i
=

r, Pz -^ u\ " 2 ; ; />
= *i 2 M

; - -

However we shall later, with reference to the exceptional part played by
the number in multiplication, have to make a few special conventions

in this connection.

1. If for instance we have, for every n ^ 1, nn
- -, -

., then the infinite

product

fr> + 1 )
2 22 32 42 52 (n i- ! )

2

, n~(iT+ 2)
r

1 3 '2-4* 3 5 4 -
' ' '

n (n |- 2)
' ' '

n -- L

represents the sequence of numbers
4 2-3 2-4. 2(w |- 1)

Pi =
%',

Pz = -

4~, />3
= -

r>

- ..... />M
~~

w~:p~2
~

- -

2. The additions and remarks just made in I retain mutatis mutandis their

significance here. All further details will be considered later (Chapter VII).

in. Infinite continued fractious. Here the sequence (vw ) under examination

is formed by means of two other sequences (,, 2 . . .) and (6 ,
b lt . . ), by writing:

#0 - -

'V

and so on, xn , in the general case, being deduced from xn,_ l by substituting for

the last denominator &n_ t of .vn_, the value bn _ l -f , ", and proceeding thus ad

infitntum. For the "infinite continued fraction" so formed the notation

is fairly usual. The most natural notation for it would be

71-1

Here also a few special conventions have to be made, to take the fact into account
that in division the number again plays an exceptional part. The subject of con-
tinued fractions we shall not, however, enter into in this treatise 24

.

Of the three modes of assigning a sequence discussed above,

that by infinite series is by far the most important for all applications

in higher mathematics. We shall therefore have to deal mainly with

these. Since series merely represent sequences, the introductory

developments of 9 provide us with the points of view from which

a given series will have to be investigated: Together with the

problem A which concerns the convergence or divergence of a given

series, we have again the harder problem B
9
which relates to the sum

of a series already seen to be convergent. And for exactly the same

24 A complete account of their theory and applications is given by O. Perron,
Die Lehre von den Kettenbruchen, 2nd Edition, Leipzig 1929.
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reasons as we there explained, the second problem will generally

present itself in the form: A series 2 an is known to be convergent;
does its sum coincide with that of any other series or with the limit

of any other sequence, or does it stand in any assignable relation tb

such another sum or limit? 2B

Since the problem A is the easier and since in contradistinction

to problem B it admits of a methodical solution, we will proceed
in the first place to give our attention to this in detail.

Exercises on Chapter II 26
.

9. Prove Theorems 15 to 19 of Chapter I by the method indicated in

the footnote to 14.

10. Prove in all details that the ordered arrangement, defined by 14
and 15, of the system of all nests of intervals, obeys each of the theorems of

order 1. (For this cf. 14, 4 and 15, 2.)

11. Carry out the details of the proof required on p. 32; i, e. prove that

the four modes of combining nests of intervals, defined by 16 to 19, obey
all the fundamental laws 2.

12. For fixed 3, with 2 < 1,

13. For arbitrary positive a and /?,

(loglostt)"^^
(log nf

Vs~
*

14. Which of the two numbers (--} and f
^~2j

2
is the larger?

25 Thus e.g. the series l + l-f +-.+ . ..-J r+"* will easily be
6\ o 1 nl

shown to converge. How do we see that its sum coincides with the number *

/ \\n
given by the sequence I 1 -|

--
1 ? Similarly we may very soon convince our-

\ n J

selves of the convergence of the two series

l +l + -+... + +... and 1-.. + ..-. + -....

O
But how do we discover that if s and s' are their sums, $ = ---s' 9 and 4s' = ;r

o

(i.
e. equal to the limit in a third limiting process, which occurs in relation to

the circle; cf pp. 200 and 214)?
20 In several of the following exercises, a few of the simplest results

with regard to logarithms, and the numbers e and yi r
are Assumed known,

although they are only deduced later on in the text.
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15. Prove the following limiting relations:

r *

Ln-f-

Note that in examples a) to d) a term by term passage to the limit gives
a wrong result, whereas in e) it gives a correct result

16. Let a be >0, x
l > and the sequence (XL) x^ t

. .
.)

defined by the

convention that for n

ft)

b)'

Shew that in case a) the sequence tends monotonely to the positive root of

jc^ x a = 0; that in case b) it tends to that of x* + x a = 0, but with xn

lying alternately to the left and to the right of the limit

17. Investigate the convergence or divergence of the following sequences'

a) XQ , Xi arbitrary; for every n>2, #n = j- (&n-i H-a-a)t

b) XQ , xit . . ., xp -.t arbitrary; for every n > p

,-,+ + Xn-p
1

*i
aai * ap given constants, e. g. all equal to ~ j,

c) xQ1 xl positive; for every w>2, xn ~ \xn^ l
a?w- 3 ;

2:r .r

d) x , XL arbitrary; for every n^2, xn ^-~* '*~ 9-.

18. If in Ex. 17, c we put, in particular, # = 1, a?1
= 2, then the limit of

8

the sequence is =
"y/

4 .

19. Let alt aa ,
. . ., ap be arbitrary given positive quantities and let us

write, for n = 1, 2, . . .

^ ^ 1^ -* = sn and Vs7 = a;M .
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Show that xlt always increases monotonely and if one, say alf of the given
numbers is greater than all the others, then xn -> a as limit.

(Hint: First show that

20. Somewhat similarly to last Ex., write

n . n _ n
t
__

*
-

" = sn
' and (sn') = x/

and show that a:,/ decreases monotonely and -* ya, a.2
... ap .

21. Divide the interval a ... & (0 << a < 6) into M equal parts; let or = a
(

Xj, x9 ,
. . ., xn = b denote the points of division. Show that the geometric mean

. . . .
n -I- 1 b IL a

and the harmonic mean
-^ ^ 1

"^
log 6 log a"

22. Show that in the case of the general sequence of Ex 5

-
"(-/*)"

JJ. Set a;>^0 and let the sequence (.rn) be defined by

For what values of x is the sequence convergent? (Answer: If and only if

1

24. Let lim#n = *, hm =/*, Hm xn
'

x', \}mxn
' = f/. What may be

said of the position of the limits for the sequences

Discuss all possible cases.

25. Let (aw) be bounded and (with the possible exception of a few initial

terms) let us put

Then (an)
and (/?) have the same upper and lower limits. The same holds

if we put

. _ _.
n nlogn/ n nlogn

26. Does Theorem 43, 3 still hold if 9=0 or = + oo?

27. If the sequences (xn) and (yn) given in 43, 2 and 3 are monotone,
then so are the sequences (#') and (yn') mentioned there.
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28* If the sequence (-j~j
is monotone and &n >>0, then the sequence

having w th term

H

is also monotone.

29. We have

provided the limit on the right exists and
(a,,) and (&) are null sequences,

with
(fcn) monotone.

3O. For positive, monotone cn's,

XI H-----\~Xn t

implies
c a? + c

t
x

l H-----h cn .rn _^

provided
*

is bounded and Cn ~> -f oo . (Here Cn = c -f c
t -f- -f cn .)

\ tsn /

31. If 6n >0, and 6 + ^H---- +& = ^-> + oo, and a^-^ + oo, then

i

"
(vn+i

~ Xn) ->|
6n

implies

tftp
* I- &i * t + ' ' + ^n Vr"| __v >

*nfi *o+ir+--- + ^n J
^

32. For every sequence (#n), we invariably have

(Cf. Theorem 161.)

33. Show that if the coefficients a^ t
of the Theorem of Toeplitz 43, 5

are positive, then for tft/ery sequence (xn) the relation

lim xn ^ lim .T,/ < hm xn

holds, where a?/ = an o; + an ^ + ----hn*-



Part II.

Foundations of the theory
of infinite series.

Chapter III.

Series of positive terms.

12. The first principal criterion and the two

comparison tests.

In this chapter we shall be concerned exclusively with series, all of

whose terms are positive or at least non-negative numbers. If 2 an is

such a series, which we shall designate for brevity as a series of positive

terms, then, since an ^ 0, we have

sn
=

*n-l + <*n ^ sn~l>

so that the sequence (sn )
of partial sums is a monotone increasing sequence.

Its behaviour is therefore particularly simple, since it is then determined

by the first main criterion 46. This at once provides the following simple

Jd
fundamental

First principal criterion. A series with positive terms either con-

verges or else diverges to + <x> . And it is convergent if, and only if, its partial

sums are bounded l
.

Before indicating the first applications of this fundamental theorem,

we may facilitate its use by the following additional propositions:

Theorem 1. If p is any positive integer, then the two series

V) TO

S an and 27 an
7i n=/>

converge and diverge together
2

, and when both series converge,

1 Only boundcdness on the right (boundcdness above) comes into question,
since an increasing sequence is invariably bounded on the left.

2 More shortly: We "may" omit an arbitrary initial portion. For this

reason, it is often unnecessary to indicate the limits of summation (between which
the index n is made to vary).

110
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Proof. If sn (n
= 0, J, . . .) are the partial sums of the first series,

and sn
f

(n
~

/>,/> + 1, . .
.)

those of the second, then, for n^p,
sn ^<*o -h !+- + *-i + sn ',

whence, for ->oo, both statements follow, even without requiring
the terms an to be non-negative.

Theorem 2. If Zcn is a convergent series with positive terms, then so

is E yncny if the factors yn are any positive, but bounded, numbers 3
.

Proof. If the partial sums of 2cn remain constantly <C K and

the factors yn < y, then the partial sums of 2yn cn obviously remain

always < y K, which, by the fundamental criterion, proves the theorem.

Theorem 3. // 2dn is a divergent series with positive terms, then

so is 2dn dn , if the factors dn are any numbers with a positive
lower bound d.

Proof. If G > be arbitrarily chosen, then by hypothesis the

partial sums of 2 dn , from a suitable index onwards, are all > G:d.

From the same index onwards, the partial sums of 2dn dn are then

> G. Thus 2&n dn
is divergent.

Both theorems are substantially contained in the following

Theorem 4. // the factors an satisfy the inequalities

then the two series with positive terms 2 an and 2an an converge and

diverge together. Or otherwise expressed. Two scries with positive terms

an and 2an
'

converge and diverge together if two positive numbers

a' and a" can be\assigned for which, constantly, (or at least Irom some

n onwards)
4

ct < < <*>"
an

in particular therefore if an
'~ an or, a fortiori, if an

f * an (v. 40, 5).

Examples and Remarks. 71.

1. If K is a bound above for the pattial sums of the series 2an with

positive terms, then the sum 5 of this series is < K (v. 46, 1).

2. The geometric series. Given a> 0, and the so-called geometric series

00

n=0

wu have, if a S> 1 1
then sn > and so (sn ) is certainly not bounded; the series

8 We shall in future usually denote by cn the terms of a series assumed

convergent, and by dn those of a series assumed divergent.
4
Since, in this formulation of the hypotheses, division by an occurs, the

assumption is of course implied that an > and never =0. Corresponding

restrictions should be observed in the more frequent cases in the sequel.
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is therefore in that case divergent. But if a << 1
,
then

1 a"* 1

sn = 1 -f a + a'2 -f -f a* = ^ , (cf . p. 22, footnote 13)

and therefore we have, for every n,

. 1

so that the series is then convergent. Since further

1

l-a 1-a

forms a null sequence, by 1O, 7 and 26, 1, we at the same time obtain this

is rarely the case a simple expression for the sum of the series:

cr>

00 1 111
3. The series y] - --r-r === -

^ 4- ^r- -f ^-
-
-f- has the partial sums

J^TI n (n -f- I) I & o o*4r"

These are constantly < 1
,
the scries is therefore convergent. As it happens,

we can see at once that sn + 1
,
so that s = 1 .

/ 1 1 1
/v 4. Harmonic series. 2, 1 + ?H H---h is divergent, for,^--- --

n=sl
n 4 n

as we saw in 46, 3, its partial sums

diverge
5 to + QO. But the series

V - 1 + - l

is convergent. For its n th
partial sum is

=sl
1

.
1

. .1
t

hence

and therefore ^w is constantly < 2, so that the given series is convergent. The
sum s is not so readily obtainable in this case; we have however at any rate s < 2,

indeed certainly * < . We shall find later (see 136, 156, 189 and 210) that s =
^-.

A series of the form 2 ~~^ is called an harmonic series.

00 1 11
6. The series 2 ~ s * + 1 + 7 + o~i + nas the partial sums s

n=on\ 1 61

Si
= 2, and for n ^ 2,

6 Cf. footnote 2H, p. 103.
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Replacing each factor in the denominators by the least, namely 2, we deduce that

^ 9
1 1 _J

Tl " ^ O
"

O . O l~ * ~T" t) rt n& * & M Z . . . A

= 2 + i + + ... + 2^1
= 3 -

2
^ < 3.

The series is therefore convergent, with sum ^ 3. We shall see later that this sum

coincides with the limit e of the numbers ( 1 4-
j

.

6. As we remarked above that every series with positive terms represents

a monotone increasing sequence, so we see, conversely, that every monotone in-

creasing sequence (#, x lt . . .) may be expressed as a series with positive terms,

provided x is positive. We need only write

for, actually,

and all the an's are T 0.

From our fundamental theorem we shall in due course deduce criteria

which are more special, but are also easier to manipulate. This we shall

be enabled to do chiefly by the instrumentality of the two following "com-

parison tests'
'

*:

Comparison test ofjthe_l^_hind. 72.

Let 2cn and 2dn be two series zvith positive terms, already known to

he the first convergent, the second divergent. If the terms of a given series

2 an ,
also with positive tertns, satisfy, for every n > a certain m,

a) the condition

<*>n ^ Cfi.

then the series 2 an is also convergent. //, however, for every n> a cer-

tain m,

b) we have constantly

then the series 2 an must also diverge
6

.

Proof. By 70, 1, it suffices to establish the convergence or di-

r/5

vergence of 2 an . In case a) the convergence of this series results

oo

at once, by 70, 2, from that of 2 cn ,
because by hypothesis we may,

* German: Vergleichskriterien. (Tr.)
fl Gauss used this criterion in 1812 (v. Werke III, p. 140). It was not, how-

ever, formulated explicitly, nor was the following test of the 2nd kind, before Cauchy,

Analyse algbrique (Pans 1821).
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for every n > m, write an
*= yn cn , with yn <^l. In case bl the di-

CO

vergence results similarly
7 from that of dn , because here we may

n=tn+l

write an
= (5n dn , with $w ^> 1.

73. Comparison test of the 2nd kind.

Let cn and 2 dn again denote respectively a convergent and a

divergent series of positive terms. If the terms of a given series a
l of

positive terms satisfy, for every n^> a certain m,

a) the conditions

then the series 2an is also convergent. If, however, for every n^>
a certain m> we have

b) constantly

then 2 an must also diverge.

Proof. In case
a),

we have for every

The sequence of the ratio yn
= is, from a certain point on-

wards, monotone descending, and consequently, since all its terms are

positive, it is necessarily bounded Theorem 70, 2 now establishes the

convergence. In case b) we have, analogously,
9~^ ]> ~ , so that the
"+i a*

ratios <Jn
= increase monotonely from a point onwards. But as they

are constantly positive, they then have a positive lower bound. Theo-

rem 70, 3 now proves the divergence.

These comparison tests or criteria can of course only be useful

to us if we are already acquainted with a large number of convergent
and dhergent series with positive terms. We shall therefore have to

lay in as large a stock as possible, so to speak, of series whose con-

vergence or divergence is known. For this purpose the following

examples may form a nucleus:

7 Or else almost more concisely : In case a) every bound above
of the partial sums of 2 cn is also one for the partial sums of San \

and in

case b), the partial sums of an must ultimately exceed every bound, since

those of 2dn do so.
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Examples.

1. was seen to be divergent, 2 3 convergent. By the first comparison 74.

test, the so-called harmonic series

!,'

is therefore certainly divergent for a ^ 1, convergent for a ^ 2. It is, however,

only known in the case a ---= even integer how its sum may be related to numbers

occurring in other connections; for instance we shall see later on that for a 4

. 7T
4

the sum is ^.

2. By the preceding, the convergence or divergence of 27 - only remains

questionable in case 1 < a < 2. We may prove as follows that the Aeries converges

for every a * 1 : To obtain a bound above for any partial sum sn of the series,

choose k so large that 2k > n. Then

Here we group in one parenthesis those terms whose indices run from a power
of 2 (inclusive) to the next power of 2 (exclusive). Replace, in each pair of paren-

theses, every separate term by the first; this involves an increase ot value and we
have therefore

2 4 2A-- 1

*^ 1 +
2
+

4
+ +

(>-.)

If we now write for brevity r,^ ^, a positive number certainly < 1, since

a > 1, then we have

and since this holds for every w, the partial sums of our series are bounded, and

the series itself is convergent, q. e. d. (Cf. 77.)

All harmonic series 2 "^for
a ^ 1 are divergent, and for a > 1, convergent.

In these, with the geometric series, we have already quite a useful stock of com-

parison scries.

3. Series of the type

where a and b are given positive numbers, also diverge for a < 1, converge for

a > 1. For since

uwchave 5

and 70. 4 Droves the truth of our statement.
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Accordingly the series

11 **
1

1 + 3i + o + a
n

z
_ (2^nr

in particular, are convergent for a > 1, divergent for a 5^ 1.

r>

4. If 2 cn is a convergent series with positive terms, and we deduce from
n -o

it a new series cn
'

by omitting any (possibly an infinite number) of its terms, or

by inserting in any way terms with the value 0, thus "diluting" the series, then the

resulting "sub-series" 2 cn
f

is also convergent. For every number which is a bound

above for the partial sums of S cn is then also a bound above for those of the new
series.

In accordance with this, the series 2 -&> where p runs through all prime in-

tegral values, i. e. the series
*

1,1,1 ,1,J_,
2<x

i"
ga

i" ^a T 7<x
i H<x ~r

is certainly convergent for cc > 1 . (On the other hand, of course, we cannot

conclude without further examination that it diverges for a. < 1
!)

5. Since 2 a n is already recognised as convergent for < a -< 1
,
we infer

in particular the convergence of

V 1 -1 , _!_- 4-JLx
n^i io

~
10

"*"
ioa "*"""*" IO B "*"""'

If zl9 *$, > *> denote any "digits", i. e. if each of them be one of the

numbers 0, 1, 2, . .
., 9, and if * is any integer ^-0, then, by 7O, 2, the series

is also convergent. Thus we see that an infinite decimal fraction may also

be regarded as an infinite series. In this sense we may say that every infinite

decimal fraction is convergent and therefore represents a definite real number.
In this form of series we also have, according to our customary order of ideas,

an immediate conception of the value of its sum.

/
13. The root test and the ratio test.

We prepare the way for a more systematic use of these two

comparison tests, by the two following theorems. If we take as com-

parison series, to begin with, the geometric series 2an
, with 0<0<1,

then we immediately obtain the

75. Theorem 1. //, given a series 2 an of positive terms, we have,

from some place onwards in the series, an <^ a
n

with < a < 1, i. e.
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then the series is convergent. It however, from some place onwards*

then the series is divergent. (Cauchy's root test 8

.)

Supplementary note. For divergence it clearly suffices that }/~a^>.\

should be known to hold for infinitely many distinct values of n. For we then

also have, for those values of n, an ^ 1; and a particular partial sum sm will

consequently exceed a given (positive integral) number G, if m is chosen so

large that the inequality an > 1 occurs at least G times while < n < m . The

sequence (sn) is therefore certainly not bounded.

The second comparison test gives immediately:

Theorem 2. //, from some place onwards in the series, an > 0, and

then the series 2an is convergent. If however, from some place

onwards 9

then the series 2 an is divergent. (Cauchy's ratio test 9
.)

Remarks and Examples. 70*
n _

1. In both these theorems, it is essential for convergence that ^an and

- M+1 respectively should be ultimately lens than a fixed proper fraction a. It

does not at all suffice for convergence that we should have

V^<1, or ~^<1
for every n. An example presents itself at once in the harmonic series

for which we certainly always have

1 and also -^--l^l -- <1,

though the series diverges. It is quite essential that the root and ratio should

not approach arbitrarily near to 1,

2. If one of the sequences ( V^nJ or f
?"-!J

is convergent, say with limit
,

then theorems 1 and 2 show that the series 27 a* is convergent if <!,

8
Analyse algbrique, p. 132 seqq.

9
Analyse alggbrique, p. 134 seqq.
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n 1 -- a
divergent if a> 1. For suppose y an -> a <C 1

,
for instance; then e = - ;>

t

and m may be determined so that, for every n>w, we have

n .

< <* -1- = -- = a .

And since this value a is < 1
,
theorem 1 proves the convergence. If on the

contrary a > 1
,
then g'

every w > w', we have

contrary >!, then g' = ^ }> 0, and m' may be so determined that, for
2

And since this value a is >> 1, theorem 1 proves the divergence. The proof
in the case of the ratio is quite analogous.

If a=l, these two theorems prove nothing.

3. The reasoning just applied in 2. is obviously also legitimate when

llm "y/an or lim -^^ is < 1, in the one case, and lira yan or lim --^^ is > 1,an an

in the other. If one of these upper or lower limits is =1, or the upper limit

> 1, the lower < 1, then we can infer almost nothing as to the convergence or diver-

gence of Z an . The supplementary note to 75, 1, however, shows that, in the root

test, it is sufficient for divergence
10 that "lim ^/an > 1.

4. The remarks just made in 2. and 3. are so obvious that, in similar

cases in future, we shall not specially mention them.

5. The root and ratio tests are by far the most important tests used in

practice. For most of the series which occur in applications, the question of

convergence or divergence can be solved by their means. We append a few

examples, in which x, for the present, represents a positive number.

a) 2n a xn (a arbitrary).
Here we have

?st_(!Ll)., .*,,an \ n J f

as !Lzt__ = 1 ^---* 1 and is permanently positive (v. 38, 8). The series is
n n

therefore and this without reference to the value of a convergent if

*< 1, divergent if x> 1. For x = 1 our two tests are inconclusive; however
we then get the harmonic series, with which we are already acquainted.

2
n=o \ n / n=o

Here we have

10 Thereby the criterion obtains* a disjunctive form. San is convergent

iverj

and 42.)

n
or divergent according as limyan is <; 1 or >> 1. (Further details in 36
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Hence this series too is convergent for x < 1, divergent for x > 1, whatever be

the value of p. For x = 1 and p ^ it obviously diverges, since then w--1 ^ 1 for

every n. In the case of convergence we shall later on find for its sum the value

- *

Here we have for every x>

the series is therefore convergent for every x ^> 0. For the sum we shall

later on find the value e x .

d)/

n i^
is convergent for #>0, as I/

= >0.
M

fe

^ n n n

e) J^
1 --

, n
is convergent

11
,
as again \/an -> 0.

f) A'r convergent, because n <^;

^ convergent, because an = --L1-' <
-^ for every n>2;

divergent> becausc an

V _._ . convergent, because an << -
.^

v'n(f+n*) . n^

g) 27..-
vp (/> fixed > 0), is divergent, since by 38, 4 from some n on-

wards (log n)
p < n.

h)
2j-.
-

y^-n
is convergent, as we may at once recognize by writing the

generic term in the form

1

11 In this series, summation may only begin with n = 2, since log 1 0.

Such and similar obvious restrictions we shall in future not always expressly men-
tion; it suffices, for the question of convergence or divergence, that the indicated

terms of the series, from some place onwards, have determinate values. In all

that follows, as already agreed on p. 83, the sign "log" will always stand for the

natural logarithm, i. e. that to the base e (46 a).
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On the other hand

is divergent, because by 38,4 and Ex. 13, (log log nf < log n from some n

onwards, so that the generic term of the series is >> .

14. Series of positive, monotone decreasing terms.

Before passing from these quite elementary considerations, we
will mention a particularly simple class of series of positive terms,

namely those series whose terms an , at least from some place

onwards, form a monotone sequence. To this class belong nearly all

the series given as examples above and also the majority of those

which occur in applications. For such series we have the following:
00

77. Cauchy's theorem of convergence
12

. // an is a series whose
n=i

terms form a positive monotone decreasing sequence (an\ then it con-

verges and diverges with

^2 fc

a
9k^aJL + 2a

a + 4
4 -f Sa

s +
*=o

Preliminary remark. What is particularly remarkable in this theorem
is that it shows that a small proportion of all the terms of the series suffices

to determine the convergence or divergence of the whole series. For this

reason it is also called the condensation theorem.

It shows that the harmonic series J5J ,
for instance, is certainly diver-

gent, for it converges and diverges with the series

which is unmistakably divergent. And speaking generally, the series is

n a

inferred to converge and diverge with the series

t*

but this is a geometric series and therefore converges or diverges according
as a ;> 1 or a < 1 .

These examples also show us that the convergence or divergence of

22 fl
8 ft is often more easily ascertained than that of the series 2 an itself;

it is just in this that the value of the theorem lies.

Proof. We denote the partial sums of the given series by sn ,

those of the new series by t
k

. Then we have
(cf. 74, 2)

12 Analyse algbrique, p. 135.
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a) for n < 2
k

i. e.

b) for n > 2

. e.

Inequality a) shows that the sequence (sw)
is bounded if the sequence (t^

is bounded; inequality b), conversely, that if
(sn)

is bounded, so is
(tk ).

The two sequences are therefore either both bounded or both un-

bounded, and therefore the two series under consideration either both

converge or both diverge, q. e. d.

Before given further examples illustrating this theorem, we may
extend it somewhat 13

; for it is immediately evident that the number 2

plays no essential part in the theorem. In fact we have, more

generally, the

Theorem. // San is again a series whose terms form a positive 78.
monotone decreasing sequence (aj, and if (g , glf

.

..) is any monotone

increasing sequence of integers, then the two series

CO 00

n=0
n

*=0
k ffk

are either both convergent or both divergent, provided gk , for every

k > , fulfils the conditions

grc > gfc-i ^ and &+! Sic^ M '

fefc
~

&c-i)

in the second of which M stands for a positive constant.

Proof. Exactly as before we have

a)
for n < gk , denoting by A the sum of the terms possibly

preceding a
ffo (or otherwise 0),

^ A + (g go) aQo -f- + (fifc+i 6W agk >

i. e.

18
Schlomilch. O.: Zeitschr. f. Math. u. Phys., Vol. 18, p. 425. 1873.

14 The second condition signifies that the gaps in the sequence (&), re-

latively to the sequence of all positive integers, must not increase at too

great a rate.
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b) for n > gk

*. ^ f
fc

> (*+H-----M,,H-----K'Vt+iH-----h%)
^ fei

-
go) f , H-----H (& - fo-i)V

^ (&,
- giK, H-----h fewi &)

fc

^ tt
-t .

And from the two inequalities the statements in question follow in

the same way as before.

79* Remarks.

1. It suffices of course that the conditions in either theorem be fulfilled

from and after a definite place in the series. Therefore we may, in the extended

theorem, suppose, as a particular case,

ft _8*. =4*,..., or =[g*]

where g is any real number >> 1 and [g
H
]

the largest integer not greater
than g*. We also satisfy the requirements of this theorem by taking

& = **, =*', =*,... .

00

With gfrssh* we obtain, for instance, the theorem that the series 22 am >f

n=o

(an) is a positive monotone decreasing sequence, converges and diverges with

+ 7a
tf -f

We may also replace this last series, according to 70, 4, by the series

2. J^
7

:
- is divergent, although its terms are materially less than

those of the harmonic series; for according to our theorem, this series con-

verges and diverges with

and is therefore, by 70, 2, like the harmonic series, divergent. The divergence
of this series and of those considered in the next examples was first discovered

by N. H. Abel 16
(v. CEuvres II, p. 200).

co
1

3. 5? =
-

:
-

:
- is also still divergent, although its terms are again

=3 * 10gtl. lOg lOg tt
6,6 6

considerably less than those of the Abel's series just considered. For by
Cauchy's theorem it converges and diverges with

2*. log 2*. log (log 2*) *S*log2.1og(*log2)'

16 Niels Henrik Abel, born Aug. 5 th
, 1802, at Findoe near Stavanger (Nor-

way), died April 6 th
, 1829, at the Froland ironworks, near Arendal.
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and this, since log 2 < 1 , has larger terms than Abel's series 5? - discussed
k log k

above, and must therefore diverge.

4. Thus we may continue as long as we please. To abbreviate, let us
denote by logr x the yPle

repeated or iterated logarithm of a positive number x,
so that

Iog x = x >
Io

i
= log , loga x = log (log x), ...

logr x = log (log,..! x) .

We may also take log_t x to denote the value e x'.

These iterated logarithms only have a meaning if x is sufficiently large;
thus loga; only for a;>0, Iog2 x only for sc>l, Iog3 x only for x>e, and
so on; and we shall only place them in the denominators of the terms of our
series if they are positive, i. e. log x only for x> 1, loga x only for x>e,
Iog8 a; onlv *or x> e *

> and so on - H therefore we wish to consider the series

og*... log, n

then the summation must only begin with a suitably large index, whose
exact value, however, (by 7O, 1), does not matter. Since the logarithms increase
monotonely with w, and the terms therefore decrease monotonely, the series,
by Caucfry's theorem, converges and diverges with

^ 1

and this, since 2 <e t
must certainly diverge, if_

k log k . . . log^x
k

diverges. Since the divergence of the latter series was proved for p = 1 (and=
2), it follows by Mathematical Induction (2, V) that it diverges for

every p>l.
5. The series above considered, however, become convergent if we raise

the last factor in the denominator to a power > 1. That converges for
n a

1 ,
we already know. If we assume proved for a particular (integer) p> 1,

that the series 16

/*\ \p__~_ / ^ j\
a )

is convergent, it follows just as before that the series

n-logn ... log^n-flog^n)
01

is also convergent. For this, by the extended Cauchy's theorem 78, converges
and diverges with the series we choose gfc

= 3*

p 3*+1 -3*
* 3* log 3*... (log, 8*)"'

' For p = 1 , this reduces to the series
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As 3>, this series has its terms less than those of the series (*) (assumed
convergent), if the terms of the latter are multiplied by 2 (which by 70, 2

leaves the convergence undisturbed).
The series brought forward in the two last examples will later on render

us most valuable services as comparison series.

We will prove one more remarkable theorem on series of positive

monotone decreasing terms, although it anticipates to a certain extent

the general considerations on convergence of the following chapter

(v. 82, Theorem
1).

80. +j Theorem. // the series 2 an of positive monotone decreasing terms

is to converge, then we must have not only an > 0, but 17

n an -* .

Proof. By hypothesis, the sequence of partial sums a -f- a
\ ~H

-J- an
= sn is convergent. Having chosen e > 0, we can therefore so

choose m that for every v > m and every i ^> 1 we have

|

sv+;i sv
|
< -*

,

i. e.

If we now choose n > 2m, then, taking v = [^n], the largest integer

not greater than n, we have v^m and therefore

flv+i + av+2 H-----h < y;
a fortiori, therefore,

(n -)*< ~
and

Therefore nan +Q, q. e. d.

Remark. We must expressly emphasize the fact that the condition

n an > is only a necessary t
not a sufficient one for the convergence of our

present type of series, i. e. if n an does not tend to 0, then the series in question
is certainly divergent

18
,
while n an * does not necessarily imply anything

as to the possible convergence of the series. In point of fact, the Abel's series

^ --
diverges, although it has monotone decreasing terms and

nan -

logn

Olivier, L.: Journ. f d. reine u. angew. Math., Vol. 2, p. 84. 1827.

18
Accordingly, the harmonic series ^ ,

for instance, must divergen

because it has monotone decreasing terms, but n- - does not tend to 0.
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Exercises on Chapter III.

34. Investigate the behaviour (convergence or divergence) of a series
an ,

for which an , from some index onwards, has the following values:

_wl ^% + tt\

n" '

\ n )>

V/n + * -

35. If 2 dn diverges, so also does

-? (,B >0).

* What is tne behaviour of

36. Under the same assumption that dn diverges and dn >Q t
what is

*
the behaviour of the series ,?.,,

1 + a a

37. Suppose />n -* + oo . What is the behaviour of the series

2
Pn

n> ^'.

38. Suppose pn * -\- > ,
but with

1 < llm (pn+L pn)

What must be the upper and lower limits of the sequence () so that

converge or so that it diverge?

39. For every n > 1,

4O. The sequence of numbers

is monotone descending.

41. If 2an has positive terms and is convergent, then 2 ^an an+1 is also

convergent. Show by an example that the converse of this theorem is not
true in general, and prove that it does nevertheless hold when (an)

is monotone.

42. If S an converges, and an ^ 0, then S B also converges, and also indeed

the series 2
/T^TTTa'

for every ^ > 0.

6* (051)
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43. Every positive real number a^ is, in one and only one way, ex-

pressible in the form

&$ ^3 ^4

where an is a non-negative integer with an S n I for n > 1, subject to the con-

dition of not being n 1 for every n after a definite n . If x l is rational, and only

then, the series terminates.

44. If <; x < 1
,
then there is one and only one sequence of positive

integers (A?), with

K *i < *
2
< *3

< -
,

for which

^ L + _i_ + ... + ___J + ...

x is rational if, and only if, the kv 's are all equal after some index vr

Chapter IV.

Series of arbitrary terms.

15. The second principal criterion and the algebra of

convergent series.

00

An infinite scries an ,
whose terms are now no longer assumed

n=0

subjected to any restriction, but may be arbitrary real numbers,

was, we agreed, to be considered as essentially a new symbol for

the sequence (sn )
of its partial sums

sn
=

*o + *i H-----1- an (n
=

, 1 ,
2 , . .

.)

and we proposed to transfer immediately to the series itself the de-

signations introduced to characterise the convergence or divergence
of (sn). The case of convergence again occupies our main attention.

The second main criterion (47 51), expressing the necessary and

sufficient condition for convergence, at once provides the following

81. Fundamental theorem (First form). The necessary and sufficient

condition for the convergence of the series 2 an ts ^at, having chosen

any e > , we can assign a number nQ
= w (e) such that for every

n > n
{}
and every k ^> 1 , we have

that is to say, in the present case, that
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Starting with the second form of the main criterion, we also ob-

tain for the present fundamental theorem the following

Second form. The series 2 an converges if, and only if, given 81 a,
a perfectly arbitrary sequence (kn ) of positive integers, the sequence

of numbers

Tn=(nn+l + ffw+4 H-----f- r&M+*n)

invariably proves to be a null sequence
1
. And as before we can

extend this somewhat to the

Third form. The series J an converges if, and only if, given 81 b.
two perfectly arbitrary sequences (vj and (kn) of positive integers, of %

which the first , at least , tends to + oo , the sequence of numbers

invariably proves to be a null sequence.

R em arks.

1. A series represents essentially a new symbolic expression for se-

quences of numbers, and in particular, as we remarked, not only every series

represents a sequence, but every sequence is also expressible as a series; all

remarks and examples given on p. 84 have their parallels here.

2. The contents of the fundamental theorem may bo formulated as follows:

Given e ^> , every portion of the series, however long, provided only its initial

index be sufficiently large, must have a sum whose absolute value is <*
Or: Given f>> 0, we must be able to assign an index m so that for n^>m the

addition, to sn ,
of an arbitrary number of terms immediately consecutive to an can

only alter this partial sum by less than e.

3. Our present theorems and remarks of course also hold for series of

positive terms This the reader should verify in each separate case.

A finite part of the series, such as

4- 0K+a H-----h #*+;i

we may for brevity call a pot tion of the series, denoting it by Tv if it

begins immediately after the yth term. When required, we may further ex-

plicitly indicate the number of terms in the portion by denoting this by

Tyt i.
If we are considering an arbitrary sequence of such portions

whose initial index * + > we shall refer to it for short as a "se-

qnence of portions" of the given series. The second and third form

of the fundamental theorem may then also be expressed thus:

4
th form. The series a

n converges if, and only if, every 81 c.

"sequence of portions" of the series is a null sequence.

1 It is substantially in this form that N. H. Abel establishes the criterion

in his fundamental memoir on the Binomial series (Journ f. die reine u. angew.
Math., Vol. 1, p. 311. 1826).
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,
Remarks and examples.

1. San is thus divergent if, and only if at least one sequence of portions
can be assigned which is not a null sequence. For the harmonic series

, for instance, we have

The sequence (Tn ) is therefore certainly not a null sequence, and therefore

'
is divergent.n

1
2. For y\ 3 we have** n*

1 . 1
+ + ;

therefore TV < , so that 7V ->0, when y-*-f oo. The series therefore

converges.

3. For the sequence

n=l
we have

TM = Tn . t = (- ]

Whether k is even or odd, the expression m brackets is certainly positive and

< r . For if we take together, in pairs, each positive term and the follow-
n -+ 1

ing negative term, the sum of the two K in each case positive. If k *s even

all terms are exhausted in this manner, if k is uneven a positive term remains,
so that in either case the complete expression is seen to be positive. If, on
the other hand, we write it in the form

__ __ ___ - __
n+l \n + 2 w + 3/ Vn + 4 n + 5

all the terms are now exhausted when k is odd and a negative term remains

over if k is even, so that in both cases only subtractions from --
occur,n -{- 1

and thus the expression is <--
. As we now have

n+ I

1 " ' ' "'"'^n+1
this involves

and our series converges. We shall see later (cf. 120) that its sum coincides
with the limit of the sequence 46, 2 and has the value log 2.
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To these four separate forms of the second fundamental criterion we

may at once attach the following simple but important considerations:

Since in the second form, by putting ftw
= l, we obtain

an+1 *0, we have also (by 27, 4), an *0, i. e. we have the

Theorem 1. In a convergent series, the terms an necessarily form 82,

a null sequence: an -> 0.

That this condition is not sufficient for convergence, we know

already, from the example of the harmonic series.

If, on the other hand, we already know that a n converges,
CO

then so does the series aM + 1 + n + a + n+3 + =2? av> whose
r-n+ l

sum is usually, as the so called remainder of the series an >

denoted by rn (so that $n -\- rn
= s = the sum of the complete

series). Now we may, in the inequality

valid for n > n and every k I> 1 , allow k to increase beyond all bounds

and so obtain, for every n > n , rn <^ e . Thus we have the
CO

Theorem 2\ The remainders rn
= av of a convergent series
r=n+ l

J an
= s , i. e. the numbersn

n=o

always form a null sequence.
In 80, we saw further that if the terms of a convergent series

an (of positive terms) are monotone decreasing, then, over and

above the theorem just proved, the condition n an > must hold.

That this need no longer be the case in series of arbitrary terms is

already shewn by the series given in 81 c, 3. We can, however, show

that we must have

<i + 2 gg H-----h n an
^

n

i. e. that the terms of the sequence (n n) are small on the average.

In fact we have 2 the more general
00

Theorem 3. // an t5 a convergent series of arbitrary terms
n=0

and if (p , pl9 ...) denotes an arbitrary monotone increasing se-

quence of positive numbers tending to + oo , then the ratio

A a l
+ + Ai an ^ Q

2 L. Kronecker, Comptes rendus de 1'Ac. de Paris, Vol. 103, p. 980. 1886.

Moreover, this condition is not only necessary, but also, in a quite determinate

sense, sufficient, for the convergence of the series 27 an (cf. Ex. 58 a).
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Proof. By 44, 2, sn *s implies

a l *0 + (P*
- &) S

l 4- - ' + (ft. -/>-,) *n-i

Since--- *0 and sn s, we must therefore have
rn

W Pn

But this is precisely the relation we had to prove, as may be seen

at once by reducing to the common denominator pn and grouping in

succession the terms which contain P 9p l >->pn respectively
3

.

As regards any condition for convergence whatsoever, we have

to repeat expressly that the stipulations made therein always concern

or only need concern those terms of the series which follow

on some determinate one, whose index may moreover be replaced

by any larger index. In deciding whether a series is or is not con-

vergent, the beginning of the series, as it is usually put for brev-

ity, does not come into account. This we express more exactly

in the following
00

Theorem 4. // we deduce , from a given series 2 an > a new

00

series an
'

by omitting a finite number of terms, prefixing a finite
n=0

number of terms, or altering a finite number of terms (or doing
all three things at once] and now designating afresh the terms of the

series so produced by # ', a/, ...,
4 then either both series converge

or both diverge.

Proof. The hypotheses imply that a definite integer q
= Q exists

such that from some place onwards, say for every n > m , we have

Every portion of the one series is therefore also a portion of

the other, provided only its initial index be > m -j- | ? |
The fun-

damental theorem Sid. immediately proves the correctness of our

statement.

8 Instead of the positive pn we may (cf. 44, 3 and 5) take any se-

quence (fn) ,
for which, on the one hand, | pn \

* -f- oo and, on the other, a

constant K is assignable for which

for every n.
4 I.e. in short: ". . . by making: a finite number of alterations (27, 4) in

the sequence (an) of the terms of the scries ..."
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Remark.
It should be expressly noted that for series of arbitrary terms, compari-

son tests of every kind become entirely powerless. In particular, of two series

2 an and 2 an
f whose terms are asymptotically equal (an

~ an
f

) ,
the one may

f_ ]\n
quite well converge and the other diverge. Take for instance an = --

ft

and aJ = an -\
--

:
-

.* n
nlogn

Finally we prove the following criterion of convergence, which

appears almost unique in consequence of its particularly elementary

character, and relates to the so-called alternating series, i. e. to series

whose terms have alternately positive and negative signs:

Theorem 5. [Leibniz's rule 5
.]

An alternating series, for which

the absolute values of the terms form a monotone null sequence,
is invariably convergent.

The proof proceeds on quite similar lines to that of 81 C, 3.

For if an is the given alternating series, then an has cither the

sign ( l)
n

, for every n, or the sign ( l)
n+1

, for every n. If we

write, therefore,
|

an \

ccn , we have

Tn = T
n>k
=

[ B + 1
-

n+9 -h ccn+3 -+ + (- I)*-
1

n + J -

As the a's are monotone decreasing, we may convince ourselves

precisely as in the example referred to, that the value of the square
bracket is always positive, but less than its first term an+1 . Thus

\Tn \

= [7^1 < w + 1 ,

which, since ccn forms a null sequence by hypothesis, involves Tn *

and therefore convergence of an , by 81 C.

The algebra of convergent series.

Already in 69, 2, 3, it has been emphasized that the term "sum",
to designate the limit of the sequence of partial sums of a series,

is misleading in so far as it arouses a belief that an infinite series

may be operated on by the same rules as an (actual) sum of a definite

number of terms, e. g. of the form (a + b + c + d) > Sa7- This is not

the case, however, and the presumption is therefore fundamentally
erroneous, although some of the rules in question do actually remain
valid for infinite series. The principal laws in the algebra of (actual)
sums are (according to 2, I and

III)
the associative, distributive and

commutative laws. The following theorems arc intended to show how
far these laws remain true for infinite series.

6 Letters to /. Hermann of 26. VI. 1705 and to John Bernoulli of 10. 1. 1714.
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83. Theorem 1. The associative law holds for convergent infinite series

unrestrictedly in the following sense only:

ao + a
i + *3 H---- = s

implies

K + a
i -\

-----h rtn) + fa^+i + 0^+2 -I
-----h -f

---- = s,

if T>J , ra ,
. . . denote any increasing sequence of different integers and

the sum of the terms enclosed in each bracket is considered as one

term of a new series

where, therefore, for k = , 1, 2, ...,

^fe a*
k+l + Sc+ 2 "I

-----
1" ^'k + i

(VQ
=

1). The converse is however not always true.

Proof. The succession of partial sums S^ of 2A k
is ob-

viously the sub-sequence s
ri , sr, f ..., s r , ... of the sequence of partial

sums sn of 2an . By 41, 4, 5M therefore tends to the same limit as sn .

Remarks and examples.
00 /_ J\

1 111
1. The convergence of y\ --'- ==1 --f- %

-------- . therefore im-
n=l n ^ J 4

plies that of

00/1 IN 00 1 111vi
I

*____ L
j
_ y_*___ _ _^__-___

A__ ^

tSi \2 A - 1 2 A/
""^ (2 A - l)-2 A

""
1 -2

"^
3-4

"^
5-6

"*"
" " *

and also, similarly, of

i (^-M-f 1 M-...-I -L-JL. x
..

'"VT T/ U~T/ ==1
"2.3 4-5 (T?

and all three series have the same sum. If we denote this by s, the second117
series shows that in any case, s > r~o + o~~T

= To and tlie tnird
> tnat

1 u O*4 \u

12 ^"^12'

2. That we may introduce brackets, but may not without consideration omit

brackets occurring m a series, the following simple example shows: The series

+ + + . . . is certainly convergent and has the sum 0. If we substitute every-

where (1 1) for 0, we obtain the correct equality

(1
-

1) + (1
-

1) + . . . = 2(1 - 1) - 0.

But by omitting the brackets we obtain the divergent series

1_ 1 + 1 _ 1 + _...,
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which therefore may not be put "= 0". For we should then by again grouping
the terms, though in a slightly different way, obtain

1 (1 1) (1
-

1) ... s 1 _ - -
. . . ,

which again converges and has the sum 1. We should therefore finally deduce that

= 1 ! !
e
.

We proceed at once to complete Theorem 1 by the following
CO

Theorem 2. If the terms of a convergent infinite series 2 Ak are
*=o

themselves actual sums (say, as above, Ak a^k+1 + . . . + ^
fc+1

; 0,

!>; ^o 1)> tnen we "may" omit the brackets enclosing these if%
00

and only if, the new series 2! an thus obtained also converges.
n=0

In fact in that case, by the preceding theorem, Z an 2 Ak , while in

the case of divergence of 27 an ,
this equality would become meaningless.

A usually sufficient indication as to whether the new series converges
is provided by the following

Supplementary theorem. The new series Ean deduced fromHAk

in accordance with the preceding theorem is certainly convergent if the quantities

form a null sequence
7

.

Proof. If s be given > 0, choose m^ so large that, for every k > m
l9

we have

and choose m% so large that, for every k > m 2 , we have Ak
' < ?. If m

2

is larger than both these numbers m l and m z , then we have, for every

8 In former times before the strict foundation of the algebra of infinite

series (v. Introduction) mathematicians found themselves fairly at a loss when
confronted with paradoxes such as this. And even though the better mathematicians

instinctively avoided arguments such as the above, the lesser brains had all the

more opportunity of indulging in the boldest speculations. Thus e. g. Guido
Grandi (according to R. Reiff, v. 69, 8) believed that in the above erroneous train

of argument which turns into 1, he had obtained a mathematical proof of the

possibility of the creation of the world from nothing !

7 As Ak
-

0, this is of itself the case if the terms which constitute Ak have

one and the same sign in particular, therefore, if by omission of the brackets

we obtain a series of positive terms. Furthermore, this is always the case if the terms
an form a null sequence and if the number vk+i vk of terms grouped together in

Ak forms a bounded sequence for A 0, 1, 2, . . . (An example is afforded by the

series 2(an -f- bn) in the next Theorem 3.)
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For to each such n corresponds a perfectly definite number A, for

which

and this number k must be ^> m. In that case, however,

5n
= 5*-l + ,

fc
+ l H-----I- *n> K -

Sfc-i I ^ 4
fc

' <

And since

Sn
~ S =

(
5n
~ 5fc-l) + (

5/c-l
- 5)

we then have, effectually,

an = s > q- e.d.
n=0

Example.

is convergent; for ^ is positive, and, for every fc> 1, is

..2 1 1 1

^4^-4 2^5 2(*-l) A*1 **"

Since similarly, for every k > 1 , 211
'

')
is a null sequence. Therefore the series

is also convergent. Its sum call it S is certainly >> A^ -f- A2 > ~-
, as

1 ^

the series in its first form had only positive terms.

Theorem 3. Convergent series may be added term by term. More

precisely,

JX = s and 2*n
= t

n=-o w=o

imply both

l(. + j-+
n=o

and also without brackets I

ao + 6o + *i + &
i + a H

---- = + *
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Proof. If sn and tn are the partial sums oj the first two

series, then
(sn + O are those of the third. By 41, 9, it therefore

follows at once that (sn -f- n)
-* s + t. That the brackets may be

omitted, in the series thereby proved convergent, follows from the

supplementary theorem of Theorem 2, since (|0n |)
and (|&n |)

and

therefore also
(|
an \ + |

bn |)
are null sequences.

Theorem 4. Convergent series may in the same sense be sub-

tracted term by term. The proof is identical.

Theorem 5. Convergent series may be multiplied by a constant,

that is to say, from 2an
= s it follows, if c is an arbitrary number , that

Proof. The partial sums of the new series are csn , if those

of the old are sn . Theorem 41, 10 at once proves the statement.

This theorem, to some extent, provides the extension to infinite series

of the distributive law.

Remarks and Examples. 84.

1. These simple theorems are all the more important, as they not only allow

us to deduce the convergence of the new series from the convergence of known series,

but also set up a relation between its sum and that of the known series. They form
therefore the foundation for actual calculation in terms of infinite series.

QO /_ J)n
-1

2. The series ---- was convergent. Let s denote its sum. By
n=l n

theorem 1, the series

J__ M
/i-l 2ft/

and
-l 4k

are then also convergent with the sum s. Multiply the first by ,
in accor-

dance with Theorem 5, this giving

-2 4 kJ 2

and add this term by term to the second; we obtain

31 JL]- 1 2 ft/4 k - 3
^

4 k
n> a.

or more precisely: we obtain the convergence of the series on the left hand side

and the value ot its sum, the latter expressed in terms of the sum of the

series from which we started. The convergence was also proved directly in

connection with theorem 2; the present considerations have led however appre-

ciably further, since they afford a definite statement as to the sum of the series.

Before we examine the validity of the commutative and distributive

laws and investigate, in relation to the latter, the possibility of forming
the product of two series, we still require an important preliminary.
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16. Absolute convergence. Derangement of series.

The series 1
-3 + | 3- + proved (81 c, 3) to be convergent*

But if we replace each term by its absolute value, the series becomes

the divergent harmonic series 1 + | + | + In all that follows, it

will usually make a very material difference whether a convergent

series 2 an remains convergent or becomes divergent, when all its

terms are replaced by their absolute values. Here we have, to begin

with, the

85. o Theorem. A series 2an is certainly convergent if the series (of

positive terms') 2\ an \ converges
8

. And if Zan
= s, 2\ an \

= 5 then

l|^s.
Proof. Since

the left hand side is here certainly < e if the right hand side is,

whence by the fundamental theorem 81 our first statement at once

follows. Since further

we have also, by 41, 2,
|

s
|

< S.

By this theorem, all convergent series are divided into two classes

and 2an belongs to the one or the other according as
-2"|fl,J

is or

is not also convergent. We define

86. Definition. If a convergent series Ean is such that Z\ an \
also

converges, then the first series will be called absolutely convergent, and other-

wise non-absolutely convergent
9

.

Examples.
The series

(^ ; 5l^t2?. (>!);
-l n w-1 n =0

are absolutely convergent. Every convergent series of positive terms is of course

absolutely convergent.

The very great significance of the concept of absolute convergence
will first appear in this : the convergence of absolutely convergent series

is much more easy to recognise than that of non-absolutely convergent

series, usually, in fact, by comparison with series of positive terms,

8
Cauchy, Analyse alggbrique, p. 142. (The proof is inadequate.) On

the other hand, the example just given showed that the convergence of 2an

need not involve that of 2\an \.

9 A series is thus unon-absolutely convergent" if it converges, but

not absolutely. The designation "non-absolutely convergent" applies therefore

to convergent series only.
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so that the simple and far-reaching theorems of the preceding chapter

become available for the purpose. But this significance will imme-

diately become further visible in that we may operate on absolutely

convergent series, on the whole, precisely as we operate on (actual) sums

of a definite number of terms, whereas in the case of non-absolutely

convergent series this is in general no longer the case. The following

theorems will show this in detail.

Theorem 1. // 2cn is a convergent series of positive terms and 87.

if the terms of-a given series 2'

an , for every n > m, satisfy the condition

I

an I ^ cn or ^0 condition

then 2an is (absolutely) convergent.

Proof. By the 1 st and 2 nd
comparison tests, 72 and 73, respec-

tively, |

an |
is in either case convergent

11
,
and so therefore, by 85,

is 2 an.

In consequence of this simple theorem the complete store of con-

vergence tests relating to series of positive terms becomes available

for series of arbitrary terms. We infer at once from it the following

Theorem 2. // Zan is an absolutely convergent series and if

the factors an form a bounded sequence, then the series

is also (absolutely) convergent.

Proof. Since (|#n |)
is a bounded sequence simultaneously with

(aj, it follows from 70,2 that 2*| an |-|
an |

= 2*| #n an |

is convergent

simultaneously with 2
\

an \

.

Examples.
1. If 2 cn is any convergent series of positive terms and if the c^, 's are

bounded, then 2 ctn cn is also convergent, for then 2 cn is also absolutely con-

vergent. We may thus, for instance, instead of joining the terms c
t *!>*>

with the invariable sign +, replace this by quite arbitrary + .and signs,

in every case we get a convergent series; for the factors ^ 1 certainly form

a bounded sequence. Thus for instance the series

a ,S(-V)ca

are all convergent, where
[z],

as usual, stands for the largest integer not

greater than z.

10 In the second condition, it is tacitly assumed that, for every n>m,
an 4= and cn =(= 0.

11 The corresponding criteria of divergence,

dm
and

are of course abolished, since the divergence of J?| an |,
not necessarily of

is all that follows. Cf. Footnote 8.



138 Chapter IV. Series of arbitrary terms.

2. If San is absolutely convergent, then the series obtained from it by
an arbitrary alteration in the signs of its terms, is invariably an absolutely

convergent series.

We shall now returning thereby to the questions put aside at

the end of last section
( 15),

show that for absolutely convergent series

the fundamental laws of the algebra of (actual) sums are in all essen-

tials maintained, but that for non-absolutely convergent series this is

no longer the case.

Thus the commutative law "a-\-b = 6 -f- a" does not in general
hold for infinite series. The meaning of this statement is as follows:

If (vQ> viJ v
a , . .

.)
is any rearrangement (27,3) of the sequence (0,1,

2, . .
.)

then the series

!;<*'
=

j>j av (i.
e. with an

' = a
v

for n = 0, 1, 2, . .
.)

n=0 n=0 w n

00

will be said, for brevity, to result from the given series an by
=o

rearrangement or derangement of the latter. The value of
(actual)

sums ot a definite number of terms remains unaltered, however the

terms may be rearranged (permuted). For infinite series this is no

longer the case 1
*. This is shown already by the two series considered

as examples in 81 c, 3 and 83 Theorems 1 and 2, namely

which are evidently rearrangements of one another, but have different

sums. The sum of the first was in fact s < j, while that of the second

was s'>^; and indeed the considerations of 84, 2 showed more

precisely that s' = f s.

This circumstance of course enforces the greatest care in working
with infinite series, since we must to put it shortly take account

of the oider of the terms 18
. It is therefore all the more valuable to

know in which cases we may not need to be so careful, and for this

we have the

88. Theorem 1. For absolutely convergent series , the commutative law

holds unrestrictedly
1
*.

Proof. Let Z an be any absolutely convergent series (i. e. Z
\

an \

is convergent as well), and let Z an
' =27 av be a derangement of Z an.

M Thib was first remarked by Cauchy (Resume's analytiques, Turin 1833).
18 As 2 an merely represents the sequence (sn) t

and a rearrangement of

Zan produces a series 2 an
' with entirely different partial sums sn', these

not merely forming a rearrangement of (sn), but representing entirely diffe-

rent numbers!! it seems a priori most improbable that such a derangement
will be without effect on the behaviour of the series.

14
Lejeune-Dinchlet, G.: Abh. Akad Berlin 1837, p. 48 (Werke I, p. 319).

Here we also find the example given in the text, of the alteration in the sum
of the series by derangement.
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Then every bound for the partial sums of S
\

an \

is clearly also a bound
for the partial sums of 27

1

an
'

|.
So Z an

'

is absolutely convergent with

S an . Let sn denote the partial sums of 2 an ,
and sn

'

those of S an'. Then
if e is arbitrarily given > 0, we may first choose m, in accordance with

81, so large, that for every k ^ 1

I + I m+ 2 1 + + |
am+k I

< e

and now choose nQ so large that the numbers v
,
vl9 v 2 ,

. . .
,
vn comprise

15

at least all the numbers 0, 1, 2, . . . , m. Then the terms a
,
a lf az , >

am evidently cancel in the difference sn
'

sn , for every n > w
, and only

terms of index > m remain, that is, only (a finite number of the) terms

am\-i> am\2> Since, however, the sum of the absolute values of any
number of these terms is always < e, we have, for every n > nQ,

and therefore (sn
r

sn) is a ' null sequence. But this implies that

sn
= sn + (

sn
~ sn) nas tne same limit as sn ,

i. e. an
'

is convergent

and has the same sum as 2 an , q. c. d.

This property of absolutely convergent series is so essential that it

deserves a special designation:

Definition. A convergent infinite series which obeys the commutation 89.
law without any restriction

,
i. e. remains convergent, with unaltered sum,

under every rearrangement, shall be called unconditionally conver-

gent. A convergent series, on the other hand, whose behaviour as to con-

vergence can be altered by rearrangement, for which therefore the order of

the terms must be taken into account, shall be called conditionally con-

vergent.
The theorem proved just above can now be expressed as follows:

''Every absolutely convergent series is unconditionally convergent"

The converse of this theorem also holds, namely

Theorem 2. Every non-absolutely convergent series is only condi-

tionally convergent
16

. In other words, the validity of the equality

00

2 = *
H~0

in the case of a non-absolutely convergent series Z an depends essentially

on the order of the terms of the series on the left, and may therefore, by
a suitable rearrangement, be disturbed.

16 That such a number nQ exists follows from the very definition of derange-

ment.
16 Cf. Fundamental theorem of 44.
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Proof. It obviously suffices to prove that, by a suitable rearrange-

ment, we can deduce from 2 an a divergent series 2 an'. This we may
do as follows: The terms of the series 2 an which are ^ 0, we denote,

in the order in which they occur in 2 an , by p l9 p2> p& . . . ; those which

are < we denote similarly by ql9 <?2 , q3 ,
. . . Then 2pn and

2 qn are series of positive terms. Of these, one at least must diverge. For

if both were convergent, with sums P and Q say, then we should obviously

have, for each n,

hence 2 an would, by 70, be absolutely convergent, in contradiction with

our assumption
17

. If for instance 2pn diverges, then we consider a series

of the form

Pi +P2 + +Am 01 + Ai+l+ Am+2 + + Pm* ft + A.+l + >

in which, therefore, we have alternately a group of positive terms fol-

lowed by a single negative term. This series is clearly a rearrangement
of the given series 2 an and will, as such, be denoted by 2 an'. Now since

the series 2pn was assumed to diverge, and its partial sums are therefore

unbounded, we can, in the above, first choose m so large that p -f p 2 +
+ PmL

>l + ?i> tncn mz > m i so large that

Pi+P* "!- + Am + - +pm>
> 2 + ?i + ft

and, generally, w,, > #*_! so large that

+ Pmv
> v + ql + ft + . . . + q

(y
= 3, 4, . . .).

But 2 an
'

is then clearly divergent; for each of those partial

sums of this series whose last term is a negative term qv of 2 an ,
is by

the above > v (v
=

1, 2, . . .).
And since v may stand for every positive

integer, the partial sums of 2 an
'

are certainly not bounded, and 2 an
'

itself is divergent, q. e. d. 18
.

If 2 qn is divergent, we need only interchange 2pn and 2 qn suitably

in the above to reach the same conclusion.

17 It is not difficult to see that actually both the series Spn and qn must

diverge (cf. 44); but this is for the moment superfluous.
18 E an

'

clearly diverges to + 00.
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27 >-'- E= _i---__--- _
71=1 n * & <

convergent. Since (cf. 46, 3), for A =-
1, 2, . . . ,

Example.

... was seep to De non-absolutely

we have, for v 1, 2, . . . ,

!+l + J+---+2; >2v-

If therefore we apply to the series 2 - the procedure described above, we
ti

need only put mv
~ 2 8

", to deduce from it by rearrangement the divergent series

2
4-

4
+

^
+ ... +

28
~ 1-f 28~4r~2

~*~ ' ' ' +
2

~~
3

"*" ' * '

For the partial sums of this series terminating with the vth negative term is greater

than 2 v minus v proper fractions, i. e. certainly > v.

Theorem 88, 1 on the derangement of absolutely convergent series

may still be considerably extended. For the purpose, we first prove the

following simple

Theorem 3. IfH an is absolutely convergent, then every "sub-series"

Sa\n for which the indices An denote, therefore, any monotone increasing

sequence of different positive integers, is again convergent and in fact again

absolutely convergent.

Proof. By 74, 4, 27
1
a

Xfl \ converges with E (an). By 85, the state-

ment at once follows.

We may now extend the rearrangement theorem 88, 1 in the fol-

lowing manner. We begin by picking out a first sub-series 27 a\n of the

given absolutely convergent series 27 an , and arranging this first sub-series

in any order, denote it by

let #(0> be the sum of this series, certainly existing, by the preceding theorem,

and independent of the chosen arrangement by 88, 1 19
. We may also

allow this and the following sub-series to consist of only a finite number

of terms, i. e. not to be an infinite series at all. From the remaining

19 The letter z is intended as a reference to the rows of the following doubly
infinite array.
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terms as far as is possible we again pick out a (finite or infinite)

sub-series, and denote it, arranged in any order, by

its sum by #(1)
; from the remaining terms we again pick out a sub-series,

and so on. In this manner, we obtain, in general, an infinite series of finite

or (absolutely) convergent infinite series:

If the process was such as to give each non-zero term 20 of the scries an

a place in one (and only one) of these sub-series, then the series

or, that is to say, the series

may in a further extended sense be called a rearrangement of the given
series 21

. For this again we have, corresponding to theorem 88, 1 :

Theorem 4. An absolutely convergent series "may" also in the ex-

tended sense be rearranged. More precisely: The series

* + *d> + *<2) +

is again (absolutely) convergent, and its sum is equal to that of an.

Proof. If e > be given, first determine m so that, for every k ^ 1
,

the remainder
|

am+1 \
+

|
am+2 \

+ . . . < e, and then choose n so that

in the first nQ + I sub-series 2 an^\ v = 0, 1, . . . , # , the terms aQ ,
aly a2 ,

. . . , am of the given series certainly appear. If n > nQ and > m, then

the series

. . . + *0> - sn

20 The introduction or omission of zero terms in 27 an or in the partial sums
is obviously without influence on the present considerations.

21 Put into the first sub-series, besides a and a jt all those terms ant for in-

stance, in any order, whose indices n are divisible by 2; into the next all those of
the remaining terms whose indices are divisible by 3; into the next again all re-

maining terms whose indices are divisible by 6; and so on, using the prime numbers
7, 11, 13 ... as divisors.
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contains only terms an whose indices are > m. Hence, by the choice

of m, the absolute value of this difference is < e, and tends therefore,

with increasing , to zero, so that

lim (*(> + *W + . . . + * (n)
)
= lim sn = s = 27 an .

n >*)

Moreover, the convergence of 27#W which is thus established is also

absolute, since for each n we have obviously

The converse of this theorem is, of course, even less valid than

that of theorem 83, 1, without further consideration. Given, for k -
0,

1
, 2, . . . , the convergent series

*<*> = 27*n<*>f

if the aggregate of terms anW be arranged in any way as a sequence (cf.
OC

53, 4), then 27 an need not at all converge, even should 27zW be con-
k-o

vergent. To show this is possible we have only to take, for each of the

series z^k\ the series 1 1 -|- + + + - . And even if 2 an con-

verges, the sum need not be equal to that of 2 zW.

A general discussion of the question under what circumstances this

converse of our theorem does hold, belongs to the theory of double series.

However, we may even here prove the following case, which is a par-

ticularly important one for applications :

Main rearrangement theorem 22
. We suppose given an infinite 90.

number of convergent series

= a (o) + fll
<o) + . . . + an<> + . . .

*0> = *bO> + *!<'>+... + ,<!>+...

(A)
<*>

and assume that these series are not only absolutely convergent, but satisfy

the stricter condition that, if we write

27| *<*>
|

= W (*
= 0, 1, 2, . . . , fixed),

=o

the series

22 Also called Cauchy's Double Series Theorem.
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is convergent. Then the terms standing vertically one below the other also

form (absolutely) convergent series; and if we write 23

=& (
= 0, 1,2,... .fixed),

=o

then ZsW is again absolutely convergent and we have

= J7*<*>;

in other words, the two series formed by the sums of the rows and by the sums

of the columns, respectively, are both absolutely convergent and have the same

sum.

The proof is extremely simple: Suppose all the terms in (A) arranged

anyhow (in accordance with 53, 4) in a simple sequence, and denoted,

as terms of this sequence, by a ,
al9 a2 , . . . . Then H an is absolutely con-

vergent. For every partial sum of 27
\
an \

, for instance

must still be ^ o-, since by choosing k so large that the terms a
,
a l9 a2 ,

. . . ,
am all occur in the k first rows of (A), we certainly have

i. e. fg a. A different arrangement of the terms anW in (A) as a simple

sequence a ', a^, a%, . . . would produce a series 2 an
'

which would be

a mere rearrangement of 2 an ,
and therefore again absolutely convergent,

with the same sum. Let this invariable sum be denoted by s.

Now both 2zW and also 2sW are rearrangements of an = s,

in the extended sense of theorem 4, just proved. Therefore these two

series are both absolutely convergent and have the same sum s, q. e. d.

This rearrangement theorem may be expressed in somewhat more

general form as follows:

Supplementary theorem. If M is a countable set of numbers

and there exists a constant K such that the sum of the absolute values

of any finite number of the elements of M remains invariably < K,

23 Here the letter s is intended as a reference to the columns of (A).
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then we can assert the absolute convergence with the invariable

sum s of every series 2A k whose terms A k represent sums of a

finite or infinite number of elements of M (provided each element

of M occurs in one and only one of the terms A
1(). And this remains

true if we allow a repetition of the elements of M, provided each ele-

ment occurs exactly the same number of times in all the A k's taken

together, as in M itself**.

Examples of these important theorems will occur at several crucial

points in what follows. Here we may give one or two obvious applications:

1. Let 2an =s be an absolutely convergent series and put

t_+4a_a + ... + 2"aM = a/ (w = 0, 1, 2, . . .)

Then we also have 2an
' = s. The proof results immediately, by the previous

rearrangement theorem, from the consideration of the array

aa= 0+ +4-+4

2. Similarly, from

the array

1-2"
7
"

2.3"
1
"

3-4"

+ 2 2^ +V4-

>= o +8^-

-.~ (v. 68, 2h), and

we deduce the equality, valid for any absolutely convergent series

2-3

ao + 2

3 4

8. The preceding rearrangement theorem evidently holds whenever every

***** is S ^ and at least one ^ tlie two series 2zW and ^s("> converges;
it holds further whenever it is possible to construct a second array (A') similar

to (A), whose terms are positive and > the absolute values of the corresponding
terms in (A), and such that, in (A'), either the sums of the rows or the sums
of the columns form convergent series.

24 An infinite number of repetitions of a term different from zero is ex-

cluded from the outset, since otherwise the constant K of the theorem would

certainly not exist. And the number can produce no disturbance.
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17. Multiplication of infinite series.

We finally enquire to what extent the distributive law "a (b -f- c)= a b + c" holds for infinite series. That a convergent infinite series

2an may be multiplied term by term by a constant, we have already
seen in 83, 5. In the simplest form

the distributive law is therefore valid for all convergent series. In the

case of actual sums, it at once follows further, from the distributive

law, that (a-\-fy(c-\-d)=^ac-\-ad -\-bc-\-bd, and more generally, that

(a + a
l +.-- +

or in short, that

/i=0
^<=o, . ..,m

where the notation on the right is intended to convey that the indices

A and
ju, assume, independently of one another, all the integral values

from to I and to m respectively, and that all
(I -f- 1) (m -f- 1) such

products a^ b^ are to be added, in any order we please.

Does this result continue to hold for infinite series? If 2an ~s
and 2bn

= t are two given convergent infinite series of sum s and t>

is it possible to multiply out in the product

(00

v / GO \

2*i}-( 2WA=0 / \/,=0 /

in any similar way, and in what sense is this possible? More precisely:

Let the products

a* &/i

be denoted, in any order we choose 25
, by , p^ p29 . . . ; is the series

2pn convergent, and if convergent, does it have the sum s t ? Here

again absolutely convergent series behave like actual sums. In fact we

have the

Theorem 26
. If the series Zan = s and Zbn = t are absolutely

convergent^ then the series Spn also converges absolutely and has the

sum s t.

25 We suppose, for this, that the products a\ b^ are written down exactly in

the same way as n
(t) or aM for 53, 4 and 90, to form a doubly infinite array (A).

We can then suppose in particular the arrangement by diagonals or the arrangement

by squares carried out for these products.
26

Cauchy: Analyse alglbrique, p. 147.
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Proof. 1. Let n be a definite integer > and let m be the

largest of the indices i and
JLL

of the products a\ b^ which have been

denoted by pQ , p , ..., pn - Evidently

i.e. < a r, if (7 and T denote the sums of the series 2,
\
a^

\

and J?
|

&
;<

|

.

The partial sums of Jfj^n |

are therefore bounded and 2pn is ab-

solutely convergent.

2. The absolute convergence of 2 pn having been proved, we need

only determine its sum call it S for a special arrangement
of the products a^ b^, for instance the arrangement "by squares". For

this we have, however, obviously,

o bo
=

Po> K + i)(*o + 6i)
=

Po + Pi + P* + PB

and in general

an equality which, by 41,10 and 4, becomes, when n *>oo,

which was the relation to be proved.

Remarks and Examples.
1. As remarked, for the validity of the relation 2 pn st under the hypo-

theses made, it is perfectly indifferent in what manner the products a
a
b are

" "

enumerated, that is to say arranged in order as a simple sequence (pn). The

arrangement by diagonals is particularly important in applications, and leads,
if the products in each diagonal are grouped together (83, 1), to the following
relation :

n=0

n=o

writing for brevity a bn + &i &_! H- 2
&n-a + + <*n *> = cn . The validity of

this relation is therefore secured when both series on the left converge ab-

solutely.

We are also led to this form or arrangement of the ''product series 11

,

sometimes called Catichy's product of the two given series27
, by the conside-

ration of products of rational integral functions and those of power series, which
latter will be discussed in the following chapter: If in fact, we form the pro-
duct of two rational integral functions (polynomials)

and b -f- 6X x H- bv x
2

-\
-----h bm xm

Cauchy loc. cit. examines the product series in this special form only.
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and arrange the result again in order of increasing powers of x, then the first

terms are

o bo+ (ao *>i + a
i
5o) *+ (

& + a
i
bi + a &o) *

a
H----

so that we have the numbers c
,
clt c2 ,

-
,
above introduced, appearing as

coefficients. It is precisely due to this connection that Cauchy*s product of two
series occurs particularly often.

2. Since 2xn is convergent for |#|<1, we have for such an x

n=0 n==0 M

iC
n

3. The series J? r, cf. 76, 5c and 85, is absolutely convergent for
nl

every real number x. If therefore x^ and a;a are any two real numbers, we
may form the product of

according to Cauchy's rule. We get

Therefore we have for arbitrary xt
and a;a putting o^ + a?f

= arf :

v fL. v f = ffl
n-O W ^

"

n-0 M! n= w!
*

By our theorem, we have now established that the distributive

law may at any rate be extended without change to infinite series,

and this, moreover, with an arbitrary arrangement of the products

aA bp , if both the two given series are absolutely convergent. It is

conceivable that this restricting assumption is unnecessarily strict. On
the other hand, the following example, given already by Cauchy

2*

for the purpose, shows that some restriction is necessary, or the theorem

no longer holds: Let

so that 2an
and 2bn are convergent in accordance with Leibnitz's

rule 82, 5. Then c = c == 0, and for n ^> 2,

+

Replacing each root in the denominators by the largest, Vn 1 ,

it follows that, for n ^ 2,

and therefore the product series 2cn
~ 2 (aQ bn + a

1
6W-1 + +

18
Analyse alg^brique, p. 149.
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is certainly divergent in accordance with 82, 1. This is therefore a

fortiori the case when we omit the brackets.

Nevertheless, the question remains open, whether we may not

be able, under less stringent conditions than that of absolute conver-

gence of both the series 2 an and 2 b
n , to prove the convergence of

the product series 2 pn at least for some special arrangement of

the terms a^b^y for instance as in the series 2 cn above. To this

question we shall return in 45.

Exercises on Chapter IV,

45. Examine the convergence or divergence of the series 2(--l)n an ,

for which an , from some n onwards, has one of the following values:1111 1 11
, (-1)*

r
"

H *

an + b' Jn
'

log n 1

log log
' n >

in
y n

r

46. What alterations have to be made in the answers to Ex. 34, when
the behaviour of ( l)

n an is required?
47. Let

for 2** <n<2 2 *-fl
,^

(*
= 0, 1, 2, ...)

i
- - ~Q Z..LI ^ -XV'>Z--L$> ** iii/

[1 for

Then the series
00 fV

K~2 nlogn

Converges. What is the behaviour of ^~ ?^^ n
co 2 n 4- 1

48. ( I)"""
1

-

/ , j\
is convergent and has the sum 1.

49. Let the partial sums of the series 1 ^- -f- -\
... be

& o 4

denoted by sn ,
and its sum by s, and put -| -f- -f- ^

= xn . Show

that, for every n,

oo / J\n-l
so that lim xn = = s (= log 2).

50. Let s(= log 2) denote as above the sum of the series 1 o" + "o h

Prove the following relations:

x 1 1 1
,

* 1 !
,

l l l
,

1 x
i oa> ^s-^s-S-ii+v-Ig-u 4"

-g""5
10 8;

W 1
l 1

4 .

1 . 1 -1 + 1 - 1 - !
4.

l

*> 1 ~2 4^3 6 8^5 10 12
+

""2

v ,
1 1 1

,
1 * 1

, ,
2

i oC
)

1 -2""4"h 5
+ 7""8~10 + + = o log 2;

<5 4 O / O L\J O

d) 1+
j +

l

J_J + ++ 1,0*6;
o o z 4 J

e) I-4 +J-!- J + + + ,

o u 6 4 o
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51. With reference to the last two questions, show generally that the

series remains convergent when we alternately write throughout p positive terms

1 P
and q negative ones, and that the sum is then = log 2 + ~ log.

J q

52. The harmonic series l-f.---f--{- T -{-
... remains divergent, when the

i O 4

signs are so changed that we have throughout alternately p positive terms
and q negative ones, with p ^ q . If p = q the resulting series is convergent.

oo /
iyi-i

53. Consider the rearrangements of the series ^ == exactly corre-

n=l \/
w

( l)
w~*

sponding to those of the series 5] in Ex. 50 and 61. When is the

resulting series convergent and when is it not? When is the sum expressible
in terms of the sum of the given series?

54. Consider, with the series J^pr, the same alterations in signs as in

v^
Ex. 52, for the series JJJ . When is a convergent series obtained?

55. For which values of tx do the following two series converge:

1 _J. +I_l+i_+-...,
2 3 4 5 6"

1+.L_!+ lH.!_
3
a

2 a 5 a 7
a 4

56. The sum of the series 1
1 1

lies between -- and 1,
2 a 3

a 4" <*

for every a > 0.

57. Given

show that

, J_, 1
,

1 +-I+. .-5sT
5a
f

^a
" t- ip -r

13a~ T ""

3
'

_ , , ___-4.J. ~
2a 4a

~ +
52+ 7* 8a lO2 "^^" "*"~9

S '

(With the latter equality cf. Ex. 50 c.)

58. Tn every (conditionally) convergent series the terms can be grouped
together in such a manner that the new series converges absolutely.

58 a. The following complement to KroneckeSs theorem 82, 3 holds good:
If a series 2 an is so constituted that for every positive monotone sequence (/>)

tending to -f oo ,
the quotients

Pn

tend to 0, then S an is convergent. In this sense, therefore, Kronecker's condition

is necessary and sufficient for the convergence.
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59. If from a given series 2an ,
with the partial sums sn> we deduce,

by association of terms, a new series 2 Ak with the partial sums S&, then

the inequalities

lim sn ^ lirn S^ ^ lirn Sk ^ lim sn

invariably hold good, whether 2 an converges or not.

60. If Sam ,
with the partial sums sn , diverges indefinitely, and s' is a

value of accumulation (5) of the sequence (sn), then we can always deduce

from 2aA , by association of terms, a series 2 A^ converging to s' as sum.

61. If ~0n with the partial sums sn , diverges indefinitely, and -*(),

then every point of the stretch between the upper and lower limits of sn is a

point of accumulation of this sequence.

62* If every sub-series of 2 an converges, then the series itself is absolutely

convergent

63. Cauchy's product of the two definitely divergent series

/8V /3V
a-

and

that of the two series 3 + 27 3n and - 2 + 27 2W is 6-fO-f-O + O-f-....
-l n-l

In both cases it is absolutely convergent. How can this paradox be explained?

Chapter V.

Power series.

18. The radius of convergence.

The terms of the series which we have examined so far were,
for the most part, determinate numbers. In such cases the series

may be more particularly characterised as having constant terms. This

however was not everywhere the case. In the geometric series a
n

,

for instance, the terms only become determinate when the value of a

is assigned. Our investigation of the behaviour of this series did not,

consequently, terminate with a mere statement of convergence or

divergence, the result was: 2a n
converges if\a\ < 1, but diverges

t/|#|^>l. The solution of the question of convergence or divergence
thus depends, as do the terms of the series themselves, on the value

of a quantity left undetermined a variable. Series which have their

terms, and accordingly their convergence or divergence, depending
on a variable quantity (such a quantity will usually be denoted by x
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and we shall speak of series of variable terms 1
)

will be investigated

later in more detail. For the moment we propose only to consider

series of the above type whose generic term, instead of being a

number an , has the form

*"

i. e. we shall consider series of the form 2

+ a,x + a,x* + ... + *" + ... ^ *".
n^O

Such series are called power series (in x),
and the numbers an are

their coefficients. For such power series, we arc thus not concerned

simply with the alternatives "convergent" or "divergent", but with the

more precise question: For what values of x is the series convergent,
and for what values divergent?

92. Simple examples have already come before us:

1. The geometric series 2 x n is convergent for |as|<l, divergent for

|
x

| ^ 1 . For
|

x
|
<1 1, indeed, we have absolute convergence.

x n

2. J? - is (absolutely) convergent for every real x; likewise the series

8. JjjJ ,
because <

|
a;

|

n
,

is absolutely convergent for
|
a:

[ < 1 .

For
|

x
|
> 1

,
the series is divergent, because in that case (by 88, 1 and 40),

x n
.

_j_ oo . For x = 1 it reduces to the divergent harmonic series, and for
n

x = 1,
to a series convergent by 82, Theorem 5.

oo
y.n

4. ~~2~on
*s (absolutely) convergent for ||^2, but divergent for

5. X l*
n

a;
n is convergent for # = 0; but for n;^ value of x ^-- it is

n=l

divergent, for if x
={= 0, |

x
\

-+> -f oo and a fortiori
\

n* x n
\

-* -foo ,
so that

(by 82, Theorem 1) there can be no question of the series converging.

For x = 0, obviously every power series 2an x
n

is convergent,

whatever be the values of the coefficients an . The general case is

evidently that in which the power series converges for some values

of x, and diverges for others, while, in special instances, the two

extreme cases may occur, in which the series converges for every x

(Example 2),
or for none =|= (Example 5).

1 The harmonic series ^ ^ is also of this type: it converges for ?> 1,

diverges for x < 1.

* We here write, for convenience, x = 1, even when x 0.
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In the first of these special cases we say that the power series

is everywhere convergent, in the second leaving out of account the

self-evident point of convergence x = we say that it is nowhere

convergent. In general, the totality of points x for which the given

series 2an
x
n

converges is called its region of convergence.

In 2. this consists therefore of the whole axis of x, in 5. of the

single point 0; in the other examples, it consists of a stretch bisected

at the origin, sometimes with, sometimes without one or both of

its endpoints.

In this we may see already the behaviour of the series in the

most general case, for we have the

Fundamental theorem. If 2an
x
n

is any power series which 93.

does not merely converge everywhere or nowhere, then a definite positive

number r exists such that 2an x
n

converges for every \

x
\
< r (indeed

absolutely), but diverges for every \

x
\

> r. The number r is called the

radius of convergence, or for short the radius, and the stretch

r . . . + r the interval of convergence, of the given power series 3
.

Fig. 2 schematizes the typical situation established by this theorem.

dw -r U + r dor.

Fig 2.

The proof is based on the following two theorems.

Theorem 1. // a given power series 2an x
n

converges for x = #

(XQ 4= 0), or even if the sequence (an x
n
) of its terms is only bounded

there, then 2 an x
n

is absolutely convergent for every x = x
l nearer

to the origin than xQ9 i. e. with \x{ \
< \XQ \.

Proof. If
|

an xQ
n

\
< K, say, then

where # = the proper fraction . By. 87, 1 the result stated followsxo

immediately.
* Theorem 2. // the given power series 2 an x

n
diverges for x = x

then it diverges a fortiori for every x = x further from the origin

than x , i. e. with
|

*
|
>

|

*
1

3 Jn the two extreme cases we may also say that the radius of conver-

gence of the series is r = or r:=-f-oo, respectively.
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Proof. If the series were convergent for x
lt

then by theorem 1

it would have to converge for the point a?
,

nearer than aJ
A ,

which contradicts the hypothesis.

Proof of the fundamental theorem. By hypothesis, there

exists at least one point of divergence, and one point of convergence

4= 0. We can therefore choose a positive number XQ nearer than

the point of convergence and a positive number y further from

than the point of divergence. By theorems 1 and 2, the series 2 an x
n

is convergent for x = x
Q , divergent for ce =

;y ,
and therefore we

certainly have XQ < y . To the interval 7o
=

^o !Xo>
we aPPty ^e

method of successive bisection: we denote by /A
the left or the right

half of 7i according as 2 an x
n

diverges or converges at the middle

point of / . By the same rule, we designate a particular half of 7*

by 7a > anc* so on - The intervals of this nest (7n)
all have the property

that 2 an x
n

converges at their left end point (say x
n)

but diverges at

their right end point (say yj. The number r (necessarily positive),

which this nest determines, is the number required for the theorem.

In fact, if x otf is any real number for which
|

a/
1
< r (equality

excluded), then we have
|

x'
\
< x

k ,
for a sufficiently large k, i. e. such

that the length of J^ is less than r
|

a/
1

. By theorem 1, xf is a

point of convergence at the same time as x
k is; and indeed at of we

have absolute convergence. If, on the contrary, x" is a number for

which
|

"
|
> r, then

|

x?
\
> ytn , provided m is large enough for the

length of 7m to be less than
|

x"
\

r . By theorem 2, x? is then a

point of divergence at the same time as ym is. This proves all that

was desired.

This proof, which appeals to the mind by its extreme simplicity,

is yet not entirely satisfying, in that it merely establishes the existence

of the radius of convergence without supplying any information as to

its magnitude. We will therefore prove the fundamental theorem by
an alternative method, this time obtaining the magnitude of the

radius itself. For this purpose, we proceed quite independently
of our previous theorem, to prove the moie precise

14. Theorem 4
: // the power series 2 an x

n
is given and

JLI
denotes

the upper limit of the (positive) sequence of numbers

i.

4
Cauchy: Analyse alge'brique p. 151. This beautiful theorem remained

for the time entirely unnoticed, till J. Hadamard (J.
de math, pures et appl., (4)

Vol. 8, p. 107. 1892) rediscovered it and made use of it in important appli

cations.
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then

a) if p,
= 0, the power series is everywhere convergent;

b) */ p.
=r

-{- oo, the power series is nowhere convergent;

c) if < p < + oo , Me? power series

converges absolutely for every |#|< >

but diverges for every \

x
\
> .

Thus with the suitable interpretation,

s tf& radius of convergence of the given power series*.

Proof. If in case a) x is an arbitrary real number 4* 0,

-
r > and therefore by 59,

2
1

#
1

r

for every n > m. By 87, 1, this shows that 2 an xQ
n

converges ab-

solutely, which proves a).

If conversely 2 an x
n
converges for x = x^ 4s 0, then the sequence

(an x l

n
) and, a fortiori, the sequence \V\an x^\), are bounded. If

n .
n j

y\ an x" |
< K 9 say, for every , then V| an |

<C i *-r
= /C, for every n>

L e. \V |

an | J
is a bounded sequence. In case b), in which the sequence

is assumed unbounded above, the series therefore cannot converge for

any x =fc 0.

Finally, in case
c),

if #' is any number for which
|

d
\
< ,

then choose a positive Q for which
|o;'| < Q < , and so > p,. By

the definition of p, we must have, for every n > some n ,

Via I < and consequently I/I atf n
\
< < 1.

I nl
g

1 i n i g

By 75,1, 2 an vd
n

is therefore (absolutely) convergent.

)
For convenience of exposition, we here exceptionally write - = -f oo ,

: 0. Furthermore it should be noticed that is not for instance
-f oo lim V| an |

_ i

the same as lim ,
as the student should verify by means of obvious

i/KT
examples. (Cf. Ex. 24.)
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On the other hand, if
|

x"
\
> , so that -^ < ^, then we must

have, for an infinite number of w's (again and again; v. 59)

By 82, Theorem 1, therefore the series certainly cannot con-

verge
6

.

Thus the theorem is proved in all its parts.

Remarks and Examples.

1. Since the three parts a), b), c) of the preceding theorem are mutually
exclusive, it follows that the conditions are not merely sufficient, but also

necessary for the corresponding behaviour of an x
n

.

n.
2. In particular, we have y |

an \
> for any power series everywhere

convergent. For by the remark above, ^ = 0, and since we are concerned
with a sequence of positive numbers, these certainly have their lower limit

x^>fi. Since on the other hand must be < /* ,
we must have #=^ = 0.

By 63 the sequence (|/ |
an \ j

is therefore convergent with limit

Thus for instance

--0, or ywT->OO,n '

x*
because 5? converges everywhere. (Cf. 43, Example 4.)

Tjl

3. Theorems 93 and 94 give us no information as to the behaviour of

the series for x= + r and for x = r; this differs from case to case: x tl

,

xn xn
y. , y\ - all have the radius 1 . The first converges neither at 1 nor at

n n*

1 , the second only at one of the two, the third at both.

4 Further examples of power series will occur continually in the course of

the next paragraphs, so that we need not indicate any particular examples here.

We saw that the convergence of a power series in the interior of

the interval of convergence is, indeed, absolute convergence. We
proceed to show further that the convergence is so pronounced as to

be undisturbed by the introduction of decidedly large factors. We have

in fact the
CO

95. Theorem. // an x
n

has the radius of convergence r, then the
n=o

GO
^

00

power series ^nan
xn" 1

t or what is the same thing,
n=0 n=0

has precisely the same radius.

6 Case c) may be dealt with somewhat more concisely: If

linTv^l n I
=

/x, then lim $\ ^T*n~l - lim V^nl '

I
*

I

=- M '

I
*

I

(for what reason?). By 76, 3 the series is therefore absolutely convergent for

fi |
x

|
< 1, and certainly divergent for /x |

x
\
> 1, q. e. d.
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Proof. This theorem may be immediately inferred from Theo-

rem 94. For if we write nan
= an', then

n- n, n.

V
I

'

I

= V M -V.
Since (by 38, 5), ty~n+l> it follows at once from Theorem 62 that

the sequences (y'
I a

'

|)
and

(ty
I a M have the same upper limits. For

if we pick out the same sub-sequences from both, as corresponding

terms only differ by the factor y^, which *
-)- 1, these sub-sequences

either both diverge or both converge to the same limit 7
.

Examples.
1. By repeated application of the theorem, we deduce that the series

Snan xn -*, 2n(n-V)an xn ~*, ...,2n(n-l) (n k -f-

or, what is exactly the same thing-, the series

all have the same radius as 2an xn ,
whatever positive integer be chosen

for h.

2. The same of course is true of the series

n* +a
? 2>

Thus far we have only considered power series of the form

an x
n

. These considerations are scarcely altered, if we take the more

general type

n=0

Putting x x = x* , we see that these series converge absolutely foi

but diverge for
|
x XQ \

> r , if r again denotes the number deter-

mined by Theorem 94. The region of convergence of this series

except in the extreme cases, in which it converges only for

x = x , or for every x, is therefore a stretch bisected by the

point # ,
sometimes with, sometimes without one or both of its end-

points. Except for this displacement of the interval of convergence,
all our considerations remain valid. The point # will for brevity be

called the centre of the series. If XQ = , we have the previous form

of the series again.

7 Alternative proof. By 76, 5a or 91, 2, the series 2nd*-* is

convergent for every |
&

\
< 1. If

|
x

\ <^ r, and Q is so chosen that

I #o I "^ 6 "^ r
*

then 2an Q
n

converges, (an g
n

) is therefore bounded, say

We infer that
K 6

e

[
I , proves the convergence.

which, since
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In the interval of convergence, the power series S an (x x
)
n

has a definite sum $, for each x, and usually of course a different sum
for a different x. In order to express this dependence on x, we
write

and say that the power series defines, in its interval of convergence, a

function of x.

The foundations of the theory of real functions, that is to say the

foundations of the differential and integral calculus, we assume, as remarked

in the Introduction, to be already known to the reader in all that is essential.

It is only to avoid any possible uncertainty as to the extent of the facts

required from these domains, that we shall rapidly indicate, in the fol-

lowing section, all the definitions and theorems which we shall need,

without going into more exact elucidations or proofs.

19. Functions of a real variable.

Definition 1 (Function). If to each value x of an interval of the

#-axis, by any prescribed rule, a definite value y is made to correspond,
then we say that y is a function ofx defined in that interval and write,

for short,

y =/(*),

where "/" symbolises the prescribed rule in virtue of which each x has

corresponding to it the relevant value of y.

The interval, which may be closed or open on one or both sides,

bounded or unbounded, is called the interval of definition of f(x).

Definition 2 (Boundedness). If there exists a constant K such

that for every x of the interval of definition we have

then the function f(x) is said to be bounded on the left (or below) in the

interval, and K1 is a bound below (or left hand bound) of/(#). If there exists

a constant K2 such that for every x of the interval of definition / (x) ^ K2 ,

then f(x) is said to be bounded on the right (or above) and K2 is a bound

above (or right hand bound) of f(x). A function bounded on both sides is

said simply to be bounded. There then exists a constant K such that for

every x of the interval of definition, we have
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Definition 3 (Upper and lower bound, oscillation). There is

always a least one among all the bounds above of a bounded function, and

always a greatest among all its bounds below 8
. The former we call the

upper bound, the latter the lower bound, and their difference the oscillation

of the function f(x) in its interval of definition. Corresponding desig-

nations are defined for a sub-interval a' ... V of the interval of definition.

Definition 4 (Limit of a function). If is a point of the interval

of definition of a function /(#), or one of the endpoints of that interval,

then the notation
= c

or

f(x) > c for x -> f

means that

a) for every sequence of numbers xn of the interval of definition which

converges to ,
but with all its terms different from , the sequence of the

corresponding values

^n ==/(*) (=1, 2,3,,..)

of the function converges to c; or

b) an arbitrary positive number e being chosen, another positive

number 8 -= 8 (e) can always be assigned, such that for all values of x in

the interval of definition with

|
x -

|
< 8 but * 4= ,

we have 9

\f(X)-C\< S .

The two forms of definition a) and b) mean precisely the same thing.

Definition 5 (Right hand and left hand limits). If, in the case

of definition 4, it is stipulated besides that all points xn or x taken into

account lie to the right of f (which must not of course be the right hand

endpoint of the interval of definition of / (#)), then we speak of a right

hand limit (or limit on the right) and write

lim/(*) = c;
x->t+ Q

similarly we write

and speak of a left hand limit (or limit on the left), if f is not the left hand

endpoint of the interval of definition of /(#), and if points xn or x to the

left of are alone taken into account.

8 Cf. 8, 2, and also 62.
9 The older notation \imf(x) for lim/(#) should be absolutely discarded since

the whole point is that x is to remain 4= f.
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Definition 5a (Further types of limits). Besides the three types
of limit already defined, the following may also occur 10

:

lim /
=

|

or > c , -f- oo , oo

/(*)-)
with one of the five supplementary indications ("motions of x")

for #->, *f+0, *f 0, +-\-oo, oo.

With reference to 2 and 3 there will be no difficulty in formulating

precisely the definitions in the form a) or b) which correspond
to the definitions just discussed.

Since, as remarked, ue assume these matters to be familiar to the

reader, in all essentials, we suppress all elucidations of detail and examples,
and only emphasize that the value c to which a function tends, for instance

for x *
, need bear no relation whatever to the value of the function at .

Only for this we will give an example: let f(x) be defined for every x by

putting f(x) = if x is an irrational number, but f(x) = if a; is a rational

number which in its lowest terms is of the form -
(q >> 0) . Thus e. g. f ()

0,etc.

Here we have for every f

For if s is an arbitrary positive number and m is so large that <I e
,
then

in

there are not more than a finite number of rational points whose (least posi-

tive) denominator is < m . These we imagine marked in the interval 1

...+! As there are only a finite number of them, we can find one nearest

of all to
; (if f itself is one of these points we of course should not take it

into account here). Let d denote its (positive) distance from f. Then every x
t

for which

0<|as-| <d,
is either irrational, or a rational number whose least positive denominator q

is > m . In the one case, /
f

(a;)
= 0; in the other, = <; <>. Therefore we

have, for every xinQ<^\x \<Z.d,

*-0<.
i. e., as asserted,

If therefore f is in particular a rational number, then this limit differs decidedly
from the value f(g) itself.

Calculations with limits are rendered possible by the following

theorem:

10 In the first of these three cases we say that f(x) tends or converges
to c\ in the second and third cases: f(x) tends or diverges (definitely) to-f-QO
or 00; and in all three, we speak of a definite behaviour or also of a limit

in the wider sense. If f(x) shows none of these three modes of behaviour, then we
say that / (x) diverges indefinitely for the motion of x under consideration.
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Theorem 1. If f (x) , f% (x) ,
. . . f (x) are given functions (p some

determinate positive integer), each of which, for one and the same

motion of x of the types mentioned in Definition 5 a, tends to a finite

bmit, say (a?)
> ^ ,

. . . , fp (*)
-> c

p , then

a) the function

/ = fc() + /;(*) + 4- /;(*)] 'x4- , 4- 4-v
b) the function

/
= [A (*)/;(*)/;(*)] -*vv--v

c) in particular, therefore, the function a f^ (x)
> a c

l , (a
= arbitrary

real number) and the function f (x) f^ (x)
* cx c9 ;

d) the function
^-r-c

*
, provided c

=f=
.

Theorem 2. If hm f (x)
= c (4= cx>) , then /* (x) is bounded in a

*->*;

neighbourhood of f, i. e. two positive numbers d and K exist

such that

and corresponding statements hold in the case of a (finite) limf(x)
for z * f + , f , + oo , oo.

Definition 6 (Continuity at a point). If f is a point of the interval

of definition of f (x) , then f(x) is said to be continuous at f if

l\mf(x)

exists and coincides with the value /*() of the function at

limf (x)
=

If we include the definition of lim in this new definition, we may
also state:

Definition 6 a. f(x) is said to be continuous at a point , if for

every sequence of xn's of the interval of definition, which tends to f ,

the corresponding values of the function

Definition 6b. f(x) is said to be continuous at
, if, having chosen

an arbitrary e > 0, we can always assign 8 = 8 (e) > 0, such that for

every x of the interval of definition with

|*-f|<8 we have |/(*)-/tf)|<
Definition 7 (Right hand and left hand continuity). / (x) is

said to be continuous on the right (right-handedly) or on the left (left-hand-

edly) if lim/(#) exists at least for#->f-f-0or x -> g respectively,

and coincides with /().
Corresponding to Theorem 1 we have here the

Theorem 3- If AC*), AC*), /j> (#) are given functions (/> a
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particular positive integer), all continuous at , then the functions

)/!(*)+/ (*)++/,(*),
b) /i (*) /, (*).../,(*),

c) a/! (x) (a
= an arbitrary real number), /x (#) /2 (#), and

d) ifA () 4=0, also^
are all continuous at . Corresponding statements hold, when only right

hand or only left hand continuity is assumed.

By repeated application of this theorem to the function f(x)
~

#,

certainly continuous everywhere (since for x -> we have precisely x ->
),

we at once deduce:

All rational functions are continuous everywhere, with the exception
of (at most a finite number of) points where the denominator = 0. In

particular: Rational integral functions are continuous everywhere.

Similarly, the limiting relations 42, 1 3, showed that: ax
y (a > 0) is

continuous for every real x\ log x is continuous for every x > 0; x* (a
~

arbitrary real number) is continuous for every x > 0.

Definition 8 (Continuity in an interval). If a function is con-

tinuous at every individual point of an interval /, then we say that it is

continuous in this interval. Continuity at an endpoint of the interval is

here taken to be continuity "inwards", i. e. right handed continuity at

the left hand endpoint, and left handed continuity at the right hand end-

point. These endpoints of/ may or may not, according to the circum-

stances, be reckoned as in the interval. Functions which are continuous

in a closed interval give rise to a series of important theorems, of which

we may mention the following:

Theorem 4. If f(x) is continuous in the closed interval a ^ x ^ b

and iff(a) > 0, but f(b) < 0, then there exists, between a and b, at least

one point f for which /() = 0.

Theorem 4a. If f(x) is continuous in the closed interval a ^ x ^ b

and 77 is any real number between /(a) and/ (b), then there exists, between

a and b, at least one point f for which/() = 17. Or: The equation/ (x)
-=

17

has at least one solution in that interval.

Theorem 5. If f(x) is continuous in the closed interval a ^ x ^ b
y

then, having chosen any e > 0, we can always assign some number 8 >
so that, if x' and x" are any two points of the interval in question whose

distance
|

x" x'
\

is < 8, the difference of the corresponding values of

the function,
| /(*") /(#') |

,
is < e. (The property, established by this

theorem, of a function continuous in a closed interval is called uniform

continuity of the function in the interval.)

Definition 9 (Monotony). A function defined in the interval

a ... b is said to be monotone increasing or decreasing in the interval, if for

every pair of points xl and #2 f that interval, with xl < #2 ,
we in-
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variably have f(x )
<

f(x^) in the one case, or invariably f(xt]

in the other. We also speak of strictly increasing and strictly de-

creasing functions, when the equality signs, in the inequalities between

the values of the function just written down, are excluded.

Theorem 6. The point f, certainly existing under the hypotheses
of Theorems 4 and 4 a, is necessarily unique of its kind if the func-

tion f(x) under consideration is strictly monotone in the interval a... b.

Thus in that case, to each
77

between f(d) and f(b) corresponds one

and only one for which /*()
=

rj.
We say in this case: The inverse

function of y = f(x) is everywhere existent and one-valued (or y = f(x)

is reversible) in the interval.

Definition 10 (Differentiability). A function f (x) defined at a

point | and in a certain neighbourhood of f is said to be differentiable

at * if the limit

exists. Its value is called the (unique derivative or) differential coefficient

of f(x) at and is denoted by /"'(). If the limit in question only

exists on the left or on the right (that is, only for x *f-f-0 or

x f respectively), then we speak of right hand or left hand

differentiability, differential coefficient, etc.

If a function is differentiable at each individual point of an inter-

val /, then we say for brevity that the function is differentiable in

this interval.

The rules for differentiation of a sum or product of a particular (fixed)
number of functions, of a difference or quotient of two functions, of functions

of a function, as also the rules for differentiation of the elementary functions

and of their combinations, we regard as known to the reader.

All means necessary to their construction have been developed in the

above, if we anticipate a knowledge of the limit defined in 1155 and there

determined in a perfectly direct manner. If, for instance, it is inquired whether
ax (a> and

={= 1) is differentiable, and, if so, what is its differential coefficient,
at the point f , then, following Defs. 10 and 4, we have to choose a null se-

quence (#) with terms all
=f=

and to examine the sequence of numbers

__ **+*- a* ar -l
A. =-- :_= a s- .

Xn Xn
If we write yn for the numerator in the last fraction, then by 35, 3 we know
that (yn) is also a null sequence, and indeed one for which none of the terms
is equal to 0. Xn may then be written in the form

J

But since, as remarked, yn is a null sequence, we have by

Since the same then holds for the reciprocal values, by 41, 11 a, we deduce

A^-x^.log-fl. The function a* is thus differentiable for every x and has the

differential coefficient ar -loga.
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In the same way, as regards differentiability and differential coefficient

of log x for f !> 0, we deduce, by consideration of

xn xn

that the differential coefficient exists here and = --
.

Of the properties of differentiable functions we shall for the pre-

sent require scarcely more than is contained in the following simple
theorems :

Theorem 7. If a function f(x) is differentiable in an interval J
and its differential coefficient is there constantly equal to 0, then f(x)
is constant in /, that is to say is =

/*(a? ),
where X

Q
is any point of /.

If two functions ft (x)
and

f^ (x) are differentiable in /and their

differential coefficients constantly coincide there, then the difference of

the two functions is constant in /, therefore we have

&(*)- /i(*)+' = /i(*) + [/;(*o)-/;(*o)]

where x is any point of /.

Theorem 8. (First mean value theorem of the differential calculus.)

If f(x) is continuous in the closed interval a ^ x <^ b and differentiable

in at least the open interval a < x < b, then there is, in the latter

interval, at least one point f for which

(In words: The finite difference quotient relative to the endpoints of the

intervals is equal to the differential coefficient at a suitable interior point.)

Theorem 9. If/(*) is differentiable at and/' () is > (< 0) then

/(#) "increases" ("decreases") at ,
i. e. the difference

.// \ ^//-\i_ ( *ne same
)

.
/*. \ / r\

/(*)-/() has . s,gn as (to) (*
- &

provided |

x
|
be less than a suitable number 8.

Theorem 10. If f(x) is differentiable at an interior point of its

interval of definition, then unless /' () = the functional value /()
cannot be ^ every other functional value f(x) in a neighbourhood of

of the form
|

x
|
< 8, i. e. cannot be a (relative) maximum point.

Similarly the condition /' (f)
= is necessary for to be a (relative)

minimum point, i. e. such that/() is not greater than any other functional

value /(#), as long as x remains in a suitable neighbourhood of .

Definition 11 (Differential coefficients of higher orders. If

f(x) is differentiable in Jy then (in accordance with Def. 1) /' (x) is again

a function defined in / *. If this function is again differentiable in Jl

1 and called the derived function of f(x).
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then its differential coefficient is called the second differential coefficient

of f(x) and is denoted by /"'(#). Correspondingly, we obtain the third

and, generally, the ft
th differential coefficient of f(x), which is denoted

by f
(k)

(x). For the existence of the k th differential coefficient at f it

is thus
(v.

Def. 10) necessary that the (k l)
th differential coefficient

should exist both atf and at all points of a certain neighbourhood of .

The J
th differential coefficient of f^(x) is f(

k
+*(x), k^O, l^>0. (As

th differential coefficient of f(x) we then take the function itself)

Of the integral calculus we shall, in the sequel, require only the

simplest concepts and theorems, except in the two paragraphs on Fourier

series, where rather deeper material has to be brought in.

Definition 12 (Indefinite integral). If a function f(x) is given in

an interval a ... b and if a differentiablc function F (x) can be found

such that, for all points of the interval in question, F f

(x)
=

f(x), then

we say that F(x) is an indefinite integral of f(x) in that interval. ( Be-

sides F(x), the functions F(x) -\- c are then also indefinite integrals

of f(x), if r denotes any real number. Besides these, however, there

are no others). We write

In the simplest cases, indefinite integrals are obtained by inverting- the

elementary formulae of the differential calculus E. g. from (sin a x)'
= a cos ax

it follows that \cosccxdx =-- and so on These elementary rules we
J a

assume known Special integrals of this kind, excepting- the very simplest, are

little used in the sequel; we mention

/

Ji

J[-

/7 ' 1 1 1 9 f 1-

H-x" 3
"* ^ ' ~'

6
~" ^ ' "

V 3" V3

= V^ log*1^][A + V^ [tan-
1
(A: V 2 - 1) + tan"1

(* V 2 -f 1)],4 o 3.2 _ ~ .
/
f> _, i 4

j t
cot x dx = log

Though in indefinite integrals, we find no more than a new mode

of writing for formulae of the differential calculus, the definite integral
introduces an essentially new concept.

Definition 13 (Definite integral). A function defined in a closed

interval a ... b and there bounded is said to be integrable over this

interval if it fulfils the following condition:

Divide the interval a ... b in any manner into n equal or un-

equal parts (n ^> 1, a positive integer), and denote by x
l9

a?
a , . . . , #n _

the points of division between a = XQ and b = xn . Next in each of

these n parts (in which both endpoints may be reckoned) choose any
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point, and denote the chosen points in corresponding order by gl9 f2 , . . .
,

gn . Then form the sum 11

Sn = 2? (*-*_.!)/(&)
i/-=i

Let such sums Sn be evaluated for each n = 1, 2, 3, ... independently

(that is to say, at each stage xv and , may be chosen afresh). But, at the

same time, /n ,
the length of the longest of the n parts into which the

interval is divided when forming Sny shall tend to 12
.

If the sequence of numbers Sl9
S2 >

. . .
,
in whatever way they may have

been formed, invariably proves to be convergent and always gives the same 13

limit S, then f(x) will be called integrable in Riemann's sense and the limit

S will be called the definite integral off(x) over a . . . b, and written

}f(x)dx.
a

x is called the variable of integration and may of course be replaced by

any other letter. Instead of /() we may also take, to form Sn ,
the

lower bound <zv or the upper bound f3v of all the functional values 14 in the

interval #,.__! ^ x ^ xv .

Theorem 1 1 (Riemann's test of integrability). The necessary and suffi-

cient condition for a function /(#), defined in the closed interval a ... b

and there bounded, to be integrable over a . . . b, is as follows: Given

e > 0, a choice of n and of the points x l9
x2 , . . .

,
xn_ l must be possible,

for which

if iv = |
xv A:,,_ I |

5s the length of the vth part of a ... b and vv the

oscillation of f(x) in this sub-interval.

This criterion may also be expressed as follows, assuming the notation

chosen so that a < b: After choosing e, we must be able to assign two

"step-functions" (functions constant in stretches) such that in a ^ x ^ b

we have always
*(*)^ /(*)<<?(*)

11 If /(*) > 0, a > b, and we consider a plane portion S bounded on the

one side by the axis of abscissae, on the other by the verticals through a and b and

by the curve y f (x) t then Sn is an approximate value of the area of S. This
however only provides a satisfactory representation if y = / (x) is a curve in the

intuitive sense.
12 We may then also say that the subdivisions, with increasing nt become

indefinitely closer.
13 It is easily shewn that if the sequence (Sn) is invariably convergent it also

ipso facto always gives the same limit.
14 In these cases Sn gives the area of a ("step-*') polygon inscribed or circum-

scribed to the plane portion S.
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b

as well as 15
J (G (x) g (x)) d x < e.

a

It suffices in fact to put, in xv_ : ^ x ^ #,

g (x)
-= a,, G (x)

= pv ,
v = 1, 2, . . . , w,

together with (b)
= an , G

(ft)
- n .

From this criterion, the following particular theorems are deduced:

Theorem 12. Every function monotone in a ^ # ^ ft, and also every
function continuous in a f^ # 5^ ft, is integrable over a ... ft.

Theorem 13. The function/ (#) is integrable over a ... ft, if, in a ... ft,

it is bounded and has only a finite number of discontinuities.

Riemann's test of integrabiiity may also be given the following form:

Theorem 14. The function f(x) is integrable over a ... ft if, and

only if, it is bounded there and if, two arbitrary positive numbers 8 and e

being assigned, the subdivision of a ... ft into n sub-intervals described

in theorem 11 can be so carried out that the sub-intervals iv in which the

oscillation of f(x) exceeds 8 add up to a total length less than e.

Theorem 1 5. The function/(#) is certainly not integrable over a ... ft

if it is discontinuous at every point of that interval.

Theorem 16. If f(x) is integrable over ... ft, then/(,v) is also in-

tegrable over every sub-interval a' ... ft' of a ... ft.

Theorem 17. If the function /(jc) is integrable over a ... ft, then

every other function f (x) is integrable over ... ft, and has the same

integral, which results from/(.r) by an arbitrary change in a finite number

of its values.

Theorem 18. If f(x) and /x (x) are two functions integrable over

a ... ft, then they have the same integral provided that they coincide at

least at all points of a set everywhere dense in ... ft (e. g. all rational

points).

For calculations with integrals we have the following simple theorems,

where /(*) denotes a function integrable over the interval ... ft.

a b

Theorem 19. We have lf(x)dx --- lf(x)dx and if a
l9 2 > as

b a

are three arbitrary points of the interval ... ft,

?/(*) dx + ff(x)dx + ]f(x)dx - 0.

<*i a\ <**

Theorem 20. Iff(x) and# (x) are two functions integrable over ... ft,

( < 6), and if in ... ft we have constantly f(x)^g (x), then we also

have b b

It is immediately obvious from the first form of the criterion that a step-

function such as G (x) g (x) is integrable.
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Theorem 20a. \f(x) |

is integrable with/(#) and we have, if a < b,

| }/(*)</*! J|/(*) |

</*.

a a

Theorem 21. (First mean value theorem of the integral

calculus?) We have
b

if
IJL

is a suitable number between the lower bound a and the upper bound

j8 of f(x) in a . . . b (a 5g ju, fg j8).
In particular we have

| //(*)<**! ^ *(*-)
a

if K denotes a bound above of \f(x) |

in a ... b.

Theorem 22. If the functions/x (#),/2 (#), . . . tfp (x) are all integrable

over a . . . b (p = fixed positive integer), then so are their sum and their

product and for the integral of the sum we have the formula

J (A (*) + +/P (*))** = J/i (*)/*+...+ J/p (*)/*;
a

i. e. the sum of a jfixa/ number of functions may be integrated term by term.

Theorem 22a. If f(x) is integrable over a . . . b and if the lower

bound of
| f(x) \

in a . . . b is > 0, then
^

is also integrable over a ... b.

J (
x)

Theorem 23. If f(x) is integrable over a . . . b, then the function

is continuous in the interval a . . . b and is also differentidble at every point

of the interval, where /(^c) itself is continuous. If XQ is such a point, then

*"(*Q)=/(*O) there -

Theorem 24 (Fundamental theorem of the differential
and integral calculus). If/(*) is integrable over a ... b, and

has an indefinite integral -F (#) in that interval, then

Theorem 25 (Change of the variable of integration) . If

f(x) is integrable over a ... b and x = 9 (J) is a function diffcrentiable in

a . . . /3, with 9 (a)
= and 9 (ft)

=
b, if further, when t varies from a to

/?, 9 (/) varies monotonely (in the stricter sense) from a to 4, and if 9' (/),

the differential coefficient of 9 (J), is integrable
16 over a . . . /?, then

//(*)<**=//(?(<)) 9' <*'

a a

10 The derivative of a differentiable function need not be integrable. Examples
of this fact are, however, not very easily constructed (cf. e. g. H. Lebesgue, Leyons
sur 1'integration, 2nd Edition, Paris 1928, pp. 9394).
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Theorem 26 (Integration by parts). If/(#) is intcgrable over

a . . . b and F (x) is the indefinite integral of /(#), if further g (x) is a

function, differentiate in a . . . b, whose differential coefficient is inte-

grablc over a . . . b, then 17

//(*)g(*)dx=[F (*) i- (*)].*
-

} F (x) g' () rf *.
a a

The following penetrates considerably further than all the above

simple theorems:

Theorem 27 (Second mean value theorem of the inte-

gral calculus). If/ (x) and 9 (x) are integrable over a ... b and 9 (x)

is monotone in that interval, then a number
,
with a ^ ^ 6, can be so

chosen that

J 9 (*) /(*)</* -= 9 () \f(*)dx + 9 (ft) }/(*) d x.

a a $

Here 9 (a) may also be replaced by the limit, certainly existing under the

hypotheses, 9a
= Iim9(#), and similarly 9 (b) by ob lim 9 (#); but in

*-a+0 ->6-fO

this case a different value may have to be chosen for .

We mention only the following of the applications of the concept of

integral above considered:

Theorem 28 (Area). Iff(x) is integrable over a . . . b, (a < b) and,

let us suppose, always positive in the interval 18
, then the portion of plane

surface bounded by the axis of abscissae, the ordinates through a and b,

and the curve y / (x) or more precisely, the set of points (.v, y) for

which a ^ x ^ b, and at the same time, for each such x, r y ^f(x)9

b

has a measurable area and its measure is //(#) d x.

a

Theorem 29 (Length) . If x = 9 (t) and y = ip (t) are two functions

differentiable in a ^ ^ /?, and if 9' () and </'' (0 themselves are con-

tinuous in a ... j8, then the path traced out by the point x = 9 (t), y = /> (/)

in the plane of a rectangular coordinate system O x, O jy,
when / describes

the interval from a to /3,
has a measurable length and this is given by the

integral ~~'
Finally we may say a few words on the subject of so-called improper

integrals.

17 Here [7i (x)]* denotes the difference h (b) h (a).

18 which may always be arranged by the addition of a suitable constant.
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Definition 14. If /(/) is defined for t^. a and is integrable over

^ t ~i x
>
f r every x, so that the function

is also defined for every x ^ a, then, if lim jP (x) exists and = c, we say

that the improper integral

converges and has the value c.

Theorem 30. If f(t) is constantly ^ or constantly .< for every
00

t ^ a, then //(*) d t converges if and only if the function F (x) of Def. 14
a

is bounded for x > a. If f(i) is capable of both signs for t ^ a, then the

same integral converges if, and only if, given an arbitrary e > 0, x > a

can be so determined that

for every x' and x" both > x .

And quite analogously:

Definition 15. If f(x) is defined, but not bounded, in the interval

a < t <; b, open on the left, and is integrable, for every x of a <x <b,
over the interval x ^ t ^ b, so that the function

F(x)=*}f(t)dt
X

is defined for each of these x's, then, if lim F (x) exists and = c
9
we say

A.-^ +
that the improper integral (improper at a)

is convergent and has the value c.

Exactly analogous conventions are made for an interval open on the

right. The case of an interval open on both sides is reduced to the two pre-

ceding cases by dividing it at an interior point into two half-open intervals,

and then taking theorem 19 as a definition.

Theorem 31 . If in the case of Def. 15, we further have/(f) S> every-
where or ^ everywhere, then the improper integral in question exists

if, and only if, F (x) remains bounded in a < x ^ b. If f(t) assumes both

signs, then the integral exists if, and only if, given e > 0, we can choose

8 > so that

for every x' and x" both between a (excl.) and a + 8.
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20. Principal properties of functions represented by

power series.

We interrupted our discussion of power series at the observation,

terminating 18, that the sum of a power series, in the interior of

its interval of convergence, defines a function, which we will now
denote by f(x):

We resume it at that point, and agree in this connection, unless

special remark to the contrary is made, to leave the interval of con-

vergence open at both ends, even should the power series converge at

one or both of the endpoints.

Now if, as is the case here, an infinite series defines a function

in a certain interval, then the most important problem is, in general,

to deduce from the series the principal properties of the function re-

presented by it interpreting these for instance in the sense of the

summary of the preceding section.

In the case of power series, this presents no great difficulty. We
shall see, on the whole, that a function represented by a power series

possesses all the properties which we may consider particularly im-

portant and that the algebra of power series assumes a peculiarly

simple form. For this reason, power series play a prominent part,

and it is precisely on this account that their discussion belongs to the

elements of the theory of infinite series.

In these investigations, we may, without thereby restricting the

scope of the results, assume XQ = 0, i. e. assume the series to be of

the simplified form 2 an x
n

. Its radius of convergence is of course

assumed positive (> 0), but may be + oo, i. e. the series may be

everywhere convergent. We then have, first, the

Theorem. The function f(x) defined, in its interval of conver- 96

gence, by the power series an (x x
(j)

n
, is continuous at x = x ;

n=o

that is to say, we have

lim f(x)
= lim J an (x

- xj = * =
f(xQ).

n=0

Proof. If < Q < r , then by 83, 5,
00 00

J^Kikn ~ l
converges with J|0j

n
.

n=l n=o

If we write K(> 0) for the sum of the former, then we have, for

every |
x x

\

<
g,

\f(*)- Q \

= \(*-*o)'2n(x-*o)
n- l

\^\* -*<>]*<
n=*l
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If therefore e > is arbitrarily given and if d > is less than both

Q and ;, then we have, for every
|

x XQ \
< 5,

l/-ol<;
which by 19, Def 6b, proves all that was required.

From this theorem, we immediately deduce the extremely far-

reaching and very frequently applied:

97. Identity Theorem for power series. // the two power series

2an
x n and ^bn

x n

n-o n-O

have the same sum in an interval
\ x\ < Q in which both of them converge

l9
,

then the two series are entirely identical, that is to say, for every n = 0, 1, 2,

. . ,
we then have

n = bn .

Proof From

(a) a + ^ x + a
2
*2

-\
= b + 6 x + 6

3
x* ^

it follows, by the preceding theorem, letting x+0 on both sides of

the equation, that

o
^ V

Leaving out these terms and dividing by x
t
we infer that for < \x\ < Q

(b) *!+*** + ****{ =&
1 +&2

* + &a a;9 H ,

an equation from which we deduce, in exactly the same way 20
, that

*i
= &

i

and
ao+^aH = &

9 + 63^

Proceeding in this manner, we infer successively (more precisely: by

complete induction) that for every n the statement is fulfilled.

Examples and illustrations.

1. This identity theorem will often appear both in the theory and in

the applications. We may also interpret it thus: if a function can be re-

presented by a power series in the neighbourhood of the origin, then this is

only possible in one way. In this form, the theorem may also be called the

theorem of uniqueness It of course holds, in the corresponding statement, for

the general power series 2an (x x )
n

.

2. Since the assertion in the theorem culminates in the fact that the

corresponding coefficients on both sides of the equation (a) are equal, we may
also speak, when applying the theorem, of the method of equating coefficients.

19 Or even for every x = xv of a null sequence (xv) whose terms are all =fc 0.

In the proof we have then to carry out the limiting processes in accordance with

19, Def. 4a.
20 For x = 0, equation (b) is not in the first instance secured, since it was

established by means of division by x. But for the limiting process x -> this is

quite immaterial (cf. 19, Def. 4).
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3. A simple example of this form of application is the following: We
certainly have, for every a;,

v=0

If we multiply out on the left, by 91, Rem. 1, and equate the coefficients on

both sides, then we obtain, for instance, by equating- the coefficients of x k
:

a relation between the binomial coefficients which would not have been so

easy to prove by other methods.

4. If f (x) is defined for
|

x
\
< r and we have, for all such a;'s,

/(-*>-/(*).
then f(x) is called an even function. If it is representable by a power series,

then we at once obtain by equating
1

coefficients,

so that in the power scries of f(x), only even powers of x can have coefficients

different from 0.

5. If on the other hand, f(x) =
f(x), then the function is said to be

odd. Its expansion in power series can then only contain odd powers of x. In

particular, /"(O)
= 0.

We now proceed one step further and prove a number of theorems

which must be regarded as in every respect the most important in

the theory of infinite series:

Theorem 1. //
08.

n=0

is a power series with (positive) radius r, then the function f(x) thereby

represented, for \x X
Q \

< r f may also be expanded in a power series

with any other point x of the interval of convergence as centre; we

have, in fact, *>

where *=

and the radius r of this new series is at least equal to the positive

number r
|

x X
Q \

.

Proof. If x
l

lies in the interval of convergence of the series, so

that
| #! x

1
< r, then

i. e.
=
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and all that we have to show is that we may here group together

all terms with the same power of (x &J, i. e. that the main re-

arrangement theorem 9O may be applied. If, however, to test its

validity, we replace, in the latter series, every term by its absolute

value, then we obtain 'the series

n=0
and this is certainly still convergent, if

K -
*o I
+

I

* - *i I
< * > or

I

-
*i I

< ' - K -
*o I

If therefore x is nearer to #
t

than either of the endpoints of the

original interval of convergence, then the projected rearrangement is

allowed, and we obtain for f(x), as asserted, a representation of

the form

If we proceed in detail to group the terms containing (x
-

#,)
fe

to-

gether, by writing the terms of the series (a) in successive rows one

below the other, then the k th column gives

which completes the required proof
21

.

From this theorem we deduce the most diverse consequences. First

we have the

Theorem 2. A function represented by a power series

/(*) = Jx(*-*o)
n

n=o
is continuous at every point x^ interior to the interval of convergence.

Proof. By the preceding theorem, we may write, for a certain

neighbourhood of x ,

/(*)- Jk(*-*o)" = 2*.(*-xf
n=0 n=0

with

& = J}*n (*i-*oT = f(*i)-
rt=0

For x *a? , the second of the representations of f(x), by 96, at once

gives the required relation
(v. 19, Def. 6):

lim f(x)
= f(xj.

Theorem 3. A function represented by a power series

n=0
is differentiable at every interior point x of the ' interval of convergence

21 We thus have, quite incidentally, a fresh proof of the convergence,
already established in 95, of the different series obtained for the coefficients bk .
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(v. 19, Def. 10) and its differential coefficient at that point, f''(xj,

may be obtained by means of term-by-term differentiation, i. e. we have

f fo) = n an (x,
-

xjp-i = (n + 1) *w+1 (x,
- x )\

n=l n=0

Proof. Since f(x)
= 2Jbn (x xj", we have for every x suf-

n=o

ficiently near x^:

whence for x >a;
1 , by 96, taking into account the meaning of b

19

we at once deduce the required result: f ( 1 )
= b

l
= 2 nan (

x
i

x
o}
n~ l

*

Theorem 4. A function represented by a power series,

f (*)
= %*(* -*tf>
n=o

has, at every interior point x^ of its interval of convergence, differential

coefficients of every order and we have

/<*>(*,)
=^ = Z(n + !)( + 2) ... (n + k)an + k (x,

- *
)"-

n=o
Proof. For every x of the interval of convergence we have, as

we have just shown,

f'(x) is thus again a function represented by a power series, and

in fact by one which, in accordance with 95, has the same interval

of convergence as the original series. Hence the same result may be

again applied to f'(x}> giving

r (x)
= jj n (n + 1) *n+1 (x

- * )i-i
= 2(n + 1) (n + 2) *n + 2 (x

- x
)

n
.

n=i n=0

By a repetition of this simple process, we obtain for every k,

valid for every x of the original interval of convergence. Putting in

particular x = x
l9

we therefore at once deduce the required statement.

If we substitute, for the coefficients b
k
in the expansion of theorem 1,

the values
-j-\f

(k)
(
x
i)

now obtained, then we finally infer from all the

above the so-called

Taylor series
22

. // for \x x
Q \<r, we have 99.

/(*)
= J: (*-*<,)">
n=o

and if x is an interior point of the interval of convergence, then we

33 Brook Taylor: Methodus incrementorum directa et inversa, London 1715.

Cf. A. Pnngsheim, Gcscliichte dcs Taylorschen Lehrsatzes, Bibl. math. (3)

Vol. 1, p. 433. 1900.
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have, for every x for which 23
|

x x
l \
< r

l

- r
|
xl XQ \,

With Theorem 3 for the differentiation of our series, we couple the cor-

responding theorem for integration. Since a function represented by a

power series is continuous in the interior of its interval of convergence,
it is also, by 19, Theorem 12, integrable over every interval contained,

together with its endpoints, in the interior of this interval of convergence.
For this we have the

Theorem 5. The integral of the (continuous) function f (x) represented
00

by an (x x )
n in the interval of convergence, may be obtained by means

n-^Q

of term by term integration, with the formula

provided xt and x2 are both interior to the interval of convergence.

Proof. By 95, 2, the power series

has the same interval of convergence as the given series

=o

By 98, 3, the first series is an indefinite integral of the second. Hence by

19, Theorem 24, the statement follows at once.

These theorems on power series we may complete in a special

direction by the following important addition: Theorem 2 on the

continuity of the function represented by a power series was, as we

may again expressly observe, only valid for the open interval of con-

vergence. Thus, for instance, in the case of the geometric series 2! xn
,

23 The number rl
= r

\
x l x

\
of the text need not be the exact radius

of convergence of the new series. On the contrary, the latter may prove considerably

larger. Thus for f(x) S xn =
^ __

and x^ = - we obtain, by an easy cal-

culation, .... /2\*+l / 1\*/W ^?o0 (-+)
1

and the radius of this series is not r
| x^ x

\

-= ^ but is ~.
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of sum
^ ,

we can deduce from our considerations neither its con-
X ~ X

tinuity at the point a; = 1, nor its discontinuity at rr=+l, by
immediate inspection of the series. Even if the power series con-

verged at one of the endpoints of the intervals
(as

here J for

B =
ij

, we should not be able to conclude this fact directly. That

however, in this last particular case, the presumption is, at least to

some extent, justified, we learn from the following:

Abel's limit theorem 24
. Let the power series f (x)

= JJ an x
n
100.

n=0
have radius of convergence r and still converge for x = -f- r .

Then
\imf(x) exists and =Jan rn .

a?->r n o
00

Or in other words: If 2,an x
n

still converges for #= -fy, then
n=

the function f (x) defined by the series in r < x <^ -f- r , is also

continuous on the left at the endpoint x = -f- r.

Proof. There is no restriction 25 in assuming r = + 1. For

if 2an x
n

has radius r, then the series Za^'x", in which an
' = a

n r
n

,

obviously has radius 1; and the latter series is convergent at + 1 or

1 , if, and only if, the former was at -j- r or r respectively.

We therefore in future assume y = -J- 1 . Our hypothesis is,

therefore, that f(x)= 2a
n
xn has radius 1 and that 2an

= s con-

verges; and our statement is that
3D

\[mf(x) = s, i.e. = an .

*->l-0 n=0

Now by 01
(v.

also later, 102), we have for \x\ < 1,

1 00 00 00 00* V a xn V rr
n V a. rr

n V * <r
n

1 _ x ^ an X ~ X 2j an X ~ 2. Sn X >
1 * n=o n=o n^O n-0

if by sn
we denote the partial sum of 2 an . Consequently f(x)=

(l x] 2sn x
n and since 1 = (1 x)2x

n
,
we therefore deduce, for

\

X \<1>

(a)
s - f(x] (1

- x)2(s - sj xn ~(l - x}^rn x\
n=0 =0

24
Journal f. d. reine u. angew. Math. Vol 1, p. 311. 1826. cf. 233 and

62. The theorem had already been stated and used by Gauss (Disquis.

generalcs circa seriem ..., 1812; Wcrke III, p 143) and in fact precisely in

the form proved further on, that rn -* involves (1 x) 2 rn xn -> if x * 1

from the left (v. eq. (a)). The proof given by Gauss loc. cit. is however in-

correct, as he interchanged the two limiting processes which come under con-
sideration for this theorem, without at all testing whether he was justified in

so doing
26 This remark holds in general for all discussions of (not everywhere

convergent) power series of positive radius f.
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Here we have written s sn = rw ,
the "remainder" of the series;

these remainders, by 82, Theorem 2, form a null sequence.

If now e > is arbitrarily given, then we first choose m so large that,

*"

for every n > m
y we have

|

rn \
< . We then have, for :g x < 1,

2t

\s-f(x) I ^ I (1
-

x) Zrn x\ + | (1
-

x) -Z x,
w^O * n tn + 1

hence, if /> denotes a positive number greater than
| ^0 I + I

r i I
+

+ |rm |,
this is

e v' -r- 1

^/ (!-*)+ J(l -*)?.
If we now write 8 = the smaller of the two numbers 1 and - then we

have, for 1 - 8 < x < 1,
P>

!-/(*)! <y+ J
=

,

which, by 19, Def. 5, proves the required statement "/ (x) -> s for x -> 1

-0".
We have of course, quite similarly, Abel's limit theorem for the left

endpoint of the interval of convergence:
X

If E an x
n

still converge for x = r, then
w-=0

lim/(*) exists and = ^ ( l)
n

n rn.

x-> r+ w-0

The continuity theorem 98, 2 and Abel's theorem 100 together assert

that

101. lim (Zan xn
) =2an %

n

*->

if the series on the right converges and x tends to from the side on which lies

the origin.

If the series Ean
n

diverges, we cannot assert anything, without

further assumptions, as to the behaviour of Han x
n when x -> g. We

have however in this connection the following somewhat more definite:

Theorem If 2an is a divergent series of positive terms, and Z an x
n

has radius 1, then

/(*) = anx^+ oo
H=

when x tends towards + 1 from the origin.

Proof. A divergent series of positive terms can only diverge to

+ oo . If therefore G > is arbitrarily given, we can choose m so large

that a + a^ + . . . + am > G + 1, and then by 19, Theorem 3, choose

8 < 1 so small that for every 1 > x > 1 8, we continue to have

a + a
1 x+ ... + am xm > G.
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But then we have, a fortiori,

/(*)= 2 anX >G,
n

which is all that required proof.

Remarks and examples for the theorems of the present paragraph
will be given in detail in the next chapter.

21. The algebra of power series.

Before we make use of the far-reaching theorems of the preceding

section ( 20), which lead to the very centre of the wide field of application

of the theory of infinite series, we will enter into a few questions whose

solution should facilitate our operations on power series.

That power series, as long as they converge, may be added and sub-

tracted term by term already follows from 83, 3 and 4. That we may
immediately multiply out term by term, in the product of two power

series, provided we remain in the interior of the intervals of convergence,

follows at once from 91, since power series always converge absolutely

i/i the interior of their intervals of convergence. We therefore have, with

also E * E bnX = E
n n -

71

provided x is interior to the intervals of convergence of both series 26
.

The formulae 91, Rem. 2 and 3 were themselves a first application

of this theorem. If the second series is, in particular, the geometric series,

then we find
oo QO on

2 an oc
n E xn = E sn *

n
,

n -0 H = O N---0

1 TO 00

i.e. - 2 an x
n = E sn x

n

A x w-0 n-O
oo oo

or E an xn =
(1
-

x) E sn xn
, 103

n n ---

where sn = aQ -f- a
1 + + an ,

and
\

x
\
< 1 and also less than the

radius of E an x
n

.

We infer in as simple a manner that every series may be multiplied

and in fact, arbitrarily often by itself. Thus

(
E an x

n\ = E K an + a
l an^ + . . . + an aQ) X

n
;

Vi / n ^0

and generally, for every positive integral exponent k
y

!an xn
}

k

= E anw** 108-

i-O / w-O

20 Here we see the particular importance of Cauchy's product (v. 91, 1).
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where the coefficients a
(

are constructed from the coefficients a
n
in a

perfectly determinate manner even though not an extremely obvious

one 27 for larger yfe's. And these series are all absolutely convergent,

so long as 2an x
n

itself is.

This result makes it seem probable that we "may" also divide

by power series, that for instance we may also write

and that the coefficients cn may again be constructed in a perfectly

determinate manner from the coefficients an . For we may first,

writing --" =
', for n = 1 , 2 , 3 , . . .

, replace the left hand ratio by

1 _
and then by

which must actually result in a power series of the form .Scn x
n

,
if

the powers are expanded by 103 and like powers of x then grouped

together.

Our justification for writing the above may at once be tested

from a somewhat more general point of view:

We suppose given a power series 2an
xn

(in
the above, the

series an
f
a:
n
) , whose sum we denote by f(x) or more shortly by y.

n=0

We further suppose given a power series in y, for instance

g (y)
= 2 bn y

n

(in
the above, the geometric series 2 y

n
)

and in this

we substitute for y the former power series:

bo + *iK + i
x + ) + 69K + a

i
x + 0* H

Under what conditions do we, by expanding all the powers, in

accordance with 103, and grouping like powers of x together, ob-

tain a new power series CQ + c x -}- c
a
x2

-)
---- which converges and

has for sum the value of the function of a function g(f(x))? We
assert the

104. Theorem. This certainly holds for every x for which

converges and has a sum less than the radius of 2bn y
n

.

n=0

27 Recurrence formulae for the evoluation of a are to be found in

/. W. L Glaisher, Note on Sylvester's paper: Development of an idea of Eisen

stein (Quarterly Journal, Vol. 14, p. 79 84. 1875), where further references to

the bibliography may also be obtained. See also B. Hansted, Tidbkrift for

Mathematik, (4) Vol. 5, pp. 1216, 1881.
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Proof. We have obviously here a case of the main rearrangement
theorem 90, and we have only to verify that the hypotheses of that

theorem are fulfilled. If we first write

forming the powers by 103, and also suppose this notation 28
adopted

for k = and k = 1, then we have, in

(A)

6, y = b
l (a

(i) rfv-

.<*'*. <*)
x".

the series z'*
1
'

occurring in the theorem 90. If we now take, instead

of y = 2 an x" , the series
97
= 2

\

a
n
x"

\
, and, writing

|

x
|

= | , form,

quite similarly,

(A')

then all the numbers in this array (A'j are ^ and since furthermore

^
I ^fe I *?

fc was assumed to converge, the main rearrangement theorem

is applicable to
(A'),

But obviously every number of the array A is

in absolute value <^ the corresponding number in (A'); hence our

theorem is a fortiori applicable to (A) (cf. 90, Rem.
3).

In particular,

therefore, the coefficients standing vertically one below the other in

(A) always form (absolutely) convergent series
00

yjbk a^
k) = c

n (for every definite n = 0, 1, 2, ...)

and the power scries formed with these numbers as coefficients, i. e.

is again, for the considered values of x, (absolutely) convergent and
has the same sum as 2bn y

n
. We therefore have, as asserted,

with the indicated meaning of

n=0

Remarks and Examples. 105.
1. If the "outer" series gy) = ^bk x^ converges everywhere, then our

theorem evidently holds for every x for which 2an x
n
converges absolutely.

88 We have therefore to write a^
0) = 1

, aj
* =

a.J

0) = =
,
and

the latter for n = 0, 1
,
2

, . . ..

7
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If both series converge everywhere, then the theorem holds without restriction

for every ar.

2. If a = and both series have a positive radius, then the theorem

ceitainly holds for every ''sufficiently" small a, that is to say, there is then

certainly a positive number g, such that the theorem holds for every |
a;

|
<

For if y = a
t x -f <za x* -f- i

then
rj
=

|

a
\ \

x
\
-f-

\

a
2 \ \

x*
\
+ ;

and since for

x >
,
we now also, by 96, have

ij
> 0, rj

is certainly less than the radius

of 2bk y
k for all x whose absolute value is less than a suitable number g.

yn

3. In the series JE7 -

,
we "may" for instance substitute y = 2 xn for

xn

|

x
|
<C 1

i
or y for every n , and then rearrange in powers of x .

4. To write, as we did above:

oi2
is, we now see, certainly allowed if

={=
and further x is in absolute value

so small that

- x fl
an

which by Rem. 2 is certainly the case for every
|

x
\
<[ Q with a suitable

choice of Q . We may therefore say: We "may" divide by a power series of

positive radius if ^ts constant term is
=(=

and provided we restrict ourselves to

sufficiently small 20 values of x.

To determine the coefficients cn by the general method used to prove
their existence, would, even for the first few indices, be an extremely
laborious process. But once we have established the possibility of the expansion

which is at the same time necessarily unique by 97, we may determine
the cn's more rapidly by remarking that

2an xP'2cn gpss l
f

so that we have successively

-

From these relations, since aQ ^ 0, the successive coefficients c0t c^ cz , . . . may be

uniquely determined, the simplest method being with the aid of determinants, by
Cramer's Rule, which immediately yields a closed expression

3o for cn in terms of

a , a l9 . . . ,
an .

5. As a particularly important example for many subsequent investigations

we may set the following question
31

:

^

29 How small x has to be, is usually immaterial. But what is essential, is that

some positive radius g exists, such that the relation holds for every |
x

\
< Q.

The determination of the precise region of validity requires deeper methods of

function theory.
80

Explicit formulae for the coefficients of the expansion, in the case of the

quotient of two power series, may be found e. g. in y. Hagent On division of series,

Americ. Journ. of Math., Vol. 5, p. 236, 1883.
81 Euler: Institutions calc. diff., Vol. 2, 122. 1755.
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in powers of x. Here the determination of the new coefficients becomes

peculiarly elegant if we denote them, not by cnt but by ~, or as we shall

~D

do, for historic reasons, by ~. Then the above equation is

and the equations for determining Bn are, in succession,

B -1
1B' + l.*i-0^0-1. 2,01+H 1!~

U
'

and, in general, for n = 2, 3, . . .
,

.__.__ . ..
!"0'"

t

"(n-l)l'l!"
r
(n-2)l 2I"

1
" " "r

II (n
-
1)1

If we multiply by n\ y
we may write this more concisely:

Now if we here had r
in place of Bv ,

for each v, then we could write instead

w
JB
n =0; 106.

and the recurring formula under consideration also may bo borne in mind under

this convenient form, as a symbolic equation, i. e. one which is not intended to

be interpreted literally, but only becomes valid with a particular convention,

here the convention that after expanding the w tb power of the binomial (#+1),
we replace each B v

by Bv . Our formula now yields, for n = 2, 3, 4, 5,..
successively, the equations

2/^ + 1=0,
3 B2 + 3 B! + 1 =

,

5 B4 + 10 a, + 10 #2 + 5 B, + 1 =
,

from which we deduce

and then

and

*14
=

6

These are called Bernoulli's numbers and will be mentioned repeatedly
later on

( 24,4; 32,4; 55, IV; 64). For the moment, we are able to infer

only that the numbers Bn are definite rational numbers. They do not, however,
conform to any apparent or superficial law, and have formed the subject of

many elaborate discussions
88

.

32 Bernoulli's numbers are frequently indexed somewhat differently, BQt
Blt BQ B

6 ,B7I ... being omitted and
( l)*"

1^ written instead of J5
flfc ,

for

k = 1, 2, ... A table of the numbers J9a ,l?4 , ..., to Bm may be found in

/. C. Adams, Journ. f. d. leine u. angcw. Math., Vol. 85, 1878 We may mention
in passing that Uwo ha^ for numerator a number with 113 digits, and for de-

nominator the number 2 358 255 930; while #123 has the denominator 6 and,



184 Chapter V. Power series.

Finally we will prove one more general theorem on power series:

CO

Given the power seriesy = 2 an (x x )
n

, convergent for
\

x x
\
<r,

w-O

we have, for every x in the neighbourhood of XQ,
a determinate corre-

sponding value of y, in particular for x =-= x the value y = a
Qt which we

will accordingly denote by y . Then we have

y - y =
i (x

- * ) + 2 (*
-

*o)
2 + -

Because of the continuity of the function, to every x near x also corre-

sponds a value of y near j> . We would now enquire whether or how far

every value of y near y is obtained and whether it is obtained once only. If

the latter was the case, not merely y would be determined by x, but con-

versely x would be determined by y, and therefore x would be a function

of y. The given function y=f(x) would, as we say for brevity, be

reversible in the neighbourhood of XQ (cf. 19, Theorem 6). The

question of reversibility is dealt with by:

107. Reversion theorem for power series. Given the expansion

y - :xo
=

i (*
- *

) 4- a (*
-

*o)
2 + >

convergent for \

x x
\
<r, the function y =f(x) thereby determined is

reversible in the neighbourhood of X
Q> under the sole hypothesis that a 4= U;

i. e. there then exists one and only one function x 9 (y) which is expressible

by a power series, convergent in a certain neighbourhood of y , of the form
* - *o

= *i (y
- y ) + b2 (y

- j )
2 + . . .

and for which, in that neighbourhood, we have (in the sense of 104)

Moreover b1
= 1 : av

Proof. As we have already done more than once, we assume in

the proof that x and y are =0, which implies no restriction 33
. But

we will then further assume that al
=

1, so that the expansion

(a) y = x + *2 x
* + *3 *

3 +
is the one to be reversed. That too implies no restriction, for since a1 4= 0,

by hypothesis, we can write a^ x + a2 x
2 + . . . in the form

in the numerator, a number with 107 digits. The numbers B z , B4t . . . , to B6Z

had previously been calculated by Ohm, ibid., Vol. 20, p. Ill, 1840. The
numbers Bv first occur inJames Bernoulli, Ars conjectandi, 1713, p. 96. A com-

prehensive account is given by L. Saalschutz, "Vorlesungen uber die Bernoulhsclnen

Zahlen", Berlin (J. Springer) 1893, and by AT. E. Norlund, "Vorlesungen uber

Differenzenrechnung", Berlin (J. Springer) 1924. New investigations, which chiefly
concern the arithmetical part of the theory, are given by G. Frobenius, Sitzgsber.
d. Berl. Ak., 1910, p. 809847.

33 Or: we write for brevity x XQ
= x' and y yQ

=
y' and then, for sim-

plicity's sake, omit the accents.
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If we write for brevity a x = a/ and, for n ^> 2,

and subsequently, for simplicity's sake, omit the accents, then we
obtain precisely the above form of expansion. It suffices therefore to

consider this. But we can then show that a power series, convergent

in a certain interval, of the form

(b)
x = y + \ y

2 + b3 y
3

-\

exists which represents the inverse function of the former, so that

is identically = y, if this series is arranged in powers of y, in accor-

dance with 104, i. e. all the coefficients must be = except that

of y
1
, which is = 1.

Since we have written, for brevity, x instead of a
1 x, we see that

the series on the right hand side of (b) has still to be divided by <z

to represent the inverse of the series a
t
x -f- <z

a
x* -j- , where at has

no specialised value. In this general case we shall therefore have

b
1
= as coefficient of y

1
.

If we assume, provisionally, that the statement (b) is correct,

then the coefficients bv are quite uniquely determined by the condition

that the coefficients of y
2
, y*, ... in

(c)
after the rearrangement, have

all to be =0. In fact, this stipulation gives the equations

, + a* =

64

from which, as is immediately evident, the coefficients bv may be

determined in succession, without any ambiguity. Thus we obtain, the

values

but the calculation soon becomes too complicated to convey any clear

idea of the whole. Nevertheless, the equations we have written down
show that if there exists at all an inverse function of y = f(x),

capable of expansion in form of a power series, then there exists

only one.

Now the calculation just indicated shows that whatever may have

been the original given series
(a),

we can invariably obtain perfectly
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determinate values &r , so that we can invariably construct a powei
series y -\- &

3 y
9

-|- which at least formally satisfies the conditions

of the problem, the series (c) becoming identically =
y. It only

remains to be seen whether the power series has a positive radius

of convergence. If that can be proved, then the reversion is completely
carried out.

The required verification may, as Cauchy first showed, actually

be attained, in the general case, as follows: Choose any positive

numbers cc for which we have

and 2 cc
v
x v has a positive radius of convergence. Proceeding in the

above manner, for the series:

y = x a
2
x*

whose inverse is, then, say,

we obtain, for the coefficients
/?y , the equations

ft
= GV + 2 Ai)

8

3 + 3A s 4-
....... ...........

in which all the terms are now positive. Thus for every r.

If, therefore, it is possible so to choose the cc
v

that the series 2 ftv y
v

has a positive radius of convergence, it would follow that 2 bv y
v also

had a positive radius and our proof would be complete.
We choose the ccjs as follows: There is certainly a positive

number Q, for which the original series x -f- a
x* -\- converges

absolutely. A positive number K must, however, then exist (by 82,
Theorem 1 and 10, 11) such that we have, for every r = 2, 3, ...,

We then choose, for y = 2, 3, . . .,

so that we are concerned with reversing the series, convergent for

\*\<e>

But this function is immediately reversible. For we may at once see

by differentiation we are dealing, in fact, with a simple hyperbola,
of which the student should draw a graph for himself , that in

00 < X < X
l



21. The algebra of power series. 187

the function increases monotonely (in the stricter sense) from oo

to the value

and therefore possesses, for y < ylf
a uniquely determined inverse

whose values arc < a?
1

. For this, since

y = x ~~

efe'-^g)
r (X+ e^9 ~" e k + y}* + Q

*
y = '

we have, uniquely,

Further

if we write for brevity, with the above defined value of yt ,

and both yl
and y2

are >> 0, since the second is and the two have

product = Q
2

. But

In the following chapter we shall see that, for
1

2
1
< 1, the power

(1 2)! can actually be expanded in a power series beginning

with 1 -*- + ' ' Assuming this result, it follows immediately that
&

x also may be expanded in a power series, convergent at least for

X =

By our first remarks the proof is hereby entirely completed.
The actual construction of the series

y + &2 y
9 +

from the series

* + a
** H

here also involves in general considerable difficulties and necessitates

the use of special artifices in each particular case 34
. Examples of

this will occur in 26, 27.

We only note further, a fact which will be of use later on, that

if (b) is the inverse of (a),
then the inverse of the series

(a') y = x-a^-\-a^ - H
where the signs are alternated, is obtained from

(b) by similarly

alternating the signs, i. e.

(V) * = y - b* y* + ba y
3 - +

34 The general values of the coefficients of expansion bn are worked out

as far as 613 by C. E. van Orstrand, Reversion of power series, Philos. Magazine (6),

Vol. 19, p. 366, 1910.
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This is at once evident, if we first actually expand the powers of

in (c), obtaining, say,

(c) (y

Under the new assumption, the same process, since the product of two

series with alternating coefficients is again a series with alternating co-

efficients, gives

(c') (y
- brf + ...)-. (J

2 - * (8>^ + - - )

And from this we immediately infer that on equating to zero the coeffi-

cients of y2
, y

3
,

. . .
,
we must obtain the identical equations (d), thus de-

ducing for bv precisely the same values as before.

The exact analogue holds good when the two power series contain,

from the first, only odd powers of x. Thus, if the inverse series of

y = X -f tf3 #3 + a5 X
5

-f- . ..

is x = y + b3 y* + b5 y
5 + . . . ,

then the inverse series of

y = xa 3 afi + az3f-\-...
is necessarily x = y b.3y

3 + b5 y5 --
1- . . . .

Exercises on Chapter V.

64. Determine the radius of convergence of the power series S an x
n

t when
an has, from some point onwards, the values given in Ex. 34 or 45.

65. Determine the radii of the power series

0<*<1;

66. Denoting by y. and p, the lower and upper limits of
, the radius

r of the power series Z an x
n

invariably satisfies the relation x ^ r ^ p. In par-

ticular: If lim exists, it has for value the radius of S an x
n

.

\
an+l

67. San x
n has radius r, Z an

' xn radius r'. What may be said of the radius

of the power series

an
n

67 a. What is the radius of Z an xn if < hm
|
an \

< + oo?
00

68. The power series -,
n xn

t where en has the same value as in Ex. 47,n

converges at both ends of the interval of convergence, but in either case only con-

ditionally.

69. Prove, with reference to 97, example 3, that

s ("y-(-i)l(-ir(
2
y- ft").K=O W ^o \ v / \

"
/
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70. As a complement to Abel's theorem 100, it may be shewn that in every

case in which E an x
n has a radius r ^ 1, we have

(00

\ _
2 <*n x

)
^ lim*n

*-^*-- v n= Q I

(sn o + i 4 + tfw)-

71. The converse of AbeVs theorem 100, not in general true, holds, however,
if the coefficients an are ^ ;

if therefore, in that case,

hm 2an xn

*->r-0

exists, then 2 an rn converges and its sum is equal to that limit.

72. Let % an x
n - / (x) and Z bn x

n - g (*),

71-1 H=l
both series converging for

|
x

\
< Q. We then have (for what values of #?)

n-l M-=!

(By specialising the coefficients many interesting identities may be obtained. Write

e.g.in = !,(-!)-', ~, etc.)

73. What are the first terms of the series, obtained by division, for

(Further exercises on power series will be found in the following Chapter.)

Chapter VI.

The expansions ofthe so-called elementary functions.

The theorems of the two preceding sections ( 20, 21) afford us the

means of mastering completely a large number of series. We proceed to

explain this in the most important cases.

A certain not very large number of power series, or functions

represented thereby, have a considerable bearing on the whole of Analysis

and are therefore frequently referred to as the elementary functions.

These will occupy us first of all.

22. The rational functions.

From the geometric series

! + * + * + . ..= *= *

|*| <1,
w=o L ~ x

which forms the groundwork for many of the following special investi-

gations, we deduce, by repeated differentiation, in accordance with 98, 4:

!<"
and generally, for any positive p :

1. 1< 1.108.

(G51)
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If we multiply this equation once more, in accordance with 91, by

2xn=, we obtain, by 01 and 108:

By comparing coefficients (in accordance with 07), we deduce from

this that

P J
' '

V P

which may of course be proved quite easily directly (by induction).

If we do this, we may also deduce the equality 108 by repeated mul-

tiplication of x
"

i
w*m itself, by 103.

1 x

Since we have

(n + p\ fn-rp\ , -t\nfp ^\

( P )
=

( n j

= (- 1
)

( n )

we obtain from 108, if we there write x for x and k for p +1>
the formula

109.

valid for
|a?| <1 and negative integral k. This formula is evidently

an extension of the binomial theorem (29, 4) to negative integral

exponents; for this theorem may for positive integral k (or for k = 0),

also be written in the form 109, as the terms of the series for n > k

are in that case all =0.
Formulae such as those we have just deduced have as we may observe

immediately, and once for all a two -fold meaning; if we read them from

left to right, they give the expansion or representation of a function by a

power series; if we read them from right to left, they give us a closed ex-

pression for the sum of an infinite series. According to circumstances, the one

interpretation or the other may occupy the foremost place in our attention.

By means of these simple formulae we may often succeed in

expanding, in a power scries, an arbitrary given rational function

namely whenever f(x) may be split up into partial fractions, i. e. ex-

pressed as a sum of fractions of the form
A

(x-a)'
Every separate fraction of this kind, and therefore the given func-

tion also, can be expanded in a power series by 108. And in fact

this expansion can be carried out for the neighbourhood of every point
x distinct from a. We only have to write

( )'\x-aj /*-
U -*
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and then expand the last fraction by 108. By this means we sec,

at the same time, that the expansion will converge for
|

x x
\

<
|

a x
\

and only for these values of x.

This method, however, only assumes fundamental importance when

we come to use complex numbers.

Examples.
^ HO.

1 V - 2 2V* ?-I*~-_ - 4* ^J C\n & " ^j t M *

C

3.
'

23. The exponential function.

1. Besides the geometric series, the so called exponential series
GO ~n .'J r 3 /v.n

2 -= i + x + -
-\-

- H h ^r H
n=0 n ' .o n.

plays a specially fundamental part in the sequel. We proceed now

to examine in more detail the function which it represents. This

so-called exponential function we denote provisionally by E(x). As

the seiies converges everywhere by 92,2, E (x)
is certainly, by 98,

defined, continuous and differentiate any number of times, for every x.

For its derived function, we at once find

so that for all derived functions of higher order we must also have

We shall attempt to deduce all further properties from the series

itself. We have already shown in 91, 3 that if x and x are any two

real numbers, we have in all cases

(a) (XL + aco)
= E (x\)-E (x>>) .

This fundamental formula is referred to briefly as the addition theorem

for the exponential function
1

. It gives further

and by repetition of this process, we find that for any number of real

numbers x
l9
#
a , . . ., xk ,

1 Alternative proof. The Taylor's series 99 for E(x) is

valid for all values of x and x . If we observe that E^ fa) = E fa), then it

at once follows, replacing x by a^+tfg, that

q. e. d.
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If we here write x = 1 for each r, we deduce in particular that

holds for every positive integer k. Since E (0)
= 1, it also holds for

k = 0. If we now write, in (b), xv = ~ for each y, denoting by m
a secon^ integer ^ 0, then it follows that

or, ~ since (w) = [(!)]
w

, that

If we write for brevity E(i) = E, we have thus shewn that the

equation

(c) E(x) = E x

holds for every rational x^>0.
If is any positive irrational number, then we can in any

number of ways form a sequence (xn), of positive rational terms, con-

verging to f . For each n, we have, by the above,

When w *-f co, the left hand side, by 98,2, tends to(f), and the

right hand side, by 42, 1, to E
,
so that we obtain

E(f) = E .

Thus equation (c) is proved for every real x I> 0.

But, finally, (a) gives

E(- *)-(*) = E(a - a)
= E(0) = 1,

whence we first conclude that E (x)
= cannot hold 2 for any real x

and that for a;

.

E(x) E x

But this implies that equation (c)
is also valid for every negative

real x.

We have thus proved that the equation holds for every real x\
and at the same time the function E(x) has justified its designation
of exponential function; E (x) is the ar

th power of a fixed base,

namely of

l + i + i +^ + ... +i + ...

2 This may of course, for x >
,
be deduced immediately from the series,

by inspection, since this is a series of positive terms whose term of rank
is = 1.
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2. It will next be required to obtain some further information

about this base. We shall show that it is identical with the number e

already met in 46 a, so that 3

Mm

The proof may be made somewhat more comprehensive, by at

once establishing the following theorem, and thus completing the investi-

gation of 46, a:

o Theorem. For every real x 9 111.

/ x \ xv

lim (1 -|
--

)
exists and is equal to the sum 4

of the series Z
-,.

n->x w '
"

v -i)V\

Proof. We write for brevity

(* +)"=* and
!;$=(*)=

It then suffices to prove that
(s xn) * . Now if, given, first, a

definite value for x, e is chosen > 0, we can assume p so large

that the remainder

2
'

Further, for n > 2,

a series which terminates of itself at the n ih term. The term in x k
,

k 0, 1, . . . , evidently has a coefficient ^> 0, but not greater than

the coefficient 1/&I of the corresponding term of the exponential series.

The same is also true, therefore, of the difference of the former and

the latter term. Accordingly we have, for n > p from the manner in

which p was chosen 5

Every individual term of the (p 1) first terms on the right hand side

8 We have here, therefore, a significant example of problem B. Cf. intro-

duction to 9.

4 First proved if not in an entirely irreproachable manner by Enter,

Introductio in analysin infinitorum, Lausanne 1748, p. 86. The exponential

series and its sum e
x were already known to Newton (1669) and Leibniz (1676).

6 We assume p>2 from the first.
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is now obviously the n th term of a null sequence"; hence their sum
for p is a fixed number also tends to 0, and we may choose

w > p so large that this sum remains < ~ for every n > n
{}

. But

we then have, for every n > n ,

\s-xn <6,

which proves our statement 7
. For x = 1 , we deduce in particular

00 I /=
^-l=lim(l +

-

y=0 vl r-> oo ^

and more generally, for every real x y

The new representation thus obtained for the number e, by the

exponential series, is a very much more convenient one for the further

discussion of this number. In the first place, we can, by this means,

easily obtain a good approximation to e. For, since all the terms of the

series are positive, we evidently have, for every n,

or

. e.

8 We have
(l_JL)->l f

(i-jL\-+i 9 ..., fl
-^-1)-* 1, and so their

product (by 41, 10), also -> 1, or 1 - f 1
J

. . . (l
^""

J
-^0; so, as x

and ^ are fixed numbers, the product of this last expression by T|#|^

also -*0; and similarly for the other terms. We can also infer the result

directly from 41, 12

7 The artifice here adopted is not one imagined ad hoc, but one which
is frequently used: The terms of a sequence are represented as a sum

xn = a;
(n) + x^ + +

fcj.

n
\ where the terms summed not only depend in-

dividually on n, but also increase in number with n: kn > OO . If we know
how each individual term behaves for n > oo

,
as for instance, that x

v
(n) for

fixed v tends to v ,
then we may often attain our end by separating

1 out a fixed

number of terms, say o:
(n)

-\-x^
(n)

-f- -\-xp
^ with fixed p\ this tends, when

n -> oo
,
to 4- fl -f + f , by 41, 9. The remaining terms,

*> + . . . -f *>
we then endeavour to estimate in the bulk directly, by finding bounds above
and below for them, which often presents no difficulties, provided p was

suitably chosen.
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\vherc sn denotes a partial sum of the new series for e. If we cal-

culate these simple values e. g. for n = 9 (v. p. 251) then we find

2 - 718 281< e < 2 718 282
,

which already gives us a good idea of the value 8 of the number e.

From the formula (a) we may, however, draw further important
infeiences. A number is not completely before us unless it is rational

and is written in the form . Is e perhaps a rational number? The

inequalities (a)
show quite easily that this is unfortunately not the case.

For if we had e = , then for n = q, formula (aj would give:

where s
q
= 2 -f- ^ -|

----
-f r. If we multiply this inequality by q\,

then q \ s
q

is an integer, which we will denote for the moment by g,

and it follows that

But this is impossible; for between the two consecutive integers g and

g -f- 1 there cannot be another integer p -

(q l) 1 distinct from either :

e is an irrational number.

3. The above investigations give us all the information, with regard

(x \
n

1 -|
-- )

, which we, in the first instance, require; the

two problems A and B
( 9) are both satisfactorily solved. In spite

of this, we propose, in view of the fundamental importance of these

matters, to determine the same limit again and in a different way,

entirely independent of the preceding.

(1 \n

1 -|
--

) > e .

This we will first extend by showing that

* n

alsoy when (yj is any sequence of positive numbers tending to + oc-

When yn = a positive integer, for every n, this is an immediate con-

sequence of the previous result 9
.

8 The number e nas been calculated to 346 places of decimals by
J. M. Boormann (Math, magazine, Vol. 1, No. 12, p. 204, 1884).

9 For if e is given > ,
and n is determined, by 46 a, so that

remains .< * for every n>n , then we shall also have

(1 \ v
I

1 _]
---

J

n
e\ <^e for every n > ttlf provided n

v
is so chosen that for everyy/

I

n >> n
4
we have yn ;> .

M
-|
---

J

_
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If the numbers yn are not integers, there will still be for each n
one (and only one) integer kn such that

*.y.<*. + l>.
and the sequence of these integers kn must evidently also tend to -|- oo.

Now, however, if kn ^ 1,

And since the numbers k are integers, the sequence

(>+
and the sequence

both tend to e, by our first remark. Hence, by 41, 8, we also have

(+f>-
We may next show that when yn'+ oo, we also have

or, otherwise, that when yn >
-|- oo, we have

/ 1 \-Vn
1 --

)
-+e.

\ yJ
All the numbers yn

'

must, however, be assumed < 1, i. e.

yn > 1 ,
so that the base of the power does not reduce to or a

negative value; this can always be brought about by "a finite number
of alterations". Since

and since, with yn , yn 1 also >
-|- oo, the statement to be proved

is an immediate consequence of the preceding one.

Writing = zn , we may couple the two results thus:

provided (zn)
is any null sequence with only positive or only negative

terms, the terms in the latter case being all > 1. From this

we finally obtain the theorem, including all the above results:

Theorem: // (xj is an arbitrary null sequence whose terms are

different from and > 1 from the first
10

,
then u

i

(a)
Urn (1+ *,)* .

10 The latter may always be effected by "a finite number of alterations'

(cf. 38, 6).
11

Cauchy: Rgsume' des lemons sur le calcul infinit., Paris 1828, p. 81.
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Proof. Since all the xn's =J= 0, the sequence (#n) may be divided

into two sub-sequences, one with only positive and one with only ne-

gative terms. Since, for both sub-sequences, the limit in question, as

we have proved, exists 12 and = e, it follows by 41, 5 that the given sequence
also converges, with limit e.

By 42, 2, the result thus obtained may also be expressed in the

form

(b)
log, (1 + **) _ !yxn

which will frequently be used.

By 19, Def. 4, the result also signifies that, invariably:

From these results, it again follows, quite independently, as

we announced, of our investigations of 1. and 2. , that

('+3'-"
for (

J
is certainly a null sequence

18
, so that we have, by the pre-

ceding theorem,
n

e and therefore
(l + -)"-* e

9
,

which was what we required
14

.

4. If a > 0, and x is an arbitrary real number, then, denoting by log

the natural logarithm (v. p. 211),

ax = gxioga = 1-1- 9* x + x2 4- S* x? 4-C* G X T
j i

* ~
2 I

I Q I
**

I

is an expansion in power series of an arbitrary power. We deduce the

limiting relation 15

2Lni->loga for *->0, a> 0.113

18 If one of the two sub-series breaks off after a finite number of terms,

then we can, by a finite number of alterations, leave it out of account.
18 We consider this null sequence for n >

|
x

\
only, so that we may al-

x ^ t

ways have > 1 .

14 Combining this with the result deduced in 2., that the above limit has

the same value as the sum of the exponential series, we have a second proof
of the fact that the sum of the exponential series is =e*.

16 Direct proof: If the xn 's form a null sequence, then by 35, 3, so

do the numbers ? = **
1; and consequently, by 112 (b),

a x*l y*log-a log- a_->_- = log a.
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This formula provides us with a first means of calculating loga-

rithms, which is already to a certain extent practicable. For it gives,

e. g. (cf. 9, p. 78)

log a= limn (ya 1^
n->o>

2*__

=lim2*(Va-l).
*->oo

As roots whose exponent is a power of 2 can be calculated directly

by repeated taking of square roots, we have in this a means (though
still a primitive one) for the evaluation of logarithms.

5. We have already noted that e* is everywhere continuous and

differentiable up to any order, with e
x =

(e*}'
=

(e*)"
= . It also

shares with the general power a
x
', of base a > 1, the property of

being everywhere positive and monotone increasing with x.

More noteworthy than these are the properties expressed by a

scries of simple inequalities, of which we shall make use repeatedly

in the sequel, and which are mostly obtained by comparison of the

exponential with the geometric series. The proofs we will leave to

the reader.

114. a) For every
16

x, e? > 1 + x,

ft)
for x<l, <**<,
for x> -1,

8) for x < + 1, x < e* - 1< j^,
X

e)
for x > 1 , l-\-x> e^~x ,

rn

f) for x > 0,
c*>-p\> (P

=
> 1. 2, . .

.),

rj)
for x > and y > 0, ** >

(l +^ > *^+5,

for every z+ 0, |* l| < *M K

24. The trigonometrical functions.

We are now in a position to introduce the circular functions

rigorously, i. e. employing purely arithmetical methods. For this pur-

pose, we consider the series, everywhere convergent by 92, 2:

16
Only for x = do these and the following inequalities reduce to equa-

lities. The reader should illustrate the meaning of the inequalities on thfe

relative curves.
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and , a* a* .

i / iV
S(a) - x - -

3l + 5f
- H----- |- (- 1)

pTj-.pl)]

--

Each of these series represents a function everywhere continuous and

differentiable any number of times in succession. The properties of

these functions will be established, taking as starting point their ex-

pansions in scries form, and it will be seen finally that they coincide

with the functions cos a; and sin a; with which we are familiar from

elementary studies.

1. We first find, by 98, 3, that their derived functions have the

following values:
r9 _ c- f*u _ r* rill _ r xv/// _ C
\_s

~~~ O , O ~~~~ v^ j ^ tJ ) \^f O ,

Qf _ f+ C" _ C C'" _ /"* o//// _ c .J -- O y O ~~~* O , O ~~~~ \s , O O ,

relations valid for every x (which symbol is for brevity omitted).

Since, here, the 4 th derived functions are seen to coincide with the

original functions, the same series of values repeats itself, in the same

order, from that point onwards in the succession of differentiations.

Further, we see at once that C(x) is an even, and (#) an odd,
function: , N >-/\ o/ \ o/\C

( x)
= C (x) , 5

( x)
= 5 (x) .

These functions also, like the exponential function, satisfy simple ad

dition theorems, by means of which they can then be further examined.

They are most easily obtained by Taylor 's expansion (cf. p. 191, foot-

note 1).
This gives, for any two values x

t
and a?

a , since the two

series converge everywhere (absolutely),

and as this series converges absolutely, we may, by 89, 4, rearrange
it in any order we please, in particular we may group together all

those terms for which the derived functions which they contain have

the same value. This gives

--
Tr

(a) C (x, + ar
a)

== C (*J C (x,)
- S (zj S (*,) ;

and we find 17
quite similarly

(b) S fo + ,)
= S (*,) C (*,) + C (

17 Second proof. By multiplying out and rearranging in series form,
we obtain from

C(xt)C(xa)-S(xl)S(xa)

the series C (xl + x^) ,
as in 91, 3 for the exponential series.

Third proof. The derived function of f(x) =
[C (x, + x)-C (x,) C (x) + S (XL) S (x)]* + [S (x, + x)-S (xj C (x)

- C (xj S (*)f

is, as may at once be seen, =0. Consequently (by 19, theorem 7), f(x)^f(Q) = Q.

Hence each of the square brackets must be separately ~ 0, which at once gives
both the addition theorems.



200 Chapter VI. The expansions of the so-called elementary functions.

From these theorems, whose form coincides with that of the

addition theorems, with which we are already acquainted from an ele-

mentary standpoint, for the functions cos and sin, it easily follows

that our functions C and 5 also satisfy all the other so called purely

goniometrical formulae. We note, in particular:

From
(a), writing x^

= x 9 we deduce that, for every x,

(c) C(*) + S(*) = 1;

from (a) and
(b), replacing both x and x% by x:

S(2x)=2C(x)S(x).
2. It is a little more troublesome to infer the properties of

periodicity directly from the series. This may be done as follows:

We have
C (0)

= 1 > .

On the other hand, C(2) < 0; for

C(2^-l---i- 24-^ ^)/^o 2
^\*) L

21 ' 41 \6! Si) \10! I2l)
""

where the expressions in brackets are all positive, since for nl>2,
+ _

'
n!

A. 1 A t

and therefore C (2) < 1
-^
+ 4

~ ~~
"3"

' '* e ' certainly negative. By

19, Theorem 4, the function C (x) therefore vanishes at least once

between and 2. Since further, as may be again easily verified,

is positive for all values of x between and 2, and therefore

C'(x)= S(x) constantly negative there, it follows that C (x) is

(strictly) monotone decreasing in this interval and can only vanish at

one single point f in that interval. The least positive zero of C(x),
i. e. f, is accordingly a well defined real number. We shall imme-

diately see that it is equal to a quarter of the perimeter of a circle

of radius 1 and we accordingly at once denote it
18

by :

From
(c),

it then follows that S2

f~J
= l, i. e. since S (x) was seen

to be positive between and 2, that

= 1.

18 The situation is thus that n is to stand for the moment as a mere ab-
breviation for 2; only subsequently shall we show that this number n has

the familiar meaning for the circle.
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The formulae (d) show further that

and by a second application, that

201

It then finally follows from the addition theorems that, for every x,

c(x + ?) = -S(x),
\ z /

/~ / i \ /^ /M\U (X -f- 71) = C (CC) ,\ ' / \ / '

C(TT~- a;)= C(*),

Our two functions thus possess
19 the period 2 TT.

3. It therefore only remains to show that the number n, intro-

duced by us in a purely arithmetical way, has the familiar geometrical

significance for the circle. Thereby we shall have also established the

complete identity of our functions C (x) and S(x) with the functions

cos re and sin a; respectively.

Let a point P (fig. 3) of the plane of a rectangular coordinate

system OXY, be assumed to move in such a manner that, at the

time t> its two coordinates are given by
and

then its distance
|

O P
\

= Vrc
9

-f- y* from the origin of coordinates is

constantly = 1, by (c).
The point P therefore moves along the peri-

meter of a circle of radius 1 and centre O.

If, in particular, t increases from to 2 n,

then the point P starts from the point A of

the positive #-axis and describes the peri-

meter of the circle exactly once, in the mathe-

matically positive (i.
e. anticlockwise) sense.

In fact, as / increases from to n, x = C (t)

decreases, as is now evident, from -f- 1

to 1, monotonely, and the abscissa of P
thus assumes each of the values between -f- 1

and 1, exactly once. At the same time,

S(f) remains constantly positive; this therefore implies that P describes

the upper half of the circle from A to B steadily, and passes through

19 2 n is also a so-called primitive period of our functions, i. e. a period,
no (proper) fraction of which is itself a period. For the formulae (e) show that

-^ = n is certainly not a period. And a fraction
,
with m>>2, cannot be

2i nt

(O

- \

\ = S(0) = 0, which is impossible since S(a;) was

seen to be positive between and 2 and in fact, as S (n x) = S (x) , is positive
2 31

between and n. Similarly for C
(a;), (m > 1) cannot be a period.

Fig. 3.
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each of its points exactly once. The formulae (e) then show further

that when t increases from n to 2 n, the lower semi-circle is described

in exactly the same way from B to A . These considerations provide
us first with the

Theorem. // x and y are any two real numbers for which x*-\-y
2= I,

then there exists one and only one number t between (incl.) and 2n

(excl.\ for which, simultaneously,

C(t)
= x and S

(t)
= y .

If we next require the length of the path described by P when

t has increased from to a value tQy the formula of 19, Theorem 29

gives at once, for this, the value

In particular, the complete perimeter of the circle is

2n ___ SJT

== / Vt' 2 + ST*dt = / dt = 2 n .

The connection which we had in view between our original conside-

rations and the geometry of the circle, is thus completely established:

C (t),
as abscissa of the point P for which the arc A P= t, coincides

with the cosine of that arc, or of the corresponding angle at the centre,

and S (t),
as ordinate of P, coincides with the sine of that angle. From

now on we may therefore write cos t for C(f) and sintf for S(t).

Our mode of treatment differs from the elementary one chiefly in that

the latter introduces the two functions from geometrical considerations,

making use naively, as we might say, of measurements of length, angle,

arc and area, and from this the expansion of the functions in power
series is only reached as the ultimate result. We, on the contrary,

started from these series, examined the functions defined by them, and

finally established using a concept of length elucidated by the in-

tegral calculus the familiar interpretation in terms of the circle.

4. The functions cota; and tana; are defined as usual by the ratios

cos x sin re

cota; = , tan x = -- :

sin x cos x

as functions, they therefore represent nothing essentially new.

The expansions in power series for these functions are however
not so simple. A few of the coefficients of the expansions could of

course easily be obtained by the process of division described in 105, 4.

But this gives us no insight into any relationships. We proceed as

follows: In 1O5, 5, we became acquainted with the expansion
20

20 The expression on the left hand side is defined in a neighbourhood of

exclusive of this point; the right hand side is also defined in such a neigh-

bourhood, but inclusive of 0, and moreover is continuous for x~ 0. In such case

we usually make no special mention of the fact that we define the left hand
side for x = by the value of the right hand side at the point.
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1 v=o "1 2

where the Bernoulli's numbers Bv are, it is true, not explicitly known,
but still are easily obtainable by the very lucid recurrence formula 100.

These numbers we may, and accordingly will, in future, regard as

entirely known 21
. We have therefore, for every "sufficiently" small x

(cf. 1O5, 2, 4)
x *

1
[

B
* x

*

I ...^i^a""" 1 ^ 21
^ '

The function on the left hand side is however equal to

jL _-?.

_ x / 2 \ _ xe*+\ _xe 2 +e 2

"""

'A** 1
'

/
~~

2 *-!
~~

2 *. _*
e*-e *

and from this we see that it is an even function. Bernoulli's numbers J53 ,

B$ y
B7 are therefore, by 97, 4, all = 0, as already seen in 106, and we

- x
have, using the exponential series for e* and writing for brevity z:

ST 5T

If on the left hand side, we had the signs -j- and occurring alter-

nately, both in the numerator and denominator, we should have pre-

cisely the function zcotz. Dividing out on the left hand side by the

factor z y so that only even powers of z occur, may we then deduce

straight away that the relation

, cot,_

obtained from our equality by alternating the signs throughout, is also

valid? Clearly we may. For if, to take the general case, we have for

every sufficiently small z:

the same relation holds good when the + signs throughout are re-

placed by alternate + and signs. In either case, in fact, the coeffi-

cients c2v are obtained, according to 105, 4, from the equations:

c* + *>9 *=**'> c
* + C

a 6
2 +*>4 = &4

9

> ^ + c
4 6.J + ca 64 +6tf

=aa ; ...;

czv + c2 ,-2 &
a H-----h ca &Jv~2 + b-2 V

= a2v ; ...

fl As appears from the definition, they are certainly all rational.
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We therefore, as presumed, now writing x for z, have the

formula 22
:

^ ft

__1 l 9 1
4

2 l
8l

~~~S
X

""45* ~~945* ""4725*

The expansion for tan x is now most simply obtained by means
of the addition theorem

ft rt cos2 x sin2#
2 cot 2 a; = :

~ cot x tana; f
cosar-smo; f

from which we deduce

tan x = cot x 2 cot 2 3
and therefore 23

* / v ^x 1
2
8
*(2

s
*-l)J?, Jfc o ^

1 16. (a) tanx= ( l)
k~ l

^-^j
M*h~ l

= x-\ --a;8 -I

2
gg

-l

1?
x7

From the two expansions, with the help of the formula
1

cot + tan -^ = -7
' 2 sin #

we obtain further

tina?

.
I

X n I I 4 I A I 4]|
a: +'"

(An expansion for 1 /cos re will be found on p. 239.) These ex-

pansions, at the present point, are still unsatisfactory, as their interval

of validity cannot be assigned; we only know that the series have a

positive radius of convergence, not, however, what its value is.

5. From another quite different starting point, Euler obtained an

interesting expansion for the cotangent which we proceed to deduce,

especially as it is of great importance for many problems in series 34
.

At the same time, it will give us the radius of convergence of the

series 115 and 116 (v. 241).

*2 This and the following expansions are almost all due to Euler and are

found in the 9 th and 10 th
chapters of his Introductio in analysin infimtorum,

Lausanne 1748.

28 We shall afterwards see that B
2k

has the sign (-1)*"
1

(v. 136), so

that the expansion of zcotg, after the initial term 1, has only negative coeffi-

x
cients, those of tanx and only positive coefficients.

M The following considerable simplification of Euler's method for obtaining

the expansion is due to Schrdter (Ableitung der Partialbruch- und Produkt-

entwicklung-en ttir die trigfonometrischen Funktionen. Zeitschrift fUr Math. u.

Phys., Vol. 13, p. 254. 1868).
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We have, as was just shewn,

or

a formula in which we may, on the right, take either of the signs .

Let x be an arbitrary real number distinct from 0, 1, 2, ...,

whose value will remain fixed in what follows. Then
jt X ( t 3i x

,
yi (x -f- 1) }jixcotnx = -

2
-

1

cot
~p- -f- cot 21

and applying the formula (*) once more to both functions on the right

hand side, taking for the first the -f- and for the second, the sign,

we obtain

jix f nx
,

f 3t(x + l) , jc(x-l)l . ^(#+ 2)1
n x cot n x =

-j- |cot
-
f

- + [cot
-A-~

-f cot v

4
;

J
-f cot ~~-^

j

.

A third similar step gives, for jixcotjtx, the value

+ cot + cot + cot

+ cotm^> + cot^L^L + cot H*
8
=^

since here each pair of terms which occupy symmetrical positions

relatively to the centre () of the aggregate in the curly brackets give,

except for a factor 1, a term of the preceding aggregate, in accordance

with the formula
(*).

If we proceed thus through n stages, we obtain

for n > 1

/ \ ^ nx \ *.
n x

i

2
v-T

1
f M.

n (x + v) i
n (x v)l ^ n &

I

(f) rco;cot,r3 =
^{cot + ^ [

COt
^2 + COt 2^J

"" tan
2^"

Now by 115,
lim ,? cot z = 1

2->0

and hence for each a
=[=

v 1 , a 1

if in the above expression we letw*oo and, a^ /*Vs^ tentatively, carry

out the limiting process for each term separately, we obtain the ex-

pansion

We proceed to show that this in general faulty mode of passage to the

limit has, however, led in this case to a right result.

We first note that the series converges absolutely for every
x

-\~ 1 2, ..., by 70, 4, since the absolute values of its terms
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are asymptotically equal to those of the series JJ-^ . Now choose an

arbitrary integer k > 6
|

x
\
, to be kept provisionally fixed. If n is so

large that the number 2n
~ 1

1, which we will denote for short by m,
is > k, we then split up the expression (f)

for nxcotx, as follows 35
:

71X (

^- J

(In the square brackets we have of course to insert the same expression
as occurs in

(f).)
The two parts of this expression we denote by

An and Bn . Since An consists of a finite number of terms, the passage
to the limit term by term is certainly allowed there, by 41, 9, and

we have

lim An
= 1 + 2 x* JS-r^-T-.

->.
M

r^i*
J -*f

Also Bn is precisely nx coinx A n , hence lim Bn certainly exists.

Let rk denote its value, depending as it does upon the chosen value ft;

thus

limB
r

*
i i

n
= r

k
= n x cot n x 1 + 2 x* ~i

L v=l X ~~ V "J

Bounds above for the numbers Bn , for their limit rk and so finally for

the difference on the right hand side, may now quite easily be esti-

mated:

We have

* / i IA i M. / t\ 2 cot a
cot (a + b) + cot (a-b) = -

.
-

ff
sin* a

and hence

--.^(z v) 2 cot a

*

writing for the moment ^ = a and ^ = B 9 for short.

As 2
n > ft > 6

|

a
|,
we certainly have

|

a
|

= itx < 1 and so 26

I

sm a
I

=

Since, further, < ft < "~ < 2, we have 27

86 Cf. Footnote 7, p. 194.
86 For the sake of later applications we make these estimates in the above

rough form.
87 Cf. p. 200.
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Hence sin ft

sin a 61*1

the latter, because r > ft > 6 cc
|

. It therefore follows that
(for

v > k)

cot-

and hence
36 x-

72 **

-1

The factor outside the sign of summation is quite roughly estimated

certainly < 3; for

1

2 cot 2
1

=

Accordingly,

nx
was < 1, and for

|

z
\
< 1 we have

_
31 5!

1

But this is a number quite independent of w, so that we may also

write

But the bound above which we have thus obtained for rk is equal

to the remainder, after the kih term, of a convergent series 28
. Hence

rk -~> as k -> + oo. If we refer back to the meaning of rk ,
we see that

this implies

lim
{

77 x cot 77 x -
[l
+ 2 x2 2 ^

l

_ J }

r- 0,

or, as asserted,

a formula which is thus proved valid for every x ^ 0, + 1, 2, . . . .

6. We shall in the next chapter but one make important applications

(p. 236 seqq.) of this most remarkable expansion in partial fractions, as it is

called, of the function cot. We can of course easily deduce many further

such expressions from it; we make note of the following:

1 The convergence is obtained just as simply as, previously, that of the series

V -
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The formula

rccot^ 2^cotjra; = jrtan~

first of all gives 29

fft tan >t
ass, % # ^ :t 1 ~t~ 3 , + 5 . <

2 .~ r9 v _L n2 __/** -r -i- j- > j. *

= 2

The formula

>V_J _J \

rlToM2 "* 1)-* (2 v + l)+*/'

2 sin *

then gives further, for a;=j=0, 1, 2, ...

7T 1 9 'Y* 9 'V*^ = --
I

* x *'r
I . ..

sin jt x x '
i ^ ^ o^ *

Finally if we here replace x by \ re, we deduce

3-2*7 \3 + 2a; 5 - 2 W '

By 83, 2, Supplementary theorem, the brackets may heie be

omitted. But if we then take the terms together again in pairs, starting

from the beginning, we obtain, provided x
={= |, o> S>

COSTTA:

With these expansions in partial fractions for the functions cot, tan,

4-andJ
sm c<

functions.

-r- and , we will terminate our discussion of the trigonometricalsm cos

25. The binomial series.

We have already, in 22, seen that the binomial theorem for

positive integral exponents, if written in the form

remains unaltered in the case 30 of a negative integral k. But we have

then to stipulate |

x
|
< 1. We will now show that with this restriction

99 The formula first follows only for x
=)= 0, 1, 2, ... but can then

be verified without any difficulty for o? = 0, 2, 4, .... (The series has

the sum 0, as is most easily seen from the second expression, for an even

integral x.)
80 In the former case the series is infinite only in form, in the latter it

is actually so.
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the theorem holds 31 even for any real exponent a, i. e.

,
,

(a any real number.

As in the preceding cases, we will start from the series and shew

that it represents the function in question

The convergence of the series for
[

x
\

< 1 may be at once established;

for the absolute value of the ratio of the (n + l)
th to the nth term is

and therefore >|a;|,

which by 76, 2 proves that the exact radius of convergence of the

binomial series is 1. It is not quite so easy to see that its sum is

equal to the of course positive value of
(1 -|- #)

a If we denote

provisionally by fa (x)
the function represented by the series for

|

x
\

< 1,

the proof may be carried out as follows.

Since 57
(

a
\x

n
converges absolutely for I x I < 1, whatever may be

\n / ' l

the value of a, it follows, by 91, Rem. 1, that for any a and ^, and

every \x\ < 1, we have

Now

as may quite easily be verified e. g. by induction 33
. Hence for

81 The symbol f
a

J
is defined for an arbitrary real a and integral n j>

by the two conventions

(:)-
and for every real a and every n > 1 ,

it satisfies the relation, which may at

once be verified by calculation.

14 For this, give the statement, by multiplying by n\, the form

FZ~l7^(-^
Then multiply each of the (n -f 1) terms on the left hand side first by the corres-

ponding: term of

or, (a- 1), . .., (a-), ..., (a-w),
then by the corresponding term of

0?-n), (/J-M + 1), ..., (fi-n + k) ..... f
and add, so that in all we multiply by (-f /? n)\ grouping together the similar

terms on the left, we obtain precisely the asserted equality, where n is replaced
by w-j-1. The above formula is usually called the addition theorem for the

binomial coefficients.
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fixed
|

x
|
< 1, we have, for any a and

f! 9

fa'fp
= A+0-

By precisely the same method as we used to deduce from the

theorem of the exponential function, E (xj E (xt2 } E(x
that for every real x we had (E (x)

= (E (I)/, so we could

conclude that for every a,

/- = (/;)",

if we knew here also that fa was for every real cc (with fixed x) a

continuous function of a. As f1 = l-{-x, the equality

fa - (1 + *)

would then be established generally for the stated values of x.

The proof of the continuity results quite simply from the main

rearrangement theorem 9O : If we write the series for fa in the more

explicit form

(a) /L _ 1 + , + (^_)^ + (^_^ + |.)
a
- + ...

and then replace each term by its absolute value, we obtain the series

also convergent for
|

x
\
<C 1 by the ratio test. We may accordingly

rearrange the above series (a)
in powers of cc, obtaining

(b) fa=i

i. e. certainly a power series in cc. Since this still for fixed x in

|

x
|
< 1 converges, by the manner in which it was obtained, for

every cc> we have an everywhere convergent power series in a, hence

certainly a continuous function of cc.

This completes the proof
33 of the validity of the expansion 119 and

at the same time fills the gap left in the proof of the reversion theorem

21.

83 An alternative proof, perhaps still easier than the above, but using- the
00

/#\
differential calculus, is as follows: From fa (x)

=
J { )

x n
it follows that

n=0 vw/

Since however ("+ 1)
( + j)

=
(" )

'
U follows further that

KM = /'-! <*)

But

(1+ *) /a-! (*)
= (1 + *)

'
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The binomial series provides, like the exponential series, an expansion
of the general power a?: Choose a (positive) number c for which, on the

one hand, tf may be regarded as known, and on the other, < - < 2.

a
Then we may write

c
= 1 + x with

|
x

\
< 1 and so obtain, as the required

expansion,

* = *(!+*)* = T* l + X

Thus e. g.

=
5 L

1 ~~
\ 1 / 60 "f~

\ 2 ) 50-'

~~~

\ 3 / 50* ^ ' * *

J

is a convenient expansion of V2.

The discovery of the binomial series by Newton M forms one of the

landmarks in the development of mathematical science. Later Abel 35

made this series the subject of researches which represent a perhaps equally

important landmark in the development of the theory of scries (cf. below

170, 1 and 247).

26. The logarithmic series.

As already observed on pp. 58 and 83, in theoretical investigations

it is convenient to employ exclusively the so-called natural logarithms,

that is to say, those with the base e. In the sequel, log* shall therefore

always stand for loge x (x > 0).

If y = log x, then x = ev or

By the theorem for the reversion of power series (107), y = log x is there-

thus, for every |
x

\
< 1, we have the equation

(1 + *)/'<*)-/.<*) = <>.

Since (1 + x)* > 0, this shows that the quotient

has everywhere the differential coefficient 0, i. e. is identically equal to one and the

same constant. For x ~ the value is at once calculated and = -|- 1
; thus the

assertion /a (x) = (1 + jc)
a

is proved afresh.
34 Letter to Oldenburg, 13 June 1676. Newton at that time possessed no

proof of the formula; the first proof was found in 1774 by Euler.
86

J. f. d. reine u. angew. Math., Vol. 1, p. 311, 1826.
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fore expansible in powers of (x
-

1) for all values of x sufficiently near

to + 1, or y = log (1 + x) in powers of x, for every sufficiently small
|

x
\

:

y - log (1 + *)
= * + ft, a* + ft3 x* + . . . .

The coefficients bn may actually be evaluated by the process indicated,

provided the working is skilfully set out 36
. But it is advisable to seek more

convenient methods: For this purpose, the developments of the preceding
section suffice. For

|

x
\
< I and arbitrary a, the function /a = /a (x)

there examined is

Using, for the left hand side, the expression (b) of the former paragraph
and for the right hand side, the exponential series, we obtain the two

power series everywhere convergent:

= 1 + [log (! + *)]<*+... .

By the identity theorem for power series 97, the coefficients of corre-

sponding powers of a must here coincide. Thus, in particular
37

, and

for every |

x
\
< 1

120. (a) log (1 + x) - x - f + f - + . . . 4
(-^P *+...

Thus we have obtained the desired expansion, which, we also see a pos-

teriori^ cannot hold for
|

x
\
> 1 . If we replace in this logarithmic series,

as it is called, x by x and change the signs on both sides of the equality,

we obtain, equally for every |

x
\
< 1,

By addition we deduce, again for every |

x
\
< 1

,

There are of course various other ways of obtaining these expansions;

but they either do not follow so immediately from the definition of the

log as inverse function of the exponential function, or make more extensive

use of the differential and integral calculus 38
.

36 Herm. Schmidt, Jahresber. d. Deutsch. Math. Ver., Vol. 48, p. 56. 1938.
87 Cf. the historical remarks in 69, 8.

88 We may indicate the following two ways:
1. We know from the reversion theorem that we may write

log (1 H- x) = x + 6 2 *
a + 6 3 x

3
-f . . . ;

it follows from Taylor's series 99 that

= 1 (& log (1 + x)\ ^(-l)*-
1

-Q k
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Our mode of obtaining the logarithmic series also the two

modes mentioned in the footnote do not enable us to determine

whether the representation remains valid for x = -f- 1 or x = 1.

Since however 120a reduces, for x = + 1> to tne convergent series

(v. 81 c, 3)

the value of this series, by Abel's theorem of limits, is

= lim Iog(l+ #)= log2.
jc-yl .0

Our representation (a) there remains valid for x = -f- 1; but for x -=

it certainly no longer holds, as the series is then divergent.

27. The cyclometrical functions.

Since the trigonometrical functions sin and tan are expansible in

power series in which the first power of the variable has the coeffi-

cient 1, different from 0, this is also true of their inverses, the so-

called cyclometrical functions sin" 1 and tan" 1
. We have therefore to

write, for every sufficiently small
|

x
\

,

y = sin" * x == x -f- &3 or* + &
5
#5 + *

y = tan" * x = x + &3
'
x* + 65

f

a;
5

-|
----

where we have left out the even powers at once, since our functions are

odd. Here too it would be tedious to seek to evaluate the coefficients

b and b
f

by the general process ot 107. We again choose more con-

venient methods: The series for tan"" 1
a; is the inverse of

v _?? 4.^-4....
, , . siny

y
31"*" 5!

"*"

(a) x = tan y = -- = --
;,

-
;
--

,^ / ^ cos 1 * '

cosy

or of the series obtained by 1O5, 4 after carrying out the process of

division in the last quotient. If here all the signs, in numerator and

denominator, were -J-, then we should be concerned with reversing
the function

2 . =
T

=l-* +*^
It

Integrating, it follows at once, by O
r
theorem 5, since log 1=0, that

The method in the text is so far simpler that it proceeds entirely without
the use of the differential and integral calculus.

8 (051)



214 Chapter VI. The expansions of the so-called elementary functions.

But the inverse of this function is, as we immediately find,

By the general remark at the end of 21, the reverse series of the series

for x = tanjy actually before us is obtained from the series last written

down by alternating the signs
39

again, i. e.

121. tm~l x = *- + ?-+ .

If therefore this power series, which obviously has the radius of conver-

gence 1, is substituted for y in the quotient on the right of (a), and this

is then rearranged, as is certainly allowed, we obtain the terminating

power series x. Hence its sum for an arbitrary given \

x
\

< 1 is a solution

of tan y = x, and is precisely the so-called principal value of the function

tan"1 x hereby defined, i. e. the value which is = for x = and then

varies continuously with x. Hence for !<#< + !, it satisfies the

condition

and is defined, in the interior of this interval, without any ambiguity.

For \x\ >1 the expansion obtained is certainly no longer valid;

but Abel's theorem of limits shews that it does still hold for x 1.

For the series remains convergent at both endpoints of the interval of

convergence and tan"1 x is continuous at both these points. We have

therefore in particular the series, peculiarly remarkable for clearness and

simplicity: _ _ _
4

A 3^5 7
T-

giving at the same time a first means of determining TT of some practical

value. This beautiful equation is usually named after Leibniz w
\

it may
be said to reduce the treatment of the number IT to pure arithmetic. It

is as if, by this expansion, the veil which hung over that strange number

had been drawn aside.

89 A different method is the following: We have

d tan"1 x 1 _ 1 __
1 _, 2 r 4 i

~d*~- ?^~r+i^;~i-f *2
* +* *

dy

the latter for
|
x

\
< 1. As tan"1 =

0, it follows by 99, theorem 5, that for
|
x

\
< 1,

x*
tan'1 *-*-

3 +-5 -+
A method corresponding to that given first in the preceding footnote is some-

what more troublesome here, as the differential coefficients of higher order of tan"1 x

even at the single point are not easy to find directly. The expansion of

tan"1 x was found in 1671 by J. Gregory, but did not become known till 1712.

40 He probably discovered it in 1673 from geometrical considerations and

without reference to the inverse tan-series.
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For the deduction of a series for sin"" 1 a;, the method which we
have just used for tan""

1
a; is not available. The process indicated

in the last footnote, however, provides the desired series: We have

for x < 1

_
dx /d*>iny\ cosy i/l x9

(~dJ
the positive sign being given to the radical since the derived function

of sin" 1
a; is constantly positive in the interval 1 . . . -f- 1. From

(sin-' *)'
= 1 -

(-')
** + (-)

* - +
it at once follows, however, by 99, theorem 5, as sin~ A = 0, that

for x < 1

sin l x
1 cc

3
. 1-3 a?

5
,

1-3-5

2 T+ 53TT+ 2T*

This power series also has radius 1, and on quite similar grounds to

the above we conclude that for
|

x
|

< 1 its sum is the principal value

of sin" 1
a;, i. e. that uniquely determined solution y of the equation

sin y = x which lies between
-^

and + TT

For #= 1, the equality is not yet secured. By Abel's theorem

of limits it will hold there if, and only if, the series converges there.

As we have a mere change of sign in passing from -}- x to x, this

only needs testing for the point -f- 1 . There we have a series of po-

sitive tcims and it suffices to show that its partial sums are bounded.

Now for < x < 1, if we denote by sn (x)
the partial sums of 123,

sn (x) < sin" 1
a; < sin~ 1 l =

-|.

And as this holds (with fixed n) for every positive x < 1, we also have

and as this holds for every n, we have proved what we required. Thus

i-l+ i.i+ ld.i+ LM.i-J-...
2 ~2 3~2-4 5^2-4-6 7

'
'

22 to 27 have thus put us in possession of all the power series

which are most important for applications.

Exercises on Chapter VI.

74. Show that the expansions in power scries of the following functions

have the form indicated in each case:

a) tf^sina^ x n with s = V^" sin n T * e- 5U =
,

n=o n!

,^(-l)*-
l bk-~ with bk =l + ~ + l
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c) -tan-^-lo 115= yT c.,g
4*+2 w;.u ,._i j .

*
. .

*

d) ~tan-i o:.

with ^ = 1 + 3 +.
<j

i r il 3
/* _

) log-- =
JS,

7 n ~ 1
a;
w

,
with the same meaning- of hn as in d).2 L 1 an n==2

n

75. Show that the expansions in power series of the following functions

begin with the terms indicated:

x
__ 1

x y? a:
3

Io*ri;
x+*+. ..+!!

b) (I-*)/
2 m = 1

1 29
c) tan (sms)-sm(tana;) = gga;

7 +
^a;

H ;

~
, a; .11 7 , .

2447 A 959

76. Deduce, with reference to 1O5, 5, 115 and 116, the expansions in

power series of the following functions

a) log cos x ; b) log ;x

x ,
tana; _. x

c) log ; d) -; ;

'
1 cos x f

cos x
'

X 1

2 sin x
&

' e^+1 ' cosx sin*

77. Show that, for a =t= 0, 2, 4, ...

78. We have
(^
--

-^}
*>e. Is the sequence monotone? Increasing or

decreasing? What, in this respect, is the behaviour of the sequences

(n-i)-*',
o< a <i ?

70. From xn -* f it invariably follows that



Exercises on Chapter VI. 217

and also, if xn and are positive, that

x *

8O. If (#) is an arbitrary real sequence, for which ->0, and we write
n

Cx \
n

1 --
-J =yn , then, in every case,

81. Prove the inequalities of 114.

8S. Express the sums of the following series by closed expressions in

terms of the elementary functions:

, 1 x x* x*
aj 2"f

"5
+T+

ll
+ ""*

(Hint: If f(x) be the required function, then obviously

(**./>)/ = 1-^

whence f(x) may be determined. Similarly in the following
1

examples.)

~3 ~5 r? ~9
M x _ x

4. ____ 4. _ . . .

' 1-3 3.5^5.7 7-9"
1
"

1 X X*
C) 1.2.3

+
2-3 4

+ S'^S 4" ""
;

83. Obtain the sums of the following series as particular values of ele-

mentary functions:

. . _
"2 2^4 2 4-6 2 4-6-8

" ' " ~
'

I _u
1<3

.

l _iL5 i7__ . ^Ji3 :5:.7:^- n__ 4. _ !
AO .

C) 2
+

2 4
+

2 4-6-8 10
+

2 4 6-8.10.12.14
+

2 v '

dN -

1 1>8 1-3 5-7 1 3-5-7 9 H
^ 2 2 4 6

+
2- 4-6 8 10 2 4-6 8~l6-l2""u

84. Deduce from the expansion in partial fractions 117 seq. the following

expressions for n:

--
l

-
l
-

[
-

-I
f

- ~
Vl

-
2T-! +

2 aV"T
+ ~ ~ + +

where a=t=0, l,i, ij,... Substitute in particular a -
3, 4, 6.
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Chapter VII.

Infinite products.

28. Products with positive terms.

An infinite product

is, by 11, II, to be taken merely as representing a new symbol for the

sequence of the partial products

*/! 2 . . . un .

Accordingly such an infinite product should be called convergent, with

value Uy oo

if the sequence of the partial products tends to the number U as limit.

But this is particularly inconvenient, owing to the fact that then every

product would have to be called convergent for which a single factor was

= 0. For if um were 0, then the sequence of partial products also would

tend to U = 0, since its terms would all be equal to for n ^ m. Simi-

larly every product would be convergent again with the value for

which from some m onwards

In order to exclude these trivial cases, we do not describe the behaviour

of an infinite product by that of the sequence of its partial products,

but adopt the following more suitable definition, which takes into

account the peculiar part played by the number in multiplication:

125. o Definition. The infinite product
CO

L * n = U^ Uq
'

Uft
.

n=i

will be called convergent (in the stricter sense) if from some point
onwards say for every n > m ~ no factor vanishes, and if the

partial products, beginning immediately beyond this point

tend, as n increases, to a limit, finite and different from 0.

// this be = f/w , then the number

U = u
l .u.>-....um -Vm ,

obviously independent of m, is regarded as the value of the product*.

1 Infinite products are first found in F. Vieta (Opera, Leyden 1646, p. 400)
who gives the product
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We then have first, as for finite products, the

o Theorem 1. A convergent infinite -product has the value if,

and only if, one of its factors is = .

As further pn -i~-+Um with pn +Um> and as Um is 4= 0, we
have (by 41,11)

u = -*i *1W Pn-l
and we have the

o Theorem 2. The sequence of the factors in a convergent infinite

product always tends >1.

On this account, it will be more convenient to denote the factors

by un = 1 -f- an , so that the products considered have the form

// (! + )
n=i

For these, the condition an > is then a necessary condition for con-

vergence. The numbers an as the most essential parts of the factors

will be called the terms of the product. If they are all ^> 0, then

as in the case of infinite series, we speak of products with positive

terms. We will first concern ourselves with these.

The question of convergence is entirely answered here by the

Theorem 3. A product 77 (1 -f- an) with positive terms an is

convergent if, and only if, the series an converges.

Proof. The partial products pn = (1 -J- t )- (1 + #n)> since

an ^ increase monotonely; hence the First main criterion (46) is

available and we only have to show that the partial products pn are

bounded if, and only if, the partial sums sn
= a

t + > ~l
---- + # are

bounded. Now by 114 a, 1 -f- av <[ e a >" and so for each n

pn ^e'>
on the other hand

the latter because in the product, after expansion, we have, besides the

terms of sn , many others, but all non-negative ones, occurring.
Thus for each n

(cf Ex.89) and in /. Walhs (Opera I, Oxford 1695, p. 468) who in 1656 gives
the product

-

~2~~~T'T' ~3~ 5 5 7

But infinite products first secured a footing- in mathematics through Enter, who
established a number of important expansions in infinite product form. The first

criteria of convergence are due to Cauchy.
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The former inequality shows that pn remains bounded when sn does,

the latter, conversely, that sn remains bounded when pn does, which

proves the statement. 9

Examples.
1. As we are already acquainted with a number of examples of con-

vergent series 2 an with positive terms, we may obtain, by theorem 3, as many
examples of convergent products J7(l+0n). We may mention:

(l +~) is convergent for a. > 1, divergent for a <J 1. The latter

is more easily recognised here than in the corresponding series 3
, for

77" (l

2. H(l+x n
) is convergent for 0<#<1; similarly

0* 00

Q. m i I __ . I g=s I i rs -
.

^
\ W (W -{~ I)/

-*--M. fi foi ~| j) Q

With theorem 3 we may at once couple the following very

similar

Theorem 4. //, for every n, an ^ 0, then the product //(I flw)

also is convergent if, and only if, 2 an Converges.

Proof. If an does not tend to 0, both the series and the pro-

duct certainly diverge. But if an * 0, then from some point onwards,

say for every n > m, we have an < \, or 1 an > ^. We consider

the series and product from this point onwards only.

Now if the product converges, then the monotone decreasing

sequence of its partial products pn = (1 a
<m + i)*"(l O tends to

a positive (> 0) number Um, and, for every n > m,

Since, for <C ar <C 1, we always have

(as is at once seen by multiplying up), we certainly have

\ ' in T* I/ V i WIT 2' V n/ ^J

9 In the first part of the proof of this elementary theorem, we use the

transcendental exponential function. We can avoid this as follows: If

converges, choose m so that for every n> m
, , ,

. 1
<*m + i -f am + 8 H h an < ---

.

As, obviously, for these w's, we now have

(1 -f a +1)--- (l-f-a)<l-l-K-M + -

-fK + i + -

we certainly have, for all w's,

hence (/>) is bounded.
8 In this we have therefore, on account of theorem 3, a new proof of the

divergence of 5] .
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Accordingly the convergence of the product 77(1 -f- an ], and hence of

the series 2 an , results from that of 77(1 an). If, conversely,

2 an converges, then so does S 2 an ,
and consequently by Theorem 3 the

product 77 (1 + 2 an) also does. Hence, with a suitable choice of K, the

products (1 + 2 am+1) . . . (1 + 2 an) remain < K. If we now use the fact

that, for ^ av ^ ,

1 - av ^ r+ 2

as may again be seen by multiplying up we infer

and the partial products on the left hand side, as they form a mono-

tone decreasing sequence, therefore tend to a positive limit: i. e. the

product 77(1 <zn) is convergent.

Remarks and Examples. 126
00

! // I
1 )

is convergent for a > 1
, divergent for a< 1.

.-=.
l "'

2. If an < 1 and if 27 an diverges, then II (I an) is not convergent, with

our definition. As however the partial products pn decrease monotonely and remain
> 0, they have a limit, but one which is necessarily = 0. We say that the product

diverges to 0. The exceptional part played by the number thus involves us in

some slight incongruity of expression. A product is called divergent whose partial

products form a decidedly convergent sequence, namely a null sequence, (pn). The
addition "in the stricter sense" to the word "convergent" in Def. 125 is intended

to serve as a reminder of this fact.

3. That e. g. JJ M -- J
diverges to is again very easily seen from

n=2

29. Products with arbitrary terms,
4

Absolute convergence.

Jf the terms an of a product have arbitrary signs, then the following
theorem corresponding to the second principal criterion 81 for

series holds:

o Theorem 5. The infinite product 77(l + an) converges if, and

4 A lull and systematic account of the theory of convergence of infinite

products may be found in A. Pringsheim: t)ber die Konvergenz unendlicher

Produkte, Math. Annalen, Vol.33, p. 119 154, 1889.
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only if, given e > 0, we can determine 5 nQ so that for every n > n

and every k ^> 1,

[(1 + . + 1)(l + .+.) (! + . + *)
~

1] < *

Proof, a) If the product converges, then from some point on-

wards, say for every n > m, we have an ={= 1, and the partial

products

tend to a limit 4= 0. Hence there exists
(v. 41, 3) a positive number /f

such that, for every n > m, \pn \ ^ /? > 0. By the second principal

criterion 49 we may now, given e > 0, determine w so that for

every n > n and every k ^> 1,

ln +fc-M< e '/*-

But then, for the same n and &,

which is precisely what we asserted.

b) Conversely, if the e- condition of the theorem is fulfilled, first

choose e = |,
and determine m so that, for every n > m t

For these n's we then have

showing that, for every n > m, we must have l-f-aw =j=0; and further,

that if pn tends to a limit at all, this certainly cannot be 0. But

we may now, given e > 0, choose the number n so that for everv

n > nQ
and every k ^> 1,

": _ 1
Pn

or

And this shows that pn really has a unique limit. Thus the conver-

gence of the product is established.

As in the case of infinite series, so similarly in that of infinite

products, those are the most easily dealt with which converge "abso-

lutely". By this we do not mean products ITun for which H\un \

also converges, such a definition would be valueless, since then

every convergent product would also be absolutely convergent, but

we define, on the contrary, as follows:

127. o Definition. The product 77(1 + an) is said to be absolutely con-

vergent if the product 77(l + |an |) converges.

6 Or v. 81, 2nd form if invariably

f (1 + an + 1) (1 -f * + *) . (1 + an 4.^)]_ !
.

or v. 81, 3 rd form if invariably

[(1 + +!) ..(H- ,+*)] -*1.
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This definition only gains significance through the theorem:

o Theorem 6. The convergence of 17(1 -f- |

an | ) involves that of

+ O-
Proof. We have invariably

I (1 + + ,)(! + +,) .(1 + +)-!!

as is at once verified by multiplying out. If therefore the necessary
and sufficient condition for the convergence of Theorem 5 is satisfied

by 77(1 -|-
|

an \),
it is ipso facto satisfied by 77(1 + an), q. e. d.

In consequence of Theorem 3, we may therefore at once state

o Theorem 7. A product 77(1 + an) is absolutely convergent if,

and only if, an converges absolutely.

As we have an already sufficiently developed theory for the

determination of the absolute convergence of a series, Theorem 7 solves

the problem of convergence in a satisfactory manner for absolutely

convergent products. In all other cases, the following theorem reduces

the problem cf convergence of products completely to the correspond-

ing one for series:

Theorem 8. The product 77(1 -f-O converges if, and only if

the series ^
2 log (! + )

n=w-i-l

commencing with a suitable index*, converges. And the convergence of

the product is absolute if, and only if, that of the series is so.

Furthermore, if L is the sum of the series, then

n=L
Proof, a) If 77(1 -f- an) converges, then an >0 and hence from

some point onwards, say for every n > m, we have
|

an \
< 1. Since,

further, the partial products
= (!+ , + i^ (! + )> (n > }>

tend to a limit Um 4= (hence positive), we have by (42, 2),

But log/>n is the partial sum, ending with the th
term, of the series

in question. This, therefore, converges to the sum L = log Um .

As U e L, we thus have

b) If, conversely, the series is known to converge, and to have

the sum L, then we have precisely log pn >L, and consequently

(by 42, 1)

This completes the proof of the first part of the theorem, since <?

e It suffices to choose m so that for every n ;> m we have
|
am \ < 1 .
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To deduce, finally, that the series and product are, in every

possible case, either both or neither absolutely convergent, we use with

theorem 7 and 70, 4, the fact that (112, b), when an ->0

>* a + ) I ,

(Here any terms an which = may be simply omitted from con-

sideration.)

Although we have thus completely reduced the problem of the

convergence of infinite products to that of infinite series, yet the

result cannot entirely satisfy us, because of the difficulties usually

involved in the practical determination of the convergence of a series

of the form J^log (1 + an). The want here felt may, at least partially,

be supplied by the following

Theorem 9. The series (starting with a suitable initial index)

JHog (1 -j- an) and with it the product 77(1 -j- an), is certainly convergent,

if 2 an converges and if 2a^ is absolutely convergent
7

.

Proof. We choose m so that for every n ~> m, we have \an \
< ~,

and consider 77(1 + an) and 2 log (1 -|- aj, starting with the (m + l)*
h

terms. If we write

then the numbers #M so determined certainly form a bounded sequence,
for 8

,
as an ->0, ftn

~> J.
If therefore 2 an and J?|0n |

a are con-

vergent, J?log(l + fln),
and hence also 77(l-|-an),

is convergent.

This simple theorem leads easily to the following further theorem

Theorem 10. If2a^ is absolutely convergent, and \an \

is < 1

for eveiy n > m, then the partial products
n n

pn = J[ (1 + 0J and the partial sums sn
= av (n > m) }

v=wfl v=m-H
are so related that pn s^, e*n

i. e. the ratio of the two sides of this relation tends to a definite limit,

finite and =f= 0> whether or no 2an converges.

7 J*flrt

2
,

if convergent at all, is certainly absolutely convergent. We adopt
the above wording so that the theorem may remain true for complex an's,
for which n

2 is not necessarily ;> (cf. 57).

8 For <
|
x

|
< 1 we have in fact

or

log(l + )
- * _ _

1 x

i>
" " Y + 3"~ h "*

And those terms which are possibly = may be again simply neglected, as

they have no influence on the question under consideration.
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Proof. If we adopt the notation of the preceding proof, then, as

log (1 + an]
= an -|- $'&, we have for every n > m

(l + m+1) -(! + )= A
vm+l

if the sums in the last two exponents are taken also from v = m -f- 1

to v = n .

And as 2$n a^, the $n's being bounded, converges absolutely

when -0n
a does so, we can, from the above equation, at once infer

the result stated. This theorem also provides the following, often

useful

Supplementary theorem. // 2an
*

converges absolutely, then 2an

and /7(1 -f- an) converge and diverge together.

Remarks and examples. 128.

1. The conditions of Theorem 9 are only sufficient', the product 77(1 + n)

may converge, without 2 an converging. But in that case, by Theorem 10,
v I a la must also diverge.

/ 1 \
2. If we apply theorem 10 to the (divergent) product 7/1 H-- ) ,

then it

n=i v n '

follows that

e
hn ^ n

if hn denotes the w01
partial sum of the harmonic series An = l-|

---h H---

2 n

e
hn

Accordingly the limits lim- = c and lim [hn log n] = log c = C exist, the

latter because c ^= 0, hence > 0. The number C defined by the second limit is

called Ruler's or Mascherom's constant. Its numerical value is C = 0-577 215 6649 . . .

(cf. Ex. 86 a, 176, 1 and 64, B, 4). The latter result gives us further valuable

information as to the degree of divergence of the harmonic series, as it gives

hn^ log n .

Further the estimates of bounds above made for the proot of Theorem 3 show,

even more precisely, if we there put a
y
=

,
that

or hn > A
J|_ 1 > log n

so that Euler's constant cannot be negative.
QO / / n-i \

3- 7/ U + -"-
)

*s convergent. Its value may, as it happens, be
n=i X n '

found at once by forming the partial products, and is = 1 .

that

00
/ x \

4. H[l-i-- J diverges for x
={= 0. However, theorem 10 shows

v n/

M
n '

,
or what is the same thing by 2, ^^ n*,

tO/
y,\

]l ( 1 H--J^ v *

i. e. (v. 40, def. 5) the ratio
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has, for every (fixed) a;
,
when M-KX>, a determinate (finite) limit which is also

different from if a; is taken
=j= 1, 2, ... (cf. below, 219, 4).

oo /
3.3

\

5. II I 1 -1 is absolutely convergent for every x.

n=l V w '

30. Connection between series and products.
Conditional and unconditional convergence.

We have more than once observed that an infinite series 2 an is

merely another symbol for the sequence (sj of its partial sums. Apart

from the fact that we have to take into account the exceptional part

played by the value in multiplication, the corresponding remark holds

good for infinite products. It follows that, with this reservation, every

series may be written as a product and every product as a series.

As regards detail, this has to be done as follows :

129. 1. If ZT(l ~t" an) *s &iven > t^ien th*3 Pr duct, if we write

H (! + )
=

/>>

represents essentially the sequence ( n).
This sequence, on the other

hand, is represented by the series

This and the given product have the same meaning if the product

converges in accordance with our definition. But the series may also

have a meaning without this being the case for the product (e. g. if

the factor
(l -f- #5) is = and all other factors are = 2).

00

2. If conversely the scries an is given, then it represents the
n=l

sequence for which sn
= J^<V This is also what is meant by the

r= l

product

.*..*... . 7^_ln ^. . fiL , _ __ \
Sl * *2

=Sl
niVW" *

ni\
[> + ^ + . + -"-Mn- 1

''

provided it has a meaning at all. And for this obviously all that

we require is that each sn 4= 0. In general the convergence of the product

implies the convergence of the series, and conversely. In the case, however,
of sn -> 0, although we call the series convergent with sum 0, we say that

the product diverges to 0. ^ ^
Thus e. g. the symbols E ^ and ~ // (l + o^rio

=-! * = X *

JUVi)
have precisely the same meaning.
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It is, however, only in rare cases that a passage such as this

from the one symbol to the other will be advantageous for actual

investigations. The connection between series and products which is

theoretically conclusive was, moreover, established by Theorem 8 alone,

or by Theorem 7, if we are concerned with the mere question of

absolute convergence. In order to show the bearing of these theorems

on general questions, we may prove as analogue of Theorem 88, 1,

and 89, 2, the following:

Theorem 11. An infinite product 77(1 + 0J is unconditionally 130

convergent i. e. remains convergent, with value unaltered, however

its factors be rearranged (v. 27, 3) if, and only if, it converges

absolutely
9

.

Proof. We suppose given a convergent infinite product 77(1 + #n)-

The terms an , certainly finite in number, for which |0n |^>, we re-

place by 0. In so doing, we only make a "finite number of alterations"

and we ensure
|

an \
< \ for every n. The number m in the proof of

theorem 8 may then be taken ~ 0. We first prove the theorem for

the altered product.

Now, with the present values of au ,

/7(1 + J and 2-log(l +O
are convergent together, and their values U and L stand in the relation

U = eL to one another. It follows that a rearrangement of the factors

of the product leaves this convergent, with the same value 17, if and

only if the corresponding rearrangement of the terms of the series also

leaves this convergent, with the same sum. But this, for a series, is

the case if, and only if, it converges absolutely. By theorem 8 the same
therefore holds for the product

Now if, before the rearrangement, we have made a finite number
of alterations, and then after the rearrangement make them again in

the opposite sense, this can have no influence on the present question.

The theorem is therefore true for all products

Additional remark. Using the theorem of Riemann proved later

(187) we can of course say, more precisely: If the product is not

absolutely convergent and has no factor =0, then we can by suitable

rearrangement of its factors, always arrange that the sequence of its

partial products has prescribed lower and upper limits x and /*, provided

they have the same sign as the value of the given product
10

. Here

* and
ft may also be or 00.

9 Dim, U.: Sui prodotti infiniti, Annali di Matem., (2) Vol. 2, pp. 2838. 1868.

10 For a convergent infinite product has certainly only a finite number
of negative factors; and their number is not altered by the rearrangement.
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Exercises on Chapter VII.

85. Prove that the following products converge and have the values indi-

cated:

' / Zn + 1 \ 4
c) 77 f

1 +
( -^-nvqrijs )

=
3-

n - 2

85a. By 128, 2 the sequences

xn = I + J + + - T log n and y = 1 -fJ-h-.--f-
7i 1 n

have positive terms for n> 1. Show that (#n | yn) is a nest of intervals. The value

so defined is Euler's constant.

86. Determine the behaviour of the following products:

for a ^ 1,
gt 3>

87. Show that IT cos ^w converges if 2\ xn |

a
converges.

88. The product in Ex. 86 d has, for positive integral values of a, the

value y^.[/ 1\ 2At^ jv_i
Hint : The partial product with last factor ( 1

^T ZT1 )
*s = H (

* ---
)

\ / v-fc+iA ' -

89. Prove, with reference to Ex. 87, that cos v cos 5- cosy^ ... = -.
4 o lu 7T

(We recognise Vieta's product mentioned in footnote 1, p. 218.)

90. Show, more generally, that for every x

x x x x sin x

t L i- t.cosh ^ cosh -. cosh r cosh T7io lO JC

g _j_ e
a

e _ e x

in which latter formula cosh x = -
, sinh ac =- denote the hyperbolic

cosine and sine of x.

91. With the help of Ex. 90, show that the number defined by the nest of

intervals in Ex. 8c is = "~^~^i
where S- is defined as the acute angle for which

cos $ = . Similarly the number defined by Ex. 8 d is =3 r xlf if & is defined

by xi
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92. In a similar way, show that the numbers defined in Ex. 8e and 8f
have the values:

e) .
with

O-T!*-* with

93. We have

+ -
X(*~ -l) - + . . . + (

- I)-
x (X

What can you deduce for the series and product of which we here have the

initial portions?

94. With the help of theorem 10 of 29, show that

1-3 5...(2n-Jl) J_"
2.4.6...~2T~~~^

95. Similarly, show that, for <j x < y ,

s(s+l)(s + 2)...(s + n) _^
y (y + 1) (y + 2) . . . (y + n)

96. Similarly, show that if a and b are positive, and An and (7,, are

respectively the arithmetic and geometric means, of the n quantities

a, a-|-6, a + 2b, ..., a + (w-l)6,
(n = 2, 3, 4, . .

.)
then

A, *

Gn
~*

2
'

97. What can be deduced, from the convergence of //(l-f-aw) and

&), as to lhat of

(Cf. 83, 3 and 4.)

98. Given (un) monotone decreasing and * 1 ,
is

1 1
u --

2

8
"4

M . --- u -- .
1

"2
8

"4

always convergent? (Cf. 82, theorem 5.)

99. To complete 29, theorem 9, prove that IJ(l-\-an) certainly con-

verges if the two series

S(an -tan*) and ^|a.|

converge. How may this be generalized? On the other hand, show, by
the example of the product

where we assume J <; a < J ,
that 77(1+0*) may converge even when 2an

and ^aM
2 both diverge.



230 Chapter VIII. Closed and numerical expressions for the sums of series.

Chapter VIII.

Closed and numerical expressions for the sums
of series.

31. Statement of the problem.
In Chapters III and IV, we were concerned mainly with our

problem A, the question of the convergence of series, and it was not

till the last few chapters that we considered also the sum of the

series. This latter point of view we shall now place in the fore-

ground. It is necessary, however, in order to supplement our deve-

lopments of pp. 78-79 and 105, that we should make it quite clear once

more what is the significance of the questions which arise in this

connection. If, for instance, we have proved the relation 122:

i_i_ L , JL_JL+
4
~ 1 3^5 7 ^

we may interpret it in two ways. On the one hand, the equation indi-

cates that the sum of the series on the right has the value ~
, one

quarter of the value of a number 1 which we meet with in many other

connections and to which approximations are well-known. In this

sense, it may be claimed that we have specified the sum of the series

written down above. But such a statement can only hold in a very
relative sense; for it is not possible to give a complete specification

of the number n, otherwise than by a nest of intervals or some

equivalent symbol, and such a symbol is precisely furnished by the

series; i. e. the expression on the right, in the above equation. We
are therefore equally justified in claiming the exact opposite, namely
that the equation provides an (extremely simple) expression for the

number n in series form, that is to say, by means of a conver-

gent sequence of numbers, which happens indeed in our case to

have a peculiarly straightforward and convenient form and may also

(69, 1)
be immediately expressed as a nest of intervals 9

.

The circumstances are entirely altered when we come to the

equation (cf. 68, 2b):
1

1 In former times, when these matters were all interpreted rather geo-

metrically, -^-
was always thought of as the ratio of the area of a circle to

that of the circumscribed square.
* Namely:

- =
(
52*| sa*+i)>

where
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Here we are perfectly satisfied with the statement that the sum
of the series is = 1, precisely because the number 1 (and similarly

every rational number) can be fully and literally assigned. In such

cases, we have a perfect right to assert that we have a closed

expression for the sum of the series. But in all other cases, where
the sum of the series is not a rational number, or at any rate not

known to be one 3
, we cannot strictly speak of evaluating the sum of

the series by means of a closed expression. On the contrary, the

series ought then to be regarded as a (more or less imperfect) means
of representing or approximating to its sum. By proceeding to express
these approximations (usually in the form of decimal fractions) and

estimating the errors involved, we form what is called a numerical

evaluation of the sum.

Lastly, as above in the case of the series for , we may have

ascertained merely that the given series has for sum a number related

in some simple (or at any rate specifiable) manner to a number which

we meet with in other connections; as e. g. it follows from 122 and
124 that

1 1 - 3

In that case, we should still welcome the information so obtained,

since it establishes a connection between results where formerly we
saw none. It is usual, in such cases, still to say though in an

extended sense that we have evaluated the sum by means of a

closed expression; in fact, the number concerned is then regarded as

"known" through those other connections, and we simply express the

sum of the series "by means of a closed expression" involving this

number. Here the student must, however, guard against self-delusion.

If it has been ascertained, for instance
(v. p. 211) that the sum of the

series

i+JL 1 4-L3
. L + 1 ' 8

".*.-
1- L...1

' 2 50 ^~ 2-4 50* "^ 2-4-6 503 r

has the value ^-Vs, it is still only in a very relative sense "deter-

mined in the form of a closed expression". The number V2 is not

per se any better known than the sum of any arbitrary convergent

series. It is only because V2 occurs in so many hundreds of other

connections and has, for practical purposes, been so often evaluated

numerically, that we are in the habit of considering its value as almost

as perfectly "known" as any literally specified rational number. If

3 For instance, if we have determined the sum of a series to be equal to Euler's

constant, we do not know to this day whether we are confronted with a rational number
or not.
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instead of the above scries, we consider, for instance, the following

binomial series:

_5_ [1
, J_ _24 4 24* _4 9 24 1

2 L
1+ 5 '1000 5-i6" 1000a

"
1"5-10 15* 1000s '

"
J

B, _
and its sum has been ascertained to be equal to y 100, we shall

be less inclined to regard the sum as fully determined thereby; on

the contrary, we shall prefer to accept the series as a most useful
5

means of evaluating y 100 to a degree of approximation not so easily

attainable by other means. In other words, with the exception of

those few cases in which the sum of a series can be specified as a

definite rational number, when we consider equalities of the form

"s = <<*", the emphasis will be laid sometimes on the right hand

side and sometimes on the left, according to the circumstances of the

case. If s may be considered as known through other connections,

we shall still (though in an extended sense) say that the sum of the

series has been evaluated in the foim of a closed expression. If this

is not the case, we shall say that the series is a means of evaluating

the number s (of which it provides the definition). (Obviously both

points of view may be taken with regard to the same equality.) In

the former of the two cases, we shall, so to speak, have achieved our

object, since the problem B
(v. p. 105) also is then solved to our satis-

faction. In the latter case, however, a new task now begins, that of

actually expressing the approximations, provided by the series itself,

to its sum, in a convenient and simple form (e. g. in decimal fraction

form, as the most desirable for our purposes), and of estimating the

errors involved in these approximations.

32. Evaluation of the sum of a series by means
of a closed expression.

1. Direct evaluation. It is obvious that we may without difficulty

construct series with any assigned sum. If s be the assigned sum,

construct, by any one of the many processes at our disposal, a sequence

(sn) converging to 5, and consider the series

*o + (*i
-

*o) + (*,
- O H h (*n s - 1) + ' ' '

Since its w th
partial sum is precisely = sn , this series is convergent

and has the sum s. This simple procedure affords an inexhaustible

means of constructing series capable of summation in the form of a

closed expression; e.g. we need only assume one of the numerous null

sequences (a?n)
known to us, and write sn

= s xn , n = 0, 1, 2, . ...

Examples of series of sum 1.

gives + 1+ < + --- = 1
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___
1-2 2^ 34 4-5

6t V I * \ 1" *
.

w
7. If we multiply the terms of one of these series by 5, we obtain a

convergent series of sum s.

It is not superfluous to be able to construct such examples, as we shall

see that the power to provide series with known sum is an advantage in

the discussion of further series.

The converse of the
principle just treated is expressed by the

Theorem. Given a series Jj an , whose terms an are expressible 131,

in the form an
= xn x

n + 1 , where xn is the term of a convergent

sequence of known limit , the sum of the series can be specified, for

we have

^>n
= *o--

n=0

Proof. We may write

Since xn *, the statement follows.

Examples.
1. If a be any real number =f=0, l

f 2,..., then (v. 68, 2b):
1 1 T 1 1

-^
==

,
as here

2. Similarly

2(a-f 1)

as here
i r i i

3. Generally, if p denotes any positive integer,
00 1 11V = -- -

.

n^O (
K + M

) (
a + n + J

) ( + n "H P) P (a -f 1) . . . (a + p - 1)

4. Putting a = ^, we thus obtain, for instance, from 2.:

rTr7 + 4"TTO + 7TlOT3
+ * " =

24
'

5. Putting a = 1 in 3. we obtain

1-2. ..

or S, 1 = p + l

nt?o(P
+ + l\ P

\ P+l )
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The following is a somewhat more general theorem.

133. Theorem. // the term an of a given series 2an is expressible

in the form xn xn + q
, where xn is the term of a convergent sequence

of known limit f , and q denotes a fixed integer > 0, then

2 an
=

*o + *i H-----h - 1
-

? *
n=0

Proof. We have, for n > q>

Since xv * ^ (by 41, 9),
the statement at once follows.

Examples.

since here we have

"
q \a+n a-

In particular, writing a = $ ,

oo 1

2 For a = l and q 2 we have accordingly:

J_ J_ 1
^^3.

and for a = j, q = 3:

_4._ + _4. ..-
l.T^S-Q^.ll"1

"

"90"

3. Somewhat more generally, if A, as well as
,
denotes a fixed integer >0:

4. Thus for a = } , ^ = 2, A = 2 we find

^a. ^a. ^^ =i-
1- 5- 9

"*"
3- 7- 11 ^5- 9- 13"*"" 420*

The artifices here employed may be extended to obtain, finally,

the following considerably further reaching

134. Theorem. // the terms of a series 2 an are expressible, for

every n, in the form

an
=

Ci xn + i + c
t
xn+* + '~ + c

k
xn+ic (

k constant, ^2)
where (xn)

denotes a convergent sequence of known limit , and the

coefficients C). satisfy the condition

c
i + c

a H-----f- c
k
=*
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then 2 an is convergent and lias for sum-

JJ an = c^x^ + (q + <g*a H-----h fo + c,H-----h *
fc-iK-i

n=o

The proof is at once obtained by writing the expressions for

fl1? #a , ..., am , one below the other so that terms involving xv occupy
the same vertical. Carrying out the addition in columns, which of

course is allowed even without reference to the main rearrangement
theorem we find, for m > k, taking into account the condition ful-

filled by the coefficients CA ,

which is again the sum of a finite number of terms. Letting m + oo,
we at once obtain the required relation.

Examples.
n 2

1 Putting xn g
-=- ,

& = 2, Cj
= 1

,
cs
= -fl, we obtain

J_ _5_ 7 2 M__ _^'"
9

1

^ > "
2"

1 / 1 1\ 13

27 -

These examples may of course easily be multiplied to any extent desired.

2 Application to the elementary functions. The above few theo-

rems have, speaking generally, made us familiar with all types of series

which may, without requiring any more refined artifices, be summed
in the form of a closed expression.

By far the most frequent series, in all applications, are those ob-

tained by substituting particular values for x in series expansions of

elementary functions and in series derived from these by every species

of transformation or combination, or other known processes of deduction.

Examples, obtained in this manner, of summation by closed expres-

sions are innumerable. We must content ourselves with referring the

reader to the particularly ample selection of examples at the end of

this chapter, in the working out of which the student will rapidly be-

come familiar with all the main artifices used in this connection. The

developments in this and the following section will afford further

guidance in this part of the subject Let us merely observe quite

generally, for the moment, that it is often possible to deal with a given
series by splitting it up into two or more parts, each of which again

represents a convergent series; or else by adding to or subtracting

from 2 an >
term by term, a second scries of known sum. In particular,

if an is a rational function of n its expansion in partial fractions will

frequently be a considerable help.
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3. Application of Abel's theorem of limits. A further means of

evaluating the sum of a series, one of great theoretical importance,

differing from that just indicated in the principle it involves, though
in most cases intimately connected with it in virtue of 101, con-

sists in applying Abel's theorem of limits. Given a convergent se-

ries 2 an , the power series f(x)
= 2an x

n
converges at least forK x <; -f 1, and hence, by 101,

2an
= hm f(x).

If we suppose that the function f(x) which the power series represents
is so far known, that the latter limit can be evaluated, the summation
of the series is achieved. The developments of Chapter VI offer a

wide basis for this mode of procedure, and in fact Abel's theorem has

already been used there more than once in the sense now explained.
We shall give here only a few relatively obvious examples, with

a reference to the exercises at the end of this chapter.

135* Examples. We are already acquainted with the series:

2. V-_ lim V (-!) = lim

n^o 2w + 1 *->i-o,o
We have the further example

The series inside the bracket has for derived series

1

and therefore represents the function (v. 19, Def. 12)
X

dx 1 (s+1)* 1 _ l
2x-l n

Accordingly, the sum ol the given series is = log 2 -f-
-

4. Similarly we find (v. 19, Def. 12)

For further series constructed on the same lines, the formulae of course become
more and more complicated.

4. Application of the main rearrangement theorem. Equally great
theoretical and practical significance attaches, in our present problem,
to the application of the main rearrangement theorem. This application
we proceed at once to illustrate by one of the most important cases;
additional examples will again be furnished by the exercises.

In 115 and 117, we obtained two entirely distinct expansions
of the function xcotx, both valid at least for every sufficiently small

\x\.
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If, in the first of these, we replace x by nx, we obtain, certainly for

every sufficiently small \x\,

Each term of the series on the right may obviously be expanded in

powers of x:

* ^ v o f
x \ (k -in i^vptf\

t2 "a

~~
2j *

I Taj v2 i, *> pxea)* -x n=i N* /

These are the series z (fc) of the main rearrangement theorem;

since the series f
(fc) of that theorem in our case only differ in sign

from the series 2
(fc)

themselves, the conditions of that theorem are all

fulfilled, and we may sum in columns. The coefficient of x 2 ? on the

right then becomes

--2J^ (p fixed)

and since, by 97, it has to coincide with that on the left, we obtain

the important result (once more denoting the index of summation

by n)

n^i n*"
1 " ' ~"

71= I 'V ^

This gives us the sum of the series

i__ , JL j ij.

in the form of a closed expression, since the number n and the
(ra-

tional) Bernoulli's numbers may be regarded as known 4
.

In particular,
oo 1 ,8 <* - ,~4 QO i _6
V = y = y

4
Quite incidentally, formula 136 shows that Bernoulli's numbers JB.2n are

of alternating signs and that ( l)"~
1 Bin is positive; further, that they increase

QO
|

with extreme rapidity as n increases; for since the value of rj^ lies between 1

fc=i*
and 2, whatever be the value of n, we necessarily have

2(2,01 2(2)1'~ '

whence it follows that -4- OO. Finally, as the above transformation

holds for |o?|<l, it also follows that the series 115 converges absolutely at

least for
|

x
\
< n . But for

|
x

\
> n it certainly cannot converge absolutely,

for then cotcc would be continuous for x = n 9 by 98, 2, which we know is not

the case; thus the series 115 has exactly the radius n. It follows from this

that 116a has the radius
,
116 b the radius n.

&
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It is not superfluous to try to realise all that was needed to obtain

even the first of these elegant formulae 5
. This will be seen to involve

much of our investigations up to this point.

The above provides us with the sum of every harmonic series with

an even integral exponent; we know nothing yet of the sum of a harmonic

scries with odd exponent (> 1); that is to say, we have not succeeded

as yet in finding any obvious relations that might result in connecting

such a sum fe. g. ^i 3)
with any numbers occurring elsewhere. (There

is of course no obstacle to our evaluating the sum of any harmonic series

numerically, to any degree of approximation
8

;
v. 35). On the other

hand, our results readily yield the following further formulae: We have

y _ V
^n 2*

,,t
/

1 (2v

The latter series is precisely the same thing as - -
. Subtract-

ing this from both sides, we obtain

i (2 -!
or

For p = 1, 2, 3, . .., the sums are in particular

f! ^ ^L
8

' 96 ' 960 ' ' ' '

1 1
If we again subtract the same series -

g
-

^- , we obtain

v >_ */ ___
1
1 \

138. 1 TTr+ -3r: -rrH

6
James and John Bernoulli did their utmost to sum the series

The former of the two did not live to see the solution of the problem, which
was found by Euler in 1736. John Bernoulli, to whom it became known soon

after, wrote in this connection (Werke, Vol. 4, p. 22): Atque ita satisfactum est

ardenti desiderio Fratris mei, qui agnoscens summae huius pervestigationem
difficihorem quam qms putavent, ingenue fassus est omnem suam industriam fuisse

elusam . . . Utinam Prater superstes esset ' A second proof, of a quite different

kind, will be found in 156, a third in 189, and a fourth in 210.
CO

I
6 T. J. Stieltjes (Tables des valeurs des sommes Sk

=
k , Acta mathe-

n~i n

matica, Vol. 10, p. 299, 1887) evaluated the sums of these series, up to the ex-

ponent 70, to 32 places of decimals.
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In particular, fur p 1, 2, 3, ... the sums are

JL a JL 4 31 o

12* ' 720* ' 30240* '""

Here again, however, we know nothing of the corresponding series

with odd exponents. The last two results might of course also have

been obtained by starting with the expansions in partial fractions of

the functions tan or -r- , and reasoning as above for that of the func-
sm &

tion cot. We may deduce further results by treating the expansion

in partial fractions, given in 118, of the function -
r-, i.e.

1 Q K oo/1'
jt 1 O

|

O
i ^ {

1

4 cos - -

4

The r th term is here expressible by the power series

V '
to (2v+l)

2 *+1 '

after rearranging, the coefficient of a;
2 " thus becomes:

OO / 1 \ V 1 1v (- 1 ) ._ 1 _
l

i

l
i

Let us denote these sums provisionally by <\>p + 1 ; then

sta;

or
A|~ i (*i\*+. ^YJ- 1
a [i'T~

a
*( a )

~^ ^\ n )
-i

J

On the other hand, this power series may be obtained by direct division

and its coefficients just like Bernoulli's numbers in 105, 5

by simple recurring formulae. We usually write

77

}
n 2W ~3

so that

This gives E
Q
= 1, and, for every n I> 1, recurring formulae 7 which

may be written as follows (after multiplication by (2n)\):

139.

7 The numbers determined by these formulae (which are moreover rational

integral numbers) are usually referred to as Euler's numbers. The numbers Ev up
to v - 30 have been calculated by W. Scherk, Mathem. Abh., Berlin 1825.
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or in the shorter symbolical form (cf. 106) :

now holding for every k I> 1 .

We deduce without difficulty:

7T 7T p _ ... _
'-i -^3 ^:> u

and

=1, 3
= 1, 4

= 5,
fl

= 61, 8

In terms of these numbers, which we are perfectly justified in con

sidering as known, we have, finally,

In particular, for = 0,1,2,3,..., this gives the values

* *
3

5
s 61

7

4 ' 32^' 1536 ' 245 *"

for the sums of the corresponding series.

33. Transformation of series.

In the preceding section
( 32), we became acquainted with the most

important types of series which can be summed by means of a closed

expression either in the stricter or in the wider sense of the term.

In the evaluations last made, which are really of a profound nature,

the main rearrangement theorem played an essential part; indeed, in

virtue of this theorem, the original series was changed, so to speak,
into a completely different series which then yielded further informa-

tion. We were therefore principally concerned with a special trans-

formation of series*. Such transformations are frequently of the greatest

use, and indeed even more so in the numerical calculations which

form the subject of the following two sections, than in the determina-

tion of closed expressions for the sums of series. To these trans-

formations we will now turn our attention, and we start at once with

a more general conception of the transformation deduced from the

main rearrangement theorem and repeatedly applied to advantage

already in the preceding section.

8 Such transformations were first indicated by /. Stirling (Methodus diffe-

rentialis, London 1730); they are based, in his case, on similar lines to the

above, excepting that he fails to verify the fulfilment of the conditions under

which the processes are valid.
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00

Given a convergent series z (k)
, let each of its terms be

*=o

expressed, in any manner, (e. g. by 32, p. 232) as the sum of an

infinite series:

We shall assume further that the vertical columns in this array them-

selves constitute convergent series, and denote their sums by
00

s
(0)

, s
(1)

, . . . , s
(n
\ .... Under what conditions may the series 2^

n=0

formed by these numbers be expected to converge, with

jfc=0 n-O

If this equality is justified, we have certainly effected a trans-

formation of the given series. The main rearrangement theorem im-

mediately gives the

Theorem. // the horizontal rows of the array (A) all constitute 141.

absolutely convergent series and denoting by f
(fc) the sum,

\

an
^

|, of
n=0

the absolute values of the terms in one row , if the series 2^ is

convergent, the series 2 s (n) also converges and 2 2 (fe)
.

It is this theorem that we have applied in the preceding para-

graph. The question arises whether its requirements are not un-

necessarily stringent, whether the transformation is not allowed under

very much wider conditions.

A. In this direction, an extremely far-reaching theorem was proved

by A.Markoff*. He assumes first only that the series constituted by the

vertical columns of the array (A) converge, as well as the original series

and the series constituted by the horizontal rows of the array. The
GO OD

numbers s (n) have thus determinate values. Since z* and a^
*=0 Jfc=0

converge, so does J(2 (k) a (fc)

);
and also, similarly, for any fixed m,

A=0
the series

2 (*<"
- 4" - a? ----- 4LO (m fixed).

9 Mtfmoire sur la transformation de series (Me*m. de 1'Acad. Imp. de
St. PStersburg, (7) Vol. 37. 1891). Cf. a note by the author, "Einige Bemer-

kungen zur Kummerschcn und Markoffschen Reihentransformation", Sitzungs-
berichte der Berl. Math. Ges., Vol. 19. pp. 417, 1919.
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The terms of this series are, however, precisely the remainders, each

with the initial
10 index m, of the series constituted by the individual rows

of the array. If, for brevity, we denote these remainders by r^\ so that

r = 2 a (k and m fixed),
rt=OT

the series

2 r
(*} - Rm (m fixed)

is convergent. The further assumption is then made that

Rm -> when m -> oo.

It may be shown that under these hypotheses 2sW converges and =
The theorem obtained will thus be as follows:

142. Markoff's transformation of series. Let a convergent series

00

2 zW be given with each of its terms itself expressed as a convergent series:
k--o

(A) *W = V*) + i
w + + *nw + - (*

= 0, 1, 2, . . .).

QO

Let the individual columns 2 anW of the array (A) so formed represent
A=O

convergent series with sum $(">, n = 0, 1, 2, . . . , so that the remainders

of the series in the horizontal rows also constitute a convergent series

00

k^Jm
= Rm (m fixed).

In order that the sums by vertical columns should form a convergent series

Z s("\ it is necessary and sufficient that lim/^m = R should exist; and in

order that the relation

2 s< fl > = 2 zW
n= A=0

should hold as well, it is necessary and sufficient that this limit R should be 0.

The proof is almost trivial, for we have

(a)
> + sW +... + ,00 = R - Rn+1 ,

whence the first statement is immediate. Since it follows that

n=0
M = RQ -R,

(to

and since R is simply 2 rn
) = 2 z^k\ the second statement now follows

also.
" *=0

10 Here we of course take m to give the whole series, i. e. z (k) itself.
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B. The superiority of Markoff's transformation over Theorem 141

consists, of course, in the absence of any mention of absolute conver-

gence, only convergence pure and simple being required throughout. Its

applications are numerous and fruitful: those bearing on numerical evalua-

tions will be considered in 35, and we shall only indicate in this place one

of the prettiest of its applications, which consists in obtaining a trans-

formation given by Euler u of course, in his case, without any con-

siderations of convergence.
It is advantageous here to use the notation of the calculus of finite

differences, and this we will accordingly first elucidate in brief. Given

any sequence (# ,
xlt x2 , .)>

tne numbers

are called the first differences of (xn) and are denoted by

A #
,
A xl9 . . . , A xk9 . . .

The differences of the first order of (A xn) 9 i. e. the numbers A xk A xkl,
lt

k = 0, 1, 2, . . . ,
are called the second differences of (xn ), denoted by

J 2 *
, A*xl9 ..., A*xk ,

. .

In general, we write for n ^ 1

J+* *t = J *
fc

- J- *&+1 (A
= 0, 1, 2, . . .)

and this formula may also be taken to comprise the case n if we in-

terpret A" xk as being the number #A itself. It is convenient to imagine the

numbers xk and A n xk arranged in rows so as to form the following tri-

angular array, in which each difference occupies the place in its own row

immediately below the space, in the row above, between the two terms

whose difference it is:

Q, X}, % 9 #3,

AxQj Ax
lt Ax2J

(A) A*x
,

The difference A" xk may be expressed in terms of the given numbers
xk directly. In fact

J 2 xk = A xk - A XM = fa - XM)
-

xk 2 Xk+l -f-

and similarly
3 xk+2

11 Institutiones calculi diffcrentiahs, 1755, p. 281.
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143. the formula

A Xk = xk
-

(J)*m +
(J)*M - + ... + (-D"

(J) *<-+

for fixed &, is thus established in the cases n = 1, 2, 3. By induction, its

validity for every n follows. For, supposing 143 proved for a particular

positive integer n, we have for n + 1 :

whence by addition, since (j + ( ^j)
=

(
\ we have the formula

143 for n + 1 instead of w. This proves all that is required.

Making use of the above simple facts and notation, we may now state

the following theorem:

144. Euler's transformation of series. Given an arbitrary con-

vergent series 12

QO

we invariably have:

t
i \ 7c ^P ^ ^o

k n-0 2n+1
'

i. e. the series on the right also converges and has the same sum as the given

12 The series need not be an alternating series, i. e. the numbers an need not

all be positive. There are however small, though by no means essential, advan-

tages in writing the series in alternating form as above, when effecting the trans-

formation.
13 This general transformation is due to Ruler (Inst. calc. diff., pp. 281 seq.,

1755). The particular transformation given below in example 2 is to be found

already in a letter to Leibniz dated 2. 8. 1704, from/. Bernoulli, who attributed the

discovery to N. Fatzius. (Cf. also J. Hermann, letter to Leibniz of 21. 1. 1705.)

An early investigation of a more searching kind, using remainder terms, was under-

taken by /. V. Poncelet, Journ. f. d. reine u. angew. Math., Vol. 13, pp. 1 seq., 1835.

The proof that the transformation is always valid, provided only the series 2 ( l)
fc ak

is assumed also convergent, was first given by L. D. Ames (Annals of Math., (2)

Vol. 3, p. 185. 1901). Cf. also E. Jacobsthal (Mathem. Zeitschr., Vol. 6, p. 100.

1920) and the note bearing on that by the author (ibid. p. 118).
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Proof. In the array (A) of p. 211, we substitute for an
(k)

:

(b) a^ =
(
-

1)* [2
L

n A"ak
-^ A- aJ .

By 131, if we now sum for every n
y keeping k fixed (i. e. form the sum

of the klh horizontal row), we obtain

QO
j

For

fn\ fn\ .
, / i fn \

lim A" "* lim W**" U/**' i+
"

' ' "
' ( > W*"+*

is equal to zero by 44, 8, because aky rt
/<,fi> #/cf-2> certainly form

a null sequence. Accordingly (b) gives an expression for the individual

terms of the given series S ( I)
1
&L in infinite series. Forming the sum

of the th column, we obtain the series

Z(-l)k Ln A n ak
~ -

2n+i J
n+1

<i, 1 (n fixed) ;

- J

the generic term of this series, as J n+1 ak A n ak A n ak+1 ,
can be written

in the form

=
IV. K

-
1 ? A" ak

-
(-!)*+ J" A+]],

so that the series under consideration may again be summed directly, by
131. We obtain

% n
(ft) =

nVi tjn tfo
- Hm (

~
l)

fc J n
^] ( fixed).

k^O k-^co

Since, however, the numbers aL form a null sequence, so do the first differ-

ences and the th differences generally, for any fixed w. The vertical

columns are thus seen to constitute convergent series of sums

The validity of Euler's transformation will accordingly be established when
we have shown th;

to have the values

we have shown that Rm -> 0. Now the horizontal remainders are seen

(G51)
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following precisely the bame line of argument as was used above

for the entire horizontal rows. Thus

*-=^J;(-
i)^"* (

fixed **)

If we write for brevity

this series for Rm may be thought of as obtained by term-by-term

addition from the (m -f- 1) series:

Hence

therefore, as rw is the term of a null sequence, so is /?w> by 44, 8.

This proves the validity of Etilers transformation wilh full generality.

Examples.
1. Take

..! + +_....234
The triangular array (A) takes the form

i I * I I1, 2
-,

4 51111
F2' 2T3

J

3 4' 4-5'
''

1 2 J_-2 1 2

i.2~3' 2T3-4 ' 3 "4 5'
""

1-2.3 1-2.3

1-2 3-4' 2-3-4.5'
' "

The general expression of the nth difference is found to be

4 . a,
_ Ml

(* + l*
so that in particular

This is easily verified by induction. Accordingly we have

tOi 1
!
11

!
!

I
*

I
*

I
*

I8= lOg 2 = 1 + -5-
-r H-- .-.=-r -^

--
^ H---

-\
--

j -f .
3 8 4 '

1.2 1 2-2 :!

3-2 a 4-2*

The significance of this transformation e. g. for purposes of numerical calcu-

lation
( 34) is at once apparent.

2. With equal facility, we may deduce

* 1t 1 I11<a1 ' a ' i

In what cases this transformation is particularly advantageous for pur-

poses of numerical calculation will be seen in the following section.
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C. Kummer's transformation of series. Another very obvious

transformation consists simply in subtracting from a given series one

whose sum is capable of representation by means of a known closed

expression and which at the same time has terms as similar in con-

struction as possible to those of the given series. By this means,

subtracting for instance fiom s = 2,'-
t2

the known series
(v. 68, 2 b)

!_ v_.JL_- (+!)'
we deduce the transformation

CO 1 QO 1

The advantage of this transformation for numerical purposes is at

once clear.

Simple and obvious as this transformation is, it yet forms what

is really the kernel of Rummer's transformation of series
1

*; the only

difference being that a particular emphasis is now laid on a suitable

choice of the series to be subtracted. This choice is regulated as

follows: Let 2a
n
= s be the given series (of course, by hypothesis,

convergent). Let Scn
= C be a convergent scries of known sum C.

Let us suppose that the terms of the two series are asymptotically

proportional, say

lira -.= =
7 4= .

n->
c

>*

In that case

,45.

and the new series occuring on the right may be regarded as a trans-

formation of the given series. The advantage of this transformation

lies mainly in the fact that the new scries has terms less in absolute

value than those of the given series, as in fact (l y ]
>Q. Con-

sequently its field of application belongs for the most part to the do

main of numerical calculations and examples illustrating it will be

found in the following paragraph.

34. Numerical evaluations.

1. General considerations. As repeatedly explained already, it

is only on very rare occasions that a closed expression, properly so-

called, exists for the sum of a series. In the general case, the real

11 Kummer. E. E.: Journ. f. d. reine u. angew. Math., Vol. 16, p. 206. 1837-

Cf. also Leclert and Catalan, Memoircs couronne's et de savants etrangers de 1'Ac.

Belgique, Vol. 33, 1865 67, and the note by the author mentioned in footnote 9.
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number to which a given convergent series, or the sequence of num-

bers for which it stands, converges, is, so to speak, first defined (given,

determined, . .
.) by the series itself, in the only sense in which a number

can be given, according to the discussion of Chapters I and II 15
. In

this sense, we may boldly affirm that the convergent series is the

number to which its partial sums converge. But for most practical

purposes we gain very little by this assertion. In practice, we usually

require to know something more precise about the magnitude of the

number and to compare different numbers among themselves, etc. For

this purpose, we require to be able to reduce all numbers, defined

by any kind of limiting process, to one and the same typical form.
The form of a decimal fraction is that most familiar to us to-day, and

the expression, in this form, of numbers represented by series accor-

dingly interests us first and foremost 10
. The student should, however,

get it quite clear in his own mind that by obtaining such an expres-

sion we have merely, at bottom, substituted for the definition of a

number by a given limiting process, a representation by means of

another limiting process. The advantages of the latter, namely of the

decimal form, are mainly that numbers so represented are easily com-

pared with one another and that the error involved in terminating an

infinite decimal at any given place is easily evaluated. Opposed to

this there are, however, considerable disadvantages: the complete ob-

scurity of the mode of succession of the digits in by far the greater

number of cases and the consequent labour involved in their succes-

sive evaluation.

The sc advantages and disadvantages may be conveniently illustrated

by the two following examples:

(l -) 1 -i+] -y +-- = 0-785398. ..

l-i+i--H----- = 0-693147...

By the series, distinct laws of formation are given; but they afford us

no means of recognizing which of the two numbers is the larger of

the two, for instance, or what is its excess over the smaller number.

The decimal fractions, on the other hand, exhibit no such laws, but

give us a direct sense of the relative and absolute magnitudes of

both numbers.

15 Indeed an infinite series our previous considerations give ample
confirmation of the fact is one of the most useful modes of so defining- a

number, one of the most significant both for theoretical and practical purposes.
ld And only in special cases the expression in ordinary fractional form.

The reason is always that of convenience of comparison; which, of -J^ or |$,
is the larger, we cannot say at once, whereas the answer to the same question
for 647 and 0-641 requires no calculation whatever.
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We shall therefore henceforth reserve the term numerical eva-

luation for the expression of a number in decimal form.

As no infinite decimal fraction can be specified in toto, it will

be necessary to break it off after a definite number of digits. We
have still a few words to say as to the significance of this process

of breaking off decimal fractions. If it be desired, for instance, to

indicate the number e by a two-digit decimal fraction, we may with

equal justification write 2'71 and 2*72, the former, because the two

first decimals are actually 7 and 1, the latter, because it appears
to involve a lesser error. We shall therefore make the following con-

vention: when the n specified digits after the decimal point are the

actual first n digits of the complete infinite decimal which expresses

a given number, we shall insert a few dots after the w th
digit, writing

for instance a = 2*71...; when, however, the number is indicated by
the nearest possible decimal fraction of n digits, we insert no dots

after the wth digit, but write 17 e. g. e & 2-72, in the latter case the ;i
th

digit

written down is thus the wth
digit of the actual infinite fraction raised or

not by unity according as the succeeding part of the infinite fraction re-

presents more or less than one half of a unit in the wth decimal place.

In point of fact, cither specification has the effect of assigning an

interval of length l/10
n

containing the required number. In the one

case, the left hand endpoint is indicated, in the other, the centre of the

interval. The margin, for the actual value, is the same in both cases.

On the other hand, the error attaching to the indicated value, relatively

to the true value of the number considered, is in the former case only
known to be I> and _? ]/10

n
,
in the latter to have modulus 5^ i/10

n
.

We may therefore describe the first indication as theoretically the

clearer, and the second as practically the more useful. The diffi-

culty of actual determination of the digits is also in all essential par-
ticulars the same in both cases. For in either, it may become ne-

cessary, when a specially unfavourable case is considered, to diminish

the error of calculation to very appreciably less than 1/10
w

before

the n th
digit can be properly determined. If we are, for instance,

concerned with a number cc = 5-27999999326 ..., to determine
whether a = 5'27 ... or 5*28 . . . (retaining two decimals), we have
to diminish the error to less than a unit in the 8 th decimal place. On the

other hand, if we are concerned with a number /?
= 2'3850000026 . . . ,

the choice between /?^2'38 and 2*39 would be influenced by an

uncertainty of one unit in the 8 th decimal place
18

.

17 In e = 2-71..., the sign of equality may be justified as representing
a limiting- relation.

18 The probability of such cases occurring- is of course extremely small.

By mentioning them, we have merely wished to draw attention to the signi-

ficance of these facts. In Kx. 131, however, a particularly crude case is indicated.
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2. Evaluation of errors and remainders. When given a conver-

gent series an =s, we shall of course assume that the individual

terms of the series are "known", i. e. that their expressions in decimal

form can v

easily be obtained to any number of digits. By addition,

every partial sum sn may accordingly also be evaluated. The question
19

remains: what is the magnitude of the error attaching to a given sn ?

Here the word error designates the (positive or negative) number which

has to be added to sw to obtain the required value s. Since this error

is s sn ,
i. e. is equal to the remainder of the series, starting im-

mediately after the n th
term, we will denote it by rn , and the process

of determining this error will also be designated by the term evaluation

of remainders.

In practical problems, evaluations of remainders almost invariably

reduce to one of the two following types:

A. Remainders of absolutely convergent series. If s = 2 an con-

verges absolutely, determine a scries JE an
'

of positive terms, capable
of summation in a convenient closed expression, and with terms not

less than the absolute values of the corresponding terms of the given
series (though also exceeding these by as little as possible). Obviously

which is assumed known, thus provides a means
of estimating the magnitude of the remainder rn , i. e. \rn \<^rn', and

this all the more closely the less an
'

exceeds \an \.

A particularly frequent case is that in which, for some fixed m,
and every k ^> 1:

k,, ffc |^|*m -a" with 0<a<l;
in that case, ot course,

and in particular, if < a <^ |:

KJ^KJ.
The absolute value of the remainder is in this case not greater than

that of the term last calculated".

B. Remainders of alternating series. Given a series of the form

s = 2( l)
n
#w

and supposing that the (positive) numbers an form

a monotone (decreasing) null sequence, we have
(cf. 82, Theorem 5):

< _ ln + i r _ fl _ * + _

19 Or in more practical form: Up to what order of decimal does sw coin-

cide with the required value s?
80 In forming- these estimates, it should be noticed that they give no in-

dications as to the sign of the remainder rnt only as to its absolute value.
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Hence we may assert that the error rn has the same sign as the first

neglected term, but has a smaller absolute value.

When neither of these two modes of procedure is applicable, the

evaluation of remainders is usually more troublesome, and it becomes

necessary to adopt special artifices in each particular case. We shall,

then, designate the series considered as rapidly or slowly convergent,

according as rn does or does not fall within the desired limit of error

for moderate values 21 of n.

A few further fundamental remarks may be elucidated by the

3. Evaluation of the number e. We found

^ == iiJ_i_L_fJ__i. |_ JL _L . . . .e A ^l!^2! h 3!^ ^ wM
Already, on p. 194, we have mentioned that the (positive) remainder rn
was less than the n th

part of the term immediately before, so that

s << s- + sn;-

In effecting the numerical calculations, we have now to take into ac-

count the following fact: When we express the individual terms of the

series in decimal form, we have even at that point to break off the

decimals at some particular digit, and we therefore incur a certain

error. Unless n remains comparatively small, these errors may accu-

mulate to such an extent that the whole calculation is in danger of

becoming illusory. The mode of procedure is then as follows: Sup-

posing that we are retaining 9 digits, we write 22

a + a^ -|- a
= = 2-500000000

a
{

~ = 166 666 667"

4
=--0-. 41 666667"

0, =0-.. 8 333333+
a

(}

=- 0*.. 1388 889~
a
1

0-... 198413-

8
=-0-.. .24802-

a9 =-0- 2756"

10 =0- 276-

a^ --() 25+

=0- 2+

['i, <0' 0+]

Here the small -f- an(^ signs are intended to indicate whether the

error in the term in question is positive or negative. In either case

it is in absolute value less than one half of a unit in the last decimal

place. By addition, we obtain the number

2-718281830.

21 A more precise definition of rapid convergence will be given in 37.
82 an is deduced from <*_! by simple division by n.
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But s13 itself may possibly (namely if all positive errors are nearly

and all negative ones nearly }2
of a unit in the last decimal place)

fall short of the number required by as much as | of a unit in the

last decimal place; or it may, on the other hand, be as much as
jj

of

a unit in excess, since there are 7 negative and 3 positive errors.

Taking also into account the remainder, we can only deduce with

certainty, since sn < e = sn + rn , that

2-718281826 < e < 2-718281832 .

Our calculation thus secures only the first seven true decimals, while

the approximate value 23 is obtained with eight digits: e f^ 2-71828183.

In practice it will generally suffice to proceed a few decimal places
further (2 or 3 at most) with the evaluation of the terms than it is desired to

proceed for the sum. The number n of terms taken into account will be chosen

so large that the remainder rn contributes at most one unit in the last decimal

place considered. The error in the individual terms will then, in general, have
no appreciable effect. But to obtain perfect security for the resulting- digits,

it is necessary to proceed as described above. For we may retain a large
number of digits beyond the desired number in calculating the individual terms,

yet as an error attaches to each of the decimals broken off and these errors

accumulate, they may, in particularly unfavourable cases (cf. the example 01?

p. 249), influence some of the much earlier digits

4. Evaluation of the number yt. The chief means placed at

our disposal, up to the present, for the evaluation of the number n,
are the series expansions of the functions tan"" 1 and sin"1 ; of these,

the former has the preference, owing to its simple mode of formation.

From this series, we deduced the expansion

T w=sl ~~T + T --1 '

which for numerical purposes is practically valueless. In fact, by

p. 250, we can say no more on inspection about the remainder rn in

this expansion, than that it has the sign ( l)
n+1 and is in absolute

value < --
. In order to secure 6 decimals, we should therefore

& n -f- o

be obliged to take n > 10 fl

, but an evaluation of a million terms is,

for practical purposes, quite impossible. The rapidity of the conver-

gence may be increased very materially by Euler's transformation

144, 2. In the next paragraph, we shall discuss the utility of such

transformations for purposes of numerical calculation. Our present

object is to deduce more convenient series expressions for n directly

from the tan"" 1 series itself.

The series expansion for tan"" 1 = ~ is already of appreciable
\/
3 6

use: this gives

fL^j_r 1 __i_ +_1 ___L _+_... i

6~~V~5l 33^5-3* 7-33 ^
J'

23 Cf. p. 249.
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The following mode of procedure, however, provides considerably more

convenient series 94
.

The number

a = tan *

y ^ y ~ 3.53 + 5 . 5^ y. 5 7 H

is easily calculated from the series itself (see below). For this value

of a, tan a = | ,
and so

_ 2 tan a 5
tan 2 a = - r- =^=

TT>
1 tan- a 1&

and
120

Consequently 4 a exceeds -*- by only a small amount. Writing

*- J=/,
we have

t ^ __ _ism 4_o_--jan * ^L. _ JL^ ~

1-f tan 4 a tan i"w
~~~

239'

Hence
ft

can very easily be evaluated from the series

~ _, _1 __ JL__ I I ,

p tan
23g

-

2gg 3- 239 3 ^ '

The two numbers a and
fi give us

146 '

If it be desired to obtain the first seven true decimals of n
,
we may

endeavour to attain this end by taking-, say, 9 decimals for each of the terms

and for the remainder'26 a scanty enough margin, for the errors incurred

on the numbers a and ft
have ultimately to be multiplied by 16 and 4 respec-

tively Denoting- the first series by ^i ^ + ^ft
--[-> lne second by

a/ a
8

'

-{- a6
'

[-
an<* tne corresponding partial sums by s

y
and s

v', the

calculation proceeds as follows:

<*!
- 0200000000

a, - OOOOOG4000
0- T>7

-

a L -}- a, -f- 07- 0^00004057-

= 0002G66(>G7-
-- 0000001829-
- 0- 2-

~|- a, + u
- 002608498

Hence, as the errors change signs in a subtraction,

Sll = 0- 197 395 559 + + + -

and
< fn < 10 10

Accordingly
3 158328936 < 1ft a < 3-158328970,

24
J. Machin (in W.Jones: Synopsis, London 1700).

26 The result alone can show whether this suffices. In fact we do not know
a priori whether we are not in the presence of one of the particularly unfavourable

cases described on p. 249.

9 (G51)
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for after multiplying by 16 we have to subtract ^=8 units of the 9th deci-

mal place, or add = 24 of these units, to obtain bounds on either side

for 16sn . Since

we have finally to add 2 units to the bound above, to obtain the correspond-

ing bounds of 16 a. Further

< = 0004 184 100 +

*/- a'
= 0004 184 076*

hence
- 016736307 < - 4 ft < - 0-016736302 .

Combining the two results, we get

3-141 592629 < n < 3*141 592668 .

This brief calculation thus really gives us the seven first true decimals of n\

* = 3-141 5926 ..

(The same procedure would only have secured six decimals for the approxi-
mate value; cf. calculation of 0, where circumstances, in this respect, were
the exact reverse)

The series here utilized for the calculation of n are among the most

convenient; by their means, a very much greater number of decimals may
also be secured 28 with relatively small trouble, and we are therefore fully

justified in regarding n henceforth as one of the ''known" numbers.

147. 5. Calculation of logarithms. The starting point for the cal-

culation of logarithms resides in the series

This series converges with considerable rapidity for x = \, and at

once gives

Denoting by , 1 ,..., the terms of the series inside the square

bracket, we have

\

and

. . . i

[ill i A
....]

i i <

0<r
or

1 1 9

(2n + l) 3->w + l Z* 8
~~

8
'

26 The number n has been evaluated to 810 places of decimals (Mathematical

Gazette, Feb. 1948, p. 37).
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Our calculations then proceed as follows, if we again take 9 decimals

for each of the terms an
-

a = 0333 333 333+

! 001 2 345 679+

a, -0000 823 045+

^-0-... 065 321+

4 :=()... 00:> 645+

fl
fi
-0- ...... 513+
-0- ..... 048+

a,
= 0- ..... 005-

0346573589

Whence it follows, taking into account the remainder and the small -+- and

signs:

log 2 = 0-693 147 1 ... or log 2^ 0-693 147 2

with seven decimals secured 27
.

Once log 2 is evaluated, the calculation of the logarithms of all

other numbers involves very little further trouble. In fact, our senes

gives, for * = -,
;
148.

'

therefore if log />
is known

(/>
= 2, 3, . .

.),
we obtain the value of

log (p -(- l), by the above formula. Moreover, since
^
-

r = , -->>
the expression involves a series converging very rapidly. In fact

(cf. above, case p = 1)

so that the remainder is already very small for quite moderate values

of n. The rapidity of convergence of course increases when p is

given somewhat larger values, i. e. as soon as the first few logarithms

have been successfully determined. It is useful to observe that by

37, 1, only logarithms of prime numbers 2, 3, 5, 7, 11, 13, . . . need be

evaluated; those of all other numbers follow by mere combination.

Now supposing that we have effected the calculations for the

logarithms of the first four prime numbers, 2, 3, 5, 7, the labour in.

volved in calculating the logarithms of further primes is small. Thus,
for instance, taking p = 10, we have

with

11-40'

27 The series 1 J-f-J }+ for logf 2 is of course inappropriate for

the evaluation of this number; even its Enler's transformation effected in 144, 1

is less convenient than the series utilized above.
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Thus already for n = 3,

r < -1 < - *- < - l < *-
* ^ 7-21 7 11-40

^
20 R -2-ll-7

^
10-2D -7 10 ia

ensuring a degree of approximation sufficient even for the most refined

scientific needs.

It would accordingly appear desirable to possess somewhat more con-

venient methods of calculation for log- 2, log 3, log 5, and also, at any rate,

log 7. Diverse artifices may be applied for the purpose, all of which consist

k
mainly in finding rational numbers ,

as near as possible to 1, whosem
numerators and denominators are products of powers of these first four primes.
If q of these primes have been utilized, q fractions will be needed to deduce
the logarithms of those q primes from those of the fractions. For actually

effecting these calculations, it is convenient to follow the method indicated

by Adams**: Evaluate the logarithms of -
, ^r, ^- by means, not of the series

7 <JTC Ov/

12O, c just employed, but of the original series 12O, a and b, which here give

25 . / 4 N 4 1 16 1 64

81 / 1 \ 1 1 1 1

Owing to the occurrence, in the denominator, of powers of 10, the calculation

here becomes extremely simple With the aid of these logarithms, we then

obtain, as may be verified immediately:

1og2= 71og- -

loK 3 = 11 log--- Slog 2 + 5 log M
10 2^ m

logs -mo* -4 to* "J+TidarjjJ.

It we proceed further to evaluate, as we may with equal facility,
39

. 126 / 8 \ 8 1 8 3 1 8 3

IOff ~ e + "^~"^ + "^~"f "" f

we also obtain

,n, 10 ., 25 01 81
,

12(5

*8 Proc. of the Royal Society, Vol. 27, p. 88, 1878.
29 The facility with which this calculation is effected may be seen by

126
the following, which in 5 simple lines provides log -^~ with 10 decimals

secured:

-f 0-008000000000

-0 ...032000000

4-0- 170667-

-0- 001024

4-0- 007-

logA- = 0-0079681696..,
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We have thus, for the actual calculation of natural logarithms, a method which

is convenient and easily applicable in practice. Into further details of the com-

putation of logarithmic tables we cannot enter in this place.

Having obtained log 2 and log 5, we have also the value of log 10;

and hence, in

M= I = 0-434 294 48190 ..,
log 10

f

the "modulus" of Briggs' system of logarithms to the base 10, or

factor by which the natural logarithm of a number must be multi-

plied to give the Briggian logarithm
30

.

6. Calculation of roots. Once logarithms have been mastered

no great practical importance attaches to the problem of obtaining

simple methods of calculation for the roots of natural numbers. We
shall therefore be quite brief in the following explanations. The ra-

pidity of convergence of the binomial series

increases as
|

x
\

diminishes. Now the calculation of a power Vq = q
p

i

can always be reduced to that of a power of the form (l + #)
p

, with

some small value of \x\.

A few examples may serve to illustrate the above. On p. 211, we gave 149.

for ^/2 the series expansion of FM"?^) :

^. 1

+
3 4-' 5

. +.
5

"*"
2 50"*" 2-4 50'jn

~

2-4-6 50^
Since

( l)
n

I
*J

is constantly positive and forms a monotone decreasing

quence, the remainder rn may be estimated by means of the inequality

showing that, even for small values of n, a considerable degree of approxi
mation is attained*11

. The method is even more effective if we write

30 We may remark in passing that we have certainly found ample justi-

fication, by this time, for what seemed at first the rather arbitrary designation
of the logarithms with the remarkable base e as the "natural" logarithms.

31 How simply the calculation proceeds is shewn by the following details:

- ^ = 1 010 ......... hence indeed without any error!

1-0101525445375a
2
= 0-... 15

3
= 0- 25

a4 =
n'

43

^;!? \/2"= 1-4142135623...,
Clft

U* i o / D

by which the first 10 decimals are thus already seemed.
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or other similar expressions, obtained by taking* any rough approximation a

to ^2 f~ in the first case, 1-41 in the second
J,
and putting

Since a2 is chosen to be very near 2, the quantity under the ^/~ is of the form

1 -\- x t
with small \x\. Similarly, if we are already aware that y/3

= 1*732 . ..,

we have only to write

to obtain, with the greatest ease, an expansion of y/3 to 50 or more places ol

decimals.

We may, without further explanation, indicate the examples:

150. 7. Calculation of trigonometrical functions. The series expansions
of sinx and cos a; converge with even greater rapidity than the ex-

ponential series, since only the even or only the odd powers occur

in them, and these have, moreover, alternating signs. Accordingly, no

special artifices are required; for angles of no excessive magnitude,
the series furnish all that can possibly be desired.

To determine, for instance, sml, we have first to express 1 in

circular measure. We have 1 = -^r = 0-017453292 . . . , i. e. ccr-
lou

tainly < p-
-

. Denoting this quantity by a,
ou

sin 1 = a ~ +
j

--
1

---- = a - a + a
2
--

1

and the error rn may at once be estimated (p. 250, B) by

which last expression is already less than
^--lO"

15
f r n = 2.

Circumstances are similar in the case of cos 1; this quantity may

also, however, since sin2 1 < 5^, be obtained easily from the relation
ZoUU

cos 1 = (1
- sin2 1)*

by means of the binomial series: tana; and cot a; are then obtained

by division, or from their expansions 116 and 115, whose conver-

gence is still quite sufficiently rapid when
|a:|

is small.

These latter series also lead to useful expansions for the log-

arithms of sino; and cosjc, which for practical purposes are of
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greater importance than the values of sin x and cos x themselves. We
have 32

(cf. 19, Dcf. 12)

log sin x = log x -f- log
^-^ = log x -J- I

cot x -- 1 dx

151.

and similarly from 116
r

- log cos*= (tanxdx = j?(-l)*-
1 ^4^"^^;

J J=l <S/?-(//?J'

log tan a; and log cot a; may be obtained from these by simple addition.

As regards the convergence of these series, we can only state in the

first instance that they certainly do converge for all sufficiently small

values of \x\. However, the remarks of p. 237, footnote 4, show further

that the series in 151 has the radius n y that in 152 the radius ^.u

Further details in the computation of trigonometrical tables will

not be entered into here, as they do not concern the theory of in-

finite series.

8. More accurate evaluation of remainders. In the cases pre-

viously considcied, the sum of a given series was invariably deduced

by evaluating suitable partial sums and estimating the error involved

in the corresponding remainder. It is obvious that this method is im-

practicable unless the convergence of the series is relatively rapid. If

it be desired to evaluate, with some degree of approximation, for

instance
00 1

this direct method is pretty hopeless
33

. Even if we are very cautious

in the margin we allow, we can only deduce, as an upper estimate

of the remainder

32 The function in the square bracket has to be understood to stand for

the series 115 after division by x and subtraction of the foremost term .

x
The function is therefore defined and continuous also for # = 0.

33 As we happen to know that the sum is
,

its evaluation indirectly

by means of the value of JT is of course quite simple. But for the moment we
are assuming that we know as little about this sum as e. g. about the sum
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the inequality __ ____-
n (n + 1)

~~
(n + 1) (n + 2) n '

according to this, it would become necessary to calculate a million

terms, in order to secure 6 places of decimals. This of course is out

of the question.

This state of things may frequently be improved to some extent,

if it is possible to supplement the upper estimate of the remainder rn

by a lower estimate, i. e. to deduce an inequality for rn of opposite sense

to the above in our case. In our example, the same principle as that

already used gives
1 1

_____
1

l~
" * "

we are thus able to assert that our sum s satisfies the conditions

for every n. To secure 6 decimals, we may accordingly need only
1000 terms. This is still too large a number for practical purposes.
But in special examples this method of upper and lower estimates

of the remainder
(cf.

Ex. 131) may lead to a satisfactory result.

These cases are, however, so rare, that they do not come into

account for practical purposes. Greater importance attaches to methods
for transformation of slowly convergent into rapidly convergent series,

because they admit of a far wider range of applications. To these

methods we proceed to give our attention.

35. Applications of the transformation of series

to numerical evaluations.

In cases of slow convergence, one naturally attempts to change
the given series into one with a more rapid convergence, by means
of some suitable modification. We proceed to examine in this light

the transformations discussed in 33, so as to see how far they will

be of use to us here.

A. Kumtner's transformation. For this transformation it is im-

mediately obvious whether and to what extent an increase in the ra-

pidity of the convergence can be obtained by it. In fact, using the

notation of 145, we have

n=0 n=0

as (1 r- j *0, the terms of the new series (from some index on-
\ (t /

wards) are less than those of the given series. The method will ac-
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cordingly be all the more effective the smaller the factors
(
1 y )

\ a-n/

are, from the first; or in other words, the nearer the terms of 2cn

are to those of 2 an -

Examples. 153

1. We found on p. 247 that J^ = 1 + V__---
. The terms of the

*-' n* ** n* (n -f- 1)

new series are asymptotically equal to those of the series

oo I 1 *, / 1 1 \ 1

+ 2)

= Y ( + l)

~
(+l)( + 2)

=
"4

thus here C r- and y = l t and so

Proceeding
1

in this manner, we obtain, at the />th stage:

1.1. .
i

. ,.V __^ n2
~

The latter series, even for moderate values of p, shows an appreciably rapid

convergence.

2. Consider the somewhat more general series
" 1 f a arbitrary -{= 0, -1, ...

Here we take

^n = (w+y)an -(w-|-l+y)flnh l, W = 0, 1, 2.....

and we try to determine y (independent of n) so that cn is as near an as

possible
34

. Here we have C = y a and a simple calculation gives y ~- .

^ p 1

Hence we obtain

The expression in the large bracket is

- _

Since, by simplification, the terms in w 8 and w a must disappear of themselves,
this gives - 1 -y) (K

(2 ?-!)"( + + />)

terms in n also disap

then the expression in the large bracket above now becomes

Q
If we now choose y so that the terms in n also disappear, i. e. take y = a-l ^-/> 1

34 The choice of a number cn of the form xn xn \-\ will, by 131, always

prove most convenient, as in that case C at any rate may be specified at

once and the choice still be so arranged that the cn's are near to the an 's.
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and accordingly

3

The transformation thus has the effect of introducing an additional quadiatic

factor in the denominator. Particular cases:

a) = 1.

p*~
1*~2* . . . ^""

r
2"(2>

- 1)^ (n + 1)
J

. . . (n + p)* (n

Write for brevity

i)'

~
M ,

OH- i)
j

. .T^T

the result then takes the form

_ _ _
p ~2(2p- 1) ."l

a
-"2

a
. .". p

a
""

2 (2 p - 1)
^ 1

'

This formula enables us easily to obtain very rapidly convergent series for

b) Similarly, for a = -

ty :

Li

This formula similarly leads to rapidly convergent series for ^S/6~^ri\a'

For further examples, see Exercises 127 seq.

B. Euler's transformation.

Euler's transformation 144 need not by any means involve an

increase in the rapidity of convergence
35 of the series to which it is

applied.
06

/ 1 \
n

154. For instance the transformation of
(-^-) gives the series

n=0 > Z '

1 * / 3 \
n

- V (--) , which evidently has a less rapid convergence. But even
<2 ^ 4 '/

35 The explicit definition of what we mean by more or less rapid con-

vergence will be given in 37: 2an
'

is said to be more or less rapidly con-

vergent than 2an1 according as

- or -* + oo .
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in the case of alternating series, the effect need not be an increased

rapidity of convergence; indeed the following three examples show

that all conceivable cases may actually occur here:
00

1 1 1

1. ( *)
n
o^ Sives a more raPicily convergent series,

-

is-
n=o J z n=u 4

00
J

2. J ( l)
n ^ series with the same rapidity of conver-

n=o 6

1 1

gence,
-g- JJ -^

.

J n=0 d

3. '( If-/* less rapidly convergent series,
- -

Jj (j-)
-

n=0 * * n=0 vo/

We shall now show, however, that such an increase in the rapi-

dity of the convergence does result, in the case of those alternating

series 2(\)
n
a
n , an > 0, whose terms, though not showing rapidity

of convergence, still tend to zero in a particular regular manner, which

we proceed to describe. These are the only types of alternating series

of any practical importance.

The hypothesis required will be that not only the numbers a
n

form a monotone decreasing sequence, i. e. have positive first diffe-

rences A an ,
but that the same is true of all differences of every order.

A (positive) sequence a , fl,,02 , ... is said to have p-fold monotony
if its first, second,..., />

th differences are all positive, and it is said

to be fully monotone if all the differences J 7c

an , (k, n = 0, 1, 2, . .

.)

are positive. With these designations, the theorem referred to is:

QO

Theorem 1. // J^(~ l)
n
an ^s an alternating series for which 15S

n=0
the (positive] numbers , 1 ,... form a fully monotone null se

quence, while, from the first,
-n * * ^ a > (for every n)

37
, then the

.1
a"

transformed series L~^^ n aQ converges more rapidly than the given

series.

The proof is very simple. As M+1 ^ a, we have an ^ # an.

an

Further, for the remainder rn of the given series we have

(~l)
n+1 rn = an^ - an+2 + _...= A an+1 + A an , 3 + A aM + . ,

hence, since (A av) is itself a monotone null sequence,

I \-> l fA _i_/l A_ A . \- 1 -* 1

I T<n
I
i-=

2
' ^w+l ~T ^J an \ 2 I

^ fln+3 "T ~"

2 ^w+1 =
2
^

38 Cf. Memoir of E. facobsthal referred to in 144.
37 This assumption is the precise formulation of the expression used above,

that the given series should not converge particularly rapidly. The series will in

(1\**27
*_i. luruicr me wur* uy r. v . runteici. quuicu in IUUIHULC *o.

'
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On the other hand, as /4
n
a A n '

] a A n
a^ ^> 0, the numerators

of the transformed series also form a monotone null sequence, and

in particular are all <^ a . Consequently the remainders rn
'
of the

transformed series, which, moreover, is a series of positive terms,

satisfy

*n ~~2~*H-~a
I"

" " " ~ 2 n + 2
\

* 2 4
"

Consequently, we have

which proves our statement completely. Further, we sec that the

larger a is, the greater will be the increase in the rapidity of con-

r
'

vergence, i. e. the more rapidly will >0. In particular, we may
*n

transform into series which converge with practically the same rapid-

(1

\
n

-g-J
, all alternating series for which the ratio of two con-

secutive terms tends to 1 in absolute value; such series have usually

a slow convergence.

Examples. The two most striking
1

examples of Euler's transformation,
( l}

n
( D n

that of --'- and s
-

+ >
were anticipated in 144. For further appli-W -J- 1 Cl Wr

j
1

cations it is essential to know which null sequences are fully monotone. We
may prove, in this connection, by repeated application of the first mean
value theorem of the differential calculus ( 19, Theorem 8), the following
theorem:

Theorem 2. A (positive) sequence aQ , a^ ... is fully monotone decreasing if

a function f (x) exists, defined for x ^ 0, and possessing differential coefficients of

all orders for a;]>0, for which f(n)=an while the kth derived function has the

constant sign (- 1)*, (k = 0, 1, 2, . . .).

Accordingly the numbers

for instance, form fully monotone decreasing sequences; and from these many
further sequences of this kind may be deduced, by means of the

Theorem 3. // the numbers a
,
alt ... and b

,
b

l ,
. . . constitute fully mono-

tone decreasing sequences, the same is true of the products aQ b
Q ,

a
L
b
L , a^ b

, . . .

Proof. The following formula holds, and is easily verified by induction

relatively to the index k:

It shows that, as required, all the differences of (an bn) are positive, if those

of () and (bn) are so.

The following may be sketched as a particular numerical example:

The series
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has extraordinarily slow convergence; in fact, it converges with practically as small

a rapidity as Abel's series 2 1 In (logn)
2

. Yet by means of Eulers transformation,

its sum may be calculated with relative ease. If we use only the first seven

terms (to
---- inclusive), we can deduce the first seven terms of the trans-

\ log lo /

formed series. If we use logarithms to seven places of decimals, we find,

with 6 decimals secured, the value 221 840 . . . for the sum of the series 88
.

C. Markoff's transformation.

As the choice of the array (A), p. 241, from which Markoffs
transformation was deduced, is largely arbitrary, it is not surprising

that we should be unable to formulate general theorems as to the

effect of the transformation on the rapidity of the convergence. We
shall therefore have to be content with laying down somewhat wider

directing lines for its effective use, and with illustrating this by a few

examples :

Denoting as before by 2z^ the given series (assumed convergent),
we choose the terms of the th column in our array (A) to be as

near as possible to those of the given series, and at the same time

to possess a sum s (0^ which we can indicate by a convenient closed

expression; this is analogous to the condition of Rummer's trans-

formation. The series 2(z^ ao^) now certamty converges more

rapidly than 2z (1c)

; proceed with this new series in the same way, for

the choice of the next column in our array, and so on. The effect

of the transformation will be similar to that of an indefinitely repeated

Rummer's transformation, the possibility of which was already indi-

cated in the examples 153, 2 a
(cf.

Ex. 130).
00

I
As an example, we may take the series -~

,
which is practically useless 156.

&=i*

for the direct evaluation of its sum -. Here we think of the th row and
b

column as consisting entirely of noughts, which we do not write down The

choice of the series 5]
-- for the first column, which was already used

K (K -f- 1)

on p. 247, then appears obvious enough. This gives

2? <.-.,*) -2*
As second column, we shall then, as in 153, 1, choose the series

and so on. The k ih row of the array thus takes the form
1 _ 0!_ ___![__ __2!__

/e
3
"

k (k+ 1)
+

k (k + 1) (k + 2)
+

k (k + 1) (k f- 2) (k + 3)
+ ' ' ' (k hxcd) '

The further calculations are, however, simplified by breaking off this series at

the (k l)
th term and adding as # h term the missing remainder rk ,

after

38 This example is taken from the work of A. A. Markoff: "Differenzen-

rechnung", Leipzig, p. 184. 1890.
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which the series is regarded as consisting entirely of noughts. The /5
th row

now has the form:

* 0' .... ,__(^)'^ ~

Subtracting the terms of the right hand side from the left in succession,

we easily find

___
... (2 /*-!)*

In our case, the process of splitting up the scries ^ into an army of the

form (A) of p. 241 thus gives:
1 = 1

Since all the terms of this array arc g> 0, the main rearrangement

theorem OO itself shows that we may sum in columns and must obtain - as

ultimate result. Now in the n tb column we have the series

' (nfixed) -

By 132,3 for a = n+l and /?--=M, the series in the square brackets has
the sum 1

n (n -f 1) . . . 2~n
'

Hence the n ih column has for sum

s (n) ...
(n _ J\ J
_*____

j
__*__ 1

k ; Ln a
(n+l)...(2n- l)^n (n+ 1) . . . 2 wJ

= 3-
1

Therefore we have

This formula is significant not only for numerical purposes, in view oi

the appreciable increase in the rapidity of the convergence, but almost more
so because it provides a new means of obtaining the closed expression for the

sum of the series
,
which we only succeeded in determining indirectlyK

by using the expansion in partial fractions as well as the series expansion of

the function cot. In fact we can easily establish directly (cf. Ex. 123), that

123 implies the expansion, for
|

x
\

< 1 :
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Putting x -~
, we at once deduce 39

Li

y-L = 3 v(!Li

A further application of fundamental importance of Markoffs transforma-

tion we have already come across (v. 144) in Euler's transformation, which
was indeed deduced from Markoffs.

For further applications of Markoffs transformation we must refer to the

accounts of Markoff himself (v. p. 265, footnote 38) and of E. Fabry (The'orie des

series & termes constants, Paris 1910). Their success depends for the most

part on special artifices, but they are sometimes surprisingly effective. Nu-

merous examples will be found, completely worked out, in the writings re-

ferred to.

Exercises on Chapter VIII.

I. Direct formation of the sequence of partial sums.

for \x\<l t

100. a
) + + + +....- for

.- for

)

is
'

for a" positive "

g-ent When does the series still continue to converge for arbitrary an ,
and

what is its sum?

1058. a) J tan- 1^ =
;

n=i n *

(hint
: tan~ l-- tan~ *-- = tan~ x -

] .

n I w-f-1 n"J

,~
t
~ _"

6 (6 + ij

~~
6 (b + 1) (6 + 2) 6 - 1

'

every Ay>>0and^- is divergent.

Cf. a note by /. Schur and the author: r'Cber die Herleitung der Glei-

J? e

p 174. 1918.

chung J? e=-^-
M

, Archiv der Mathematik und Physik, Sen 3, Vol. 27,
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105- ) ?";
(hint : cot y tan y = 2 cot 2 y) .

'
let ft- ft- - ft

denote fixed given natural numbers, all different, and a =)= 0, 1, 2, ... any
real number, while g (x) denotes an integral rational function (polynomial) of

degree <& 2. We assume the expansion in partial fractions:

The given series then has the sum

-tr!

v
La a-f- 1

* * "

+ *> ! J

1^
1 __1 = JL/ H9\

107. a
)

i. 2 .6~7 ~3-4 8."9
+

5.6 10-11
H ~

60 \* 60 >/

'

_ _____ ___i
I~2 4-5

~
3 4.6 7

+
5. 6- 8- 9

H 36 6

I

1
I = 1

G.7^5.6-8-9^" 36'

.

5 a+~~ + '*
5

4""l 4 + 1)

~~
2r(4T2MlT)

+
3^14"^" fT)

~ H = J ff 2 ""
2"

J

h
> ir^ + +

T
+ '-'-S^-T 10' 8 -

II. Determination of closed expressions by means of the expansions
of elementary functions.

108. a) l_^_-^i+nlp + _l

. . 1 1
,

1-8 1
,

1-3-5 1
,b>

' + ' + + -"

n -

;

gives for y = 7 and 2=1,2,3:
-. i i i i

7
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c)
_1 L_. + __ 1

.__+... ^JL^-S);

1 1 1 JT
a

IJ\ XT V '

' ^^-j~i"~~"o"- -
- 1

'

2
'

n=l(4n3 -"^
a 16

32-3g

__ __ j. __ -a.-
5
+

7 II"
1
"

13 17
+

1 1.2 1-2 3
b)

"

_._ ....^.
2-3 4^3.4.5.6^4.5.6.7.8^ 18 2'

e)

111. If we write jj f- ^
!

, ,V=
ntlo V (^ + w) -V

,
then

n

* ^2 39 5 ,197

. If we \\rite ^ - = gp e, (p = 1, 2, . . .), then the numbers jp are
n=l MI

iniegers obtainable by the symbolical formula g
p+1 =

(1 + g)
p

. We have ga = 1

= 2, g'g
= 5, . .. .

113.
x

may be summed in the form of a closed expression by means of elementary
functions when x\y is a rational number. Special cases are:

1
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114. Writing- J T-^-- = L (x) , (|a:|<l), we have, if (xn) denotes
n=i l ~~ x

Fibonacci's sequence 6, 7,

oo
1 oo /_ 1)*

1
ft s _

And if we write y, - = s, and \7 --- = 5
',
we have

f
= ^ 5 .

A=ia2 jb-i ^-! *~* 5

III. Exercises on Euler's transformation.

115. We have (for what values of #?)

(-i" ,
*

=

(-1)"

n=0 v*

116. If we put

,xe

n=0

we have bn A" a
Q . In particular, therefore,

n=l "*"' n=L

117. Quite special cases are:

118. If A n a = bn , then J n 6 = an . What accordingly are the inverse

equations to those of the preceding- exercise?

119. If (an) be a null sequence with (p -f- l)-fold decreasing monotony (p ]> 1),
oc

the sum s of the series 2 ( l)
n an satisfies the inequalities

n

A a,~ >.
2

-r
2 ^ ^ ^

2P 2
^

2s ^ T
2 P 2^

Use this to prove the equality

n xhm
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12O. If s/c and Sn denote the paitial sums of both the series in 144,
we have

Use this relation to prove the validity of Euler's transformation.

121. The following relations hold, if the summation on cither side is

taken to start with the index and the difference-symbols A operate on the

coefficients on the left, a/ ,&, _>fc + t respectively:

a-y n Wllh

b) 27(-l)* afc *
8*=(l-y 9)274

ll a .y
ait with

c) 27 (- 1) ***+! z 2 * + ' = V i -y a
27 A

"
<vy

an f * witn

122. Thus e. g^.

2 a:
9 2-

-

3" iTS'+s

Putting- a; = -
, -, , -=-

,
j- ,

_Q , ..., this provides peculiarly convenient
O f J- 1 f <y

series for jt, as for instance

== 2 tan- 1 ---
f- tan"1 - = 5 tan"1 - -J-Stan-

1^,4 3 i i t <j

and others.

. The preceding series for tan- 1 x may also be put m the form

2 2-4

_
y-'

Hence deduce the expansion

IV. Other transformations of series.

oo 1
124. Writing

1 V --- Spj we have

a) Sa +5a + 54 + -..==l
; b) 52 4

-
a

... =

... = l; d) S4 +~S4 + ~56 + ...

4--.- = ^; t) SJ -^S4+Is6
- + ---

h) "2"^"""3' 58 + ----

where C denotes Euler's constant, defined in 128,2 and Ex. 85 a.
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125. With the same meaning for Sp as in the preceding* exercise, writing

/I 1\^ . ,.
n

{ T-r TTT )
= bk and hm

\*+l 2k)
*

n
we have

&a S2 + ba 5J H---- = 1 log A.

(The existence of the limit A results from the convergence of the series. We
have A = \/ %n .)

126.
,

~_i_ = r
i_ _ j_ i

, iji__*' +
-

"
l

11

128. With reference to 35 A, establish the relation between
~__1_ ~ 1

^ " <
3 n <* - - n * > - I 3

an
-

_ ____
- -

(
n + * + />

-
I)

3
n-Si (n -f a - I)

3
. . . (n -f o: + p)

and, by giving- special values to a and p, prove the following transformations:

V JL _A 4.
25 _ ^"
'' 1

'

= 8

_ 9 133 3
4_
4 ~___ 1__~

8
+ 2.33+ "5 ^ n* (n -f I)

3
(n + 2) (n -f- 3)

3
(n + 4)

'

-^ f,
1

_83 __ 2^3*
~ ___1 ____

n=l W
(
n + X)

8
"

63<^ 35 n-l n3 (
w + i

)
3

(
M + 2

)
3
(
w + 3)

8
"

Evaluate the sum of the first series to 6 places of decimals.

129. Prove similarly the transformations:

_
6 6 (+!) '

.. v-J _!._'~

tl^r*

i a (- i)"

4 nf,
Evaluate the sums of the series a) and b) to 6 places of decimals.
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130. a) Denoting by TP the sum of the series c) in the preceding exercise,

we obtain relations between Tl and T.2jc + l9 Tz and T^+y. What are these

relations? Is the process &->QQ allowed in them? What is the transformation

thus obtained? Is it possible to deduce it directly as a Marhoff transformation?

b) We have

- - (
-

1)
"~ t

- 1 1 v (-!)"-'_ a 1--
Give the form now taken by the transformations of the series for log 2

which were indicated in a).

c) Carry out the same process with the series 122 for .

131. The sum of the series J5~;
-

;

-
7*
-

rs where n starts from^ n logn log-2 n (
Io8s n)

the first integer satisfying loga n > 1, evaluated to 8 decimal places, is exactly

^ 1-00000000. How may we determine whether the actual decimal expan-
sion begins with . . . or with 1 . . .? The solution of this problem requires

a knowledge of the numerical value of e"' = e (e ) to one decimal place at least;

this is
"' = 3814279-1 ... It suffices, however, to know that e'" - ["'] - 0-1 ----

(Cf. remarks on p. 249.)

132. Arrange in order of magnitude all natural numbers of the form p
q

,

(p, q positive integers ^> 2) and denote the nth of the numbers so arranged
by pn >

s tliat

(plt pt , ...)
=

(4, 8, 9, 16, 25, 27, 32, . . .).

We then have

v-

(Cf. 68, 5.)



Part III.

Development of the theory.

Chapter IX.

Series of positive terms.

36. Detailed study of the two comparison tests.

In the preceding chapters we contented ourselves with setting

forth the fundamental facts of the theory of infinite series. Henceforth

we shall aim somewhat further, and endeavour to penetrate deeper
into the theory and proceed to give more extensive applications. For

this purpose we first resume the considerations stated from a quite

elementary standpoint in Chapters III and IV. We begin by examin-

ing in greater detail the two comparison tests of the first and second

kinds (7 and 73), which were deduced immediately from the first

main criterion (70), for the convergence or divergence of series of

positive terms. These, and all related criteria, will in the sequel be

expressed more concisely by using the notation 2cn
and 2 dn to de-

note any series of positive terms known a priori to be convergent
and divergent respectively, whereas 2an

shall denote a scries

alsoy in the present chapter, of positive terms only whose con-

vergence or divergence is being examined. The criterion 73 can then

be written in the simple form

157. (Ij
an <:cn :

'

<B, an ^dn : <3>.

This indicates that, if the terms of the series under consideration

satisfy the first inequality from and after a certain n, then the series

will converge] If, on the other hand, they satisfy the second inequality,

from and after a certain n, then it must diverge.

The criterion 73 becomes in the same abbreviated notation

158. (H) ^ : ,

n

Before proceeding we may make a few remarks in this connexion.

But let us first insist once more on one point: Neither these nor any
274
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of the analogous criteria to be established below will necessarily solve

the question of convergence or divergence of any particular given

series. They represent sufficient conditions only and may therefore

very well fail in special cases. Their success will depend on the

choice of the comparison series 2cn and 2'

dn (see below). The fol-

lowing pages will accordingly be devoted to establishing tests, as

numerous and as efficacious as possible, so as to increase the pro-

bability of actually solving the problem in given special cases.

Remarks on the first comparison test (157). 159.

1. Since for every positive number g the series 2gcn
and 2gdn

necessarily converge and diverge respectively with 2cn
and 2 dn , the

first of our criteria may also be expressed in the form:

5^*(<+oo) : , >g(>0) : S>

or, even more forcibly, in the form

hm ?- < -f oo : S, lim^>0 : S>.
cn an

2. Accordingly we must always have:

hm == + oo ,
lim - "- =

cn

or, otherwise expressed:

lim-
a
*== -[-oo is a necessary condition for the divergence of ~flw ,

lim
" = necessary n n w convergence 2&n *

3. Here, as in all that follows, it is not necessary that actual

unique limits should exist. This may be inferred, to take the question

quite generally, from the fact that the convergence or divergence of

a series of positive terms remains unaltered when the series is sub-

jected to an arbitrary rearrangement (v. 88). The latter can in every
case be so chosen that the above limits do not exist. For instance

2cn can be taken to be 1 + + 5 +" J ~K*
*
"> anc* ~ a

n
to ^e ^le se"cs

2 + l + 8+4~l~82~l~l6H '

obtained from the former by interchanging the terms in each successive

pair; the ratio certainly tends to no unique limit; in fact, it has
cn

distinct upper and lower limits 2 and
|. Similarly, let 2 dn be chosen

to be the series 1 + | + | + | + ***, and let 2an be the series
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deduced from the former by rearrangement, (in
this series every two

odd denominators are followed by one even one). Here ~ has the

two distinct upper and lower limits | and
|.

In a similar manner we

may convince ourselves by examples in the other cases that an actual

unique limit need not exist. //, however, such an unique limit does

exist, it necessarily satisfies the conditions indicated for lim and lim,

since it is then equal to both.

4. In particular: No condition of the form
-^

is necessary

for the convergence of 2an
unless all the terms of the divergent

series 2 dn remain greater than a fixed positive d. For, even if we

only have lim dn
= 0, by choosing

so that

and writing a
h
= d

k , an
= or = the corresponding term cn of any

convergent series c
n

for every other n, we evidently obtain a convergent

series an , but it is equally evident that -~ does not >0.

160. Remarks on the second comparison test (158).

1. The validity of the comparison test II may now be established

more concisely as follows:

In the case marked (G), we have, from and after a definite n,

_!L^>.JL f i. e. (--) is a monotone descending sequence, whose limit
cn c + i \ cnJ

y is defined and ^ 0. In particular lim = y < + oo, and, by 159, 1,

2an
is convergent In the case marked

(3)), K*
J

is monotone ascend-

ing from and after a particular n, and accordingly also tends to a

definite limit > 0, or to -\-oo. In either case the condition lim -,
n
- >
n

of 159, 1 is fulfilled and this shows that 2an is divergent

2. The comparison test II thus appears as an almost immediate

corollary to the comparison test I. If the convergence or divergence

of a series 2 an can be inferred by comparison with a (definitely

chosen) series 2cn or Sdn
in accordance with 158, then this may

also be inferred by means of 157 (or 159, 1),
but not conversely,

i. e. if I is decisive, II need not be so.

Examples of this have already occurred in the pairs of series of

159, 3. For the first pair we have lim = 2, while ^ alter-
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natelv ~ 2 and -= --, i. e. it is sometimes greater, sometimes less than the
o

corresponding ratio JL*Li
, since this constantly = ~. The second

Cn 6

pair of series represents an equally simple case.

3. This relation between the two types of comparison tests be-

comes particularly interesting when we come to deal with the two tests

to which we were led in 13 as immediate applications of the first

and second comparison tests. These \\ere the root and ratio tests,

inferred from I and II by the use of the geometric scries as com

parison series, and they may be stated thus:

,-(^*<l : <S

: 3)

Our remark 2. shows that the ratio test may very well fail when the

root test applies (the series 2 an given there are obvious examples of

this).
On the other hand our remark 1. shows that the root test must

necessarily work, if the ratio test does so. This relation between the

two comparison tests is expressed in more significant form by the

following theorem, which may be regarded as an extension of 43, 3.

Theorem. // x
19 x^ 9 ... are arbitrary positive terms, we always 161.

have l

H.

iVaL;

Proof. The inner inequality is obvious 2
,
and the two outer in-

equalities arc so closely similar that we may be content with proving
one of them. Let us choose the right hand inequality and put

so that the statement reduces to "/* <//". Now if // = + oo, there

is nothing to prove. But, if // < -f- oo, we may, given e > 0, assign

an integer p, such that, for every v ^> p, we always have

1 This theorem is of the same character as 43, 3. In fact, writing
1

^i y&> *or tne rati s ~ ~
' we are concerne^ w *h a com-

parison of the upper and lower limits of yn and of yn
f = yyt ya . . . yn .

fl For this reason, it is usual to write more shortly:

'

implying that in the centre, either lim or lim may be considered indifferently.

Such an abbreviated notation will frequently be used by us in the sequel.
10 (G51)
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This inequality may be supposed written down for every v ~ f> ,

p -f- 1, . .., n 1, and we then multiply all these inequalities together,

deducing, for n > p,

Let us, for brevity, denote the constant number x *

(p,' -f-
~

J by A\

then, for n > />,
we always have

But V0f-*l, and hence (// + -0 %A
-> p' + ~

. We can therefore

so choose n >p that, for every n>nn , we have f// + ~J \A < /i' + 6.

We then have a fortiori, for every n > n ,

and hence also /i
<

// + e, or, as asserted, since e is arbitrary, /i <[ /e
r

.

(Cf. p. 68, footnote 10.) Moreover we can show by simple examples
that the sign of equality need not hold in any of the three inequalities

of 161, which is now completely established.

4. The preceding theorem shows in particular that, if lim ~
n

exists, lim yxn must also exist and have the same value. Hence in

particular: If the ratio test works in the form given in 76, 2, then so

will the root test, necessarily, (but not the converse!). To sum up:
The ratio test is theoretically less powerful than the root test. (Never-
theless it may frequently be preferred, as being easier of application.)

5. In this place we have also to refer to the remarks 75, 1

and 76, 3.

37. The logarithmic scales.

We have already observed that such criteria as those just dis-

cussed only provide sufficient conditions and may accordingly fail Li

particular cases. Their efficiency will depend on the nature of the

chosen comparison series 2cn and 2dn ; in general terms we may
say that a G-test will present a better prospect of success the greater

the magnitude of the cn's, a 3) -test, on the contrary, the smaller the

magnitude of the ^n 's. In order to express these circumstances more

precisely, we proceed first to define the concept of the rapidity of

convergence: A convergent series will be said to converge more or

less rapidly according as its partial sums approach more or less ra-

pidly to the sum of the series; and a divergent series will be said to

diverge more or less rapidly in proportion to the rapidity with which

its partial sums increase. More precisely:
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Definition 1. Given two convergent series 2cn
= s and cn

' = s
'

of positive terms, whose partial sums are denoted by sn and sn', the

corresponding remainders by s sn
= rn , s'sn

' = rn', we say that

the second converges more or less rapidly (or better or less well)
than the first, according as

lim^ = or lim-?'=+oo.rn rn

If the limit of this ratio exists and has a finite positive value, or

if it be known merely that its lower limit > and its upper limit

< -f-cx), then the convergence of the two series will be said to be

of the same kind. In any other case a comparison of the rapidity of

convergence of the two series is impracticable
3

.

Definition 2. // 2 dn and 2dn
'
are two divergent series of posi-

tive terms, whose partial sums are denoted by sn and sn
'

respectively,

the second is said to diverge more or less rapidly (or more or less

markedly) than the first according as

s
'

s
'

lira = + oo Of lim - - = 0.
,

^
*n

If the upper and lower limits of this ratio are finite and positive,

then the divergence of both series will be said to be of the same kind.

In any other case we shall not compare the two series in respect of

rapidity of divergence
4

.

The two following theorems show that the rapidity of the con-

>ergence or divergence of two series may frequently be recognised

from the terms themselves (without reference to partial sums or re-

mainders):
c

'

Theorem 1. // -^- *0(+ oo), then 2cn
'

converges more
(less)

rapidly than 2cn .

Y / r /

8 In the case lim -- = (> 0) and lim < -f oo (= + OO), we might also

speak of the series 2cn
' as "no less" ("no more") rapidly convergent than the

series S cn \
this however presents no particular advantages In the case of the

lower limit being and the upper limit -}-OO, the rapidity of the conver-

gence of the two series is totally incommensurable. A similar remark holds

for divergence. (The student should illustrate by examples the fact that all

the cases mentioned can really occur.) These definitions may be directly

transferred to the case of series of arbitrary terms, replacing rn and rn
'

by
their absolute values.

4 The properties referred to in these definitions are obviously transitive^

i. e. if a first given scries converges more rapidly than a second, and this

again more rapidly than a third, the first series will also converge more ra-

pidly than the third.
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Proof. In the first case, given e, we choose n so that for every

n > nn we have cj < . We then also have
\t n n

',i c + i + c

Consequently this ratio tends to 0. The second case reduces to the

first by interchanging the two series
(cf.

the theorem of 40, 4, Rem.
4).

This proves all that was required.

Theorem 2. // -,- *0(-{~oo), then 2dn

'

diverges less (more)

rapidly than 2 dn .

Proof. By 44,4 it follows immediately from -j~ *0 that

This proves the statement.

163. Simple examples. 1. The series

1 v. 1 ^ 1 v. 1 ^ I _
3
-- ^J M ,> </ n *

y? J^ yi _
x

_ yr
*

yr
x V N T __ V

, ^/ 2 ^ ^ , ^j 9n , ^ qli ^^ i -Z/

are such that each converges more rapidly than the preceding
1

. In fact we
have e. g. for n > 3 :

JL ^_ L_^ s-ss 9

n\
'

3""!

which tends to 0. Similarly -- -> (by 38,4); the other cases are even
n

simpler.

2. The series

1
7 ~

-

are such that each diverges less rapidly than the preceding.

Besides the above simple examples, the most important cases of

series with rapidity of convergence forming a graduated scale are

afforded by the series which we came across in 14. As we saw in

that paragraph, the series

y~~/

M)
a

converge for a > 1 and diverge for a < 1 . Our theorems 1 and 2 now

show more precisely that when p is fixed each of these series will

converge or diverge less and less rapidly as the exponent a approaches

unity (remaining > 1 in the first case and <^ 1 in the second). Simi-

larly each of these series will converge or diverge less and less ra-
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pidly, as p increases, whatever positive
5 value may be given to the ex-

ponent a (> 1 in the first case, < 1 in the second).

The second alone of these statements perhaps requires some justi-

fication. Divide the generic term of the (p + l)
th series with the ex-

ponent a' by the corresponding term of the
/>
th series taken with the

exponent a. We obtain

In the case of divergent series, a, and ef are positive and ^1; the

ratio therefore tends to 0, q e. d. In the case of convergence, i. e. a

and a! both > 1, the ratio tends to -f- oo; in fact, by reasoning

analogous to that of 38, 4, we have the auxiliary theorem that

the numbers

(loRp Kn ^ {log(logj> n)}
flf

(\ogp nf (logp nf

form a null sequence, /?
= a 1 denoting any positive exponent and

p any positive integer. This proves all that was required.

The gradation m the rapidity of the convergence and divergence

of these series enables us to deduce complete scales of convergence
and divergence tests by introducing these series as comparison series

in the tests I and II (p. 274). We first immediately obtain the fol-

lowing form of the criteria:

(1)

"= -^ with
^ ' ~ ^-w I * lror -ML lrnr wi (\r\cr~\ ii\

' I vv J^^ A fi>~
164.

logn

.,
with

These criteria will be referred to briefly as the logarithmic tests

of the first and second kinds also in the case p = Q. Their effi-

ciency may be increased by the choice of p, and, for fixed p, by the

choice of a, in accordance with our previous remarks 6
.

* For a = /?<0, each series of course diverges more rapidly than the

preceding one with the exponent replaced by 1; thus e. g. ^ &~
, with

/?>>0, diverges more rapidly than
JSJ'

e The convergence and divergence of series of the above type was known
to N. H. Abel in 1827, but was not published by him (CEuvres II, p. 200).
A. de Morgan (The differential and integral calculus, London 1842) was the first
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For practical purposes it is advantageous to give other forms of these criteria.

Such transformations are given below with a few remarks appended, but without

completely carrying out the necessary calculations.

Transformation of the logarithmic tests of the 1
st kind.

1. When a and b are positive, the two inequalities a ^ b and log a 5C log &

are equivalent; after a slight alteration the inequalities 164, I accordingly become:

logan -f log** + Iog2 n !- + logyn
i
<; - p < : <o

( } log^ \^0 : S5.

2. Denoting for a moment by An the expression on the left of (I'), we have,

in

(I") hm An < : <2
, Km ^n > :

>,

a test of practically the same effect. The parts relating to convergence are indeed

completely equivalent in (I') and (I"); that relating to divergence is not quite
so powerful in (I") as in (I'), since it is required in (I") that An should remain,

from some value of n onwards, not merely = but greater than a fixed positive

number 7
.

3. If we use the somewhat more explicit notation An A (

\ and consider

both A (*} and A** l)

, we obviously have

A(p fl) = 1

And since, by 38, 4,
g ~ - = - -~^-- tends as n increases to -f oc , this simple

'\ogv+1 n log(logj,w)

transformation leads to the following result: If for a particular p one of the limits

of An A (*}

is different from zero, it is necessarily oo for the following p, in fact

+ oc or GO according as the preceding p was positive or negative. More pre-

cisely, if we denote by fip and xv the upper and the lower limits of An A (

\ for

every p t
then if we have, for any particular />,

xp ^ /ip < 0, we have x^ -= nv+1
== oo,

and if

Pj> ^ *P > 0, we have //+,
=

x,,+1
== + oo.

If, however,

XP < 0, np > 0, we have xp+l
= oo, fip+ i

= -f oo.

The scales of reference (I) thus lead to the solution of the question of conver-

gence or divergence if, and only if, for a particular p, the values y.p and ^
have the same sign. If the sign is negative, the series converges; if positive, it

to use these series for the construction of criteria. Essentially, these criteria are

consequences of 164, I and II; numerous transformations of them were subse-

quently published as special criteria, e. g. by/. Bertrand (]. de math, pures et appl.,

(1) Vol. 7, p. 35. 1842), O. Bonnet (ibid., (1) Vol. 8, p. 78. 1843), U. Dini (Giornale

di matematiche, Vol. 6, p. 166. 1868).
7 It would clearly, however, be wrong to write the last 25-test in the form

Hm An ^ 0, since the lower limit may very well be without a single term being

positive.



37. The logarithmic scales. 283

diverges ; if the two numbers have opposite signs for some value of p, then for

all higher />'s we have

and the scale therefore is not decisive. Similarly it fails when both numbers are

zero for every p.

Transformation of the logarithmic tests of the 2nd kind.

1. The following Lemmas are easily proved:
Lemma 1. For every integer p ^ 0,/or every real a and every sufficiently large

,
an equality of the form

/log,, (/i_- 1)\ ^ 1 ____a____ *n

\ log,, n )
'

w log w ... log,, n ri
l

holds, where ( n) is bounded 8
. The index n is here assumed to start with a value from

and after which all the denominators are defined and positive.

We immediatelv infer that, for every integer p ^ 0, for every real a and every

sufficiently large n,

}
l l^jrl^J- 11. (]2?f ^ "JlV*

logn
"*

log^^n \ logp n j

n wlogn n logti . . . logf,_ 1
n log n . . . log^ti w 2

where (/) is again certainly bounded 9
.

Lemma 2. Let 2 an and 2 an
f be two series of positive terms; if the series

whose n^ term is

4. , aJ

ts absolutely convergent, the two given series are either both convergent or both

divergent.
In fact, we have yv> 1 for every v\ taking, then, any positive in-

teger m, writing down the relations

for j/ = m, m-fl, ..., w 1, and multiplying them together, we at once de-

duce that the ratio *'/ for n > m lies between two fixed positive numbers.

8 An equality of the above form of course holds under any circumstances.

In fact we can consider the numbers #n as defined precisely by the equation:

n log n . . . logp n

The emphasis lies on the statement that (<?) is bounded. The proof is ob-

tained inductively, with the help of the two remarks that if (#') and (#") are

defined, for every sufficiently large n, by

(1 xn)
a

1 a xn $,/ a;n
a and Ic

they are necessarily bounded, provided (#) is a null sequence and the num-
bers yn are in absolute value |> 1

, say.

The interpretation in the case p is immediately obvious.



284 Chapter IX. Series of positive terms.

The conditions of the Lemma are fulfilled, in particular, when the ratios -"-i*

and -^-~ lie between fixed positive bounds and the series J

converges.
2. In accordance with the above we may express the logarithmic test of

the second kind e. g. in the following form 10
:

n n log w nlog/t ... logp__itt
n log n...

'<!
or, after a simple transformation,

169. |f!iI_i-|--L-|---- -f._-L---l-wlogw ...log.n
L M n ' ' n log n . . . log nj

e "1*

<

or, finally, denoting the expression on the left hand side for brevity by /?n ,

and slightly restricting the scope of the 3) -test (cf. 165,2),

Tim'Bw <0 : <5, }^_Bn >Q : 3).

Remarks analogous to those of 165, 2 hold here.

3. The developments of 165, 3 also remain valid, with quite unessential

alterations. For, if we use the more explicit notation Bn B^\ we have ob-

viously

And, as log;j + 1 n 4-OO, we may reason with this relation in precisely the

same manner as with its analogue in 165, 3. It is unnecessary to develop this

in detail.

4. Still more generally, we may at once prove that a series of the form

^
e (a

~ 1)n
. n a

(log n)
ai

(Iog3 n)
a

. . . (Iog7 n)
a*

converges '/ and only if, the first of the exponents a, a , a,, . . . , aq which
differs from 1 is > 1. The values of the subsequent exponents have no further

influence. When the comparison scries is put into this form, Raabe's test

( 38) and Cauchy's ratio test appear naturally as the th and the
( l)

th terms

of the logarithmic scale.

38. Special comparison tests of the second kind.

The logarithmic tests deduced in the preceding article are un-

doubtedly of greater theoretical than practical interest. They afford in-

deed a more profound insight into the systematic theory of the con-

vergence of series of positive terms, but are of little use in actually

testing the convergence of such series as occur in applications of the

10 Here we make the n th term of the investigated series 2'an correspond

to the (n l)
th term of the comparison series, which, by 82, theorem 4, is

allowable.
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theory. (For this reason we have only sketched the considerations

relating to them.) For practical purposes the first two or three terms,

at most, of the logarithmic scales may be turned to account; from

these we proceed to deduce by specialization a number of simpler

tests, which were discovered at various times, rather by chance, and

each proved in its own way, but which may now be arranged in

closer connexion with one another.

For p = the logarithmic scale provides a criterion already estab-

lished by /. L. Raabe 11
. We deduce it from 169, first in the form

:
-

ft < o : e

or, as we may now write more advantageously,

> 1 : s>.
17 -

The tfery elementary nature and great practical utility of this cri-

terion makes it worth while to give a direct proof of its validity: the

(^-condition means that, for every sufficiently large n,

where ft
= a 1 > 0. Hence

and therefore w n + 1
is the term of a monotone descending sequence,

for a sufficiently large n. Since it is constantly positive, it tends to

a limit y ^ 0. The series 2cn with cn
=

(n 1) an n an + 1
there-

fore converges, by 181. Since an <^ ~gCn , the convergence of

S an immediately follows. Similarly, if the -condition is fulfilled,

we have

- or n-

Accordingly w#n + 1
is the term of a monotone increasing sequence

and therefore remains greater than a fixed positive number y. As

+!> , y > 0, the divergence follows immediately.

If the expression on the left in 170 tends, when n *+(X>, to

a limit I, it follows from the reasoning already repeatedly applied

(v. 76, 2) that / < 1 involves the convergence of 2an > and I > 1,

its divergence, while / = 1 leads to no immediate conclusion.

11 Zeitschr. f. Phys. u. Math, von Baumgarten u. Kttinghausen, Vol. 10,

p. 63, 1832. Cf. Duhamel, J. M. C.: Journ. de math, pures et appl., (1) Vol. 4,

p. 214, 1839.
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Examples.

1. In 25 we examined the binomial series and were unable to decide

there whether the series converged or not at the endpoints of the interval of

convergence, that is, whether for given real as the series

.4:0
-

.!<-"(:)
were, or were not, convergent. We are now able to decide this question.

For the second series we have

__
a

~
n + 1

~
n-f-1

Since this ratio is positive from a certain stage on, it follows that the terms

then maintain one sign; this we may assume to be the sign -}-, since changing the

signs of all the terms does not, of course, affect the argument. Further, ac-

cording to this,

from which we at once deduce, by Raabe's test, that the second of our series

converges for a>0, and diverges for -<0. For a = 0, the series reduces

to its initial term 1.

For the first series we have

and, since this value becomes negative from some stage on, the terms of the

seja^shave
an alternating sign from that stage on. If now we supple a-

" ^ "

we^lhefore have

>1

whenW we inllr'that ultimately the terms an are non-decreasing. The series

must therefore^diverge. If however we suppose a-f- 1 > 0, we have ultimately,

say for every n^>m t 9

and the terms ultimately decrease in absolute value. By Leibniz's criterion for

series with alternately positive and negative terms, our series must therefore

converge, provided we can show that (
j-*0.

If we write down the rela-

tions (a) for m, m-\-\, ..., n l and multiply them all together, we deduce
for every n ;> m

l-ll|- II f
1 -

Since, however, the product Jf (l
"

j
, by 126, 2, 3, diverges to 0, an must

also ^0, and theref6re I

J
must converge. Summing up, we therefore

have the following results relating to the binomial series:
00

/cc\
The series J ( )

x n
converges if, and only if, either

|

*
|
<; 1 , or x = 1

n=o \w^
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and a > 12
,
or x = +1 and a > 1. The sum of the series is then by Abel's theorem

of limits always (1 -f #)
a

. // a is an integer and is non-negative\ then the series is finite

and hence converges for each x. In all other cases the series is divergent. (An appreciable

addition to this theorem is provided by 247.)

2. The following criterion docs not differ essentially from that of Raabe;
it is due to O. Schlomilch :

- 1
i

In fact, in the case ($), we have, by 114,
n+l ^ e > 1

,an w

from which the divergence follows by Raabe's test. In case (6) we have,

ultimately,

if a >a'>l. By 170, this involves convergence.

If, in the logarithmic scale, we choose p = 1, we obtain a cri-

terion of the second kind which, omitting the limiting case cc = 1,
*

we may write

with 171.

A direct proof of the validity of this criterion can be given as

follows As in the proof of Raabes test we first put the criterion in

the following form:

// now the G- condition is fulfilled} since, as we may immediately

verify by 114, a,
*

(n
-

l)log(n
-

1) > - 1 + (n
-

l)logn,
we have a fortiori

Accordingly wlognaM + 1
is the term of a monotone descending se-

quence and accordingly tends to a limit y^O. By 131, the series

whose n ih term is

must converge. As an ^>-jCn , the same is true of 2a
n

.

If, on the other hand, the 3)- condition is fulfilled, we have

(n l)log(w !) nlogn-an + a

.

For w>4-oo, however, the expression in square brackets -*
(I*

12 For a = 0, see above
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(by 112, b),
and is therefore negative for every sufficiently large n

Hence for those w's the expression ttlogn*0n+1 increases monotonel>
and consequently remains greater than a certain positive number y

As a ., ^- , y > 0, it follows that 2 a must diverge.n -r i - w Jog- w ' n

Here again we may observe, as repeatedly in previous instances,

that, if an tends to a limit /, then / > 1 involves convergence, and

/ < 1 involves divergence, while, from / = 1, nothing can be directly

inferred.

Even this, the first properly logarithmic criterion of the scale, will

rarely be actually applied in practice. In fact, the scries which are

amenable to this test, and not already to a simpler one (Raabe's test,

or the ratio test), occur exceedingly seldom; and as their convergence

is no more rapid than that of 3J
--

, (a>l), these series are
M (lOg W)

a

useless for numerical calculation.

It enables us, however, to deduce easily one or two other cri-

teria. We will above all mention

172. Gauss's Test 18
: // the ratio ^^ can be expressed in the form

where I > 1, and (??n) is bounded*-*, then 2 an converges when a>l
and diverges when cc < 1 .

The proof is immediate: when a^l, Raabe's test itself proves

the validity of the assertion. For cc = 1, we write

an n n log n \

and as now the factor in brackets tends to zero since (A 1) > 0,

the series certainly diverges, by 171.

Gauss expressed this criterion in somewhat more special form as

follows: "// the ratio -~^ can be expressed in the form

(k an integer ^ 1)

then 2an will converge when b
1 b^ < I and diverge when b^ &/

^> 1." The proof is obvious from the preceding.

18 Werke, Vol. 3, p. 140. This criterion was established by Gauss

in 1812.

" Cf. footnote 8, p. 283.
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Examples.
1. Gauss established this test in order to determine the convergence of

the so called hypergeometric series

.

1.2
-

>(y+"l) 17278

= V~
1-2... n

where a, /?, y are any real numbers l5 different from 0, 1, 2..... Here

which shows in the first instance that the series converges (absolutely) for

j#|<Clj and diverges for|sc|>l. Accordingly it only remains to examine
the values x 1 and x = 1 . This is analogous to the case of the binomial

series, to which, of course, the present one reduces when we choose ft
= y (= 1)

and replace a and x by a and x.

For x = 1 , we have

n+l **+

This shows that for every sufficiently large w, the terms of the series have
one and the same sign, which may be assumed positive. Gauss's test now shows
that the series converges for + /ff y 1 < 1, i.e. for a + /?<y, but di-

verges for cc -f- ft ^> y
For a? = 1, the series has, from some stage on, alternately positive and

negative terms, since
*** + i -> 1

,
i. e. is ultimately negative. The relation 18

with word for word the same reasoning as was employed in 170, 1 for the

binomial series, now shows that the hypergeometric series will

diverge when a + ft y > 1

converge when a + ft y < 1 .

We have only to verify further that it also diverges when cc + ft y 1 ,

as this does not follow from precisely the same reasoning as before. If for

every n > p >- 1 we have

~ 1 + with
I
^n

|

< ^> ^r every n t

then, assuming p chosen so large that p
2

Since on the right hand side we have the product of the first (n p) factors of

a convergent infinite product of positive factors, it follows that |an |,
for all

these values of n, remains greater than a certain positive number. The series

can therefore only diverge.

15 For these values, the series would terminate or become meaningless.
For w = 0, the general term of the series should be equated to 1.

10 As before, (#) denotes a bounded sequence of numbers.
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2. Raabc's 6- test fails if the numbers <*n in the expression

~~r~~~ ~~~*

though constantly > 1, have the value 1 for lower limit. In that case, writing
= 1 -f fjnj the condition

lim n
/?n
= -f CO

is a necessary condition for the convergence of S an . In fact, if n fin were hounded,
\ve should have

"

7~
"

~~n~~n*

and San would be divergent by Gauss's test
17

-

39. Theorems of Abel, Dint and PrinffsJieim and their

application to a fresh deduction of the logarithmic scale

of comparison tests.

Our previous manner of deducing the logarithmic tests invests

these, the most general criteria yet obtained, with something of a for-

tuitous character. In fact everything turned on the use, as comparison

series, of Abel's series, which were obtained themselves only as chance

applications of Cauchy's condensation test. This character of fortuitous-

ness disappears to some extent if we approach the subject from a

different direction, involving a greater degree of inevitablencss. Our

starting point for this is the following

173. Theorem of Abel and Dini ls
: If j dn is an arbitrary divergent

n-l

series of positive terms, and Dn
=

d^ -f- d^ -J- -f- dn denotes its partial

suniSy the series

dn f converges when a > 1_
n=i n=i D% diverges when a <^ 1 .

Proof. In the case cc = 1,

i I i

^n"
J h

>

As D,,-> + cx) by hypothesis, we can therefore choose k = ftn , for

each n> so that

17 Cahen, E.: Nouv. Annales de Math., (3) Vol. 5, p. 535.
" N. H. Abel (J.

f. d. reine u. angew. Math ,
Vol. 3, p. 81. 1828) only

proved the divergence of n
*

-
J
U. Dini (Sulle serie a termini positivi, An-

nali Univ. Toscana Vol. 9. 1867) established the theorem in the above com-

plete form. It was not till 1881 that writings of Abel were discovered (CEuvres 11,

p. 197) which also contain the part relative to convergence of the theorem

given above.
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by 81,2, the series 2 an must accordingly diverge when = 1, and

a fortiori when a<^l.
The proof of its convergence in the case a > 1 is slightly more

troublesome. We may at the same time prove the following extension,

clue to Pnngsheim.

Theorem of JPringshehn: The series 174.

where dn and Dn have the same meaning as before, converges for

every Q > 0.

Proof. Choose a natural number 6 such that <o. It thenr P
suffices to prove the convergence of the above series when the ex-

ponent Q is replaced by T = . Since, further, the series

1

converges, by 131, since Dn _ i ^ Dn
+ -\-oo, and since its terms are

all positive, it would also suffice to establish the inequality

_. or !_:
^

D'

that is to say, to prove that

a-*')

for every x such that < x < 1. But this is obvious at once, from

(1
- x) = (1

-
)(! + x + + a;"-

1

).

Therefore the theorem is established.

Additions and Examples. 175.

1. In the theorem of Abel-Dmi, we may of course replace the quantities

Dn by any other quantities Dn
'

asymptotically equal to them, or for which the

D '

ratio ~ lies between two fixed positive numbers, for every n (at least from

some stage on). By 70,4 the convergence or divergence of the series 2 a*

cannot be affected by this change.
2. By the theorem of Abel-Dim,

v j t . v dn~ " --
D.

diverges with 2 dn . We may enquire what is the relation as to magnitude
between the partial sums of the two series. Here we have the following elegant

Math. Annalen, Vol. 35, p. 329. 1890.
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Theorem 180
. // ~~ -

0, we have ai

'! d
I A

The new partial sums thus increase essentially like the logarithms of the old ones.

y 1

dn

Proof. It a;n =-^->0, we have, by 112, b,

*!-\
The undefined number D we here assume = 1, also replacing the above ratio

by 1 for all indices n for which a;n = 0. By the theorem of limits 44,4, since

log >> + OO , we then have

lg
7

"

This proves the theorem.

Further, it is at once clear that in the statement of this theorem, the

numbers Dn may on both sides be replaced by others Dn
f
asymptotically equal

to them.

3. These remarks now enable us to elaborate in the simplest manner the

considerations indicated at the beginning of (his section:
00

a) The series dnt with dn = l, i. e. Dn n, must be considered as the
n=l

simplest of all divergent series, for the natural numbers Dn = n form the proto-

type of divergence to 4-OO. The theorem of Abel-Dim then shows at once that

the harmonic series

converges for

diverges for a <J 1
,

and the theorem in 2. shows further that in the latter case we have for a = 1
,

i-( C01

=i n a
\ di\

(cf. 128,2).

b) Now choosing for 2 dn ,
in the theorem of Abel-Dini, the series -

newly recognised to be divergent by a), and replacing, as we may by Land 2.,

Dn by >n
' = logw, we conclude that

converges when a > 1

diverges when a < 1 .

The theorem in 2. shows further that

1.1. .1

i

(

C01

n (log n)
a

\ din

80 v. Cesaro, E.: Nouv. Annales de Math., (3) Vol. 9, p. 353. 1890.
21 This condition is certainly satisfied if the numbers dn remain bounded,

hence in all the series which will occur in the sequel.
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c) By repetition of this extremely simple method of inference, we obtain

afresh, and quite independently of our previous results'

Starting from, a suitably large index (ep -f- 1), the series 2aIf converges when a > 1 ,

n log n . . . logp _ t
n (log^ n)

a
\ diverges when a < 1 ,

whatever value is given to the positive integer p. The partial sums of the series

for a = 1 satisfy the asymptotic relation

fm,

4. A theorem analogous to 173, but starting from a convergent series,

is the following:
Theorem of Dfnl. If Scn is a convergent series of positive terms, and

rn _ l
= cn -j- cn + 1 + - denotes its remainder after the (n l

y

th term, then

v _n_s v Cn converges when or < 1 ,

(cn -{- rn H t -|
----

)

a
I diverges when a :> 1 .

Proof. The divergent case is again quite ea vsily dealt with, since,
for or = 1

,

_?*__ 4. ...

and for eveiy (fixed) n, this value may be made ^> - by a suitable choice
Z

of ^, as
r^

-0. By 81,2 the series must therefore then diverge. For a> 1

this will a fortiori also be the case, since rn is <; 1 for every sufficiently

large n.

If, however, o: << 1, we may choose a positive integer p so that -< 1 --
,

and it now suffices again because rn < 1 for n >> w
x

to establish the con-

vergence of the series

-l

where T = .

Now rn tends monotonely to and consequently 2 (
f>n-i~" r

n)
is cer"

tainly convergent with positive terms. It therefore suffices to show that

-
that is to say

(i- y*)Pd-y)
But the latter relation is evident, since <C y < 1 .

22
If we wiite e =e', e

e
'

= e", . . ., c'
(r) = c (|i+1)

,
... and denote by [fi

(v)
J
= ^

the largest integer contained in (<)
(^

, we may say that the factors in the

denominators of the terms of our series are all > 1, if n be taken to start

from the value (^+1).
aa v. footnote 18, p. 290.
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40. Series of monotonely diminishing positive terms.

Our previous investigations concerned for the most part series of

quite arbitrary positive terms. The comparison series used for the con-

struction of our criteria, however, were almost always of a much simpler

nature; in particular, their terms decreased monotonely. It is clear that

for such scries simpler laws altogether will become valid and perhaps

also simpler tests of convergence may be constructed.

We have already shown in 80 that if in a convergent series 2 cn the

terms dimmish monotonely to zero, we have necessarily n cn ~> 0, a fact

which need not occur in the case of other convergent series (even with

positive terms only). Again, Cauchy's condensation test 77 belongs to

the series we are considering.

We propose to institute one or two further investigations of this

kind and, in the first instance, to deduce for such series a few very

simple and at the same time very far reaching criteria. Their con-

vergence, as we shall see, is often very much more easily determined

than that of more general types of series.

CO

176. ! The integral test'
24

. Let 2 a
n be a given series of monotonely

n=l

diminishing terms. If there exist a function f(x), positive and monotone

decreasing for x ^> 1 , for which

f(n) a
n for every n,

then 2an converges if, and only if, the numbers

are bounded* 7
*.

Proof. Since, for (k 1)<^<^A, we have f(f)^a j(
, and

for *<*<* + !, f(t)ak , (A
an integer 2* 2), it follows (by 19,

Theorem 20), that

fc+l k

! f(t)dt^a^ f f(t)dt (ft
= 2, 3 f ...)

* k-i

Assuming these inequalities written down for A = 2, 3,..., n and

added, we obtain

n+i n

f(t)dt , + 8 + +
94

Cauchy: Exerciccs mathem
,
Vol 2 p 221. Paris 1827.

85 By 70, 4 it is of course sufficient that f(n] should be asymptotically

proportional to the terms anl or that f(n} = ccn an with a positive lower limit

for . Instead of requiring- that /M should remain bounded, we can of

op

course also require that J /"(/) di should converge. The two conditions (by
l

19, Def. 14) are exactly equivalent.
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From the right hand inequality it follows, as the integrals Jn are

bounded, that so are the partial sums of the series; from the left

hand inequality the converse is inferred. This, by 7O, proves all that

was required.

Supplement. The differences (sn Jn) at the same timeform a monotone

decreasing sequence with limit between and ar In fact, we have
fH- 1

whence the statement follows, since a
a ^ sn Jn ^> a^ J, I> 0.

The limit in question is therefore certainly positive, if f(f) is strictly

monotone decreasing.

Examples and Illustrations.

1. This test not only enables us to determine the convergence of numerous

series, but is also frequently a means of conveniently estimating the rapidity
of their convergence or divergence. Thus e. g. we can see at once that for

a > 1 the series
n

vi *

must converge, whereas
n

00 -I / j A

, where / = = log n * + OO,
n=l n

J l

i

must diverge. But we learn further that, for a > 1
,

nf k

( ii<
n

i < f
J i

<
+̂1^ <

J 1^'
n+ l n

and therefore

T
* ~ ~~_i "^ j

For a = 2, this evaluation was already established on p. 260. In the same way
the supplement to 176 gives a fresh proof of the fact that the difference

is the term of a monotone descending sequence tending- to a positive limit

between and 1. This was Euler's constant mentioned in 128, 2.

Similarly, the supplement also shows that when < a< 1 , the difference

i

is the term of a monotone descending sequence with a positive limit less than 1.

Therefore, in particular (cf. 44, 6), for <; a -< 1 :

and it is easily seen that this relation holds equally when a < 0.
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2. More generally, from

logpi/( ifa=li

we can immediately deduce, by the same method, the known conditions ot

convergence and divergence of Abel's series. We have now three totally

distinct methods of obtaining these. The supplement to 176 again affords us

good evaluations of the remainders in the case of convergence, and of the

partial sums in the case of divergence.
3. If f(x) be positive for every sufficiently large x, and possesses, for

those x's, a differential coefficient equal to a monotone decreasing (also posi-

tive) function with the limit at infinity, the ratio f'(x)lf(x) is also mono-
tone decreasing. Since

it follows that the integrals

f tiw
j~JW

d'~

X

f (/)
dt and

are either both bounded or both unbounded. Hence we conclude that the series

2f'(n) and J7-C'-

J

will either both converge or both diverge. In the case of divergence, when
necessarily f(n) *-f-OO, we have

f f (n\V ' \ '

In fact, here

nV ' \ '
convergent when a> 1 .

[fool-

/"(<) i L

whence the validity of the statement can be directly inferred. These theorems

are closely connected with the theorem of Abel-Dim.

2. A test of practically the same scope, and independent of the

integral calculus in its wording, is

Ermakoffs test 29
.

177.
If f(x) is related to a given series 2 an of positive, monotonely

diminishing terms, in the manner described in the integral test, and

also satisfies the conditions there laid down, then

\ diverges

l

f(x)

for every sufficiently large x.

Proof. If we suppose the first of these inequalities satisfied for

xx 9
we have for these x's

86 Bulletin des sciences mathe"m., (1) Vol. 2, p. 250. 1871.
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Consequently
t x x *

(1
-

0) / f(t)dt *[ / f(t)dt
- / f(t}dt]

jX XQ e X

^^('S f(f)dt-S f(t)dt]
Xo X

exn

^*/ f(f}dt.
x, t

X

Thus the integral on the left, and hence also J f(f)dt, is, for every
3*o

x>x , less than a certain fixed number. The series 2" n must there-

fore converge, by the integral test.

If, on the other hand, we assume the second inequality satisfied

for x > afj,
we have, for these a;'s,

A comparison of the first and third integrals shows further that

On the right hand side of this inequality, we have a fixed quantity

y > 0, and the inequality expresses the fact that for every w(>ar1 )

we can assign kn so that (with the same meaning for Jn as in 176)

By 46 and 5O, the numbers Jn cannot be bounded and 2, an therefore

cannot converge
* 7

.

Remarks.

1. Ennahof/'s test bears a certain resemblance to Cauchy's condensation

test It contains, in particular, like the latter, the complete logarithmic com-

parison scale, to which we have thus a fourth mode of approach. In fact, the

behaviour of the series

nlogn ..\

is determined by that of the ratio

a? It is not difficult to carry out the proof without introducing
1

integrals,

but it makes it rather more clumsy.
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As this ratio tends to zero, when a > 1 ,
but *-f-OO, when a. < 1

, Ermako/fs
test therefore provides the known conditions for convergence and divergenc**
of these series, as asserted 28

.

2. We may of course make use of other functions instead of e x. If q> (x)

is any monotone increasing- positive function, everywhere differentiate, for

which <p (x) >> x always, the series 2aH will converge or diverge according as

we have
( <.
1 5

for all sufficiently large x
l

s

With Ermakoffs test and Cauchy's integral test, we have command over

the most important tests for our present series.

41. General remarks on the theory of the convergence
and divergence of series of positive terms.

Practically the whole of the 19 th
century was required to estab-

lish the convergence tests set forth in the preceding sections and to

elucidate their meaning. It was not till the end of that century, and in

particular by Pringsheini's investigations, that the fundamental questions

were brought to a satisfactory conclusion. By these researches,

which covered an extiemely extensive field, a scries of questions were

also solved, which were only timidly approached before his time,

although now they appear to us so simple and transparent that it

seems almost inconceivable that they should have ever presented any

difficulty
20

,
still more so, that they should have been answered m a com-

pletely erroneous manner. How great a distance had to be traversed

before this point could be reached is clear if we reflect that Eider

never troubled himself at all about questions of convergence; when a

series occurred, he would attribute to it, without any hesitation, the

value of the expression which gave rise to the series 30
. Lagrange in

17 70 31 was still of the opinion that a series represents a definite

value, provided only that its terms decrease to O 32
. To refute the latter

28 This also holds for = 0, if we interpret log^x to mean e*.
29 As a curiosity, we may mention that, as late as 1885 and 1889, several

memoirs were published with the object of demonstrating- the existence of con-

vergent series J c* for which -"-^" 1 did not tend to a limit! (Cf. 159, 3.)
cn

80 Thus in all seriousness he deduced from -- = 1 4- x -f- x2
-f- , that

1 x

and

l=l
o

Cf the first few paragraphs of 59.
81 V. CEuvres, Vol. 3, p. 61.
ia In this, however, some traces of a sense for convergence may be seen,
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assumption expressly by referring to the fact
(at that time already

well known) of the divergence of J? , appears to us at present

superfluous, and many other presumptions and attempts at proof cur-

rent in previous times are in the same case. Their interest is there-

fore for the most part historical. A few of the questions raised, how-

ever, whether answeied in the affirmative or negative, remain of

sufficient interest for us to give a rapid account of them. A con-

siderable proportion of these are indeed of a type to which anyone
who occupies himself much with series is naturally led.

The source of all the questions which we propose to discuss

resides in the inadequacy of the ciiteria. Those which are necessary
and sufficient for convergence (the main criterion 81) are of so general

a nature, that in particular cases the convergence can only rarely be ascer-

tained by their means. All our remaining tests (comparison tests or trans-

formations of comparison tests) were sufficient criteria only, and they only

enabled us to recognise as convergent series which converge at least

as rapidly as the comparison series employed. The question at once

arises :

1. Does a series exist which converges less rapidly than any other/ 178.
This question is already answered, in the negative, by the theorem

175, 4. In fact, when Zcn converges, so docs 2cn
' = -r

2-* though,
Vrn-l

obviously, less rapidly than 2c
n , as cn :cn

' = r_ l
> 0.

The question is answered almost more simply by /. Hadamard
2

*',

who takes the series ~cn
' = ^(l/rn _ 1 V rn). Since cn

= rn _ 1
rw,

the ratio cn
'' = VVn - 1 +Wn

* 0. The accented series conver-

ges less rapidly than the unaccented series.

The next question is equally easy to solve:

2. Does a series exist which diverges less rapidly than any other?

Here again, the theorem of Abel-Dini 173 shows us that when 2dn

diverges, so does 2dn
' =

2j~> and hence the answer has to be in

the negative. In fact as dn : dn
' = Dn

*
-|- oo, the theorem provides,

for each given divergent series, another whose divergence is not so

rapid.

These circumstances, together with our preliminary remarks,

show that

3. No comparison test can be effective with all series.

Closely connected with this, we have the following question, raised*

and also answered, by Abel**:

83 Actti mathematica, Vol. 18, p. 319. 1894.

). f. d. reine u. angew. Math., Vol. 3, p. 80. 1828
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4. Can we find positive numbers pn , such that, simultaneously,
a) P~ & * I tj . . A 3 ., . . f convergence \/ r n n \ are sufftcient conditions for \ T . }

b) n aw ^ a > J

' 'I divergence J

o/ Vy;y possible series of positive terms?

It again follows from the theorem of Abel-Dini that this is not

the case. In fact, if we put an
= --, a > 0, the series ^0n necessar-

r /I

ily diverges, and hence so does an'^~ > where sn
= a

L -}- + #n .

But, for the latter, pn a n

/ =~^0.
The object of the comparison tests was, to some extent, the con-

struction of the widest possible conditions sufficient for the determination

of the convergence or divergence of a series. Conversely, it might be

required to construct the narrowest possible conditions necessary for

the convergence or divergence of a series. The only information we
have so far gathered on this subject is that an > is necessary for

convergence. It will at once occur to us to ask:

5. Must the terms an of a convergent series tend to zero with

any particular rapidity? It was shown by Pringsheim** that this is

not the case. However slowly the numbers pn may tend to -{- oo, we
can invariably construct conveigent series 2 cn for which

KPn Cn= + 00 '

Indeed every convergent series -Tc
7/, by a suitable rearrangement, will

produce a series 2 cn to support this statement 36
.

Proof. We assume given the numbers pn , increasing to -|- oo,

and the convergent scries 2cn'. Let us choose the indices
x , n2 , ...,

n , . . . odd and such that

and let us write cn
= cj r -i, filling in the remaining cn's with the terms

c/, c4
'

y ... in their original order. The series 2 cn is obviously a re-

arrangement of cn'. But

Pn Cn>*
whenever n becomes equal to one of the indices n9 . Accordingly, as

asserted,

The underlying fact in this connection is simply that the behaviour
or a sequence of the form (pn cn) bears no essential relation to that of

to Math. Annalen, Vol. 35, p 344. 1890
86 Cf. Theorem 82, 3, which takes into account a sort of decrease on

the average of the terms an ,
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the series 2 cn i. e. with the sequence of partial sums of this

series, since the latter, though not the former, may be funda-

mentally altered by a rearrangement of its terms.

6. Similarly, no condition of the form lim pn dn > is necessary

for the divergence of 2 dn , however rapidly the positive numbers pn
may increase to -f-oo

37
. On the contrary, every divergent series 2dn',

provided its terms tend to 0, becomes, on being suitably rearranged,

a series 2 dn (still divergent, of course) for which \impn dn Q.

The proof is easily deduced on the same lines as the preceding.

The following question goes somewhat further:

7. Does a scale of comparison tests exist which is sufficient for

all cases? More precisely: Given a number of convergent series

v r (i) y r (2) y r (*)-^ n > ^ Cn ' ' > ^ Cn > ' '

each of which converges less rapidly than the preceding, with e. g.

()
> + ao, for fixed k.

(The logarithmic scale affords an example of such series.) 7s it pos-
sible to construct a series converging less rapidly than any of the given
series? The answer is in the affirmative 38

. The actual construction

of such a series is indeed not difficult. With a suitable choice of the

indices n19 w
3 , ..., w

fe
,..., the series

is itself of the kind required. We need only choose these indices so

large that if we denote by r^ the remainder, after the n th
term, of

the series 2 c^
k
\

for every n I> n
l ,

we have rn
^

<[ -^
with cn

(3)
^> 2 cn

(l)

2

^. i* M M y (3^ ^^
*

M r (3) -^ o
,-> Wt > W " rn < 02 W C

tt -^ ^ (

- w^nfc
>w

fc
. 1

n w C^'<~ n c^ A| >2cn
w

The series cn is certainly convergent, for each successive portion of

it belonging to one of the series -2*cn
(fc) is certainly less than the

87
Pringsheim, loc. cit. p. 357

88 For the logarithmic scale, this was shewn by P. du Bois-Reymond (J. f.

J. reine u. ungew. Math., Vol. 76, p. 88. 1873). The above extended solution

is due to /. Iladamard (Acta math., Vol. 18, p. 325. 1894).
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remainder of this series, starting with the same initial term, i. e

< ^ (k = 2, 3, ...).
On the other hand, for every fixed k,

2--* + OOJ

in fact for n > n
q (q > k) we have obviously ^ > 2* *. This proves

all that was required. In particular, there are series converging
more slowly than all the series of our logarithmic scale 39

.

8. We may show, quite as simply, that, given a number of di-

vergent series 2dn
(k\ & = 1, 2, ..., each diverging less rapidly than

the preceding, with, specifically, ^+1)
-f-dn

(fc) +0, say, there are always

divergent series 2 dn diverging less rapidly than every one of the

series 2d^'.

All the above remarks bring us near to the question whether and

to what extent the terms of convergent series are fundamentally dishn

guishable from those of divergent series. In consequence of 7. and 8., we

shall no longer be surprised at the observation of Stieltjesi

9. Denoting by (el , e3 , . .
.)

an arbitrary monotone descending se-

quence with limit 0, a convergent series 2cn and a divergent series

2dn can always be specified, such that cn
= en dn . In fact, if en *0

monotonely, pn = --> -f- oo monotonely. The series
ff

whose partial sums are the numbers pn , is therefore divergent. By
the theorem of Abel-Dini, the series

== v P+I""P
n=l

^ ii + i

is also divergent But the series 2cz==2s d^~y]\- ) is
"^""^

\ "Fn ** 4- 1

convergent by 131.

The following remark is only a re-statement in other words of

the above:

10. However slowly n *+oo, there is a convergent series 2cn

and a divergent series 2 dn for which ^n = pn cn .

In this respect, the two remarks due to Pringsheim, given in 5.

and 6., may be formulated even more forcibly as follows:

89 The missing- initial Urms of these series may be assumed to be each

replaced by unity.
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1J. However rapidly 2cn may converge, there are always divergent

series, indeed divergent series with monotonely diminishing
terms of limit 0, for which

Thus 2 dn must have an infinite number of terms essentially smaller

than the corresponding terms of 2 cn . Conversely:

However rapidly 2 dn may diverge, provided only dn *0, there

are always convergent series 2cn for which lim^
= +00.

We have only to prove the former statement. Here a scries 2 dn
of the form

V d =- -1- -4- 4- I- - -\~ - -4- 4- -

,1 ,1 , ,1 ,1

is of the required kind, if the increasing sequence of indices nI9 w3 , ...

be chosen suitably and the successive groups of equal terms contain

respectively n19 (n. n
1 ), (n3

~ wa),
... terms. In fact, in order that

this scries may diverge, it is sufficient to choose the number of terms in

each group so large that their sum > 1, and in order that the se-

quence of terms in the series be monotone, it is sufficient to choose

nk > n k ^ l
so large that r

nfc
< c

n/
, _ j

(ft
= 1, 2, . . . ; n =

1) as is always

possible, since cn *0. As the ratio has the value - for n = n k ,

it follows that km = 0, as required.
n

In the preceding remarks we have considered only convergence
or divergence per se. It might be hoped that wiih narrower require-

ments, e. g. that the terms of the series should diminish monotonely,
a correspondingly greater amount of information could be obtained.

Thus, as we have seen, for a convergent series 2cn whose terms

diminish monotonely, we hiwe ncn *0. Can more than this be asserted?

The answer is in the negative (cf.
Rem. 5):

12. However slowly the positive numbers pn may increase to + oo,

there are always convergent series of monotonely diminishing terms

for which
n Pn cn

not only does not tend to 0, but has +00 for upper limit 40
.

40 Pnngsheim, loc. cit. In particular it was much discussed whether for

convergent series of positive terms* diminishing- monotonrly, the expression

nlogn>cn must -*(); the opinion was held by many, as late as I860, that

n log n*cn * was necessary for convergence.
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The proof is again quite easy. Choose indices n < n.2 <
such that

P*,>** (*=1,2,.
and write

1
c = ca

= ...== cni
= -^ ,

"'
>M'YC

i

The groups of terms here indicated contribute successively less than

- >* > to the sum of the series 2c , so that this series
2 2* 2"

converge. On the other hand, for each n = w, we have

so that, as was required,

limn-pn .cn
= +00.

13. These remarks may easily be multiplied and extended in all

possible directions. They make it clear that it is quite useless to

attempt to introduce anything of the nature of a boundary between

convergent and divergent series, as was suggested by P. du Bois-

Reymond. The notion involved is of course vague at the outset. But

in whatever manner we may choose to render it precise, it will never

correspond to the actual circumstances. We may illustrate this on the

following lines, which obviously suggest themselves 41
.

a) As long as the terms of the series -S"cn and 2 dn aie subjected

to no restriction (excepting that of being > 0), the ratio ~ is capable

of assuming all possible values, as besides the inevitable relation

lim -^ = we may also have lim-^ = +00.- an an

The polygonal graphs by which the two sequences (cn) and (dn) may be

represented, in accordance with 7, 6, can therefore intersect at an in-

definite number of points (which may grow more and more numerous,
to an arbitrary extent).

41 A detailed and careful discussion of all the questions belonging to the sub-

ject will be found in Pringsheim*s work mentioned on p. 2, and also in his writings

in the Math. Ann. Vol. 35 and in the Munch. Ber. Vol. 26 (1890) and 27
(181)7),

to which we have repeatedly referred.
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b) By our remark 11, this remains true when the two sequences

(cn) and (dn) are both monotone, in which case the graphs above referred

to are both monotone descending polygonal lines. It is therefore certainly

not possible to draw a line stretching to the right, with the property that

every sequence of type (cn) has a graph, no part of which lies above the line

in question, and every sequence of type (dn ) a graph, no part of which lies

below this line, even if the two graphs are monotone and are considered

only from some point situated at a sufficiently great distance to the right.

14. Notes 11 and 12 suggest the question whether the statements

there made remain unaltered if the terms of the constructed scries 2 cn

and 27 dn are not merely simply monotone as above, but fully monotone

in the sense of p. 263. This question has been answered in the affirmative

by H. Hahn^.

42. Systematization of the general theory of convergence.

The element of chance inherent in the theory of convergence as

developed so far gave rise to various attempts to systematize the criteria

from more general points of view. The first extensive attempts of this

kind were made by P. du Bois-Reymond
43

,
but were by no means brought

to a conclusion by him. A. Pringsheim** has been the first to accomplish

this, in a manner satisfactory both from a theoretical and a practical stand-

point. We propose to give a short account of the leading features of the

developments due to him 45
.

All the criteria set forth in these chapters have been comparison tests,

and their common source is to be found in the two comparison tests of

the first and second kinds, 157 and 158. The former, namely

(I) =<? s e
> an ^dn : V,

is undoubtedly the simplest and most natural test imaginable; not so

that of the second kind, given originally in the form

42 //. Hahn, Dber Reihcn mit monoton abnehmenden Ghedern, Monatsheft
f. Math. u. Physik, Vol. 33, pp. 121134, 1923.

43
J. f. d. reine u. angew. Math. Vol. 76, p. 61. 1873.

44 Math. Ann. Vol. 35, pp. 297394. 1890.
45 We have all the more reason for dispensing with details in this connexion,

seeing Pringsheim's researches have been developed by the author himself in a

very complete, detailed, and readily accessible form.
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In considering the ratio of two successive terms of a series we are

already going beyond what is directly provided by the series itself.

We might therefore in the first instance endeavour to construct further

types of tests by means of other combinations of two or more terms

of the series. This procedure has, however, not yielded any criterion

of interest in the study of general types of series.

If we restrict our consideration to the ratio of two terms, it is

still possible to assign a number of other forms to the criterion of the

second kind; e. g. the inequalities may be multiplied by the positive

factors an or cn without altering their significance. We shall return to

this point later. Except for these relatively unimportant transformations,

however, we must regard (I)
and

(II)
as the fundamental forms of all

criteria of convergence and divergence
46

. All conceivable special com-

parison tests will be obtained by introducing in
(1)

and
(II)

all conceiv-

able convergent and divergent series, and, if necessary, carrying ovit

transformations of the kind just indicated.

The task of systematizing the general theory of convergence will

accordingly involve above all that of providing a general survey of all

conceivable convergent and divergent series.

This problem of course cannot be solved in a literal sense, since

the behaviour of every series would be determined thereby. We can

only endeavour to reduce it to factors in themselves easier to survey
and therefore not appearing so urgently to require further treatment.

Pringsheim shows and this is essentially the starting point of his

investigations that a systematization of the general theory of convergence
can be fully carried out when we assume as given the totality of all

monotone sequences of (positive] numbers increasing to +00.

Such a sequence will be denoted by (pj; thus

< Po ^ Pi ^ P2 ^ and Pn -* +

In principle, the problem is solved by the two following simple
remarks:

a) Every divergent series 2 dn is expressible in the form

2dn *zpo+ (Pi JP ) H h (Pn Pn-l) H
n=0

(each in one and only one way) in terms of a suitable sequence of

type (pn). Also, every series of this form is divergent.

46 Thus since (as seen in 16O, 1,2) (II) is a consequence of (I)
- it

is ultimately from
(1) that all the rest follows.
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b) Every convergent series 47 2cn is expressible in the form

/ * Mi/ 1 ! \i ./ * \ ,V / c= I - -
1 + 1
- -

I + + I
- -

I + *

Ĥ

C ~\PQ Pj ^
\P { P,)^ ^\Pn Pn+l)^

(each in one and only one way) in terms of a suitable sequence of

type ( w). Also, every series of this form is convergent.

In fact, when these statements have been established, we have

only to substitute, in the two comparison tests
(I)

and
(II),

respectively for cn and dn > to obtain in principle all conceivable tests

of the first and second kinds: All particular criteria must necessarily

follow by more or less obvious transformation from the tests so ob-

tained; for this very reason, the former can never present anything

fundamentally new. They become of considerable importance, how-

ever, m that they give deeper insight into the connexion between the

various criteria and state the latter in a coherent form, and also apply

them in practice. Herein lies the chief value of the whole method. It

would accordingly be well worth our while to describe the details of

the construction of special criteria exactly; but for the reasons given,

we shall abide by our plan of giving only a brief account.

1. The typical forms a)
and b) must be regarded as undoubtedly 180.

the simplest imaginable forms for convergent and divergent series.

But we can obviously replace them by many other forms, thereby

altering the outward form of the criteria in various ways. For instance,

by the theorem of Abel-Dini 173,

diverge with 2(pn />n-i)> while at the same time, by Pringsheim's
theorem 174,

2~n-~^- and 2-",,

converge for Q > 0. With a few restrictions of little importance, all

divergent and convergent series are also expressible in one of these

new forms.

2. Since the only condition to be satisfied by the numbers p 9

in the typical forms of divergent and convergent series which we are

7 Unless the terms are all from some stage on.

48 The pi oofs of these two statements are so easy that we need not go into

them further.
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considering, is that they are to increase monotonely to f- oo, we may of

course write \ogpn , iog 2 />n ,
... or generally F (pn) instead of />n ,

where

F (x) denotes any function defined for x > and increasing monotonely

(in the strict sense) to +0 with x. This again leads to criteria which,

though not essentially new, are formally so when the />w's arc specially

chosen. It is easy to verify that the first named types of series diverge

or converge more and more slowly, as />-> + oo more and more slowly;

by replacing pn successively e. g. by logpn , Iog2 />n ,
. . . , we therefore

obtain a means of constructing scales of criteria 4a
. The case pn = n

naturally calls for consideration on account of its peculiar simplicity; the

development of the ideas indicated above for this particular case forms

the main contents of 37 and 38.

3. A further advantage of this method is due to the fact that one and

the same sequence (pn) will serve to represent both a divergent and a con-

vergent series. The criteria therefore naturally occur in pairs. E. g. every

comparison test of the first kind may be deduced from the pair of tests:

<;~ 'Pn

PnPn-l
*

n Pn-l

.

=
A.-I

and similarly for other typical forms of series.

4. The right hand sides can be combined to form a single disjunctive

criterion, if we introduce a modification, arbitrary in character in so far as

it is not necessarily suggested by the general trend of ideas, but otherwise

of a simple nature. We see at once, for instance, that the series

_

Pn
n

converge when a > 1 and diverge when a ^ ] . For the first of these scries

the proof has just been given; and the second has all its terms less than

the first if a > 1, while if a = 1, and hence for all a 2> 1, it is immediately

seen to be divergent. The pair of criteria set up in 3. may accordingly

be replaced by the following disjunctive criterion:

49 The usual passage from pn direct to log pn , Iog 2 pn , . . . , is again quite an

arbitrary step, of course. Theorems 77 and 175, 2 render the step natural, however.

Between e. g. pn and log/>n, we could easily introduce intermediary stages, for

instance e**^ which increases less rapidly than />n> in fact less rapidly than

any fixed positive power of pn ,
however small its exponent, yet more rapidly

than every fixed positive power of log pn,
however large its exponent.
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and, in all essentials 50
, also by:

-i ., (>1 : e
with {>! :

I ^ 1 :

It is remarkable that in the criteria of convergence arising through

these transformations, the assumption pn + + oo is no longer necessary
at all. It is sufficient that (pn) should be monotone. In fact, it (pn )

is boun-

ded, the convergence of 2(pn pn -j), and hence that of J
*-- and

-**-*- for arbitrary a > 0, follows from that of (pn), as (p~
a
)

GC H

and (cc~
p

)
are also bounded sequences. These convergence tests 51 thus

possess a special degree of generality, similar to that of Kummers^ cri-

terion of the second kind, mentioned below in 7.

5. From this disjunctive criterion as indeed in general from any
criterion others may again be deduced by various transformations,

though the criteria so obtained can be new only in form. For these

transformations we can of course lay down no general rule; new ways

may always be found by skill and intuition. This is the reason for

the great number of criteria which ultimately remain outside the scope
of any given systematization.

It is obvious that every inequality may be multiplied by arbitrary

positive factors without altering its meaning; similarly we may form

the same function F(x) of either member, provided F(x) be monotone

increasing (in the stricter sense), in particular we may take log-

arithms, roots, etc. of cither side. E. g. the last disjunctive criterion

may therefore be put into the form

or

L : &!*/__ f ^#
V Pn-Pn-l\

We see at a glance that by this means we obtain a general frame-

work for the criteria of the preceding sections which were set up by

assuming pn
=== n or == log n.

50 The equivalence is not complete, i. e. with the same sequence (pn ) as basis,

the new criterion is not so effective as the old one; in fact, the divergence of

5? -
""

,
for instance, may be inferred from the old criterion, but not

Pn
from the new one

61
Pnngsheim: Math. Ann

,
Vol. 35, p. 342. 1890

62
Journ. f. d. reine u. an^ew. Math., Vol. 13, p. 78. 1835

11 (o5l)
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6. Substantially the same remarks remain valid,, when we sub-

stitute
""

*
for cn and pn pn-i f r dn m me fundamental cri-

Pn'Pni
terion of the second kind (II),

or perform any of the other typical

substitutions for cn and dn there. In this way we obtain the most general

form of the criteria of the second kind.

1. We may observe (cf.
Rem. 4.) that here again, after carrying

out a simple transformation, we may so frame the convergence test

that it combines with the divergence test to form a single disjunctive

criterion. The convergence test requires in the first instance that, for

every sufficiently large n,

or

If here we replace cn by ~ j>~^"
^ie f rmer inequality reduces to

Q .

'

pn-1 an -

as pn cancels out, the typical terms of a divergent series automatically

appear, so that the convergence test reduces to

or

. /o

Finally, if we take into account the fact that 2Q dn (Q > 0) diverges
with 2dn ,

the criterion takes the form:n ,

Now the original criterion is certainly satisfied by the assumption

_i
an+\ **> n *t> O

- -^ tf -^ v*

n an cn + l

It thus appears that in this form slightly less general than the

original form of the convergence test, it is absolutely indifferent

whether a convergent series or a divergent series is introduced as comparison
series. Hence, still more generally, the cn's and dn's in the above forms

of the criterion may be replaced by any (positive) numbers bn ; thus

we may write:
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This extremely general criterion is due to E. Kummer.
On the other hand,

^ ( 181
3)

represents a disjunctive criterion of the second kind which immediately

follows, as the part relative to divergence is merely a slight trans-

formation of
(II)

All further details will be found in the papers and treatise by

A. Pringsheim. The sequences of ideas sketched above can of course

lead only to criteria having the nature of comparison tests of the first

or second kinds, though all criteria of this character may be developed

thereby. The integral test 176 and Ermakoff's test 177 of course

could not occur in the considerations of this section, as they do not

possess the character in question.

Exercises on Chapter IX.

133. Prove in the case of each of the following series that the given
indications of convergence or divergence are correct:

2-4... (2n)
'

>2 : C,
<2 : S>;

d) v(__i___log -!^^l>)
: S;

e
/ ^-j 7*i _L_ i \ /o - _i_ 1 \ /^nrzriT

68 It was given by Kummer as early as 1835 (Journ. f. d. reinc u. angew.
Math

,
Vol. 13, p. 172) though with a restrictive condition which was first re-

cognized as superfluous by U.Dmi in 1867. Later it was rediscovered several

times and gave rise, as late as 1888, to v.olent contentions on questions of

priority. O. Stoh (Vorlesungen liber allgem. Arithmetik, Vol. 1, p. 259) was the

first to give the following extremely simple proof, by means of which the

criterion was first rendered fully intelligible:

Direct proof: The criterion is that from some stage on

It follows in particular that the products an bn diminish monotonely and

therefore tend to a definite limit y>0. By 131, (<*& an + ibn + i) is

thus a convergent series of positive terms And as its terms are not less than

the corresponding terms of ~an ,
this series is also convergent.
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134* For every fixed p, the expression

n
\

has a definite limit Cp when n > -f- oo ,
if the summation commences with

the first integer for which logp n^>l.

135* For every fixed Q in << g < 1 ,
the expression

has a definite limit y when w -f OO.

136. If #->?, it follows that

where p, />',
and q denote given natural numbers.

137. If 2dH is divergent, with dn -> ,
and if the Dn 's are its partial suras

we have

r=l

138. If 2an has monotonely diminishing terms, it is certainly divergent
when p-a>pn ^ for a fixed p and every sufficiently large n.

139. If < dn <C 1 for every n, the two series

are convergent, for every Q ^> .

14O. Give a direct proof, without the use of Ermako/f's test and without

the help of the integral calculus, of the criterion

__ 2a.2W J <1 :

~^ l>2 :

for series of monotonely diminishing terms

141. If the convergence of a series 2an follows from one of the criteria

of the logarithmic scale 164, II, then, as n >-}-oo,

[n log n loga n . . . logk n\-an ->

and diminishes monotonely from a certain stage on, whatever the value of the

positive integer h may be.

Chapter X.

Series of arbitrary terms.

43. Tests of convergence for series of arbitrary terms.

With series of positive terms, the study of convergence and

divergence was capable of systematization to some extent; in the

case of series of arbitrary terms, all attempts of this kind have

to be abandoned. The reason lies not so much in insufficient de-
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velopment of the theory, as in the essence of the matter itself.

A series of arbitrary terms may- converge, without converging abso-

lutely
1

. Indeed this is practically the only case which will interest us

here, as the question of absolute convergence reduces, by 85, to the

study of a series of positive terms. We therefore need only consider

the case in which either the series is actually not absolutely conver-

gent or its absolute convergence cannot be demonstrated by any of

the previously acquired means. If a series is conditionally conver-

gent, however, this convergence is dependent on the mode of succession

of the terms as well as on their individual values; any comparison test

which we might set up would therefoie have to concern the series

as a whole, and not merely its terms individually, as before. This

ultimately means that each series has to be examined by itself and

we cannot obtain a general method of approach valid for them all.

Accordingly we have to be content to establish criteria with a

more restricted field of validity. The chief instrument for the purpose
is the formula known as

Abel's partial summation9
. // a

Q,a19 ... and bQ , b^, ... denote 182.

arbitrary numbers, and we write

<*0 + <*1 H
-----h = A n (" k 0)

then for every n ^ and every k^>l,

n+fc n+fc

Proof. We have

by summation from v = n -\- 1 to v n -f- k, the statement at once

follows 3
.

Supplements. 1. The formula continues to hold when n=^ 1,183,

if we put A_i = 0.

1 The case in which the series may be transformed into one with posi-

tive terms only, by means of a "finite number of alterations" (v. 82,4) or by
a change of sign of all its terms, of course requires no special treatment.

2
Journ f. d. reine u. angew. Math Vol. 1, p. 314. 1826.

1 It is sometimes more convenient to write the formula in the form

n + k n+ fr-1

^ av bv ^- ^ ^v(V-^ +i)~^A*
v=n M - n f 1
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2. If c denotes an arbitrary constant, and A v

' = A v + c, we have also:

n + k n+ k

E a, 6, = E AJ (bv
- b

l>+l )
- AJ bn+1 + A'n+k . bn+1e+l

v-w + l v n+1

for av
= A v A v_i = A v

' A f

v_^

Accordingly, in Abel's partial summation we "may" increase or

diminish all the A^s by any constant amount. This is equivalent to alter-

ing a .

Abel's partial summation enables us to deduce a number of tests of

convergence for series of the form 2 av bv almost immediately
4
. In the

first place, it provides the following general

184. Theorem. The series 2 abv certainly converges, if

1) the series 2Av (bv bv+l) converges, and

2) lim Aj>
- bp+1 exists.

p > + x

Proof. Abel's partial summation gives for n = 1 :

k k

Zav bv
= 2Av (bv

-
b,+1) + Ak bM ,

v-^O '=0

for every fcJjgO; making &-> + oo, the statement follows, in view of

the two hypotheses. The relation just written down shows further that

s = s' + I

where Sav bv s, 2 Av (bv bv+1)
=

s', lim A9 bM = /.

In particular, 5 = 5' if, and only if, / = 0.

The theorem does not solve the question as to the convergence of the

series E av bv , since it merely reduces it to two new questions; but these

are in many cases simpler to treat. The result is in any case a far-reaching

one, and it enables us immediately to deduce the following more special

criteria, which are comparatively easy to apply.

1. Abel's test 6
. Zav bv is convergent if 2 av converges and (bn)

is monotone 6 and bounded 7
.

4 We can of course reduce any series to this form, as any number can be

expressed as the product of two other numbers. Success in applying the above

theorem will depend on the skill with which the terms are so split up.
6
loc. cit. Abel's test provides a sufficient condition to be satisfied by (6n),

in order that the convergence of 2 an may involve that of Z an bn . J. Hadamard

(Acta math., Vol. 27, p. 177. 1903) gives necessary and sufficient conditions; cf.

E. B. Elliot (Quarterly Journ., Vol. 37, p. 222. 190(5), who gives various refinements.
6 In anticipation of the extension to complex numbers (v. p. 397) it may be em-

phasized already that a sequence of numbers assumed to be monotone is necessarily

real.

7 In other words: A convergent series "may" be multiplied, term by term, by

factors forming a bounded and monotone sequence. Theorem 184 and the criteria

deduced from it all deal with the question: By what factors may the terms of a

convergent series be multplied so that a convergent series results? And by what

factors must the terms of a divergent series be multiplied, so that the resulting series

may be convergent?
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Proof. By hypothesis (An )
and (bn), (v. 46), and hence also (An n+1),

are convergent. On the other hand, by 131, the series (bv bv+1) is

convergent, and indeed absolutely convergent, as its terms all have the

same sign, in consequence of the monotony of (bn). It follows, by 87,

2, that the series EA v (b lt b^+l) is also convergent, since a convergent

sequence is certainly bounded. The two conditions of theorem 184 are

accordingly fulfilled and S av bv is convergent.

2. Dirichlet's test 8
. Zav bv is convergent if 2 av has bounded

partial sums and (bn) is a monotone null sequence.

Proof. By the same reasoning as above, 2Av (& bv+l) is con-

vergent. Further, as (An ) is bounded, (An bn+l)
is a null sequence if (bn)

is, i. e. it is certainly convergent. The two conditions of 184 are again

fulfilled.

3. Tests of du Bois-Reymond* and Dedekind

a) 2 av bv is convergent if 2 (bv ^.+i) converges absolutely and av

converges, at least conditionally.

Proof. By 87, 2, Z
1 A v

-

(bv bv+l) also converges, as (An) is cer-

tainly bounded. Since further

(*o
-

*i) + (*i
~

*2) + - - + (ft-i
- 6) = *o

- bn

tends to a limit when n -> + GO, so does bn itself; lim An exists by hypo-

thesis, and the existence of lim A n bn+1 follows.

b) 2 av bv is convergent if Z (bv 6,+1) converges absolutely and E av

has bounded partial sums, provided bn -> 0.

Proof. 2 A v (bv by+1 )
is again convergent and An bn+l -> 0.

Examples and Applications. 185

1. The convergence of 2 an involves, by Abel's test, that of E n
,

2. J?( 1)" has bounded partial sums. Hence if (6n) is a monotone null

sequence,

8
Vorlesungen uber Zahlentheorie, lsfc edition, Brunswick 1863, 101.

9
Antnttsprogramm d. Univ. Freiburg, 1871. The designation above

adopted for the three tests is rather a conventional one, as all three are substantially

due to Abel. For the history of these criteria cf. A. Pringsheim, Math. Ann., Vol.

25, p. 423. 1S85.
10 143 of the work referred to in footnote 8.
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converges by Dmchlefs test. This is a fresh proof of Leibniz's criterion for

series with alternately positive and negative terms (82,5).

3. Given positive integers &
,

fc1} k
2 ,

... such that 2"( \)
kn has bounded

partial sums for this the excess of the number of even integers over that

of odd integers among the n first exponents fc
lf

&2 ,
. . .

as n -> -f oo the series

converges, if (&n) denotes any null sequence.

4. If 2 an is convergent, the power series 2 an x n is convergent for

0<jo;<-f-l, since the factors x n form a monotone and bounded sequence.
If E an merely has bounded partial sums, the power series at any rate con-

verges for every x such that 0<o;<Cl, since x n then tends to monotoncly.
5. The series ^sinna; and J cos.no; have bounded partial sums, the first

for every (fixed) real x and the second for every (fixed) real x not a multiple

of 2ji. This follows from the following elementary but important formula,

valid ll for every x 4= 2 k iri

x / x\
sin n sin f a. + (n -f- 1) ~J

sin (a + x) -f sin (a -f 2 x) -f-
---H sin (a -f n x) =-- .

sin |
The proof of the formula is given in 201. For a = 0, we get

sin n - sin (n -f- 1)

sin x -f sin 2 a; -f- -f- sin n x =--- , (x =j=
2 fc

rc)

sin -

, . JT
and for a = -

,

a; a;

sinn -cos
(
n +l)--

cos a; + cos 2 cc + -f cos w a; =-
, (x -]-

2 A n) .

sin |
From this the boundedness of the partial sums can be inferred at once.

Thus if 2(bn &n +i) converges absolutely and &
/t ->0, we conclude from

the criterion 3b that

^T bn sin n x converges for every x
,

2bn cos n x converges for every x
=f-

2 & ^r .

In particular
12

, this is the case when bn diminishes monotonely to 0.

6. If the bn's are positive, and if we may write

where 3 > o and
(/?n)

is bounded, then 2"(-- l)
n bn converges if, and only t/f a > 0. In

fact, if a > 0, it follows from these hypotheses that --!<; 1 from some stage on,

i. e. (6n) decreases monotonely, and the convergence of the series in question is

therefore secured by 2., if we can show that 6n ->0. The proof of this is

similar to that of the parallel fact in 17O, 1 : Jf < a' < a, we have for every
sufficiently large v

t say v>w,

11 For x=2k7t, the sum has obviously the value n sin a, for all n's.
18

Malmsten, C. /.: Nova acta Upsaliensis (2), Vol. 12, p. 255. 1844.
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Writing down this inequality for v = m, m-f-1, ..., n 1 and multiplying

together, we obtain

From the divergence of the harmonic series, it follows as in 170, 1 that 6n->0.

In the case a < 0, bn must for similar reasons increase monotonely from

some stage on, so that 2
( l)

n bn certainly cannot converge. Finally, when
a = 0, we deduce in precisely the same way as on p. 289, that bn cannot tend to

and the series therefore cannot converge.

7. If a series of the form ,57^ such series are known as Dirichlet**
YI
X

series; we shall investigate them in more detail later on
( 58, A) is con-

vergent for a particular value of x, say x = x , it also converges for every

x>x09 for
f )

is a monotone null sequence. This simple application of

\n
x~ x

J

Abel's test, by reasoning quite similar to that employed for power series (93),

leads to the theorem: Every series of the form ^ ~ possesses a definite abscissa

of convergence JL with the property that the series converges whenever x> Jl and

diverges whenever x<Ji. (For further details, v. 58, A.)

General Remarks. 186.

1. We have already mentioned the fact that the magnitude of the indiv-

idual term in an arbitrary scries is not conclusive with regard to convergence.
In particular, two series 2 an and Zbn ,

whose terms are asymptotically equal,

i. e. such that
* - 1 ,

need not exhibit the same behaviour as regards con-

vergence (cf. 7O, 4).

Thus e. g. for

we have

bn
~~

log n
~*

But Sbn is convergent and S an divergent, since 2(an bn) diverges by 79,2.

2. // the series ~ an is non-absolutely convergent^ (cf. p. 136, footnote 9), its

positive and it* negative terms, taken separately, form two divergent series. More

precisely, let pn an when an > 0, and = when an< 0, and similarly let qn = an
when an < 0, and =0 when aw ^>0.

18 The two series 2pn and 2 qn are scries

of positive terms, the first containing only the positive terms of 2 an and the

second only the absolute values of the negative terms of 2anj in either case

with the places unchanged, while their other terms are all 0. Both these series

are divergent. In fact, as every partial sum of 2 an is the difference of two
suitable partial sums of 2pH and 2 qn ,

it follows at once that if 2 pn and 2 qn
were both convergent, so would 2"|aw |

be (by 70), contrary to hypothesis;
and if the one were convergent, the other divergent, the partial sums of 2 an

Thus i>
- '

*"
'

1 11US pn -
it* (051)
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would tend to - oo or -f oo (according as 2 pn 01 2 4n is assumed convergent),
which is again contrary to hypothesis.

3. By the preceding remark, a conditionally convergent series, or rather

the sequence formed by its partial sums, is exhibited as the difference of two
monotone increasing sequences of numbers tending to infinity

14
. As regards

the rapidity with which these increase, we may easily establish the following

Theorem. The partial sums of 2 pn and 2 qn are asymptotically equal.

In fact, we have

since the numerator in the latter ratio remains bounded, while the denominator

increases to -J-CX) with n
t
this ratio tends to 0, which proves the result.

4. The relative frequency of positive and negative terms in a conditionally

convergent series 2 an for which \an \

diminishes monotonely is subject to the

following elegant theorem, due to E. Cesaro: The limit, if it exists, of the

p
ratio -

n
of PM the number o/ positive terms

}
to QM the number of negative terms avt

Qn
for v<w, is necessarily 1

44. Rearrangement of conditionally convergent series.

The fundamental distinction between absolutely and non-absolutely

convergent series has already been made clear in 89, 2. This is, that

the behaviour of non-absolutely convergent series depends essentially

on the order of the terms in the series, so that for these series the

commutative law of addition no longer holds. The proof consisted in

showing that a non-absolutely convergent series could, by a mere re-

arrangement in the order of its terms, be transformed into a divergent

series. This result may now be considerably elaborated. In fact it

may be shewn that by a suitable rearrangement any prescribed behav-

iour, as regards convergence or divergence, may be induced. The

theorem which we obtain is

187. Riemann's rearrangement theorem. // 2 an is a conditionally

convergent series, we may, by a suitable rearrangement (v. 27, 3), de-

duce a series 2a^ with any one of the following properties:

14 It is best to avoid, as being far too superficial in character, the mode
of expression which may be found in some writings: "the sum of a condition-

ally convergent series is given in the form CO CO."

Rom. Ace. Lincei Rend. (4), Vol. 4, p. 133 1888. Cf. a Note by
G. H. Hardy, Messenger of Math. (2), Vol. 41, p. 17. 1911, and one by H.Radt

macher. Math. Zeitschr., Vol 11, pp. 276288. 1921.
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a) to converge to an arbitrary
16

prescribed sum s'
;

b) to diverge to -f- oo or to oo ;

c) to exhibit as upper and lower limits of its partial sums two

arbitrary numbers p and x, with ju^>x.

Proof. It suffices to prove c),
since a) and b) are particular cases

of c),
the former for =

p,
= s' and the latter for x = p,

=
-f- oo or

= oo.

To prove c), let (xn) be any sequence tending to x and
(/*n) any

sequence tending to p, y with
jjin > xn and 17 ^ > 0.

Let us denote by p^ 3 , . . . the terms in 2 an E= a
1 ^- #2 H----

which are ^ 0, in the order in which they occur, and by q^ 9 q^, . . .

the absolute values of those which are < 0, again in their proper

order, thus slightly modifying the definition in 186, 2. The series

2p and 2 qn only differ from those in 186, 2 by the absence of a

number of zero terms, and are accordingly both divergent, with posi-

tive terms which tend to 0. We proceed to show that a series of

the type

Pl + P*
----h Pm l ?i ft

-----
?*, + Pm^l H-----h

fe+i ----- fc + #+i H----

will satisfy all the requirements. Such a series is clearly a re-

arrangement of the given series, and is indeed one which leaves un-

altered the order of the positive terms relatively to one another and

that of the negative terms relatively to one another.

Let us choose the indices m^ < m
3

-. ..., k < k
2 <C . . ., in the

above series, so that:

1) the partial sum whose last term is pmi has a value > //x ,

while that ending one term earlier is ^ /^ ;

2) the partial sum whose last term is q^ has a value < ^,
while that ending one term earlier is ^> x

x ;

3) the partial sum whose last term is pm^
has a value > yu ,

while that ending one term earlier is <^ /v2 ;

16 Riemann.B.: Abb. d. Ges. d. Wiss. z. Gottingcn, Vol. 13, p. 97. 186668.
The statements b) and c) are obvious supplementary propositions.

17 This is clearly possible in any number of ways. In fact, if * = /* with

a finite value s', say, take * = sf and ftn = s'H , taking ^. even larger,n n
if necessary. If x = ^ = -f OO ( oo), take *w = n ( n) and //n = xw + 2. If,

finally, *<ft, take any (xn) and
(fi w) tending to and p\ from some stage

on, #n <C^Mn, and by a finite number of alterations, we can arrange that this

may be the case from the beginning, and also that ^^O.
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4) the partial sum whose last term is qkl has a value < x2 ,
while

that ending one term earlier is ^ x 2 ;

and so on.

This can always be arranged; for by taking a sufficient number of

positive terms, the partial sum may be made as large as we please, and

by allowing a sufficient number of negative ones to follow, the partial

sum may again be depressed below any assigned value. On the other

hand, at least one term must be taken at each stage, since xn < /zn ;
so

every term of the original series really does occur in the new series.

Let H an
'

denote the definite rearrangement of E an so obtained;

the partial sums of S an
'

have the prescribed upper and lower limits. In

fact, if for brevity we denote by r
lf

r 2 ,
. . . , the partial sums whose last

terms are />Wl , />m2 ,
. . . and by crl9 o-2 ,

. . . , those whose last terms arc

fe fc, ,
we have

Since pn -> and qn -> 0, it follows that a, -> x and rv -> /z, so

that x and /* certainly represent values of accumulation of the partial

sums of 27 an . Now a partial sum sn
f

of 2 an\ which is neither a av nor

a T,,, has necessarily a value between those of two successive partial sums

of this special type; hence sn
'

can have no value of accumulation outside

the interval x . . . /i, (or different from the common value of x and
IJL

if

these coincide). In other words, /x and x are themselves the upper and

the lower limit of the partial sums, q. e. d.

Various researches of an analogous nature were started in different directions

as a consequence of this theorem. M. Ohm 18 and O. Schlomilch 19
investigated

the effect of rearrangement on the special series 1 ^ + - -+ ..., in par-

ticular the case in which p positive terms are followed by q negative terms throughout
(cf. Exercise 148). A. Pringsheim

20 was the first, however, to aim at general results

for the case in which the relative frequency of the positive and negative terms in

a conditionally convergent series is modified according to definite prescribed rules.

E. Borel 21
investigated the opposite problem, as to what rearrangements in a con-

ditionally convergent series do not alter its sum. Later, W. Sierpinski
22 showed

that if 27 an = s converges conditionally and s' < s
t the series can be made to have

the sum s' by rearranging only the positive terms in the series, leaving all the negative
terms with unaltered place and order > while similarly it can be made to have any
sum s" > s by rearranging only the negative terms. (The proof is not so simple.)

45. Multiplication of conditionally convergent series.

We showed in the preceding section, thus completing the con-

siderations of 89, 2, that the commutative law of addition no longer
holds for series which converge only conditionally. We have also seen

18
Antrittsprogramm, Berlin, 1839. 19 Zeitschr. f. Math. u. Phys., Vol. 18, p.

520. 1873. 20 Math. Ann., Vol. 22, p. 455. 1883. 21 Bulletin des sciences mathcm.

(2), Vol. 14, p. 97. 1890. 22 Bull, internat. A'c. Sciences Cracovie, p. 149. 1911.
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already (end of 17), in an example due to Cauchy, that the dis-

tributive law does not in general subsist, so that the product of two

such series 2 an and 2bn may no longer be formed according to the

elementary rules. The question remained unsolved, however, whether

the product series Scn (with cn
= a bn + a^ 6W_ 1

-j
(- an 6

) might

not continue to converge under less stringent conditions for 2 an
= A

and 2bn
= B, and to have the sum A-B. In 17, it was required

that both Zan
and 2'6M should converge absolutely.

In this connection, we have first the

Theorem oiMertens 23
. Ifat least one of the two convergent series 188.

Z an
= A and 2 bn = B converges absolutely, E cn converges and = A B.

Proof. We have only to show that, with increasing n, the partial

sums

Cn
=

<0 + c
l -!-...+*

= *o ho + K *i + <*i bo) + - + (ao bn + <*i
bn-i + + an b )

tend to A B as limit. We may assume that Z an is, of the two series, the

one that converges absolutely. If we denote by An the partial sums of

27 #n , by Bn those of H bnj we have

Cn = <*o-Bn + <*1
Bn_ 1 + + B ,

or, if we put Bn
= B -\- fln ,

= *n B + ( /?+ 1 /.-!+-+ A)'

Since ^4 n -B >-yl -5, it only remains to show lhat when 2an is

absolutely convergent and
/?n *(), the expressions

w = .^o + .-iA+- + o/

form a null sequence. But this is an immediate consequence of 44, 9 b;

we have only to put xn = f)n and yn = an there. Thus the theorem

is proved.

Finally, we shall answer the question whether the product series

2cn , if convergent, necessarily has the sum A-B.

The answer is in the affirmative, as the following theorem shows:

Theorem of Abel**. If the three series 2an , 2bn and 189.
2cn
= 2(a bn -}-- + n &

)
are convergent, and A, B, and C are

their sums, we have A-B C.

1. Proof. The theorem follows immediately from Abel's limit

theorem (10O) and was first proved by Abel in this way. If we
write

S* *n =
/"x (*)> 2bn x =

/; (x), 2cn x
n = fs (*),

i
J. f. d. reine u. angew. Math., Vol. 79, p 182. 1875. An extension was

given by T. /. Stieltjes (Nouv. Annales (3), Vol.6, p. 210. 1887).
94

J. f. d. reine u. angew. Math., Vol. 1, p. 318. 1826.
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these three power series
(cf. 185, 4) certainly converge absolutely for

<^ a; < 1, and for these values of x, the relation

(a) A (*)/;(*) = /;(*)

holds. The assumed convergence of 2an , 2bn and 2cn implies, by
Abel's limit theorem 100, that each of the three functions tends to a

limit when a? * + 1 from the left; and

fi(x)-+A=2an , f,(x)-+B = Sbn , f^(x)-+C = 2cn .

Since the relation (a) holds for all the values of x concerned, it follows

(by 19, Theorem l)
that it must hold in the limit:

We may also dispense with the use of functions and adopt the

following

2. Proof due to Cesdro**. It was shown above that

From this it follows that

Dividing both sides of this equality by n -f- 1 and letting n +
-f- oo,

we obtain C as limit on the left hand side (by 43,2) and A-B as

limit on the right (by 44, 9 a).
Hence A-B = C, q. e. d.

In consequence of this interesting theorem, with which we shall

again be concerned later on, any further elaboration of the question
of multiplication of series has only to deal with the problem whether

the series 2 cn converges. Into these investigations we do not, however,

propose to enter36.

Examples and Applications.

1. It follows from !L = ^^ = 1 -
J.
+ -L _ I + . . ., by the pre-* n-rO

^ n ~>~ L * f) '

cedingf theorem, that

provided the series thus obtained converges.

26 Bull, des sciences math. (2), Vol. 14, p. 114. 1890.
26 Theorems of the kind in question have been proved by A. Pringsheim

(Math. Ann., Vol.21, p. 340. 1883), and in connection with the latter's work, by
A. Voss (ibid. Vol. 24, p. 42. 1884) and F. Cajori (Bull, of the Americ. Math. Soc.,
Vol. 8, p. 231. 1901-2 and Vol. 9, p. 188. 1902-3). Cf. also 66 of A. Prings
heim's treatise, Vorlesungen Uber Zahlen- und Funktionenlehre (Leipzig- 1916),
to which we have already referred more than once. G. H. Hardy (Proc. Lon-
don Math. Soc. (2), vol. 6, p. 410, 1908) has proved a particularly elegant example
of a related group of much more fundamental theorems.
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Now

(2 p + 1) (2 n + 1 - 2 ) 2ln+l)V2 + 12n
so that the generic terra of the new series has the value

, ,

,

r _1_\
w-M,/

'
_

n+1 V 3 2

Since ^
-

t
- tends monotoncly to zero, so docs its arithmetic mean

4 W -f" 1

and the new series therefore does converge by Leibniz's test 82, 5 We thus

have

as
2. In a precisely similar manner, we deduce (v. ISO), by squaring- the

series log 2 = 1 - + ---h ,

3. The result obtained in 1. provides a fresh mode of approach to the
00 1 7T

3

equation J>!\ f>
= --, which has occupied us repeatedly before now (v. 136

*=!*" b

and 15ft) To see this, we first prove the following-

Theorem. Let (aot alt 2 , . .
.)

fo a monotone sequence of positive numbers.

for which 2 an
2 ts convergent. Then the series

1- J}( 1)" = *; 2 ^ an an+f = S
J/f p=1.2,...,

n~0 n=0
anc2

3. (-1)
P =J,

converge, with

(c) J>M
* = s*-2J.

n=o

Proof. Since -S
1^9 converges, a->0; accordingly the series 1 con-

verges by Leibniz's test. As an an+p < aw
s for every ^ ^ 1, and ^"an

a
converges,

the series 2 are also convergent for >1. Further, as an + p + l
-< an + p9 we

have dp + i<_dp . The series 3 will accordingly converge if cJ^-^O. Now

given e ^> 0, we can choose m so that aji .

1 -j- aj* , a -J-
- - ^-pr-: for every suffi-ra ' 77 T" A lT a 2

ciently large p, we shall then have
8 S

p < aO a/> 4- ^*i
a

/; + i + ' -f am ap + m +
"2"
< ap (aO "I" ai H hO -f

-g-
< -

Hence op and the series 3 also converges. Let us now form the array

a, a -f- a/
2

a, a, -f ^ a, H .
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and let Sn denote the sum of the products ^ al aft
for which A and fi are <j n.

These obviously fill up a square in the upper left hand corner of the array, and

Sn = (a -a1 + ---- + (_!) )_,!.
On the other hand, the sum of all the (primary) diagonals which contain at

least one product a^ a^ belonging: to that square, is clearly

r-O

Hence, to obtain (cj, it now suffices to prove that Tn Sn *0. By writing
out the above array in a more detailed fashion, we see, moreover, that

(- l)
n
(Tn - Sn)

== 2 [aa an +1 + 3 an + 2 -f
----

]
- 2 [aa an hl -f- 3 <? + 3 -\

----
]

+ 1 + 4
an f-2 H

----
]
-

I

----
- 1

-2[a j,fln + 1 + a^ t-i

This we write for brevity

- a,
-

a + ,- + ... + (_ l)--i + (- 1)" /?n ,

and as a, ^ r<r.j
> > an

^

0, we have (of. 81 c, 1^)

\

Tn~ ^[^^-r-^^^-f/?!,;

thus, as was asserted, Tn 57l ->0 and therefore ^ M
2 s 3 2 /f .

4. If, in 3., we now take an = ---
-, the hypotheses are obviously all

2i 11 -f- 1

fulfilled, and we have

But in this case, we have, by 133,1,
00 1

* y^

# f

for every p > 1 ,
and hence

_ __ -_, yi , .....
n=0^2w + 1

)
a 16 n-0 "+ 1 V 3^ + 2n

By the equality (a) proved in 1., the right hand side = -=-. By the method
o

op 1 ^2
used to deduce 137 from 136, the equality - - = follows at once

^=-l
^ b

The fresh proof thus obtained for this relation may be regarded as the

most elementary of all known proofs, since it borrows nothing from the theory
of functions except the Leibniz series 122. The main idea of the proof goes
back to Nicolaus Bernoulli 21

.

Exercises on Chapter X.

142. Determine the behaviour of the following- series:

n=l
' sin \

87 Comment. Ac. Imp scient. Petropolitanae, Vol. X, p. 19. 1738.
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e) 27(-l)" sin-?-, f) 27sini f

g) 2&\n(n*x), h) 2 sin (w! nx),

(~ 1)n s*" 2 "*

4- + '" + -, m) 2 n
It n J n

In the last series, (ctn) is a monotone null sequence. The series g) does not converge
unless x-kn\ the series h) converges for all rational values of x, also e. g. for

2 k
v = e, = (2fc-f-l)0, =

,
= sin 1, = cos 1, and for

1 1_ !_
1 2__ 1_ 1 1

X
"24! 5!

+
2~6! 7 !

"*"
2 8 !

"*"""

and many other special values of a?. Indicate values of x for which it cer-

tainly cli \cTges.

*. J7 L-qraV-i
+ F+ aU

~^] " log 2

for every x ;> .

144. If (waw)
and 2" w (an an + 1) converge, the series Z an also con-

verges.
145. a) If 2an and 2\bn bn + l \

both converge, or b), if 2an has bounded

partial sums, 2
1

/> bn + 1
1

converges and 6n -0, then for every integer

p 2> 1 the series 2aH bH
* is convergent.

146. The conditions of the test 184, 3 are in a certain sense necessary,
as well as sufficient, for the convergence of 2an bn : If it be required that for

a given (&), 2an bn always converges with 2ant the necessary and sufficient

condition is that 2\bn b
n + l \

should converge. Show also that it makes
little difference in this connection whether we require that ^\bn bn + l \

con-

verges or merely that (&) is monotone.

147. If 2an converges, and if pn increases monotonely to -f-oo in such

a way that 2pn
~ l is divergent, we have

n

148. Let an tend to monotonely, and assume that hm n an exists. If

00

we write J? ( 1)
W

M = 5
>
an^ now rearrange this series (cf. Ex. 51) so as to

n=o
have alternately p positive and q negative terms:

ao-i-^ + -"+ a2i-a--0i-*3 ----- a
a ?-!+**+.

the sum s' of the new series satisfies the relation

s' = s -f hm (n an)-log ?-.
* 9

140. A necessary and sufficient condition for the convergence of the

product series
v

CB= l'(a 6B + a
l 6,1 _ 1 +... + aB 6 )

of two convergent series -Tan , 2bnt is that the numbers

fib=-</M& + ^-l + --- + ^-r4.|)
v=l

should form a null sequence.
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150. If (an)
and (bn) are monotone sequences with limit 0, the Cauchy's

product series of 2( l)
n an and 2( l)

n bn is convergent if, and only if, the

numbers on = an (bQ -f b
t -f-

- + bn) and rn = bn (a -f- at ^-----j- an)
also form a

null sequence.

151. The two series ^~^" and -^7 "/si
' ' >> >0> may be

multiplied together by Cauchy's rule if, and only if, a-J-^>l.

152. If (#) and (&n) are monotone null sequences, Cawc/ty's product of

the series 2( !)" and J( l)"&n certainly converges if 2aH bn converges.
A necessary and sutficient condition for the convergence of the product series

is that 2(an bn)
l '*~ e should converge for every

153. If, for every sufficiently large n
t
we can write

an = n tt

'.(logn)' (log, n)" (logr n)' ,

6n = w^.(logw/' (Iog3 nA (log, nf* ,

and if 2bn converges, we have, provided an is not equal to bn for every n
t

-f a, &_,
r-0

Chapter XI.

Series of variable terms (Sequences of functions).

46. Uniform convergence.

Thus far, we have almost exclusively taken into consideration

series whose terms were given (constant) numbers. It was only in

particularly simple cases that the value of the terms depended on the

choice of a definite quantity, or variable. Such was the case e. g. when
we were considering the geometric series 2 a

n
or the harmonic series

y1

; their behaviour was dependent on the choice of a or of a. A more
n a

general example is that of the power series 2 an x
n

, where the number
x had to be given, before we could attack the problem of its con-

vergence or divergence. This type of case will now be generalized in

the following obvious way: we shall consider series whose terms depend
in any manner on a variable x, i. e. are functions of this variable.

We accordingly denote these terms by fn (x)
and consider series of

the form 2fn (x).

A function of x, in the general case, is defined only for certain

values of x (v. 19, Def. 1); for our purposes, it will be sufficient to

assume that the functions fn (x) are defined in one or more (open or

closed) intervals For the given series to have a meaning for any value
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of x at all, we have to require that at least one point x belongs to

the intervals of definition of all the functions fn (x).
We shall, however,

at once lay down the condition that there exists at least one interval,

in which all the functions fn (x) are simultaneously defined. For every

particular x in this interval, the terms of the series 2fn (x)
arc in

any case all determinate numbers, and the question of its convergence

can be raised. We shall now assume further that an interval /
(possibly smaller than the former) exists, for every point of which the

series fn (x)
is found to converge.

Definition 1
. An interval J will be called an interval of conver- 190.

of the series 2fn (x) if, at every one of its points (including one,

both, or neither of its endpoints), all the functions fn (x) are defined

and the series converges.

Examples and Illustrations.

1. For the geometric series 2 x n
,
the interval 1 < a; <C + 1 is an interval

of convergence, and no larger interval of convergence exists outside it.

2. A power series ~ an (x x )
n

, provided it converges at one point at

least, other than x09 always possesses an interval of convergence of the form

(x r) . . . (Xfi-i-r), inclusive or exclusive of one or both endpoints. When r is

properly chosen, no further interval of convergence exists outside that one.

1
8. The harmonic series 2j has as interval of convergence the semi-

n*
axis x> 1

,
with no further interval of convergence outside it.

4. As a series is no more than a symbolic expression for a certain se-

quence of numbers, so the series 2fn (x) represents no more than a different

symbolic form for a sequence of functions) namely that of its partial sums

In principle, it is therefore immaterial whether the terms of the series or its partial

sums are assigned, as each set determines tht other uniquely. Thus, in principle, it

also does not matter whether we speak of infinite series of variable terms or

of sequences of functions. We shall accordingly state our definitions and
theorems only for the case of series and leave it to the student to formulate them for

the case of sequences of functions*.

5. For the series

r+ j

1 For the case of complex numbers and functions, we have here to substitute

throughout the word region for the word interval and boundary points of the region

for endpoints of the interval. With this modification, the sign o has the same sig-

nificance in this chapter as previously.
2
Occasionally, however, the definitions and theorems will also be applied

to sequences offunctions.
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we have

The series converges for every real x. Clearly, indeed, we have

a) sH (x)-+0, if |*,<1,

b) sn (x) -> 1
,

if
|

x
|
> 1 ,

and

c) s*(x)-+l, if |0| = 1.

6. On the other hand,

defines a series with an infinity of separate intervals of convergence; foi

lim sn (x) obviously exists if, and only if, -<T <C sin x <
75- ,

i.e. if

or
' ^

or if a; lies in an interval deduced from these by a displacement through an

integral multiple of 2vt. The sum of the seties = throughout the interior

of the interval and = 1 at the included endpoint.

- , . sin 2 x sin 3 a: o *- r r
7. Ihe series sin x ~\

--
-^
--

1

-- --h converges, by 185, 5. for every
fj O

cos 2 a;
,

cos 3 a:
,

. .

real x\ the series cosxH---^--1

-- --
1

---- converges for every real
6 O

X
=f=

2kyt.

If a given series of the form 2 fn (x) is convergent in a deter-

minate interval /, there corresponds to every point of / a perfectly

definite value of the sum of the series. This sum accordingly ( 19,

Def. l) is itself a function of x, which is defined or represented by
the series. When the latter function is the chief centre of interest, it

is also said to be expanded in the series in question. In this sense,

we write

n=0

In the case of power series and of the functions they represent

(v. Chapters V and VI), these ideas are already familiar to us.

The most important question to be solved, when a series of variable

terms is given, will usually be whether, and to what extent, properties

belonging to all the functions fn (%), i. e. to the terms of the given

series, are transferred to its sum.
Even the simple examples given above show that this need not

be the case for any of the properties which are of particular interest

in the case of functions. The geometric series shows that all the func-

tions fn (x) may be bounded, without F (x) being so; the power series

for sin a;, x > 0, shows that every fn (x) may be monotone, without

F(x) being so; example 5 shows that every fn (x) may be continuous,
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without F(x) being so, and the same example illustrates the corres-

ponding fact for differentiability. It is easy to construct an example
showing that the property of integrability may also disappear.

For instance, let

{

= 1 for every rational x expressible as a fraction with denominator

(positive and) < n,
= for every other x .

Then sn (x), for each n, and consequently fn (x), for each n, is intc-

grable over any bounded interval, as it has only a finite number of discon-

tinuities in such an interval (cf. 19, theorem 13) Also lim sn (x)
= F (x) exists

for every x. In fact, if x is rational, say = (?>0, p and q prime to one

another), we have, for every n>q, sn (x)
= l and hence F(x) = l. If, on

the other hand, x is irrational, sn (a;)
= for every n and so F(o;) = 0. Thus

~fn (x)
= lim sn (x) defines the function

= 1 for a rational x,
= for an irrational x.

This function is not integrable, for it is discontinuous 3 for every x.

Even by these few examples, we are led to see that a quite
new category of problems arises with the consideration of series of

variable terms. We have to investigate under what supplementary con-

ditions this or the other property of the terms fn (x) is transferred to

the sum F(x). It is clear from the examples cited that the mere fact of

convergence does not secure this, the cause must reside in the

mode of convergence. A concept of the greatest importance in this

respect is that known as uniform convergence of a series 2 fn (x) in one
of its intervals of convergence or in part of such an interval.

This idea is easy to explain, but its underlying nature is not so

readily grasped. We shall therefore first illustrate the matter somewhat

intuitively, before proceeding to the abstract formulation:
CO

Let 2 fn (x) converge, and have for sum F(x), in an interval/, a <x<b-
n=0

we shall speak of the graph of the function y = sn (x)
= f (x) -\ h fn (x) as

being the nU* curve of approximation and of the graph of the function y = F(x)

8 We may modify this definition a little by taking sn (x) = 1 for all rational
xs whose denominators are factors of n^ and =0 elsewhere; the rational a?'s

in question comprise, for each n, a definite number of other values besides
the integers <w used above. We then obtain as limsn (#) the same function

F(x) as above. In this case, however, both sn (x) and F(x) may be represent-
ed in terms of a closed expression, by the usual means; in fact, we have
$n (x)

= lim (cos
2 nl nx)

k
t and therefore

F(x) = lim
[
lim (cos

2 n! ytx)
k
}.

This curious example of a function, discontinuous everywhere, yet obtainable
by a repeated passage to the limit from continuous functions, is due to
Dirichlet.
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00

as the limiting curve. The fact of the convergence of fn (x) to F (x) in J
n=o

then appears to imply that for increasing- n, the curves of approximation lie

closer and closer to the limiting curve. This, however, is only a very imper-
fect description of what actually occurs. In fact, the convergence in / implies

only, in the first instance, that at each individual point there is convergence;
all we can say, to begin with, is therefore that when any definite abscissa x
is singled out (and kept fixed) the corresponding ordinates of the curves oi

approximation approach, as n increases, the ordinate of the limiting curve for

the same abscissa. There is no reason why the curve y = sn (x) ,
as a whole,

should lie closer and closer to the limiting curve. This statement sounds rather

paradoxical, but an example will immediately make it clear.

The series whose partial sums for n= 1, 2, ... have the values

certainly converges in the interval 1 < x < 2 . In fact, in that interval,

The limiting curve is therefore the stretch 1 < a; < 2 on the axis of x. The n**

curve of approximation lies above this stretch and, by the above inequality, at a

distance of less than from the limiting curve, throughout the whole of the

interval 1 < x< 2 . For large n's, the distance all along the curve is therefore

very small.

In this case, therefore, matters are much as we should expect; the position is

entirely altered if we consider the same series in the interval < x < 1 . We
still have lim sn (x) = at every point of this interval 4

,
so that the limiting

curve is the corresponding poition of the a;- axis. But in this case the

n**1

approximation curve no longer lies close to the limiting curve through-

out the interval, for any n (however large). For #== ,
we have always

sn (a:)
=

,
so that, for every n, the approximation curve in the interval from

t

to 1 has a hump of height ~ ! ! The graph of the curve y = S4 (x) has the
2

following appearance:

Fig. 4.

4 In fact, for x> we have < sn (x) < as before, i. e. < e for
n x

every n > ;
for x , sn (x)

= even permanently.X
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), however, corresponds more nearly to the following graph:

Fig. 5.

For larger n's, the hump in question without diminishing in height be-

comes compressed nearer and nearer to the ordinate-axis. The approximation

curve springs more and more steeply upwards
5 from the origin to the height ,

Ci

which it attains for x , only to drop down again almost as rapidly to
n

within a very small distance of the a; -axis.

The beginner, to whom this phenomenon will appear very odd, should

take care to get it quite clear in his mind that the ordmates of the approxima-
tion curves do nevertheless, for every fixed x, ultimately shrink up to the point
on the tf-axis, so that we do have, for every fixed x, lim sn (x) = 0* If x is

given a fixed value (however small), the disturbing hump of the curve y=sn (x)

will ultimately, i. e. for sufficiently large w's, be situated entirely to the left of

the ordinate through x (though still to the right of the y-axis) and on this

ordinate the curve will again have already dropped very close to the a;- axis*.

Therefore the convergence of our series will be called uniform in the

interval 1 < x< 2 , but not in the interval < x < 1 .

We now proceed to the abstract formulation: Suppose 2fn (x)

possesses an interval of convergence /; it is convergent for every indiv-

idual point of /, for instance at X = XQ \ this means that if we write

F(x) = sw (#) + rn (
x
]
and assume > arbitrarily given, there is a

number nQ such that, for every n > n ,

Of course the number nQ, as was already emphasized (v. 10, rem. 3), de-

pends on the choice of e. But nQ now depends on the choice of X
Q also.

In fact for some points of / the series will in general converge more

6 At the origin, its slope is sn '(Q)
= n.

8 If we take, say, x =
y^r~

and n = 1000000, the abscissa of the highest

point of the hump is
ffinnftflft'

and at our point * the curve has already dropped

to a height < .
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rapidly than for others 7
. By analogy with 10, 3, we shall therefore

write w = w (e,a: );
or more simply, dispensing with the index and

with the special emphasis on the dependence on e, we shall say:

Given e > and given x in the interval /, a number n (x)
can always

be assigned, such that for every n > n (x) ,

If we now assume n(x) still for the definite given e chosen,

say as an integer, as small as possible, its value is then uniquely

defined by the value of x; as such it represents a function of #. In a

certain sense, its value may be considered as a measure of the rapid-

ity of convergence of the series at the point x. We now define as

follows:

191. Definition of uniform convergence (1
st

form). The series 2fn (%)

convergent in the interval f, is said to be uniformly convergent in the

sub-interval ]' of /, if the function n(x) defined above is bounded in /',

for each value 8
of e. Supposing we then have n (x) < N in /

this N will of course depend on the choice of c, like the numbers

n(x) themselves we may also say:

2 nd
(principal) form of the definition. A series 2fn (x), con-

vergent in the interval J, is said to be uniformly convergent in a

sub-interval /' of /, if, given e, a single number N= N(e) can be

assigned independently of x, such that

not only (as formerly) for every n>N, but also for every x in /'.

We also say that the remainders rn (x) tend uniformly to in /'.

Illustrations and Examples.

1. Uniformity of convergence invariably concerns a whole interval, nevei

an isolated point
9

.

2. A series 2 fn (x) convergent in an interval / does not necessarily con-

verge uniformly in any sub-interval of /.

3. If the power series 2 an (x X )
n has the positive radius r and if

the series is uniformly convergent in the closed sub-interval /' of

7 The student should compare, for instance, the rapidity of convergence
of the geometric series 2xn

(i.
e. the rapidity with which the remainder diminishes

1 99
as n increases) for the values 3 = -^ and 05 = ^^^.IUU 1UO

8
If, that is to say, the above-mentioned measure of the rapidity of con-

vergence evinces no unduly great irregularities in the interval /'. In par-
ticular cases /' may of course consist of the complete interval /.

9 More generally, it may have reference to sets of points more than finite

in number.
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its interval of convergence, defined by < x x < + Q. In fact
,
as the point

x *=
#Q-}- lies m tne interior of the interval of convergence of the power series,

the latter is absolutely convergent at that point. But if 2an Q
n

converges
absolutely, we can, given e ;> 0, choose N=N(e) so that for every n> N

I +i \-e
n+ *

-f I *+2
1 -e

n -M
-h <.

Also, since |a5 xQ \<Q for every a; in /', we have

Thus for n ^> N, we certainly have
|
rn (x) \ O> whatever the position of x in

/' may be .

The result we have obtained is as follows

o Theorem. A power series 2an (x~x )
n

of positive radius r converges uni-

formly in every sub-interval of the form
\
x X

\

< Q < r of its interval of con-

vergence.

4. The above example enables us to make ourselves understood, if we
formulate the definition of uniform convergence a little more loosely, as follows:

2 fn (x) is said to be uniformly convergent in J', if it is possible to make a

statement about the value of the remainder, in the form "\
rn (x) \ < *", valid for

all positions of x simultaneously.

5. The series 2-5 is uniformly convergent for every value of x\
n=l

*

for, whatever the position of x may be,

~

whence the rest may be inferred by 4.

(>. The geometric series is not uniformly convergent in the whole interval

of convergence - 1 < x < -|- 1. For

however large N may be chosen, we can always find an rn (x) with n "> N and
< x < 1, for which e. g. rn (x) > 1.

If, for instance, we choose any fixed n > Nt
then as x -> 1 we have

xn+i

Hence rn (x) > 1 for all x in a definite interval of the form x < x < 1.

7. The above clears up the meaning of the statement : Sfn (x) is not uni-

formly convergent in a portion J' of its interval of convergence. A special value

of e, say the value e<j > 0, exists, such that an index n greater than any assigned

N may be found, so that the inequality |
rn (x) |

< e is not satisfied for some suit-

ably chosen x in J' .

8. With reference to the curves of approximation y = sn (x) t our definition

clearly implies that, with increasing n t the curve should lie arbitrarily close to the

limiting curve throughout the portion which lies above J'. If, for any given e > 0,

we draw the two curves y = F (x) e, the approximation curves y = sn (x) will

ultimately, for every sufficiently large n, come to he entirely within the strip bounded

by the two curves.
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9. The distinction between uniform and non-uniform convergence, and the

great significance of the former in the theory of infinite series, were first re-

cognized (almost simultaneously) by Ph. L. v. Seidel (Abh. d. Mimch. Akad.
r

p. 383, 1848) and by G. G. Stokes (Transactions of the Cambridge Phil. Soc.,
Vol. 8, p. 533. 1848). It appears, however, from a paper by K. Weierstrass, un-

published till 1894 (Werke, Vol. 1, p. 67), that the latter must have drawn the

distinction as early as 1841. The concept of uniform convergence did not
become common property till much later, chiefly through the lectures of

Weierstrass.

Other forms of the definition of uniform convergence.

3 rd form. 2fn (x) is said to be uniformly convergent in J
f

^f )

in whatever way we may choose the sequence
10

(xn) in the interval J\
the corresponding remainders

invariably form a null sequence11
.

We can verify as follows that this definition is equivalent to the

preceding:

a) Suppose that the conditions of the 2 nd form of the definition are

fulfilled. Then, given e, we can always determine N so that
|

rn (x) \

< 6

for every n > N and every x in /'; in particular

I

rn(xn) I
< e *or every n> N;

hence rn (xn)-+0.

b) Suppose, conversely, that the conditions of the 3 rd form are ful-

filled. Thus for every (o;n) belonging to /' , rn (xn )
* . The conditions

of the 2 nd form must then be satisfied also. In fact, if this were not

the case, if a number N= -^(e) with the properties formulated there

did not exist for every e > , this would imply that for some

special e, say e = , no number N had these properties; above any
number N, however large, there would be at least one other index n such

that, for some suitable point x = xn in /', |
rn (xn) \

^ e . Let n
li
be an

index such that
|

rn (xn ) |
^ s . Above n l there would be another index

2 ,
such that

|

r
n2 (xn^ \

^ e for a suitable corresponding point xn^ and

so on. We can choose (xn) mj' so that the points xn ,
xn^ . . . belong to

(xn), in which case

10 The sequence need not converge, but may occupy any position in./'.
11 Should each of the functions

|
rn (x) \

attain a maximum in J't we may
choose xn in particular so that

|
rn (xn) \

= Max
|
rn (x) \ ; our definition thus takes

the special form: Zfn (x) is said to be uniformly convergent in /' if the maxima
Max

|
rn (x) \

inJ' form a null sequence.

If the function
|
rn (x) \

does not attain a maximum in _/', it has, however, a

definite upper bound /iw . We may also formulate the definition in the general form:

Form 3 a. 2fn (x) is said to be uniformly convergent in J' if pn -> 0. (Proof?)
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will certainly not form a null sequence, contrary to hypothesis. Our assump-
tion that the conditions of the 2nd form could not be fulfilled is inadmissible;

the 3rd form of the definition is completely equivalent to the 2nd .

In the previous forms of the definition, it was always the remainder

of the series which we estimated, the series being already assumed to con-

verge. By using portions of the series instead of infinite remainders (v. 81)

the definition of uniform convergence may be stated so as to include that

of convergence. We obtain the following definition :

4th form. A series Efn (x) is said to be uniformly convergent in the

interval /' if, given s > 0, we can assign a number N = TV (e) depending

only on e, and independent of x, such that

for every n > N, every k^.1 and every x in /'. For if the conditions of

this definition are satisfied, then it follows firstly (by 81) that fn (x)

converges for each fixed x iny'. In the inequality, we may make k tend

to QO, and we find that
|

rn (x) \
^ e for each x in J'. Conversely, if

|

rn (x) |
<g s for all n > N and all x in /', then for all these n, all k ^> 1,

and all x in /', we have

l/n+i (x) + +fn+k (x) |

-
|
rn (x)

- rn+k (x) I ^ 2 .

This shows, however, that if the series Hfn (x) satisfies the conditions of

the 4th form, it also satisfies those of the 2nd form, -and conversely. We
may finally express this definition in the following form (cf. 8 la):

5th form. A series Sfn (x) is said to be uniformly convergent in the

interval J' if,
when positive integers kly k2 ,

&3 ,
. . . and points x^ x

2J
#a,

. . .

ofJ' are chosen arbitrarily, the quantities

[/nfl (*n) +/n+2 (*n) + +/nf/rn (*n) ]

invariably form a null sequence
12

.

Further Examples and Illustrations.

1. The student should examine afresh the behaviour of the series Zfn (x), with 192*

a) in the interval 1 < x < 2,

b) in the interval ^ x 5^ 1 (cf. the considerations on pp. 330 1).

2. For the series

1 + (x
-

1) + (x*
-

x) + - + (x
n - xn

~l
) +.

12 By 51, we might even write C/^+i (*) + . . . +Aw+*n (*n)] for the above,

where the vn's are any integers tending to + <. Exactly as in 81, we may speak

of a sequence of portions, except that here we may substitute a different value of x

in each portion. The statement we then obtain is: A series 2fn (x) is said to be

uniformly convergent in J' if every sequence of portions of the series forms a null

sequence. Similarly: A sequence offunctions sn (x) is said to be uniformly conver-

gent inj' if every difference-sequence is a null sequence.
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we have obviously sn (x) = xn . The scries accordingly converges in the inter

val /: 1 < x < -f- 1 ,
in particular in the sub-interval /': < x < 1 . Here

F(x)
= for < x< I .

= 1 for x = 1 .

The convergence in this interval is not uniform. It is not so even in /":< x < 1
;
for here rH (x) = F(x) sn (x)

= xn . We have only to choose in /"
(hence in /') the sequence of points

x =1- (n=l 2 )n n \ 1 9 )

I 1 V 1
to have rn (xn) I 1

)
*

,
so that the series cannot converge uni-

\ n I e

formly 13
. This may be made clear geometrically by examining the position

of successive curves of approximation, as illustrated by the accompanying
figure :

For large values of n
,
the curve y ~ sn (x)

remains, almost throughout the whole interval

quite close to the #-axis, which represents the

limiting curve. Just before the ordmate as = +l,
it rises abruptly until it reaches its terminal

point (1, 1). However large a value may be

assumed for n, the curve y = sn (x) will never

remain close to the limiting curve throughout
the entire l* intervaly (or./').

3. In the preceding example, we could

almost expect a priori that the convergence
would not be uniform, as F(x) itself has a

"jump" of height 1 at the endpoint of the interval.

The case was different with the example treated

on p. 330. An example similar to the latter, but even more striking, is the

following: Consider the series for which

Fig. 6.

nx
(11=1,2,...).

For a! = 0, we have sn (0)
=

,
for every n\ for x =)= ,

the number e~~~*
x*

is

positive and less than 1, so that (by 38,1) sn (x) *0. Our series is therefore

convergent for every x and its sum is F(a;) = 0, i. e. the limiting curve coin-

cides with the a; -axis. The convergence is not in the least uniform, however,

if we consider an interval containing the origin. Thus, for xn = rr=-

V"
'

which certainly does not -> . The approximation curves have a similar

For xn = f 1
g-J

, we even have rn (xn) -+ 1 .

14 In spite of this, it is easy to see that for every fixed x (in < x < 1)

the values sn (x) diminish to as n increases, so that the abrupt rise to the

height 1 occurs to the right of x, however near x may be taken to + 1, provid-
ed only that n is chosen sufficiently large.
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appearance to those m Figs. 4 and 5, with this modification, that the height of

the hump now increases indefinitely with n ; this is because 15

~+ -r-OO.

4. We i mst emphasize particularly that uniform convergence does not

require each of the functions fn (x) to be individually bounded. The series

L_ 1 4- a; -f x
2 + ,

for instance, is uniformly convergent in < x <i -~- ,
with

x '

the sum ., j^ ., since the remainders have the value

xn

\-x ==
t2n-l

The first term of this series (as also the limiting function) is not bounded in

the interval in question. (Cf., however, theorem 4. below.)

With a view to calculation with uniformly convergent series, it

is convenient to formulate the following theorems specially, although
the proofs are so simple that we may leave them to the reader:

Theorem 1. // the p series 2fn ^ (x), 2 fn2 (x), . . ., 2fnp (x) are,

simultaneously, uniformly convergent in the same interval J, (p is a

definite whole number), the series 2 fn (x) for which

is also uniformly convergent in that interval, if c19 ca , . . ., c denote

any constants. (I. e.: Uniformly convergent series may be multiplied

by constant factors and then added term by term?)

Theorem 2. // 2fn (x) is uniformly convergent in J, so is the

series 2g(x}fn (x), where g(x) denotes any function defined and bounded

in the interval /. (I. e.: A uniformly convergent series may be multi-

plied term by term by a bounded function.)

Theorem 3. // not merely 2fn (x), but H\fn (x}\ is uniformly

convergent in /, then so is the series 2gn (x)fn (x), provided that when m
is suitably chosen, the functions gm^\(x], gm+*(x), ..., are uniformly
bounded in J, i. e. provided we can find an integer m > and a

number G > such that
\ gn (x) \

< G for every x in J and every n > m.

(7. e.: A series which still converges uniformly when its terms are taken

in absolute value may be multiplied term by term by any functions
all but a finite number of which, at most, are uniformly bounded
in J.)

15 The point for which x ~ is actually the maximum point of the curve
v*

y sn (x), as may be inferred from s'n (n n9 x2
)
e~~ * nx = .
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Theorem 4. If Sfn (x) converges uniformly in /, then for a suitable

m the functions fm+l (x), fm+2 (x), . . . are uniformly bounded in J and con-

verge uniformly to 0.

Theorem 5. If the functions gn (x) converge uniformly to inj, so

do the functions yn (x) gn (x\ where the functions yn (x) are any functions

defined in J and with the possible exception of a finite number of them

uniformly bounded in J.

We may give as a model the proofs of Theorems 3 and 4:

Proof of Theorem 3. By hypothesis, given e > 0, we can de-

termine nQ > m so that for every n > and every x in Jy

For the same n's and #'s we then have

|ft+i/.+i + I
5S

I g.+i I |/.+i I + < G (!/ ,-i I + . .
.) < e.

This proves all that was required.

Proof of Theorem 4. By hypothesis, there exists an m such that,

for every n ^ m and every x in y, |

rn (x) \

< \. Hence for n > m and

every x in /,

I/. (*) I

=
I
r.-i (*)

- rn (x) |
^

|
r.-!

|
+

|

rn
|
< 1,

which proves the first part of the theorem. If we now choose nQ > m so

that for every n ^ nQ and every x in J, |

rn (x) |
< i e, (e being previously

assigned) the second part follows in quite a similar way.

v -**

47. Passage to the limit term by term.
^ *

Whereas we saw on pp. 328 9 that the fundamental properties of

the functions fn (x) do not in general hold for the function F (x) repre-

sented by 2fn (x), we shall now show that, roughly speaking, this mil

be the case when the series is uniformly convergent
16

.

We first give the following simple theorem, which becomes particularly

important in applications:

193. Theorem 1. // the series 2fn (x) is uniformly convergent in an

interval and if its termsfn (x) are continuous at a point xn of this interval^ the

function F (x) represented by the series is also continuous at this point
17

.

16 We may, however, mention at once that uniform convergence still only

represents a sufficient condition in the following theorems and is not in general

necessary.
17 If x is an endpoint of the interval y, only one-sided continuity can of course

be asserted at XQ for F (x), but of course only the corresponding one-sided con-

tinuity need be assumed at x for /n (x).
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Proof. Given s > 0, we have (in accordance with 19, Def. 6b)
to show that a number d = d (e) > exists such that

|
F (x) F (x ) |

< e for every x with
|
z XQ \

< 8

in the interval. Now we may write

F(x)
-

F(* )= sn (x)
-sM + rn (x)

- rn (xQ).

By the assumed fact of uniform convergence, we can choose n = m so

large that, for every x in the interval,
|

rm (x) \

< . Then

The integer m being thus determined, sm (x)
is the sum of a fixed

number of functions continuous ata?
,
and is therefore (by 19, Theorem 3)

itself continuous at X
Q . We can accordingly choose 6 so small that

for every x in the interval for which )# XQ \
< (5, we have

For the same x's we then have

which establishes the continuity of F(x) at a; .

Corollary. // 2fn (x]
= F(s) is uniformly convergent in an interval,

and if the functions fn (x\ are all continuous throughout the interval,

then so is F(x).
'

In connection with example 3 of 191,2, we have in the above a fresh

proof of the continuity of the function represented by a power series in its in-

terval of convergence.

If we use the lim-defmition of continuity (v. 19, Def. 6) instead

of the e- definition, the statement of the theorem may be put into the

form:

"m (jyn (X))
n=0

In this form it appears as a special case of the following much more
elaborate theorem:

Theorem 2. We assume that the series F(x) = ^fn (x) is uni- 194.
n=o

formly convergent in the open interval 18 x . . . xl
and that the limit,

when x approaches XQ from the interior of the interval 19
,

lim /(*) = *

18 XQ may be > or < #, . Whether the series remains convergent at a? ,

and indeed whether the functions fn (a;)
are defined there at all, is immaterial

for the present theorem.
19 We are therefore concerned here, as also in the two subsequent state-

ments, with a one-sided limit.
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00

exists. The series 21 a n
^en converges and\imF(x), when x+x in

n o

the above manner, exists. Moreover, if we write 2an
= A , we have

lim F(a) A,

or, otherwise,

n=0

(The latter form is expressed shortly by saying: In the case of uni-

form convergence , we may proceed to the limit term by term.)

Proof. Given e > 0, first choose w , (v. 4th form of the defini-

tion 191) so that for every n > x , every k ^> 1 and every x in our

interval,

Let us for the moment keep n and k fixed, and make x+x . By
19, Theorem la, it follows that

And this is true for every n > n and every & ^> 1. Hence 2 an is

convergent. Let us denote the partial sums of this series by A n and

its sum by A. It is easy to see now that F(x) >A. If, for a given e,

nQ is determined so that, for every n > w , we not only have

then, for a (fixed) m > n ,

|F(*)-4|

=
!(*.(*)

- AJ ~(A- ^+rm (x)\^\sm (x)
- A m \ +-5-

As a; *-a? involves 5m (a?)
>^4m , we can determine 5 so that

for every x belonging to the interval, such that <
|

x XQ \
< d .

For these a;
f

s, we then also have

\F(x)-A\<*,

which proves all that we required.
If

(o;n) is chosen arbitrarily in the interval of uniform convergence, it

follows from

and n, (a?n) -* (v. 191, 3rd form) that the sequences F(xn) and sn (xn) will in-

variably exhibit the same behaviour as regards convergence or divergence, and
that if they converge, the limits will coincide. We may contrast this with the case
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of the series, already seen to be non-umformly convergent, whose partial sums

are sn (x) -r~ir~ir~* If here we take xn ,
we have F (xn)

=
0, i. e. it is con-

vergent with the limit 0, whereas sn (xn) J, i. e. it also converges, but with the

limit J. The two sequences do not have the same behaviour.

Theorem 3. The series F(x) = Efn (x) is assumed uniformly con- 195.

vergent in the interval/, and all the functions fn (x) are supposed integrable
over the closed sub-interval /': a ^ x ^ b, so that F (x) is also continuous

in that sub-interval. Then F (x) is also integrable over J' and the integral of

F (x) over the interval/' may then be obtained by term-by-term integration, i . e.

b b b

F(x)dx or f\Vfn (x)}dX = S [//(J L n=0 J 7i-0 '-'
a a a

(More precisely: The series on the right hand side is also convergent and

has for its sum the required integral of F (x).

Proof. Given s > 0, we determine m so large that for every n > m
and every x in a ... b,

fJ

Since sm (x) is the sum of a finite number of integrable functions, it is

itself integrable over/'. By 19, theorem 11, we can therefore divide

the interval J' into p parts t
l9

i2 , . . .
, ij>

such that, if ov denotes the oscil-

lation of sm (x) in it, ,
we have

<
*=i

Now the oscillation of rm (x) is certainly < 2 ?7, 1:~S > ky t^ie manner 'n

which m was determined. Also the oscillation of the sum of two functions

is never greater than the sum of the oscillations of the two functions. So

for the same subdivision il9 i2 ,
. . . ,

iv of the interval a . . . b, we have

iv < e,

where vv denotes the oscillation of .F (x) in *" . Thus (again by 19, theorem

11) F(x) also is integrable over/'. Furthermore, as F = sn + rn> we have,

for every n^m,
b b b

fF(x)dx- fsn (x)dx =
frn (x)dx <-J<c f

a a a

the latter by 19, theorem 21. Now sn (x) is the sum of a finite number

of functions; applying 19, theorem 22, we therefore at once obtain

b b

f F(x)dx- E
ff(x)d

a
~~

a

(061)
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b

Tliis, however, implies the convergence of 2 J fv (x)dx and the iden-
a

tity of its sum with the corresponding integral of F(x).
Matters are not so simple in the case of term-by-term differen-

tiation.

In 190, 7, we saw, for instance, that the series

converges for every #, and so represents a function F(x) defined for every
real x. The terras of this series are, without exception, continuous and dilfer-

entiable functions. If we differentiate term by term, we obtain the series

00

2 cos n x
,

n = l

which is divergent
20 for every x. - Even if a series converges uniformly

for every x, as for instance the series

(cf. Kxample 5, 191, 2), the position is no better, since on differentiating term

by term we obtain

V cos n x

~i n

a series which diverges e. g. for x = Q.

The theorem on term-by-term differentiation must accordingly be

of a different stamp. It runs as follows:

CO

196. Theorem 4. Given 21 a series E fn (x) whose terms are differen-
n=0

liable in the interval /= a . . . b y (a < b); if the series

1 /;'(*).
n=0

deduced from it by differentiating term by term, converges uniformly
in /, then so does the given series, provided it converges at least at

one point of J. Furthert if F(x) and (p(x)are the functions represented

by the, two series, F(x) is differentiablef and we have

*(*)-?(*).

In other words, with the given hypotheses, the series may be differ-

entiated term by term.

20 The formulae established on p. 357 give, for every x
={=

2 k JT,

1
sin +!

jr- -f cos x+ cos 2 x + + cos n x=
2 '

21 As regards the convergence of the series, no assumption is made in

the first instance.
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Proof, a) Let c denote a point of / (existent by hypothesis) for

which 2fn (c) converges. By the first mean value theorem of the

differential calculus
( 19, theorem 8)

2 (/,(*)- (<))
= (*- c)' 2 //(),

v=n+l r-n + l

where f denotes a suitable point between x and c. Given e > 0, we

can, by hypothesis, choose n so that for every n > nQ , every k ^> 1,

and every x in J,

6 a
'

Under the same conditions, we therefore have

< e.
n+fc

27 (
r=n H

This shows that 2(fn (x) fn (c)),
and hence Sfn {x) itself, is uniformly

convergent in the whole interval / and accordingly represents a de-

finite function F(x) in that interval.

b) Now let XQ be a special point of / and write

A(*o + A)-A.(*o) =
gy(/t)> (,,

= 0,1,2,...).

These functions are defined for every h^O for which XQ -f- & belongs
to /. As above, we may write

n + ls n+fc

27 ^ (*)
= 27 /;'(* + **) (o < * < i)

r=fl y=+l
and we find, as in

a),
that w

27 ^nW
n=0

converges uniformly for all these values of h. This series represents
the function

h

By theorem 2, we may let h >0 term by term, and we conclude that

F*
(
x
o)

exists> Wlt^

^(*o) = 270 ft, (*))
=

n=0 A->0 n=0

This signifies that F*(x )
= q>(x ),

as asserted.

Examples and Remarks.

1. If an (x xj* has the radius f>0 and if < ^ < r, the series

(a? sfy)*""
1
converges uniformly for every

|

x x
\

< Q. By theorem 4, the

given power series accordingly represents a function which is differentiable for

every \x XQ \<Q. For any particular x, with \x #
|
< r, which we may

choose to consider, we can determine p < r so that
|

x X
\
<C g < r. The



344 Chapter XI. Series of variable terms.

function represented by 2an (x-~x )
n therefore remains differentiable at every

point of the open interval
|
x x

|
< r.

2. The function represented by ^-- is differentiable for every x

and its derived function is -
^

. (Cf, Example 5, 191, 2.)

n = l
n

3. The condition of uniform convergence is certainly sufficient in all

four theorems. But it remains questionable whether it is also necessary.

a) In the case of the continuity-theorem 1 or its corollary, this is cert-

ainly not so. The scries considered in 192, 2 and 4 have everywhere-con-
tinuous terms and represent everywhere-continuous functions themselves. Yet
their convergence was not uniform. The framing- of necessary and sufficient

conditions is not exactly easy. S. ArzelA (Rendiconti Accad. Bologna, (1), Vol. 19,

p. 85. 1883) was the first to do so in a satisfactory manner. A simplified

proof of the main theorem enunciated by him will be found in G. Vivanti

(Rendiconti del circ. matem. di Palermo, Vol. 30, p 83. 1910). In the case in

which the functions / (x) are positivet
it has been shown by V. Dim that uni-

form convergence is also necessary for the continuity of F(x). Cf. Ex. 158.

b) The fact that in theorem 195 on term-by-term integration uniform

convergence is again not a necessary condition may also be verified by various
CO

examples. Taking the series fn (
x
)

discussed on pp. 330-1, whose partial
n=i

sums are
. nx

and whose sum is F(a?) = 0, we see at once that

v=l00
Thus term-by-tcrm integration leads to the correct result. In the case of the

i

series 192,3, however, in which we also have J F(x) dx = 0, term-by-term
o

integration gives, on the contrary,

In this case, therefore, term-by-term integration is not allowed.

48. Tests of uniform convergence.

Now that we are acquainted with the meaning of the concept
of uniform convergence, we shall naturally inquire how we can de-

termine whether a given series does or does not converge uniformly
in the whole or a part of its interval of convergence. However
difficult it may be and we know it often is so to determine

the mere convergence of a given series, the difficulties will of course

be considerably enhanced when the question of uniform convergence
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is approached. The lest which is the most important for applications, be-

cause it is the easiest to handle, is the following:

Weierstrass9
test. // each of the functions fn (x) is defined and 197.

bounded in the interval /, say

throughout J and if the series 2yn (of positive terms) converges, the

series 2fn (*t) converges uniformly in J.

Proof. If the sequence (#n) is chosen arbitrarily in /, we have

By 81, 2, the right hand side *0 when n *oo; hence so does

the left. By 191, 5 th form, 2 fn (x)
is therefore uniformly conver-

gent in /.

Examples.

1. In the example 191, 3 we have already made use of the substance of

Weierstrass* test.

2. The harmonic series Jj? ,
which converges for x>1, is uniformly

convergent on the semi-axis #>l + <5, where d is any positive number. In

fact, for such s's,

1 < 1

where 2yn converges. This proves the statement.

The function represented by the harmonic series known as Riemann's

^-function and denoted by (a) is therefore certainly continuous for every
2a

x> 1.

3. Differentiating the harmonic series term by term, we deduce the series

This again is uniformly convergent m#^>l-|-<5>l. In fact, for every suffi-

logn

n 6

we then have
1 log n 1

<C 7T~

ciently large n, -<1 (by 38,4); for these n's and for every #>

n

Riemann's f-function is accordingly difFerentiable for every x > 1, and its derivative

is represented by the series (*).

4. If 27 an converges absolutely, the series

2 an cos n x and 2 an sin n x

are uniformly convergent for every x, since e. g. |
an cos n x

\ ^ an = yw . These
series accordingly define functions continuous everywhere.

In spite of its great practical importance, Weierstrass* test will

necessarily be applicable only to a restricted class of series, since it

22 In fact, if we consider a special x > 1, we can always assume 8 > chosen

so that x > 1 + 8.
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requires in particular that the scries investigated should converge

absolutely. When this is not the case, we have to make use of more

delicate tests, which we construct by analogy with those of 43. The

most powerful means for the purpose is again Abel's partial summation

formula. On lines quite similar to those already followed, we first ob-

tain from it the

00

198. Theorem. A series of the form 2 an (
x}'^n(x} certainly converges

n-^O

uniformly in the interval /, if, in /,

00

1) 2jA v -(bp bv+1 )
is uniformly convergent (as a series) and

v=0

2) (A n -6n + 1)
is uniformly convergent (as a sequence)

2*.

Here the functions A n
= A n (x) denote the partial sums of 2 an (x).

Proof. As formerly we have merely to interpret the quant-
ities av , b

v
and A

v
as no longer numbers, but functions of a; we

first have

n+k n+fc

2*, \= 2A r -(br -br^) + (An+t .bn+1l+1 -An .bn+1 }.
v^n-t-1 r=n+l

Letting x and k vary in any manner with n, we have on the left z

sequence of portions

of the series 2 a
v
bv , and on the right the corresponding one relative

to the series 2A v (bv &y+1),
and a difference-sequence of the sequence

G^n'^n+i)' Since by hypothesis the latter sequences always tend to

(v. 191, 5 th
form), it follows that so does the sequence on the left.

This (again by 191, 5), proves the statement

Exactly as in 43, the above theorem, which is still very general

in character, leads to the following more special, but more easily man-

ageable tests 24
:

1. Abel's test. 2 a
v (x) b

v (x} is uniformly convergent in /,

if 2av (x) converges uniformly in /, if further, for every fixed value

of x, the numbers bn (x) form a real monotone sequence
25 and if, for

23
fln ,

bn ,
An are now always functions of x defined in the interval /; only

for brevity we often leave the variable x unmentioned. For the notion of the

uniform convergence of a sequence of functions cf. 190, 4.

24 For simplicity's sake, we name these criteria after the corresponding ones

for constant terms. Cf. p. 315, footnote 8.

25 Cf. footnote to 184, I.
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every n and every x in J, the functions bn (x) are less in absolute

vahie than one and the same number 28 K.

Proof. Let us denote by an (x) the remainder corresponding to
oo

the partial sum A n (x); i.e. av (x]
= A n (x) + #(#) In the formula

n=o
of Abel's partial summation, we may (by the supplement 183) sub-

stitute u for A r , and we obtain

n\-k

2 <V&,= - 2 <*

v=n M v=n+ 1

it therefore again suffices to show that both 2a
v (bv b

v + l )
and

(an -&n + 1 ) converge uniformly in /. However, the#n (#/s, as remainders

of a uniformly convergent series, tend uniformly to and the bv (xjs
remain < K in absolute value for every x in /; it follows that (an 'bn + 1 )

also converges uniformly to in /. On the other hand, if we con-

sider the portions
n\-k

we can easily show that these tend uniformly to in /, thereby

completing the proof of the uniform convergence in / of the series

under discussion. In fact, if av denotes the upper bound of av (x) in /,

-*() (v.
form 3 a). Thus if f% is the largest of the numbers &n + l9

n+l

\Tn \< V 2\bv
-

6, +1 | ^ vl&.-M -
v=n+l

involves the fact that T"n *0 uniformly in /.

00

2. Dirichlet's test. J a^ (a;)-
6n (x) is uniformly convergent in /,

n-O

t'/
^^ partial sums of the series 2 an (x) are uniformly bounded 26 in f

and if the functions bn (x) converge uniformly to in J, the conver-

gence being monotone for every fixed x.

Proof. The hypotheses and 192, 5 immediately involve the

uniform convergence (again to 0) of (A n 'bn + :L). If, further, K' denotes

!ft The bn (x)'s form, for a fixed x
}
a sequence of numbers bQ (x), 6 (#), . . . ;

for a fixed n, however, bn (x) is a function of x, defined in /. The above as-

sumption may, then, be expressed as follows: All the sequences, for the various

values of x, shall be uniformly bounded with regard to all these values of x\
in other words, each one is bounded and there is a number K which is

simtdtaneously a bound above for them all. Or again: All the functions defined

in / for the various values of n shall be uniformly bounded with regard to

all these values of n\ i. e. each function is bounded, and a number J\ exists

which simultaneously exceeds them all in absolute value.
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a number greater than all the |^4 n (a;)|'s
for every x 9 we have

n+ k n+k
2j I

bv bv+l |
<* K -\bn + le+1 bn + l \

r=n+l

In whatever way x and & may depend on n, the right hand side will

tend to by the hypotheses, hence also the left. This proves the uni-

form convergence in / of the series under consideration.

The monotony of the convergence of bn (x) for fixed x has only
been used in each of these tests to enable us to obtain convenient

upper estimations of the portions 2\by bv + l \. By slightly modifying
the hypotheses with the same end in view, we obtain

3. Two tests of du Bois-Reymond and Dedekinrt.

a) The series 2 av (x) b
v (x) is uniformly convergent in J, if both

2 av and 2
\

bv &v+ i
| converge uniformly in J and if, at the same

time, the functions bn (x) are uniformly bounded in /.

Proof. We use the transformation

n+k n+k

As the remainders ccy (x) now converge uniformly to 0, we have, for

every v > m, say, and every x in /, | <*(#)! < 1. Hence for every
n ;> m,

n+k n\-k

^ 2\b,-b, +l \;
r=n-fl

the expression on the right even if x and k are made to depend
on n, in any manner now tends to as n increases, hence so

does the expression on the left. That #M -&nfl tends uniformly to

in / follows, by 192, 5, from the fact that an (x) does and that the

6n (oj)'s
are uniformly bounded in /.

b) The series S av (x) bv (x) is uniformly convergent in J if the

series S\bv bv+1 \ converges uniformly in Jy and the series 27 av has uni-

formly bounded partial sums, provided the functions bn (x) -> uniformly

in J.

Proof. From the hypotheses, it again follows at once that An bn Hl

converges uniformly (to 0) in /. Further, if K' once more denotes a

number greater than all the |^ n ()|'s for every x,

n+k
'-Sl&r-W
vn+l

whence, on account of our present hypotheses, the uniform conver-

gence in / of the series 2 Av (bv &
y + 1) may at once be inferred
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Examples and Illustrations.

1. Tn applications, one or other of the two functions an (x) and bn (x) 199.
\vill often reduce to a constant, for every n\ it will usually be the former.

Now a series of constant terms 2 av must, if it converges, of couisc be re-

garded as uniformly convergent in every interval; for, its terms being independent
of #, so are its portions, and any upper estimation valid for the latter is

valid ipso facto for every x. Similarly the partial sums of a series of constant

terms 2ay ,
if bounded, must be accounted uniformly bounded m every interval^

2. Let (an)
be a sequence of numbers with -T n convergent, and let

bn (x)
= x n

. The series 2an x
n

is uniformly convergent in < x < 1 ,
for the

conditions of AbeV test are fulfilled in this interval. In fact, 2an ,
as re-

marked in 1., is uniformly convergent; fuither, for every fixed x in the inter-

val, (x
n
)

is monotone and
|

zn
|

< 1. By the theorem 194 on term-by-terin

passage to the limit, we may therefore conclude that

lim (2an x") = (lim an x
n
), i. e.

This gives a fresh proof of Abel's limit theorem 100.

3. The functions bn (x)
=- - also form a sequence bounded uniformly

in / (namely, again < 1), and monotone for every fixed x. Hence, as above,
we deduce that

" -*..

if 2 an denotes a convergent series of constant terms. (Abel's limit theorem
or Dinchlet series.)

4. Let an (x) cos n x or =sinng, and &() = -, >*0. The series
nn

v5! / N t / N vi cos nx \i sm M x
i ^ t\\an (x).bn (x)

= - or \]
----_, (a > 0) ,

n=l n-1 n-1 "*

then satisfy the conditions of DiricMet's test in every interval of the form. 27 5 ^
x ;S 2 TT 8, where 8 denotes a positive number < IT.

In fact, by 185,5, the partial sums of 2an (x) are uniformly bounded

in the interval /we may take K --- - \ and bn (x) tends monotonely to 0,

uniformly, because bn does not depend on a:. If (bn) denotes any monotone

null sequence, it follows for the same reason that

,2" bn cos n x and S bn sin n x

are uniformly convergent in the same intervals (cf. 185, 5). All these series

accordingly represent functions which are defined and continuous 28 for every

87 Or in intervals obtained from the above by displacement through
an integral multiple of 2 jr.

28
Every fixed x ={=

2 k n may indeed be regarded as belonging to an inter-

val of the above form, if 8 is suitably chosen (cf. p. 343, example 1, and p. 345,

footnote).

12* (G51)
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x =j= 2 k IT. Whether the continuity subsists at the excluded points x = 2 k TT we
cannot at once determine, not even in the case of the series 27 bn sin n xt although
it certainly converges at these points (cf. 216, 4).

49. Fourier series.

A. Euler's formulae.

Among the fields to which we may apply the considerations developed
in the preceding sections, one of the most important, and also one of the

most interesting in itself, is provided by the theory of Fourier series, and

more generally by that of trigonometrical series, into which we now pro-

pose to enter 29
.

By a trigonometrical series is meant any series of the form

1

2
aQ + 2 (an cos n x + bn sin n x),

w=i

with constant 30 an and bn . If such a series converges in an interval of

the form c^x<c + 2Tr, it converges, in consequence of the periodicity

of the trigonometrical functions, for every real #, and accordingly represents

a function defined for all values of x and periodic with the period 2 TT. We
have already come across trigonometrical series convergent everywhere,

for instance, the series, occurring a few lines back,

^ ~ t ^ .,

.fr-~'
a 0;

B?r~^~'
a 1; etc -

We have never been in a position, so far, to determine the sum of any
of these series for all values of x. It will appear very soon, however, that

trigonometrical series are capable of representing the most curious types

of functions such as one would not have ventured to call functions

at all in Euler's time, as they may exhibit discontinuities and irregularities

of the most complicated description, so that they seem rather to represent

a patchwork of several functions than to form one individual function.

29 More or less detailed and extensive accounts of the theory are to be found
in most of the larger text books on the differential calculus (in particular, that

referred to on p. 2, by H. v. Mangoldt and K. Knopp, Vol. 3, 8th
ed., Part 8, 1944).

For separate accounts, we may refer to H. Lebesgue, Lecons sur les series tngono-
me'triques, Paris 1906, and to the particularly elementary Introduction to the

theory of Fourier's series, by M. Backer, Annals of Math. (2), Vol. 7, pp. 81 152.

1906. A particularly detailed account of the theory is given by E. W. Hobson, The
theory of functions of a real variable and the theory of Fourier series, Cambridge,
2ud ed., Vol. 1, 1921, and Vol. 2, 1926. The comprehensive works of L. Tonelli,

Sene trigonometnche, Bologna 1928, and A. Zygmund, Trigonometrical series,

Warsaw 1935, are quite modern treatments; the little volume by W. Rogostnski,
Fouriersche Reihen, Sammlung Goschen 1930, is particularly attractive and con-

tains a wealth of matter.

80 It is only for reasons of convenience that aQ is written instead of a .
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Thus we shall see later on (v. 210 a) that e. g.

:0 for z = ft:T,'(ft
= 0, 1, 2, ...), but

-x

/ = or x = n
sin n x2j \ _ (2 ft + !)*-!!

=i
I

-
o for 2 2 (ft +

the function represented by this series thus has a graph of the following type:

*

Fig. 7.

Similarly, we shall see (v. 209) that

= for n = ft n, but

^i
^ j|

\t->
'* ~r j

n^O 2 w + X

for 2 ft JT < :r < (2 ft -f- 1) ar, and

= - ~ for

thus the function represented by the series has a graph of the type:

A

- 2ji - .?r

Fig. 8.

In either case, the graph of the function consists of separated stretches

(unclosed at either end) and of isolated points.

However, the circumstance that simple trigonometrical series such

as the above are capable of representing functions which are them-

selves altogether discontinuous and "pieced together", is precisely what
was chiefly responsible for the thorough revision to which the concept
of function, and thence the whole foundation of analysis, came to be

subjected at the beginning of the 19th century. We shall see that

trigonometrical series are capable of representing most of the so-called

"arbitrary functions" 31
;

in this respect, they constitute a far more

powerful instrument in higher analysis than power series.

81 Of course the concept of an "arbitrary function" is not sharply defined.

The term usually denotes a function which cannot be assigned by means of

a single closed, formula (i. e. one avoiding the use of limiting- processes) in terms
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We will mention only incidentally that the range of this instru-

ment is by no means restricted to pure mathematics Quite the con-

trary: such scries were first obtained in theoretical physics, in the

course of investigations on periodic motion, i. e. chiefly in acoustics,

optics, electrodynamics, and the theory of heat; Fourier, in his

Thorie de la chaleur (1822) instituted the first more thorough study
of certain trigonometrical series, although he did not discover any
of the fundamental results of their theory.

What functions can be represented by trigonometrical series and by
what means can we obtain the representation of a given function, sup-

posing this to be feasible?

In order to lead up to a solution of this question, let us first

assume that we have been able to represent a particular function f(x)

by a trigonometrical series convergent everywhere:

On account of the periodicity of the sine and cosine functions,

f(x) is then necessarily periodic with the period 2n, and it is suffi-

cient, therefore, to consider any interval of length 2n. We choose this

interval, for all that follows, to be < x <j 2 n, where one of the end-

points inay, moreover, be omitted.

The function f(x) is then represented in this interval by a con-

vergent series of continuous functions. We know that f(x) may none

the less be discontinuous, although it also will be continuous if the

series in question converges uniformly in the interval For the moment,
we will assume this to be the case.

With these hypotheses, we obtain a relationship between f(x) and
the coefficients a

n
and bn which was conjectured by Euler:

of the so-called elementary functions alone, i. e. in particular, it denotes a

function which is apparently built up from separate portions of simple func-

tions of this type, like the functions given as examples in the text, or the

following, defined for every real x:

for irrational x

x for rational x ,

etc. Cf., however, the "arbitrary" function expressed by means of limiting

processes on p 329, footnote. Not until it was found that even a perfectly

"arbitrary" function such as these could be represented by a single (relatively

simple) expression, as for instance by our trigonometrical series or by other

limiting processes, did any necessity arise for regarding it as being actually
one function, instead of a mere patchwork of several functions.
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Theorem 1. The series 200.

-0-00+ J;(0w cosn& + &w sinna;)6 n=l

is assumed uniformly convergent** in the interval 0<Ja?<l27r, with

the sum f(x). Then for n = 0, 1, 2, ...,

(Euler or Euler-Fourierformulae)
33

.

Proof. As is known by elementary considerations, the following

formulae 34 hold for every integral p and q (^> 0):

a) J cospx-cos qxdx
o

2*

b) / cos px- sin qxdx =
o

V (
=

c) I sin px sin qxdx \
o [

=7i

= for
/> + g

===== JT for p = >
= 2 rc for

/>
= =

o

= for p =j= and p =
for =

Let us multiply the series for
/"(#),

which is uniformly convergent
in 0<^x<^2n, by cospx; by 192,2 the uniformity of the conver

gence is not destroyed, and after performing the multiplication we

may accordingly (v. 195) integrate term by term from to 2n.
We immediately obtain:

.-t

J f(x)cospxdx
'

1 f= V ao J cospxdx for p =6
o

= a / cospx'Cospxdx for ^;

32 In consequence of the periodicity of cos re and sin a;, it is then, ipso

facto, uniformly convergent for every x.

88 This designation is a purely conventional one; historical remarks are

given by H. Lebesgue, loc. cit., p. 23; A. Sachse, Versuch einer Geschichte der

trigonometrischen Reihen, Inaug.-Diss., Gottingen 1879; P. du Bois-Reymond, in

his answer to the last-named paper; as well as very extensively by H. Burk-

hardt, Trigonometrische Reihen und Integrale bis etwa 1850 (Enzyklop. d. math.

Wiss., Vol. II, 1, Parts 7 and 8, 191415).
84 We have only to transform the product of the two functions in the

integrand into a sum in accordance with the known addition theorems,

fe. g. cos p x cos q x = -jr- [cos (/> q) x + cos (p + q) xn ,
in order to be able to

integrate straight away.
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i. e in either case
jt

j f(x)cospxdx;

for the remaining terms give, on integration, the value 0. In the same

way, multiplying the assumed expansion of f(x) by sinpx and then

integrating, we at once deduce the second of Eider's formulae

2 Jt

b
p
= I f(x)s'mpxdx.

The value of this theorem is diminished by the number of

assumptions required to carry out the proof. Also, it gives no indi-

cation how to determine whether a given function can be expanded in

a trigonometrical series at all, or, if it can, what the values of the

coefficients will be.

However, the theorem suggests the following mode of procedure:
Let f(x) be an arbitrary function defined in the interval <[ x <J 2 n,
and integrable in Riemann's sense in the interval. In that case the

integrals in Euler's formulae certainly have a meaning, by 19,

theorem 22, and give definite values for an and bn . We therefore

note that these numbers, exist, on the single hypothesis that f(x) is

integrable. The numbers
-^-

aQ , alf a^, . . . and b13 b 9 ... thus defined

by Euler's formulae will be called the Fourier constants or Fourier

coefficients of the function f(x). The series

-?r &(\ + J? f# cos n x 4- b sin n x)2 ^
n~^ n ^ " '

may now be written down, although this implies nothing as regards
its possible convergence. This series will be called (without reference

to its behaviour or to the value of its sum, if existent) the Fourier

aeries generated by, or belonging to, f(x) 9 and this is expressed

symbolically by

/()~4-

This formula accordingly implies no more than that certain constants

an> bn > have been deduced from f(x) (assumed only to be integrable)

by means of Euler's formulae, and that then the above series has been

written down 35
.

3i The symbol "/-v/" has of course no connection here with the symbol
introduced in 4O, Definition 5, for "asymptotically proportional". There is no
fear of confusion.
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From theorem 1. and the manner in which this series was derived,

we have, it is true, some justification for the hope that the series may
converge and have f(x) for its sum.

Unfortunately, this is not the case in general. (Examples will be

met with very shortly.) On the contrary, the series may not converge
in the whole interval, nor even at any single point; and if it does so,

the sum is not necessarily f(x). It is impossible to say off-hand

when the one or the other case may occur; it is this circumstance which

prevents the theory of Fourier series from being entirely a simple subject,

but which, on the other hand, renders it extraordinarily fascinating;

for here entirely new problems arise, and we are faced with a funda-

mental property of functions which appears to be essentially new in

character: the property of producing a Fourier series whose sum is

equal to the function itself. The next task is then to elucidate the

connection between this new property and the old ones, viz. con-

tinuity, monotony, differentiability, mtegrability, and so on. More con-

cretely stated, the problems which arise are therefore as follows:

1. Is the Fourier series of a given (integrable) function f(x) con-

vergent for some or all values of x in < x <T 2 n ?

2. // it converges, does the Fourier series of f(x) have for its

sum the value of the generating function ?

3. If the Fourier series converges at all points of the interval

u^ x ^P> is the convergence uniform in this interval?

As it is conceivable that a trigonometrical expansion of f(x) might
be obtained by other means than that of Euler's formulae, we may
also raise the further question at once:

4. 7s it possible for a function which is capable of expansion in

a trigonometrical series to possess several such expansions, in par-

ticular, can it possess another trigonometrical expansion besides the

possible Fourier expansion provided by Euler's formulae?

It is not very easy to find answers to all these questions; in

fact no complete answer to any of them is known at the present day.

It would take us too far to treat all four questions in accordance with

modern knowledge. We shall turn our attention chiefly to the first

two; the third we shall touch on only incidentally, and we shall leave

the last almost entirely out of account 36
.

36 It should be noted, however, that the fourth question is answered under

extremely general hypotheses by the fact that two trigonometrical series which

converge in ^ x ^ 2 TT cannot represent the same function in that interval

without being entirely identical. And if/(#), the function represented, is integrable
over . . . 2 TT, its Fourier coefficients are equal to the coefficients of the trigono-
metrical expansion; cf. G. Cantor (J. f. d. reine u. angew. Math., Vol. 72, p. 139.

1870) and P. du Boit-Reymond (Munch. Abh., Vol. 12, Section I, p. 117. 1870).
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With the designations introduced above, the content of Theorem 1

may be expressed as follows:

Theorem la. If a trigonometrical series converges uniformly in

5^ x 5^ 2 TT
(t. e. for all #), it is the Fourier series of the function repre-

sented by it, and this function
37 admits of no other representation by a trigono-

metrical series converging uniformly in ^ x < 2 TT.

The fact that the Fourier scries of an integrable function does not neces-

sarily converge will be seen further on; that even when it does converge, it need
not have / (<v) for its sum, is obvious from the fact that two different functions f (x)

and /2 (x) may very well have identically the same Fourier constants ; in fact two

integrable functions have the same integral (and therefore the same Fourier con-

stants; i. e. the same Fourier series), if they coincide, for instance, for all rational

values of x, \\ithout coinciding everywhere (v. 19, theorem 18). The fact that

in an interval of convergence the series need not converge uniformly is shown by

the example already used above; for the series J converges everywhere

(v. 185, f>), and if the convergence were uniform, say in the interval 8 ^ x ^ 8,

8 0, it would have to represent a continuous function in that interval, by 193.

This is not the case, however, as we mentioned before on p. 351 and will prove
later on p. 375.

These few remarks suffice to show that the questions formulated

above are not of a simple nature. In answering them, we shall follow

the line adopted by G. Lejeune-Dirichlet, who took the first notable step

towards a solution of the above questions, in his paper Sur la convergence

des series trigonometriques
38

.

B. Dirichlet's integral.

We proceed to attack the first of the proposed problems, namely,
the question of convergence:

If the Fourier series - a + E (an cos n x + bn sin n x) generated by
2i

a given integrable function /(#), i. e. with coefficients given in terms

of f(x) by Euler's formulae, is to converge at the point x = XQ,
its

partial sums

1 "

+ bv sin v XQ)

must tend to a limit when n -> + oo . It is often possible to determine

whether or no this is the case, by expressing sn (x ) in the form of a definite

integral as follows:

87 This function is then (by 193, Corollary) everywhere continuous.
88

Journ. f. d. reine u. angew. Math., Vol. 4, p. 157. 1829.
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For i>^l, the function av cos v XQ + bv sin v XQ is represented by
39

2,-t 2

~
I f(f)cosvtdt\cosvx + j

Thus

We now take the important step of replacing the sum of the (n -f- 1) terms

in brackets by a single closed expression. We have indeed 40 for every
z 4= %kn, for every a and all positive integral w's,

cos (a + ,?) + ( os ( + 2 2) H-----1- cos ( + /w-) 201.

sin f + ^ m + 1

-~-J
sin f +

-5-)

2 sin

25 /
,

--rr Z\
sin HI ~cos f -j" m 4~ 1 ~)

39 In order to distinguish the parameter of integration from the fixed

point a;
,
we henceforth denote the former by t.

40 Proof. If the expression on the left is denoted by Cmt we have

+ sin

*-)
+ sin (a + 2T+T

-|-

r=2sinm-^-.cos fa-f w + I ~J .

Moreover the above formula continues to hold for z = 2 A JT
, provided we attrib-

ute to the ratio on the right hand side the limiting value for z

i. e. the value wcosct.
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from which many analogous formulae may be deduced as particular

cases 41
. Taking a = 0, z = t X

Q> m = n, we obtain

-5- + cos
(t

X
G) -\ -{- cos n(i x

)

~~~
O~ I

^ - -

Accordingly 42
,

sin(2n+l)-^5L
(a)

' N ' " /A

Finally, we may transform this expression somewhat. The function

f(x) need only be defined in the interval 0<^x<,27i and integrable

over this interval. The latter property remains unaltered if we merely

modify the value of f(2jr) (cf. 19, theorem 17). We will equate it

to
/*(())

and define f(x) further, for every x such that

i)jz, (A>
= 1, 2,

by:

41 For subsequent use, we mention the following:

JT

-.--{-a substituted for a gives:

g / g
sin m sin f a -j- m -f 1 -

sin(a-f jr) + sin(4-2*)H {-sin(r
' -x

sin T
sin w cosm+ 1 ~

2. of = gives: cosz-j- cos2^H .+ cos mz = ;

z
sin

sin m - - - sin m -}- 1 -~-

3. a =
-5- gives : sin ^ 4- sin 2 s -f -

-f- sin w* = ;

t . Z
sin

4. = 2a;, a = y 05, give:

/ , \ , / , o \ , / , o 7 % sin wo;-cos (y 4- ma;)cos (y -f- x) -f cos (y 4- 3 a:) -| (- cos (y -f- 2 m 1 -a;)
= r

v
-\

sin x

5.* = 2x, u = ~+y-x, give:

Sin(y+ ^)+ sin(y+ 3 a!
) + ... + sin(y +2^^. g)

= SinWa -

ŝ

+ ma;)
.

42 For /rrajy, as we observed once before, we should attribute to the

sine-ratio the limiting value for / *a; , here (2w-f 1) .
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Our function f(x) is now defined for all real values of x and we have

arranged for it to be periodic with period 2n. Now for any function

(p (x) periodic with period 2n, we have (by 19, theorem 19), what-

ever the values of c and c' may be,

/ (p(f)dt
= / cp(t)dt

= / (p(c
9

-f- *)^* anc* / <P W<^ = / <p(t)dt.
c a a-f-2?c

As the integrand in
(a)

is now a function of this type, we have

8
/?

^ J sin T
If we split up this integral into the pans relative to the intervals

to 7i and n to 2n, substituting t for t in the second, the latter

becomes
- 2w t

r sin(2n+l)-=-

*
sin TT- 2

i. e. by the above remark with regard to J <p(t)dt
a

sin(2n+l) ~

o
.

- sin i
and we accordingly obtain

o 2

Substituting 2 / for t, we are ultimately led to the formula

This is Dirichlet's integral*
3
, by which the partial sums of the Fourier

series generated by f(x) may be expressed. We may therefore state,

as our first important result, the theorem:

Theorem 2. In order that the Fourier series generated by a junc-

tion f(x), integrable (hence bounded) and periodic with period 2n, may

43 We designate as. Dinchlet's integrals all integrals of either of the

two forms
a a

sinkt ,

/
or
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converge at a point xQ9 it is necessary and sufficient that Dirichlefs

integral

1 (

n J sin/

,

should tend to a (finite) limit as n * + oo . TiWs fo'wutf xs then the

sum of the Fourier series at the point # .

Let us denote this sum by S(XQ ). The second question (p. 355),

concerning the sum of the Fourier series, when convergent, may be

included in our present considerations and our result may be put in a

form still more advantageous in the sequel, by expressing the quantity

S(XQ)
in the form of a Dirichlet integral also. As

sin (2 *+!)-

-H- + cos t + cos 2 1 -\
-----

(-
cos nt =

we have

or, effecting the same transformations as before with the general

integral,

o

Multiplying this equation
44

by 5 (# ), we finally obtain, by subtraction from

202,

- rf t

Our preceding theorem may now be expressed as follows:

2O3 Theorem2a. /w order that the Fourier series generated by a function

f(x), integrable and periodic with period 2ir, should converge to the sum

s (x )
at the point XQ ,

it is necessary and sufficient that, as n -> + 00 , Dirichlet'$

integral

44 This equation may also be obtained from 202, by substituting f (x)
~ 1

;

this gives a = 2 and, for every n 7-: 1, an
- bn

-
0, i. e. sn (XQ) = 1 for every n

and every x .
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should tend to 0, where for brevity we have put

Although this theorem by no means solves questions 1 and 2 in such

a manner that the answer in given concrete cases lies ready to hand, yet
it furnishes an entirely new method of attack for their solution. Indeed

the same may be said with regard to the third of the questions proposed
on p. 355, for theorem 2 a may at once be modified to the following:

Theorem 3. On the assumption that the partial sums sn (x) converge

to s (x) at every point of the interval a 5^ x 5^ ft, they will converge uniformly
to this limit in the interval, if, and only if, the integral, depending on x

9

J sin t

u

tends uniformly to as n - > -f
- oo in a 5^ x fg ft, that is to say if, given

e > 0, we car assign N = N (e) so that this integral is less than in absolute

value for every n > N and every x in a rg x fg ft.

Before we make use of theorem 2 to construct immediate tests of

convergence for Fourier series, we proceed first to transform and simplify

this theorem in various ways. For this purpose, we begin by proving the

following theorems, which apparently lead us rather off the track, but

also claim considerable interest in themselves.

Theorem 4. Iff(x) is integrable over ... 2 77, and if (an) and (bn)
<n

are its Fourier constants, then 2 (an
2

-f- bn
2
) converges.

71-1

Proof. The integral
27t n

J [/(O 2
(
a

<-
cos v t 'I- ** sin vi\

2 dt
i' 1

is ^ 0, as its integrand is never negative. On the other hand, it is

'2x 2n 27i

f [/(O]
2 dt2[a, J/ (*) cos v id t]

2 2 [bv J/(f) sin v td t]

+ J [27 (av cos v t + bv sin v t)]
2 d t

o

dt - 2

where each summation is extended from v = 1 to v = n. Since this

expression is non-negative, we have



362 Chapter XI. Series ot variable terms.

Thus the partial sums of the series (of positive terms) in question are

bounded and the series is convergent, as asserted.

The above contains in particular

Theorem 5. The Fourier constants (aj and (6n) of an integrable

function form a null sequence.
From this, we may deduce quite simply the further

Theorem 6. // y>(t) is integrable in the interval a<^t^b, then

b

An / tp()cosn tit -+ 0,

/* = / ty(f) sin nt dt -> 0.
a

Proof. If a and b both belong to one and the same interval of

the form 2 k n <I t <^ 2 (k + 1) n ,
we define f(t)

= y; (f)
in a <[ t <L b

and f(i)
= at the remaining points of the first-named interval, for every

other real t, f(t)
is defined so as to be periodic with the period 2n. Then

b 2t

A n
= f y (t)

cos n tdt = / f(t) cos ntdt = nan
a o

and similarly Bn
= n bn , where an and &M denote the Fourier constants

of the function f(f). By theorem 5, A n and 5W therefore 0. If a

and 6 do not fulfil the above condition, we can split up the interval

a < t < 6 into a finite number of portions, each of which satisfies the

condition. A n
and Bn then appear as the sum of a (fixed) finite number

of terms, each of which tends to as n *oo. Hence A n and Bn do
the same 45

.

This important theorem will enable us to simplify the problem of

the convergence of Dirichlet's integral
46

.

Supposing 6 chosen arbitrarily with < d < -J , the function

(/ .,o) |[n~

45 This important theorem appears intuitively plausible if we imagine the

curve y \p (t) cos nt to be drawn for large values of n: We isolate a small interval

a . . . ft in which y (t) has an almost negligible oscillation (is practically con-

stant) and proceed to choose n so large that the number of oscillations of

cosn* is fairly large in the interval; in that case, the arc of the curve

y = y>(/)cosw/ corresponding to .../? will enclose positive and negative
areas in approximately equal numbers and of approximately the same size,

so that the integral is almost 0.
46 Of course theorem 6 may be proved quite directly, without first proving

theorem 4. The latter is, however, an equally important theorem in the theory,
even though, as it happens, we shall not need it again in the sequel.
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is integrable in 6^t^^. Hence, for fixed d,

n
~2

c) / t/> (0 sin (2 n + 1) t - d t -* ,

The Dirichlet integral of theorem 2 a will therefore tend to as

limit as w->oo, if, and only if for a fixed, but in itself arbitrary,

value of d > the new integral

2^

o

tends to as n increases. Now the latter integral only involves the

values of f(xQ 2t) in 0^<<5, i. e. of f(x) in# 2 d<^x<*xQ+ 2d.

Since d > may be assumed arbitrarily small, this remarkable result

contains at the same time the following

Theorem 7. (Ricinann's theorem. 47
) The behaviour of the 204.

Fourier series of f(x) at the point X
Q depends only on the values of

f(x) in the neighbourhood of X
Q

. This neighbourhood may be as-

sumed as small as we please

In order to illustrate this peculiar theorem, we may mention the

following consequence of it: Consider all possible functions f(x) (inte-

grable in . . . 2 n) which coincide at a point X
Q
of the interval . . . 2 n

and in some neighbourhood of this point, however small, possibly

varying with the particular function. Then the Fourier series of all

these functions however much they may differ outside the neigh-

bourhood in question must, at XQ itself, either all converge or all

diverge, and in the former case they have the same sum S(XQ) (which

may or may not be equal to f(x^)).

After inserting these remarks, we proceed to re-formulate the

criterion obtained above, which we may henceforth substitute for

theorem 2:

Theorem 8. The necessary and sufficient condition for the Fourier

series of f(x) to converge at X
Q to the sum s(# ),

is that for an ar-

bitrarily chosen positive 6 < -5- , Dirichlet's integral

3

_;_ /o i i \ A

dt
sin/

should tend to as n increases 48
.

47 liber die Darstellbarkeit einer Funktion durch cine trigonometrische

Reihe, Hab.-Schrift, Gottingen 1854 (Werke, 2 nd ed. p. 227).
4* As regards uniformity of convergence, we can assert nothing straight

away, since we are ignorant as to whether the integral (c) above considered,
which tends to as n increases, for every fixed a? , will do so uniformly for

every 2 of a specified interval on the a;- axis. Actually this is the case, but we
do not propose to enter into the question further.
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There is no difficulty in showing that the denominator sin t in

the last integrand may be replaced by t. In fact the difference be-

tween the original integral and the one so obtained, i. e. the integral

s

automatically tends to as n increases, by theorem 6, because

-T-T - is continuous and bounded 49
, and hence intcgrable, in < t^ d.

Thus we may finally state:

205* Theorem 9. The necessary and sufficient condition for the Fourier

series of a function f(x), periodic with the period 2n and integrable over

Q...271, to converge to S(XQ) at the point X
Q , is that for an arbitrarily

chosen positive d (<
-g- J

, the sequence of the values of the integral

2 f , . v sin (2 n -f- 1) t ,^-
J
<p (t ;

X ) T-2 dt
o

forms a null sequence. Here <p (i\ x
())

has the same meaning as in

theorem 2 a. In another form, the condition is that, given e > 0, we

can assign d < ? and N > 0, so that 50
for every n > N,

6

^L f ft'
\ sin (2 n + 1) t

C. Conditions of convergence.

Our preliminary investigations have prospered so far that the

first two questions of p. 355 may now be attacked directly. By the

above, these are completely reduced to the following problem:
Given a function <p(t), integrable in Q<^t<*d, what further

conditions must this function fulfil in order that the integrals
51

" In fact. -T :
- ~

:
-- =

-\ ;

in the interval, and thus itself
1 sin/ t /.sin / 1 h-"

tends to as l-~*0.

60 The student should make it quite clear to himself that the second for-

mulation is actually equivalent to the first, although d need only be determined

after the value of e has been chosen.

61 For t = 0, we attribute to in the integrand the value A.
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should tend to a limit as k increases, and what, in that case, is the

value of this limit? 52

Since in this integral, & has a fixed but arbitrarily small value,

the answer to this question depends only cf. Riemann's theorem 7

on the behaviour of
q>(i) immediately to the right of 0, say in an

interval of the form < t < <Jj (^ (5).
We may accordingly inquire

also: What properties must cp(f) possess immediately to the right

of 0, in order that the limit in question may exist?

A large number of sufficient conditions for this have been found,

of which we shall only explain two, the great generality of which

renders them sufficient for most purposes. The first of these was

established by Dirichlet in the above-named paper (v. p. 356) and was

the first exact condition of convergence in the theory of Fourier series,

in winch Dirichlet's work is altogether fundamental. The second is

due to U. Dini and was discovered in 1880.

1. Dirichlet''s rule. // cp (t) is monotone to the right of 0, 206.

i. e. in an interval of the form < t < d
(^ <5)

then the limit in

question exists, and we have
6

^
lim Jh ==

lirn^^ j
yw ^

o

where y> denotes the (right hand) limiting value lim (p(), which cer-

tainly exists with the assumptions made 53
.

Proof. 1) In the first place,

lim

The existence of this limit, i. e. the convergence of the improper in-

tegral, follows simply from the fact that, given e > 0, and any two
o

values #' and x" both > , we have (by 19, theorem 26)

x" x"

sin t , ,

hence
x"

u i

52 There is no simplification in observing that it would suffice tor k to

tend to -f oo through odd integral values.
63 In fact, as <p (t) is integrablo, it is certainly bounded, and by hypothesis

it is monotone in <C * <C <V Furthermore q? need not =97(0).
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Now, as we saw on p. 360, equation (b),
the integrals

f sin (2 n + A/ ,

*n=J Stai
**_j (2 n + 1) t

6

for n = 0, 1, 2, . . . , are all = ~
. Therefore we also have tw ~> ~

On the other hand, the numbers

o

(cf.
the developments on p. 364) form a null sequence, by theoiem 6.

Accordingly we also have
n

. _ V . , Psin (2 n -f- 1) * TT

Since, however
(v. 19, theorem 25),

this implies that the above-named limit has the value
^-.

2) By 1),
a constant K' exists such that

;

'o

for every a?^0, and therefore a constant K(=2K') exists such that

b

a

for every a, b such that ^ a <^ &.

3) Suppose given > and choose a positive <5' <i ^ , so that

Writing

2 /A sin* t

we then have fk Jk

'

tending to as k > + oo, by theorem 6, and we



49. Fourier series. C. Conditions of convergence. 3G7

can accordingly choose k9 so large that
|
/fc /fc

'

|

<
-g-

for every k > A'.

Further,

T / 2 fA =-J
sin ft * , . 2 sin ft

o o

For the second of these two quantities, we have
*
sin* .-,,

J "ir^

and we may accordingly choose & > &' so large that

for every A > A . For /fc
", the first of the two quantities on the right

of
(d), we use the second mean value theorem of the integral calculus

19, theorem 27), which gives, for a suitable non-negative d" <^ <5',

The latter integral =
-^-dt and therefore remains < K in absol-

^(5"

ute value, by 2). Accordingly

\ T"\ <1 .

S .K <^
e

I
Jx I = ^ 3~A'

A <
3

'

Combining the three results of this paragraph, by means of

A = (A-A') + A"-f/r>
we see that, given e !> 0, we can choose k so that, for every k > ^ ,

Thereby the statement is completely established.

2. Dtni's rule. If lim cp (t)
=

q> exists, and if for every positive

T <C d, the integrals
d

J
l9'

(V*>o1 ^
T

remain less than a fixed positive number, then lim/fe
exi

^ fr-V-f-oo

More shortly: If the integral I
^-^ ^-^dt

t which is improper at 0,

has a meaning.
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Proof. When r decreases to 0, the above integral increases mono-

tonely but remains bounded; it therefore tends to a definite limit as

z 0, which we denote for brevity by

Given e > 0, we may choose a positive d' < 6 so small that

J]

(ft IVo dt< ^'

Writing, as in the previous proof,

the difference (/ft /k')
tends to 0, by theorem 6, and we may choose

k' so large that
|
Jk /k'| < -|-

for every & > A'. Further, as we saw

before, with a suitable choice of & > &' we also have

8

J

for every k > & - Finedly,

i. e. when d' is suitably chosen,
1 7fc

"
|

also remains <
-q-

. Thus, pre-

cisely as before, we conclude that, for every k > & ,

which proves the validity of Dini's rule.

We may easily deduce from it the two following conditions.

3. MpscMtz's rule. // two positive numbers A and a exist,

such that 55

fn < / ^ <5, then Jk +<p .

Proof.

65 The "L^c^'te-condition", | 9>

that lim rp (i)
=

cpQ exists.

-nK ^'^ as ^-*0, itselt implies
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so that for every positive t < d the former integral remains less than

a fixed number and in consequence of Dints rule
/,, ><p >

as required.

4 tii ruie. // q>' (0) exists** and therefore lim
<p (t)

=
<p

==
9? (0)

exists, then A* 9V <->+o

Proof. The existence of

implies the boundedness of this ratio in an interval of the form

0<^<(5j, i.e. the fulfilment of a Lipschitz- condition with a = l.

Hence /fc *<?V as asserted.

The following corollary to these conditions is immediately ob-

tained

Corollary. // cp (f)
can be split up into the sum of two or more

functions, each of which satisfies the conditions of one of the four rules

above, then lim cp (t)
=

(p again exists, and the Dirichlet integrals Jk
t->+o

of the function (p(t) tend to <pQ .

The above rules may at once be transferred to the Fourier series

of an integrable function f(x), which we assume from the first to be

given in <^ x < 2 n and to be extended to all other real values of x

by the equation

In order thai the Fourier series generated by f (x) should converge
to a sum s(# )

at the point X
Q , the integrals

,5

T 2 f f
.

N sin(2tt-f I)/ ..

/H =
-jJ

v(*;*o) S ~ dt

o

must, by theorem 9 (&05), form a null sequence, where, as before,

v (<; *) = \ [/K + 2 + /(*
- 2

f)]
- s K) .

This form of the criterion shows, over and above Riemanris theorem

2O4, that neither the behaviour of f(x) immediately to the right of a? ,

nor that immediately to the left of # , have in themselves any influence

whatever on the behaviour of the Fourier series of f(x) at X
Q

. What

is important is that the behaviour of f(x) to the right of X should

stand in a certain relation to that on the left of x , namely, such that

the function

)
~ il/K + 20 +ffo> - 2

ft]
-

S(XQ)

56
It suffices that cp' (0) should exist as the rv*ht hand differential coefficient (v.

19, Def. 10), as in fact the possible values of 9 (t) for t ~^* do not come into account.



370 Chapter XI. Series ot variable terms.

should possess the necessary and sufficient properties
57

for the existence

of the limit of Dirichlet's integrals Jk (206) relative to q)(t).
It is not known what these properties are. The four conditions

given above for the convergence of Dirichlet's integrals furnish us,

however, with the same number of sufficient conditions for the con-

vergence, at a special point X
Q , of the Fourier series of a function f(x).

Each of these conditions requires, in the first instance, that the function

should tend to a limit
<p

. A common assumption for all the rules

which we are about to set up is accordingly the following: The limit

(8) Km i
[f(* + 2*) -/(*,,-- 2

<)]
-

must exist. The value of this limit, by theorem 2, will then also be
the sum of the Fourier scries of f(x) at X

Q>
if the latter converges.

This convergence is ensured if the function

o)
=

l/(*o + 2
f) + f(*9

~ 2
<)]
- s (* ),

considered as a function of t> fulfils one of the four conditions given
above. At the same time, the value

<pQ
in those conditions must, by

theorem 2 a, be 0. We accordingly assume that the two following
conditions are satisfied:

207. 1 st
assumption. The function f(x) is defined and integrable (hence

bounded] in the interval ^ x < 2 n and its definition is extended to all

real values of x by means of the relation

*1, 2,...
2 nJ

assumption. The limit

ln[f(x + 2t) + f(x -2()],

where XQ denotes an arbitrary real number, but is kept fixed throughout, exists 58
,

and its value is denoted by s (# ), so that the function

9 (0 = 9 (': *o)
=

| [/(* + 2 + /(* - 2
I)]
- i (*o)

has a right hand limit lim 9 (f)
= 0.

With these joint assumptions, we have the following four criteria

for the convergence of the Fourier series off(x) at the point x :

87 Define e. g. / (x) as entirely arbitrary to the right of x (but integrable in
an interval of the form x < x < x + 8) and, in x - 8 < x < x0> let f(x) =
1 ~ /(2 *o x) say. The Fourier series off(x) at x is convergent with the sum

2
>

(Proof, for instance, by means of Dirichlet's rule 208, 1 below.)
68 The two-sided limit then necessarily also exists.
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1. IMrichlct's rule. // <p(t) is monotone in an interval of the 208.

form < t < <5j,
the Fourier series of f(x) converges at XQ and its sum 59

is equal to S(XQ).

2. Dint's rule. // for a fixed (otherwise arbitrary) positive num-

ber d the integrals

p dt

remain less than a fixed number for every r such that < T < d, the

Fourier series of f(x) converges at x and its sum is S(XQ).

3. Lipschitz's rule. The same is true, if instead of requiring

that the integrals should be bounded, we stipulate that two positive

numbers A and a should exist, such that, for every t such that <t < d,

4 th rule. The same is true, if instead of the Lipschitz- condition

we require that <p(t) should possess a right hand differential coeffi-

cient at 0.

The application of these rules is made considerably easier by the

following corollaries:

Corollary 1. The function f(x) also fulfils the assumptions 1 and 2

and its Fourier series converges at X
Q

to the sum s(# ),
if f(x) can

be split up into the sum of two or any fixed number of functions,

each of which satisfies these two joint assumptions (for
a suitable

s)

and in some neighbourhood of x fulfils the conditions of one of

the above rules.

Corollary 2. Similarly, it suffices to stipulate in place of assump-

tion 2 that each of the two (one-sided) limits

lim f(x + 2
f)
=

f(x + 0) and lim f(x
- 2

1)
=

f(x
- 0)

t->+0 f-v+0

should exist, and that the two functions

^=/t*o + 2 ')-/'(*o + )
and

<p, (t)
= f(x

- 2
t)
-

f(xQ
-

0)
should each, individually, satisfy the conditions of one of the four rules.

The Fourier series of f(x) is then convergent at X
Q
and has the sum

* (*o)
=

![/(*(> + 0) + /X*o -<>)]

One or two special cases, which, however, are of particular im-

portance in applications, may be mentioned in the following further

corollaries:

69 In case it converges at XQJ the Fourier series of a function f(x) satis-

fying the assumptions 207 accordingly has the sum /*(#) if, and only if, the
limit s(a? ), whose existence is stipulated in the second assumption, =f(x ).

Similarly in the case of the following rules.
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Corollary 3. If f(x) satisfies the first assumption and is monotone

both to the right and to the left of x , the limits mentioned in the

preceding corollary exist, and the Fourier series of f(x) converges at XQ

to the sum s(z )
= y [f(xQ + 0) -f- f(x 0)]. Hence, still more

particularly:

Corollary 4. The Fourier series of a function f(x) which satisfies the

first assumption will converge at the point x and its sum will be the

value f(x) of the function at that point, if f(x) is continuous at XQ and

monotone on either side of XQ .

Corollary 5. If f(x) satisfies the first assumption, and the two

limits f(xQ 0) exist; if, further, both the (one-sided) limits

Um o-o and

exist; then the Fourier series of f(x) will converge at XQ and will

have the sum s (XQ)
= ~ [f(xQ + 0) + f(x

-
0)].

Corollary 6. The Fourier series of a function f(x) which satisfies the

first assumption will converge, and will have as its sum the value of the

function, at any point X
Q

at which f(x) is differentiate.

50. Applications of the theory of Fourier series.

As we see from the rules of convergence developed above,

extremely general classes of functions are represented by their Fourier

series. This we propose to illustrate by a number of examples.
The function f(x) to be expanded must always be given in the

interval <^ x < 2 n and must possess the period 2 n: f(x 2 n)
=

f(x).
The corresponding Fourier series is then, in general, obtained in the

form

In particular cases, the sine- or cosine-terms may be absent In fact,

if f(x) is an even function,

(the graph of f(x) is symmetrical with respect to the straight lines

x = k n, (k
= 0, 1, 2, . .

.),
and therefore

2n n 2n

n - bn
= / f(x) sin n x d x = f + / = ,

n

as is evident if we replace x by 2 TT x in the second of these two

partial integrals. The Fourier series of f(x) thus reduces to a pure



50. Applications of the theory of Fourier series. 373

cosine-series. If, on the other hand, f(x) is an odd function,

(the graph of f(x) is symmetrical with respect to the points x = kn,

k = 0, 1, 2, . .
.),

and therefore

271

n . an = / f(x) cos n x dx = 0,
o

as is equally evident. Thus here the Fourier series of f(x) reduces

to a pure sine series.

There are accordingly three different ways in which an arbitrary

given function F(x), which is defined and integrablc in a <^ x <^ b,

may be prepared for the generation of a Fourier series.

l t method. If b a ^> 2 n, a portion of length 2 n is cut out of

the interval (a, 6), say cc^,x<a-}-2n, and the origin is transferred

to the point a; we thus obtain a function f(x) defined in <^ x < 2 71:

It is then defined for the whole #-axis 60
by means of the condition of

periodicity f (x -^- 2 TT)
= /(#). If 6 # < 2 ?r, define /(#) to be con-

stant = F (b) in b^x<.a+27T and proceed as before 61
.

2nd method. Precisely as above, define a function f (x) in 5^ x ^ TT

(not 2
77) by means of /? (#), put / (#) / (2 77 #) in TT fg # <I 2 TT, and

then define f(x) for all further #'s by the condition of periodicity.

3rd method. Define/(#) as above for < x < TT, put/(0) = /(TT)
=

0, but put f(x)~ /(2 TT ^) in ?r < jc < 2 TT; then again define /(#)
for all further x's by the condition of periodicity.

The three functions which aie obtained by these methods from

a given function F(#), and which are now suitable for the generation

of a Fourier series, we shall distinguish as f^(x) t f%(x}, f9 (x)- Whereas

/*j (#) will certainly give a pure cosine scries and
f% (x)

a pure sine-

series, f (x)
will lead, as a rule, to a Fourier series of the general

form (unless, in fact, f (x) is itself already an odd or an even function).

Since our rules of convergence enable us to recognize the con-

vergence only at points X
Q for which

lim ~ [f(x + 2t) + f(x
- 2 t)]^

exists, it will be advisable to modify our functions further at the

60 If b a > 2 TT, a portion of the curve y = F (x) is left out of the repre-
sentation altogether. If we wish to avoid this, we need only alter the unit of measure-

ment on the x-axis so that the interval of definition of F (x) has the length 2 TT;

i. e. we substitute a + -

^
- x for x.

77

01 Or else give the interval of definition of F (x) the exact length 2 TT by modi-

fying the unit of measurement on the *-axis.

13 (G51)
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junctions 2 k TT by writing

/(0)=/(2A7r)--:lim
x -> I

"

whenever this limit exists. (This is certainly the case for /3 (x), and

provides the condition /3 (0)
= /3 (2 k 77)

=
0.) If this limit does

not exist, the functional value f(2kir) does not come into account,

as with our resources we cannot discover whether the Fourier series con-

verges there or not. For corresponding reasons we have already put

/a 00 = ^ above.

We now go on to concrete examples.

209. 1. Example. F(x) ss a =f 0. Here

fi(x]
E=

/g (a;)
EE a, while we have to put

for x = and x = n>

a < x < n,

a n < x < 2 7i.

Dirichlet's conditions are evidently fulfilled at every point (inclusive of

the junctions), for each of the three functions. The expansions obtained

must accordingly converge everywhere and must represent the functions

themselves. For f^(x] and f%(x), however, they are trivial, as they

reduce to the constant term aQ
= a. For fs (x) f however, we obtain:

2 JT * 2n

= \f3 (x)sm nxdx= \s\nnxdx ~ \smnxdx = \ smnxdx
t

n

i. e.

for even values of n,

for odd values of n.

The expansion accordingly is

f / x 4 a r .
,

sin 3 x ,
sin 5 a;

5

or
3t .

~T in

sin 3 a? . sin 5 a?
at and at JT,

-- in

This establishes the second of the examples given on p. 351, and

provides the sum of this curious series, of whose convergence we were
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already aware
(v. 185,5)

62
. For x = ~, , ^,

we obtain special

series, with the first of which we are familiar m an entirely different

connection
(v. 122):

1,11, n

4-^ -

1
_L J L_

_|_ . . . = *

13
r

17
~

' 3
'

_ -

11
JL- -4

13
~ 2'

2. Example. F(x) ---- ax, (a 4= 0). Here

o; in 0<#<27r,
an at and at 2 rc,

ax in <J a; <^ rc,

a (2 7i B) in ?r <I #

ax in < x < rrc,

at and at TT,

a2jr in n

2 rc,

gives:After an easy calculation, the expansion of

( \
'

-L.
s'u * x

i
sin Hac

,

sin4ap
,

I T*- ftn

in <
at and at

210.

n x

which establishes the first of the examples of p. 351. Similarly, the

expansion of f9 (x) gives

sin 3 x sin 4 a?
,

T"
. x .

(b) sin oc
sin 2

' +
in

at rr,

a? ft in ft < 05 <[ 2 rr
<

Or, more shortly,
_f*in

-ir-

at TT.

< TT,

62 This and the following examples are already found, for the most part, in

Euler's writings. Many others have been given by Fourier; Legendre, Cauchy, Frullani,

Dirichlet and others. They are collected together, in a convenient form for refer-

ence, in H. Burkhardt, Trigonometnsche Reihen und Integrate bis etwa 1850,

Enzyklopadie d. math. Wiss., Vol. II A, pp. 902920.
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The function f2 (#), however, provides the expansion:

cos a:
,

cos 3 x
,
cos 5 x

, _ |
8

-Tz- "I 53 1 H3 h

inn S

The first of these expansions gives for x = the known series for
^;

the

third, for x -= 0, gives the series, also previously known to us (137),

1 + V + 5^ + 7 + ' ' ' =
8"'

from which we may immediately deduce the relation

i+i+i+i+...=v
previously established (136, 156 and 189) in an entirely different way

83
.

On comparing the two results, we obtain the remarkable fact that in

< x ^ TT the function x is capable of the two Fourier expansions

sin 3 x .

and

_ 4
rcos_x ,

cos 3y
,

cos 5 y
_. .

"1~~
lr L"!

7
"

"^
32

' 6
'

J
'

With a view to penetrating still further into the significance of these

results, it is well to sketch the graphs of the function / (x) and a few of

the corresponding curves of approximation. This we must leave to the

reader, and we shall only draw attention to the following phenomenon:
The convergence of the series 210 c is uniform for all #'s; not so

that of the scries 210 a and b, since their sums are discontinuous, the

63 A fifth proof, quite different again, is as follows: The expansion 123 is

uniformly convergent in f x 5 1, by the stipulations made in 123, together

with 199, 2. Putting x sin t t
we see that the expansion

is uniformly convergent in ^- t f*
^

and may therefore be integrated term-by-

term over that interval. Now

this is shewn by a recurrence process, or by writing cos t = z and using Example
117 b. Hence at once

7r
a
= 1 _

"8 w== o(2w~+ l)
a *

This method was essentially given by Euler. (Cf. the note referred to in the foot-

note 38 to 156.)
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first at 0, the second at TT. In the former case, the approximation curves

lie close to the zigzag line representing the limiting curve along the

whole of its length, whilst in (a) and (b) the corresponding state of affairs

does not and cannot occur (cf. 216, 4).

3. Example. F (x)
= cos a x (a arbitrary

64
,
but 4= 0, 1, 2, . .

.).

a) We first form the function /2 (x), and accordingly define

f cos ax in 0^#lS7r

| cos a (2 TT x) in TT ^ x < 2 TT;

thus /2 (#) is a function continuous everywhere, which by Dirichlefs rule

will also generate a Fourier series continuous everywhere, which represents

the function, and is necessarily a pure cosine-series. Here we have

n JT

TT an 2 J cos a x cos w jc c/ x J [cos (a + w) ^ + cos (a w) A;]
d x\

hence, as a was assumed not to be an integer,

_ f i \n 2 a sma TT

7Tdn (^ l; g'lT^a

Therefore the function /2 (x) in ^ Jt: ^ 2 TT, or in other words the function

cos OLX in TT ^ ^? ^ + TT, is represented by the series :

For ^ ^^
TT, we obtain from this the expansion 117, previously deduced

from entirely different sources:

cos (X.TT 1 . 2 a . 2 a .

77
---- = 7T COt a 7T = - + -=--r= + -^

-
^, -(-

*

sin a TT a a2 I 2
' a2 22 '

We thus enter the sphere of the developments of 24. Of course the

other series expansions there deduced may also be obtained directly from

our new source. Thus 212 gives for x

_TT_ ___!__ 2j*__, _ 2 a __ 2 a____ ^

sin a TT

~
a a2 - 1

2 ~*~ a2~- 2 2 a2~- 32 "^

Subtracting the cotangent expansion obtained just before, we further obtain

1 cos arr _ aw _ 4a 4a 4a
^
~sirTa

~ ~" w mn
~2"

"" ""
a2 ^T2

"~
a2 - 32

~
a2~^~52

"" " * "

and so on.

b) If we now similarly construct an odd function /3 (#) from F (x)
=

cos a x, we have

J

cos a x in < # < TT,

/3 (#)
= J at and at TT,

[
cos a (2 TT

je)
in TT < x < 2 TT.

84 Because otherwise the cosine-expansion would become trivial.
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Here a may also assume integral values without reducing the result to

a trivial one. The coefficients bn are obtained from integrals whose value

is easily worked out, and they lead to the following expansions, valid in

<x <TT:

213. a) for a 4= 0, 1, 2, . . .

T.- -, tin * + -.-inSa + g, ,
sin 5 *

j8) for a = i />
=

integer

\ [12 :rp
sin * +

32 ~^ sin 3 * + ' '

']>
if

/>
is

cospx =
4 r 2 . ^ 4 . .

,
.- . .,

2 sin 2 x + -rr sin 4 x + ,
it p is odd.

p* 42
p

2 '
'

' r

From all the above series, innumerable numerical series may be

deduced by taking particular values of x and a.

4. The treatment of F (x) sin a x leads to quite similar expansions.

5. If the function F (x)
=

log (2 sin
^ J

is arranged for the genera-

tion of a pure cosine series, we obtain the expansion, valid in < x < TT,

214. cos x +^. +^^ +... = - log
(2

sin
J)

.

It has, however, to be shewn by a special investigation that the result

holds in spite of the fact that the function is unbounded in the neigh-

bourhood of the points and 2 ?r, and therefore is not (properly) intc-

grable. (Cf. 55, V below, where this will follow quite simply in another

way.)

6. Example. F (x)
= eyx + ~ax

,
a 4= 0, is to be expanded in a

cosine series. We have therefore to take

f / \ t
F (*) in ^ * ^ *

J*W~~\F(2ir-x) in TT ^ x < 2 IT.

After working out the extremely easy integrals giving the coefficients ant

we obtain

JT
go* +- g-qv _ _1 a

,
a ^ ,

which is valid in - TT 5=1 x ^ + TT. If we substitute e. g. x = TT and write

t for 2 a TT for simplicity, we are led, after a few simple transformations,

to the relation, valid for every t 4=

IT _I _ 1 _ Al ^ 2 Z . 1-
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i. e. to an "expansion in partial fractions" of this remarkable function;

its expansion in power series we can at once deduce from 24, 4, where

the function -~
-

t -JT? was considered, for our function reduces to

the latter by multiplying by t
2 and adding 1.

Various remarks.

The very fact that trigonometrical series are capable of representing extremely

general types of functions renders the question as to the limits of this capacity

doubly interesting. As was already remarked, necessary and sufficient conditions

for a function to be representable by its Fourier series are not known. On the con-

trary, we find ourselves obliged to consider this as a fundamental property of functions,

new of its kind, for all attempts to build it up directly by means of the other fun-

damental properties (continuity, differentiability, mtegrability, etc.) have so far

failed. We must deny ourselves the satisfaction of supporting this statement in

all details by working out relevant examples, but we should nevertheless like to

put forward a few of the facts in this connection.

1. One of the conjectures which will naturally be made at first sight is that

all continuous functions are representable by their Fourier series. This is not the

case, as du Bois-Reymond was the first to show by an example (Gott. Nachr. 1873,

p. 571) .

2. On the other hand, to assume the function differentiable as well as con-

tinuous is more than is necessary, as is shown by Weierstrass* 66
example of a uni-

formly convergent trigonometrical series, viz.

00 / 3 \
an cos(b

n
irx) (0 < a < 1, b a positive integer, ab > 1 4- n),

n=l \ ^ /

which accordingly is the Fourier series of its sum (v. 200, 1 a), but which represents
a function that is continuous but nowhere differentiable.

65 We now have simpler examples than that mentioned above. E. g. L. Fejer
has given a very clear and beautiful example (J. f. d. reine u. angew. Math., Vol.

137, p. 1. 1909).
06
Abhandlungen zur Funktionenlehre, Werke, Vol. 2, p. 223. (First published

1875.)
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3. Whether continuous functions exist whose Fourier series are everywhere
divergent is not at present known.

4. A specially remarkable phenomenon is that known as Gibbs* phenomenon 67
,

which was first discovered (by J. W. Gibbs) in connection with the series 2 10 a:
The curves of approximation y =^ sn (x) overshoot the mark, so to speak, in the
neighbourhood of * = 0. More precisely, let us denote by (n the abscissa of the

greatest maximum 6a of y = sn (x) between and IT and let yn be the corresponding

ordmate. Then n
->

; but -r\n does not -*- -, as we should expect, but tends to a

value g equal to (1 17808 . . .). Thus it appears that the limiting configuration to

which the curves y = sn (x) approximate contains, besides the graph of the function
210 a (p. 351, fig. 7), a stretch of the >--axis, between the ordinates g, whose

2
length exceeds the "jump" of the function by nearly -. In fig. 9, the th

approxi-

mation curve is drawn for n = 9 m the interval . . . ?r, and for n = 44 the initial

portion is given.

51. Products with variable terms.

Given a product of the form

//a +/.(*)).= i

whose terms are functions of x, we shall define (in complete analogy with

the theory of series) as an interval of convergence of the product, an interval

/ at every point of which all the functions fn (x) are defined and the product

itself is convergent.

Thus e. g. the products

/(:
-
5). //(-

+ ). //('
+ <- *).(.

are convergent for every real xt and the same is true of any product of the form

77(1 + an x), if 2}

an is either absolutely convergent (v. 127, theorem 7) or a con-

ditionally convergent series for which 27 an
2
converges absolutely (127, theorem 9).

For every x in f> the product then has a specific value and therefore

defines a determinate function F(x) in /. We again say: the product

represents the function F (x) in /, or: F (x) is expanded in the given product
in /. The main question is as before: how far do the fundamental pro-

perties (of continuity, differentiability, etc.) belonging to the terms fn (x)

still hold for the function F (x) represented by the product? Here again the

67
J. W. Gibbs, Nature, Vol. 59 (London 1898-99), p. 606. Cf. also T. II.

Gronwall, Ober die G&fasche Erscheinung, Math. Annalen, Vol. 72, p. 228, 1912.

68 The maxima in the interval occur at x = *
.,

~-
.,

-
*

. . . ,
the

2 77 4 IT
first being the greatest maximum. The minima occur at x = -

f , . . . .
n n
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answer will be that this is the ease in the widest measure, as long as the

products considered are uniformly convergent.

What the definition of uniform convergence of a product is to be

is almost obvious if we refer to the corresponding definition for series,

since in either case we are essentially concerned with sequences of functions

(cf. 190, 4). However, we shall set down the definition corresponding

to the 4th form (191, 4) for series:

Definition . The product II (1 +/(*)) is said to be uniformly 17

convergent in an interval /, //, given e > 0, a single number N = N (z)

depending only on e, not on x, can be chosen so that

for every n ~> N, every k > 1 and every x in /.

It is not difficult to show that with this definition as basis the theorems

of 47 hold substantially for infinite products
71

. We will, however, leave

the details to the student, while we prove a few theorems which are less

far-reaching, but which will amply suffice for all our applications, and

which have the advantage of providing us at the same time with criteria

for the uniformity of the convergence of a product. We first have

Theorem 1. The product //(I + fn (x)) converges uniformly in /218.
and represents a continuous function in that interval, if the functions fn (x)

are all continuous in / and the series 2
\ fn (x) \ converges uniformly in /.

Proof. If2
1 fn(x) | converges in /, so does the product // (

1 (- /(#)),

by 127, theorem 7; indeed, it converges absolutely. Let F (x) denote the

function it represents. Let us choose m so large that

l/m+l (*) I
+ I/H 2 (*) I

+ + Ifm+K (*) |
< 1

for every x in J and every k^l; this is possible, by hypothesis.

Consider the product

// (!+/(*)),
n=m+l

69 The symbol o in this section again holds only with the same restrictions as

in 4648; cf. p. 327, footnote 1.

70 This definition includes that of convergence. If the latter be assumed,
we may speak of the "remainder" rn (x) (1 +/n+ i (#))(! H fn+* 0*0) and

define uniform convergence as follows: //(I +/n (x)) is said to converge uniformly

in/, if for every (xn) in/, however chosen, rn (x) -> 1.

Writing //(I +/(*)) = Pm (x) and 77 (1 +/(*)) = Fw (*), we may
i/=l i>= rofl

quite easily deduce e. g. the continuity of F (x) at x from that of the functions

fv (x) there, by means of the relation

F (x)
- F (*) - Pm (*) Fm (*)

- Pm (*) Fm (*)
= [Pm (x)

- Pm (*)] Fm (x) + [Fm (*)
- Fm (*)] Pm (*).

13 (051)
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and denote its partial products by pn (x), n > m. Let Fm (x) be the function

represented by this product. We have (cf. 190, 4)

Fm,
~

Pm+l + (Pm+2
~~

Pm-\ l) + + (Pn Pn-l) +
= Pm+l + Pm\ 1 */w+2 + Pmj 2 */w+3 + + Pn-l '/ +

i. e. Fm (x) is also expressible by an infinite series as is indeed evident

from 30. Now (by 192, theorem 3) this series converges uniformly in J.
In fact, for every n > m, we have

and !/(*) I

n*=M-\-l

is uniformly convergent in /, by hypothesis. Accordingly the sequence
of its partial sums, i. e. the sequence of functions pn (x), tends uniformly

CO

to Fm in/, so that the product // (1 +/n (x)) is seen to converge uniformly
n -m+l

in /, and this property is not affected when we prefix the first m factors.

By 193, Fm (x) is necessarily continuous in /, since the terms of the

series which represents it are all continuous in that interval. The same

is then true of the function

F (x)
=

(1 + /i (*)) . . . (1 + fm (*)) Fm (x), q. e. d.

A similar proof holds for

Theorem 2. // the functions fn (x) are all differentiable in J and

if not only 2\fn (x) |,
but \fn

'

(x) \ converges uniformly in /, then F (x)

is also differentiable in /. Moreover its differential coefficient at every point

ofJ where F (x) 4= is given by
72

Proof. The proof may be put in a form analogous to that of the

previous theorem; however, in order to make other methods of attack

familiar, we will conduct the proof by means of the logarithmic function,

as follows. Let us choose m so large that

72 If g (x) is difTerentiable at a special point x and g (x) 4= there, the ratio

8
- - is called the logarithmic differential coefficient ofg (x), because it is , log | g (x) |.

For (x) = gi (x)
-

a (x) . gk (x), we have, as is well known,

SLM _ Si'W , */(*> , , *(*>
g(x) g, (x)

"*"

g,(x)
"*--*- & ffi

'

provided that the functions A (x) are all differentiable at the point x in question.
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for every x in /, so that, in particular, for every n > m,

I /(*)!<!

By 127, theorem 8, the series

J? log (!+/(*))
fi=m + l

is then absolutely convergent in /. The series obtained from it by differen-

tiating term by term, __
!+/(*)'

is indeed also uniformly (and absolutely) convergent in J. For since

l/n (*) I
<

\
for every n > m

y
|

1 + fn (x) |
>

\
and therefore

< 2, so that the uniform convergence of the last series follows

from that of Z\fn
'

(x) |. Accordingly (by 196)

if, as before, we put

//a +/(*)) = *",,
n=m+ l

i. e.

^ log (1 +/(*)) = log Fw (*).
n m i-1

Since finally

and the last factor on the right has been seen to be differentiate in J9

F (x) itself is different!able in /. If, further, F (x) 4= 0, the last relation

leads at once to the required result, by the rule of differentiation men-

tioned in the preceding footnote.

Applications.
1. The product 219,

Fm (*)- II (l-S) (w>0>

n=mH X '

x1

is uniformly convergent in every bounded interval, since, with fn (x) = ,

is evidently a uniformly convergent series in that interval. The product accordingly
defines a function Fm (x) continuous everywhere, which, in particular, is never

zero in
|
*

|
< m -f 1. This function is also differentiate, for S \fn

'

(x) |

= 2
|
x

\
S-

1
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is uniformly convergent in every bounded interval. Hence for
|
x

\
< m

Fm̂ (x) _ 1
, f 2*_

*(*) * +nJZ+i*-*
By 117, this however implies

*'<*>-
ff cot..

J
J7

** - G '<*>

*v,(*)
- w " w*-i- ^i. _

,,-i

-
G TO (*)'

where Gm (#) denotes the function

sin TT x

interpreting this expression as equal, for x = 0, 1, . . . , ih w, to its limit (obvi-

ously existent and -J- 0) as jc tends to these values. (The corresponding conven-

tion is made for the middle term in the relation immediately preced ing.) If however
two functions F (x) and G (x) have their logarithmic derivatives equal in an interval,

in \vhich the two functions never vanish, it follows that they can only differ by a

constant factor (4= 0). Hence, in
|
x

\
< m -f- 1,

sin TT x = c x //
(l
-

2

where c is a suitable constant. To determine its value, we need only divide the

last relation by x and let x -> 0. The left hand side then -> ?r, while the right hand
side -> c, because the product is continuous at x 0. Accordingly c TT and we
have, first for

|
x

\
< m + 1, but hence, as m was arbitrary, for all x

t

sin T x = 7i x .

M---1

This product, and those discussed below m 2 and J:, as well as the remarkable product

257, 9, and many other fundamental expansions in products, are due to Eider.

2. For cos IT x we now find, without further calculation,

sin 2 7T x
" X

COS7I* = n
-- =

3. The sine-product for special values of x leads to important numerical

product expansions. E. g. for A; ==
^>

/(2>-i)(2>i +"

g j.
i

|
As -> 1, we may clearly omit the brackets, and we accordingly write

2 ft

77 = 2 ' 2 ' 4 ' 4 ' 6 16-!8
' 8

2~~ l-3-3-6-6-7-7 ; 9...

(Wales' Product).
Since it follows from this that

/2\2 /4\ 2
/ 2k

246 2& 1 -

i" 3 '5 2~v- rv*~" V7r

78 Arithmetica infinitorum, Oxford 1656. (Cf. pp. 218 9, footnote 1.)
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we obtain at the same tune the remarkable asymptotic relation

2. 4. 6.. .2* 2*

for the ratio of the middle coefficient in the binomial expansion of the (2 w)
th

power to the sum 2 2n of all the coefficients of this expansion or for the co-

efficient of xn in the expansion of .

yl x

04. The sequence of functions

(v. 128 4) cannot be immediately replaced by a product of the form 77(1 -f /*,(#))

as 77(1 -h
J

diverges for a; =J=
0- However, this divergence is of such a

kind that

By 1S8, 2 and 42, 3, this implies that

=
<r (*)

tends, as n *-QO, to a specific limit, finite and 4" 0; the latter, of course,

only if x -\- 0, 1, 2, . . . . Accordingly

is a definite number for every x 4= 0, 1, 2, .... The function of x so de-

fined is called the Ga tnma-function (T-junction). It was introduced into

analysis by Euler (see above) and, next to the elementary functions, is one of

the most important in analysis. Further investigation of its properties lies out-

side the scope of this book. (Cf., however, pp. 439 440 and p. 630.)

Exercises on Chapter XI.

I. Arbitrary series of variable terms.

154* Let (nx) denote the difference between nx and the integer nearest

to x, or the value 4-77, if nx lies exactly in the middle of the interval between

two consecutive integers. The series ~^- *s uniformly convergent for all

aj's. The function represented by it, however, is discontinuous for x ^~- ^

2 q

(p, q integers), while it is continuous for all other rational values of x and

for all irrational values of x.

155. ff an ->0,
^ / sin n x \*2 *(- .IT)

converges uniformly for all x's Does this remain true for an ~ 1 ?
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156. The products

c) 77-l + sin-, d) // l +(_!)" sin

converge uniformly in every bounded interval.
27l

157* The series whose partial sums have the values sn (x)
= -

converges for every x. Is this convergence uniform in every interval? Draw
the curves of approximation.

158. A series 2 fn (x) of continuous positive functions certainly converges

uniformly if it represents a continuous function F(x). (Cf. p. 344, Rem. 3.)

159. Does J>] ^=
---

gr converge uniformly in every interval? Is the

function it represents continuous?

160. In the proof of 111, a situation of the following kind occurred:

An expression of the form

F (n)
= (n) + a, (n) + . + fc (n) + . . . + a

fn (n)

is considered, in which, for every fixed k
t
the term a^ (n) tcnJs to a limit a^

as n increases. At the same time, the number of terms increases, pn *> QO .

May we infer that

lira F(ri) = 2," fcf

n-><x> /i=J

provided the series on the right converges? Show that this is certainly per-

missible if, for every h and every n
t

|

ak (n) \

remains < y
fc

and 2," yk

converges. Formulate the corresponding theorem for infinite products.

(Cf. Exercise 15, where such term-by term passages to the limit were not

allowed. >

161. The two series

x9 x4 x6 x> x9

Q
are both convergent for < x < 1 and have the same sum - - log 2 for x -

-f- 1 .

Li

What is their behaviour when x * 1 0? Examine the two series, con-

vergent for x >! 1 , 12112
for a;->4-H-0.

162. The series J?
^ -^

converges in < x <J 1 What

is its sum? Is its convergence uniform?
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163. Show that, for x -> 1 + ,

164. Show that, for #->! 0,

a) 2 ~ I rrr^r -" 4~ lo 2 *

n=l * *

M n ~\ Vf n-i w * n a

C) (l-*)'Jt/ (- 1
) i a:a"*""T'

n=i

165. The series whose partial sums have the values sn (x)

may not be integrated term by term over an interval with endpoint 0. Draw
the curves of approximation.

II. Fourier scries.

166. May we deduce from the series 210 a
y by integration term by term:

a) ^-^~-~
fi=i

'2

_ y _ _

In which intervals are these relations valid? (Cf. 297.)

167. In the same way, deduce from 210 c the relations

* cos (2 n -
-

What would be the results of further integrations? In which intervals are these

expansions valid?

168. From 209, 210, and the relations in the two preceding exercises,
deduce the following further expansions and determine their exact intervals

of validity:
. cos 3 x

,
cos 5 x

,
n

a) cos*--
3

+
g
--+ ...= _,

cos 3 x
,

cos 5 x
b)

v . sin 3 a;
,

sin 5 x
,

nx/n* x*\
C) n--

84 +-^-- + ... = _(___), etc.

169. From 215, deduce further expansions by substituting n x for x
or by differentiating term by term. Is the latter operation allowed? What are
the new series so obtained?
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170. What are the sine-series and the cosine-series for e
ax ? What is

the complete Founer expansion of e
sma;

? Show that the latter is of the form

a H- 6j sin x - a
1
cos 2 x 6

3
sin 3 x -\- a4

cos 4 x -f- b. sin 5 X h 4- -

2

where av and bv are positive.

171 If a; and y are positive and <C^r,

~- if/> ^ * *

fl sinwscosny

-2-

Determine the values of the integrals

If n

Jsin

,r , , f sin a; ,ax and I ax.
x J x

(The former = 1 '37498..., the latter = 1-8519 )

173. For every x and every n,

sin 2 #
smx-i

^
r--

f sin a;

J T-"-
o

where the bound on the right hand side cannot be diminished (cf. the preceding

exercise).

(Further exercises on special Fourier series will be given in the next

chapter.)

Chapter XII.

Series of complex terms.

52. Complex numbers and sequences.

After we have discussed in detail, as in Chapter I, the modes of

formation of all the concepts essential for building up the system of

real numbers, no new difficulties are raised by the introduction of further

types of numbers Since the (ordinary) complex numbers and their

algebra are known to the reader, we may accordingly be content

with briefly mentioning one or two main points here.

1- I* was shown m 4 that the system of real numbers is in-

capable of any further extension, and is, moreover, the only system
of symbols satisfying the conditions which we laid down for a number

system. Yet the system of complex numbers is a system of bymbols
to which the name of number system is applied. This apparent contra-
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diction is easily removed. For our definition of the number concept
was in a certain sense an arbitrary one, as we emphasized on p. 12,

footnote 16: A series of properties which appealed to us essential in the

case of rational numbers was raised to the rank of characteristic pro-

perties of numbers in general, and the result justified our doing this,

in so far as we were able actually to construct a system in all essen-

tials, a single one, which possessed all these properties.

If we desire to attribute to other systems the character of a system
of numbers, we must therefore of necessity diminish the list of char-

acteristic properties which we set up in 4, 1 4. The question arises

which of these properties may be dispensed with first of all; i. e. which

of them may be missing from a system of symbols without its becoming

impossible to legard the latter as a number system.

2 Among the properties 4 of a system of symbols, the first with

which we may dispense, without fear of the system losing the character

of a number system entirely, are the laws of order and monotony.
These are based, by 4, 1, on the fact that of two different numbers
of the system, the one can always be called less than the other, and
the latter greater than the former. If we drop this distinction and in

4 replace both the symbols < and ;> by 4=> ^ appears that the

modified conditions 4 are satisfied by another more general system
of symbols, namely the system of ordinary complex numbers, but thai

no other system substantially different from the latter can satisfy them

3. Accordingly, the system of (ordinary) complex numbers is a

system of symbols which, as is known, may be assumed to be of the

form x + yi, where x and y are real numbers, and i is a symbol whose

manipulation is regulated by the single condition t
9 =

1, for

which the fundamental laws of arithmetic 2 remain valid without ex-

ception, provided the symbols < and > are suitably replaced throughout

by =4=. In short: Except for the last-named restriction, we may work

formally with complex numbers exactly as with real numbers.

4. In a known manner (cf. p. 8), complex numbers may be

brought into (1,1) correspondence with the points of a plane and may
thus be represented by these: with the complex number x --J- yi we
associate the point (x, y) of an ay-plane. Every calculation may then

be interpreted geometrically. Instead of representing the number x-\-yi

by the point (x, y), it is often more convenient to represent it by a

directed line (vector) coincident in magnitude and direction with the

line from (0, 0) to (x, y).

5. Complex numbers will be denoted in the sequel by a single

letter: z, f, a, b, . . .; and unless the contrary is expressly mentioned

or follows without ambiguity from the context, such letters will in-

variably denote complex numbers.
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6. By the absolute value (or modulus) |
z

\

of the complex numbei

x+yi, is meant the non-negative real value I/a;
9 + y

2
'* by *ts amplitude

(am z, z=^tf), we mean the angle <p for which both cos(p = ~.

p
and

sin cp
=

-py . When we calculate with absolute values, the rules 3, II,

1 4 hold unchanged, while 5. loses all meaning.

Since we may accordingly operate, broadly speaking, in precisely

the same ways with complex as with real numbers, by far the greater

part of our previous investigations may be carried out in an entirely

analogous manner in the realm of complex numbers, or transferred

to the latter, as the case may be. The only considerations which will

have to be omitted or suitably modified are those in which the numbers

themselves (not merely their absolute values) are connected by the

symbol < or >.
In order to avoid repetitions, which this parallel course would

otherwise involve, we have prefixed the sign to all definitions and

theorems, from Chapter II onwards, which remain valid word for word

when arbitrary real numbers are replaced by complex numbers, (this

validity extending equally to the proofs, with a few small alterations

which will be explained immediately). We need only glance rapidly over

the whole of our preceding developments and indicate at each place
what modification is required when we transfer them to the realm of

complex numbers. A few words will also be said on the subject of

the somewhat different geometrical representation.

Definition 23 remains unaltered A sequence of numbers will now
be represented by a sequence of points (each counted once or more
than once) in the plane. If it is bounded (24, 1), none of its points

lie outside a ciicle of (suitably chosen) radius K with origin at 0.

Definition 25, that of a null sequence, and the theorems 26,

27, and 28 relating to such null sequences remain entirely unaltered.

The sequences (zn) with

i (_;)n-
are examples of null sequences whose terms are not all real. The student

should form an exact idea of the position of the corresponding sets of points
and prove that the sequences are actually null sequences.

The definitions in 7 of roots, of powers in the general sense, and
of logarithms were essentially based on the laws of order for real

numbers. They cannot, therefore, be transferred to the realm of

complex numbers in that form
(cf. 55 below).

The fundamental notions of the convergence and divergence of

a sequence of numbers (39 and 40, l)
still remain unaltered,
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although the representation of zn -> now becomes the following
l

: If

a circle of arbitrary (positive) radius e is described about the point as

centre, we can always assign a (positive) number nQ such that all terms

of the sequence (zn) with index n > nQ lie within the given circle. The
remark 39, 6 (1

st
half) therefore holds word for word, provided we in-

terpret the ^-neighbourhood of a complex number as being the circle mentioned

above.

In setting up the definitions 40, 2, 3, the symbols < and >
played an essential part; they cannot, therefore, be retained unaltered.

And although it would not be difficult to transfer their main content

to the complex realm, we will drop them entirely, and accordingly

in the complex realm we shall call every non-convergent sequence

divergent
'3

.

Theorems 41, 1 to 12, and the important group of theorems 43,
with the exception of theorem 3, remain word for word the same,

together with all the proofs.

The most important of these theorems were the Cauchy-Toeplitz

limit-theorems 43, 4 and 5, and since we have in the meantime gained

complete familiarity with infinite series, we shall formulate them once

more in this place, with the extension indicated in 44, 10, and for

complex numbers.

Theorem 1. The coefficients of the matrix 221.

(A)
20*

are assumed to satisfy the two conditions:

(a) the terms in each column form a null sequence, i.e. for every

fixed n 0,

as <x>.

1 For complex numbers and sequences, we preferably use in the sequel

the letters *,(,,....
2 We might say, in the case

|

*
|

-> + OO ,
that (zn )

is definitely

divergent with the limit CO, or tends or diverges (or even converges) to oo.

That would be quite a consistent definition, such as is indeed constantly made
in the theory of functions. However, it evidently involves a small inconsist-

ency relative to the use of the terms in the real domain, that e. g. the sequence
of numbers

( l)
n n should be called definitely or indefinitely convergent,

according as it is considered in the complex or in the real domain. And even

though, with a little attention, this may not give us any trouble, we prefer
to avoid the definition here.
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(b) there exists a constant K such that the sum of the absolute

values of any number of terms in any one row remains less than K,

i. e. 9 for every fixed k ^> 0, and any n:

Kol + KlH \~\
akn\< K -

Under these conditions, when (*, *i> ) zs any nu^ sequence, the

numbers
00

*' = akO *0 + akl Z
\ H = 2 akn Z

n=o
also form a null sequence

9
.

Theorem 2. The coefficients akn of the matrix (A), besides satis-

fying the two conditions (a) and (b), are assumed to satisfy the further

condition 3

or>

(c) 27 akn --= Ak -> 1 as k -> oo.
n-O

In this case, if zn +, we have also

V = **0*0 + fl
fcl *1+''' = iXn*,i -*f

n=o

(For applications of this theorem, see more especially 233, as well

as 60, 62 and 63.)

Unfortunately, we lose the first of the two main criteria of 9,

which was the more useful of the two. Moreover, the proof of the

second main criterion cannot be transferred to the case of complex

numbers, as it makes use of theorems of order throughout. In spite

of this, we shall at once see that the second main criterion itself

in all its forms remains valid for complex numbers. The proof

may be conducted in two different ways: either we reduce the new

(complex) theorem to the old (real) one, or we construct fresh founda-

tions for the proof of the new theorem, by extending the develop-

ments of 10 to complex numbers. Both ways are equally simple
and may be indicated briefly:

1. The reduction of complex sequences to real sequences is most

easily accomplished by splitting up the terms into their real and

imaginary parts. If we write zn
= x

n -\- iyn and f = f -(- irj, we have

the following theorem, which completely reduces the question of the

convergence or divergence of complex sequences to the corresponding
real problem:

322. Theorem 1. The sequence (zn )
s=

(xn + iyn ) converges to =
-f- i

v\

if, and only if, the real parts xn converge to and the imaginary parts

yn converge to rj.

3 In consequence of (b), Ak
= Zakn is absolutely convergent and there-

n

fore, as the zn's are bounded, by 41, Theorem 2, the series ^aicn zn =i!sk 1S al80

absolutely convergent.
n
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Proof, a) If #n -*f and yn +rj, (xn f) and (yn
-

77)
are null

sequences. By 26,1, the same is true of i(yn rj) and, by 28,1, of

(
xn -") + i(yn

~~
y}> l - e - f

(
zn )

b) If zn **, |2OT I

is a null sequence; since 4

(xn f) and (yn rf)
are also null sequences, by 26, 2, i. e. we have

both

The theorem is established.

The theorem at which we are aiming follows immediately:

Theorem 2. For the convergence of a complex sequence (zw), the

conditions of the second main criterion 47 are again necessary and

sufficient, namely, that, for every choice of e > 0, we should be able

to assign n so that

for every n >> nQ and every n' > nQ .

Proof, a) If
(2n) converges, so do (xn) and (yw) by the preceding

theorem As these are real sequences, we may apply 47, and,

given e > 0, we may choose n
l
and n3

so that

I

xn' xn I

< o f r every n > n
i
and every n' > nt ,

and

I ^ yn |

< TT for every n > w9
and every n' > n^

Taking nQ greater than n
x
and n2 , we have accordingly, for every n > nQ

and every w' > n ,

The conditions of our theorem are therefore necessary.

b) If, conversely, (zn) fulfils the conditions of the theorem,
i. e. given e > 0, we can determine n so that

|

zn ' zn \< e, provided

only that n and n' are both > n , we have also, for the same n
and n' (by our last footnote)

*n'-*< e and - <'
* We have in general

since
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By 47, this implies that (xn] and (yj are convergent, so that (zn)
must

also converge, by the preceding theorem; the conditions of our theorem

are therefore also sufficient.

2. Direct treatment of complex sequences. In the treatment of real

sequences, nests of intervals constituted our most frequent resource.

In the complex domain, nests of squares will render us the same

services:

223. Definition. Let Q , Qlf @3 , ... denote squares, whose sides will

for simplicity be assumed parallel to the coordinate-axes. If each square
is entirely contained in the preceding and if the lengths I0> llt ... of

the sides form a null sequence, we shall say that the squares form
a nest.

For nests of squares, we have the

Theorem. There exists one and only one point belonging to all the

squares of a given nest of squares. (Principle of the innermost

Point.)

Proof. Let the left hand bottom corner of Qn be denoted by

n + ta anc* me right hand upper corner by bn -}-ib*. A point

z = x -f- i y belongs to the square Qn if, and only if
5
,

Now, in consequence of our hypotheses, the intervals Jn = an . . . bn on

the a;- axis, and similarly the intervals /n = n*...&n* on the y-axis,

form a nest of intervals. There is therefore exactly one point f on

the #-axis and exactly one point iv\ on the y-axis belonging to all the

intervals of the corresponding nest. But this means that there is also

exactly one point f = f + 117, belonging to all the squares Qn .

We are now in a position to transfer definition 52 and theorem 54
to the complex domain:

224. Definition. // (z n) is an arbitrary sequence, is said to be a

limiting point or point of accumulation of the sequence if, given an

arbitrary 6 > 0, the relation

k-l<
is satisfied for an infinity of values of n (in particular, for at least

one n > any given nQ ).

225. Theorem. Every bounded sequence possesses at least one limiting

point. (Bolzano- Weierstrass Theorem.)

Proof. Suppose \zn \

< K and draw the square QQ
whose sides

lie on the parallels to the axes through & and *% AH them's

5 This statement at the same time expresses, in pure arithmetical lang-

uage, the relations of magnitude framed in geometrical form in the theorem
and definition 228.
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are contained in it, i. e. certainly an infinity of zn's. (> is divided by
the cooi dinate axes into four equal squares One at least of the four

must contain an infinity of zn's. (In fcict, if there were only a

finite number in each, there would also be only a finite number
in @ ,

which is not the case) Let Q denote the first quarter'
1

which has this property. This we again proceed to divide into four equal

squares, denoting by @3
the first quarter which contains an infinity of

points zn ,
and so on. The sequence Q , Q , Q2 , ... forms a nest of

squares, since each Qn lies within the preceding and the lengths of the

sides form a null sequence, namely (2K-^-J. Let f denote the

innermost point of this nest 7
; f is a point of accumulation of (zn).

For if e is given > and m is chosen so that the side of Qm is less

than
-|-,

the whole of the square Qm lies within the 6- neighbourhood

of , and, with it, an infinite number of points zn also lie in this

neighbourhood. Therefore f is a point of accumulation of (zn) 9 and

the existence of such a point is established.

The validity of the second main criterion for the complex domain,
i. e. of the theorem 222, 2, formulated above may now be

established once more, but without any appeal to the "real" theorems,
on the same lines as in 47.

Proof, a) If zn >, i.e. (zn f)
is a null sequence, we can

-C< and *'-f<-
determine nQ so that

provided only that n and n' are simultaneously > n [see part a) of

the proof of 47]. For these ns and w"s, we therefore also have

The condition is accordingly necessary.

b) If, conversely, the e- condition is fulfilled, (zn)is certainly bounded.
In fact, if m > nQ and n > m,

\. e. every ZM with n "> m lies in the circle of radius e round z" n

Taking K to be larger than all the m numbers \z^\ 9 |*3 |,
. .

*-* * WC

6 We regard the four quarters as numbered in the order in which the

four quadrants of the xy -plane are habitually taken.
7 The process of obtaining this point corresponds exactly to the method

of successive bisection so often applied in the real domain.
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By our preceding theorem, it follows that (zj tas at least one

limiting point . Supposing there exists a second limiting poi&J
' + f, choose /

6 _JL|r_ t |

<
e

3 K ;
l

which is positive. By 224, the definition of limiting point, we can

choose nQ
as large as we please and yet have an n > n for which

|

zn |

< e and also an ri > n for which
|

zn
> f

'

|

< Thus

above any number w , however large, there exist a pair of indices n

and w' for which 8

Iv -*! >

This contradicts our hypothesis. Accordingly f must be the unique

limiting point, and outside the circle of radius e round f there is

only a finite number of points zn . If n is suitably chosen, we there-

fore have
\zn |<e for every n > n , and consequently zn *.

The condition of the theorem is therefore sufficient also 9
.

53. Series of complex terms.

As a series 2 an of complex terms must obviously be interpreted

as the sequence of its partial sums, the basis for the extension of

our theory of infinite series has already been provided by the above.

Corresponding to 222, 1, we have first the

226. Theorem. A series 2 an of complex terms is convergent if, and

only if, the series 2 9t (an ) of the real parts of its terms and the series

2 $ (flj of their imaginary parts converge separately. Further > if these

two series have the sums s' and s" respectively, the sum of 2 an is

s = s' + ; 5".

In accordance with 222, 2 the second principal criterion (81) for

the convergence of infinite series remains unaltered in all its forms,

and, at the same time, the theorems 83 deduced from it, on the algebra

of convergent series, also retain their full validity.

Since, in the same way, theorem 85 also remains unchanged,
we shall, as before, distinguish between absolute and non-absolute con

vergence of series of complex terms (Def. 86).

hence

9 Hence we may also say: (zn) converges if, and only if, it is bounded

and possesses only one point of accumulation. This is then at the same time

the limit of the sequence.
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Here again we have the

Theorem. The series 2 an of complex terms is absolutely con- 227,

vergent if, and only if, both the series 2^i(an) and 2%(an) are ab-

solutely convergent.

The proof results simply from the fact that every complex number

z = x-\-iy satisfies the inequalities (cf. p. 393, footnote 4)

In consequence of this simple theorem, it is at once clear that,

with series of complex terms as with real series, the order of the terms

is immaterial if the series converges absolutely (Theorem 88,1).

If, however, 2an is not absolutely convergent, either 2$l(an)
or

^3(0 must be conditionally convergent. By a suitable rearrangement

of the terms, the convergence of the series 2an may therefore be des-

troyed in any case, as in the proof of theorem 89, 2, that is: In the

case of series of complex terms also, the convergence, when it is not

absolute, depends essentially on the order of succession of the terms.

(Regarding the extension to series of complex terms of Riemanns

rearrangement theorem 44, cf. the remarks on the following page.)

The next theorems, 89, 3 and 4, as also the main rearrangement
theorem 90, which relate to absolutely convergent series, still remain

valid, without modification or addition, for series of complex terms.

Since the determination of the absolute convergence of a series

is a question relating to series of positive terms, the whole theory of

series of positive terms is again enlisted for the study of series of

complex terms: Everything that was proved for absolutely convergent
series of real terms may be utilized for absolutely convergent series

of complex terms

If we omit power series from consideration for the present, we

observe, on looking over the later sections of Part II
( 18 27), that

the developments of Chapter X are the first for which there is any

question of transference to series of complex terms.

Abel's partial summation 182, being of a purely formal nature,

and its corollary 183, of course hold also for complex numbers, and

so does the convergence- test 184 which was based directly on them.

The special forms of this test may also all be retained, provided we

keep to the convention agreed on in 220, 5, in accordance with which

all sequences assumed to be monotone are real. In the case of du Bois-

Reymond's and Dedekind's tests, even this precaution becomes unnecessary:

they hold word for word and without any restriction for arbitrary series

of the form 2 an bn , with complex an and bn .

Riemanris rearrangement theorem ( 44) is, on the contrary, essen-
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tially a "real" theorem. In fact, if a series 2an
of complex terms is

not absolutely convergent, so is one at least of the two series JJjR^iJ
and 2%(an), by 227. By a suitable rearrangement, we can therefore,

in accordance with Riemanns theorem, produce in one of these two

series a prescribed type of convergence or divergence. But the other

one of the two series will be rearranged in precisely the same manner,
and there is no immediate means of foreseeing what the effect of the

rearrangement on this series or on 2an itself will be. It has recently

been shown, however, that if 2an
is not absolutely convergent, it may

be transformed by a suitable rearrangement into a series, again con-

vergent, whose sum may be prescribed to have either any value in

the whole complex plane or any value on a particular straight line in

this plane, according to the circumstances of the case 10
.

The theorems 188 and 189 of Mertens and Abel on multi-

plication of series
( 45) again remain valid word for word, together

with the proofs. For the second of these theorems we must, it is true,

rely on the second proof (Cesaro's) alone, as we have provisionally

skipped the consideration of power series
(cf.

later 232).
At this point we are in possession of the whole machinery

required for the mastery of series of complex terms and we can at

once proceed to the most important of its applications.

Before doing so, however, we shall first deduce the following

extremely far-reaching criterion.
00

228. Weierstrass* criterion u . A series 2 an of complex terms, for which

with An bounded, where <x is complex and arbitrary, and 12 A>1,

10 We thus have the following very elegant theorem, which in a certain sense

completes the solution of the rearrangement problem: The "range of summation"
of a series Zan of complex terms i. e. the set of values which may be obtained

as sums of convergent rearrangements of Ean is either a definite point, or a

definite straight line, or the entire plane. Other cases cannot occur. A proof is

given by P. L&vy (Nouv. Annales (4), Vol. 5, p. 506, 1905), but an unexception-
able statement of the proof is not found earlier than in E. Steinits (Bedmgt kon-

vergente Reihen und konvexe Systeme, J. f. d. reine u. angew. Math., Vol. 143,

1913; Vol. 144, 1914; Vol. 146, 1915).

For the (more restricted) result that every conditionally convergent series

San
** s can be rearranged to give another convergent series San

f =* s' with s' =t= s
9

W. Threlfall has given a fairly short proof (Bedingt konvergente Reihen, Math.

Zschr., Vol. 24, p. 212, 1926).
11

J. f. d. reine u. angew. Math., Vol. 51, p. 29, 1866; Werke I, p. 185.
12 An equality of this kind may of course always be assumed ; we need only

write An
= H* (

1
"

'

)
as a definition. What is essential in the condition

\ n an /

is here, as previously (cf. footnote to 166), that when a and A are suitably chosen

the An* should be bounded. It is substantially the same thing to assume that

! + //!
+ Bn/n* wjth A > 1 and Bn bounded.
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is absolutely convergent if, and only if, SR (a) > 1 . For JR (a)
< the

series is invariably divergent. If 0<8fl(a)<^l, both the series

n=o
are convergent.

Proof. 1. Let cc= (t-\-iy and let us first assume /?== $

In that case, if
| An \

< K, say, we write, as is permissible,

> 1.

and it follows at once that, if
/?'

is any number such that 1 <
^^. JL

an \

n

for every sufficiendy large n. By Raabes test, the series -^|an |

is

therefore convergent.

2. Now suppose SH() = /?^1- In that case, since

for sufficiently large values of n, it follows from Gauss's test 172 that

2\an \

is divergent.

3 a. If, on the other hand, 9ft (a)
=

ft < 0, our last inequality shows that

then

Therefore 2 an must now diverge.

3b. If $K(a) = = 0, i. e .

f>

it is easy to verify that we then have

where H > 1 and is the smaller of the two numbers 2 and Jl, and

^'s are again bounded. Accordingly, if c denotes a suitable constant,

13 As regards the series 2 an itself, it was shown by Weierstrass, I.e., that this is

also divergent whenever Ot (a) fS 1. The proof is somewhat troublesome. A
further more exact investigation of the series 27 an itself in the case 5^ 0? (a) fg 1

is given by A. Pringsheim (Archiv d. Math, und Phys. (3), Vol. 4, pp. 1 19, in

particular pp. 13 17. 1902), J. A. Gmeiner, Monatshefte f. Math. u. Phys., Vol.

19, pp. 149103. 1908.
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for every n ^> w, say. It follows by multiplication that

"n
n-1

>n i---

Hence
|

an \

> Cm -\
am \

, for every n>m, and w cannot tend to 0,

so that 2a
n again diverges (cf. 17O, 1).

4. If, finally, , we have to show that both the

series

are convergent. Now as in 1. we have, for every sufficiently large n,

I a . , 8'* + 1 < 1 , with </?'</?,
|

an n r f
so that

|

an |

diminishes monotonely from some stage on, and there

fore tends to a definite limit ^> 0. Accordingly,

a) the series J"(|an | |#n + i|)
is convergent, by 131, and has,

moreover, all its terms positive for sufficiently large n's. Now

1-
= V

since the fraction on the right hand side tends to the positive limit ~~

when n *-f-c that on the left is, for every sufficiently large n, less

than a suitable constant A. By 70, 2, this means that 2\an w .hl |

converges with2(| n | |0w +i|)- We can show more precisely, how-

ever, that

b) an + 0. For it again follows, by multiplication, from

that

(n ^

The right hand side (by 126, 2) tends to as n

(cf. 17O, 1) we must have fln >0. Now the series

hence

*=o

is a sub series of 2(an n+1 )
and therefore converges absolutely,

by a); also, since
|

an \ + | n + 1 1

*0 with an , we may omit the

brackets, by 83, supplement to theorem 2. This proves the con-

vergence of 2 ( l)
n
an .

This theorem enables us to deduce easily the following further

theorem, which will be of use to us shortly:
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Theorem. //, as in the preceding theorem, 229.

_?i. i _ _!i _ *. I
a arbitrarv> ^

~~a"7 ~n n*>
I (4) bounded,

the series 2an z
n

is absolutely convergent for \z\ < 1, divergent for every

|

z
|
> 1 , and for the points of the circumference \

z
\

= 1
, the series will

a) converge absolutely, if *3i () > 1 ,

b) converge conditionally, if 0< 3t(a)<^l, except possibly for the

single point z = + 1

c) diverge, if 9R (a) ^ .

Proof. Since

the statements relative to \z\^\ are immediately verified. For

|

z
|

= 1 , the statement a) is an immediate consequence of the con-

vergence of -2|0n |

ensured by the preceding theorem. Similarly c)

is an immediate consequence ,of the fact established above, that in this

case
|

a
n \

remains greater than a certain positive number for every

sufficiently large n.

Finally, if < 5R(a) ^ 1 and z 4* -f- 1, the convergence of 2an z
n

follows from Dedekind's test 184, 3. For we proved in the preceding

theorem that 2\an an ^. 1 \
converges and an >0; that the partial

sums of 2zn
are bounded, for every (fixed) 24>-|-l on the circum-

ference
|

z
|

= 1 , follows simply from the fact that for every n

II-*!

54. Power series. Analytic functions.

The term "power series" is again used here to denote a series

of the form 2an z
n

, or, more generally, of the form 2a
n (z z^

n
9

where now both the coefficients an and the quantities z and ZQ may
be complex.

The theory of these series developed in 18 to 21 remains vab'd

without any essential modification. In transferring the considerations of

those sections, we may therefore be quite brief.

Since the theorems 98, 1 and 2 remain entirely unaltered in the

new domain, the same is true of the fundamental theorem 93 itself,

on the behaviour of power series in the real domain. Only the geo-

metrical interpretation is somewhat different: The power scries 2a
n z*

14 If we take into account Pnngsheim's result mentioned in the preceding*

footnote, we may state here, more definitely except for * = -fl.
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converges indeed absolutely for every z interior to the circle of

radius r round the origin 0, while it diverges for all points outside

that circle. This circle is called the circle of convergence of the power
series and the name radius applied to the number r thus becomes,

for the first time, completely intelligible. Its magnitude is given as before

by the Cauchy-Hadamard theorem 94.

Regarding convergence on the circumference of the circle of con-

vergence, we can no more give a general verdict than we could re-

garding the behaviour at the endpoints of the interval of convergence
in the case of real power series. (The examples which follow immedia-

tely will show that this behaviour may be of the most diverse nature.)

The remaining theorems of 18 also retain their validity unaltered.

230. Examples.

1. 2zn
]
r=l. In the interior of the unit circle, the series is convergent,

with the sum . On the boundary, i. e. for
|

z
\

= 1
,

it is everywhere di-
L Z

vergent, as z n does not -* there.

z n

2. Jf? 5- ;
f = 1. This series l5 remains (absolutely) convergent at all

the boundary points |

z
\

= 1 .

zn

8. 5] ;
r=l. The series is certainly not convergent for all the

ft

boundary points, for* = l gives the divergent series . However, it is also

not divergent for all these points, since z = 1 gives a convergent series. In

fact, theorem 229 of the preceding section shows, more precisely, that the

series must converge conditionally at all points of the circumference
|jr|

= l

different from + 1 ;
for we have here

The same result may also be deduced directly from Dinchlefs test 184, 2, since

Z z n has bounded partial sums for z
=f= -f 1 and

|

s
|

= 1 (cf. the last formula of

the preceding section) and tends monotonely to 0. As
n

z n

the convergence can, however, only be conditional
16

.

4. 5? -. ; r = 1 . This series diverges at the four boundary points
4 n

and t, and converges conditionally at every other point of the boundary.

16 If 2an z
n has real coefficients (as in most of the subsequent examples)

this power series of course has the same radius as the real power series 2an xn .

16 These facts regarding convergence may also be deduced from 185, 5,

by splitting up the series into its real and imaginary parts. Conversely, how-

ever, the above mode of reasoning provides a new proof of the convergence
of these two real series.
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zn

5. For
,

r = -f-OO. For 2'n!*n
, r=0; thus this series converges

nowhere but at z=0.

6. The series J (-!)-. and
^(_l)*-^__

are everywhere

convergent.

7. A power series of the general form 2an (z z
)
n
converges absolutely

at all interior points of the circle of radius r round zot and diverges outside

this circle, where r denotes the radius of 2an z n .

Before proceeding to examine the properties of power series in

more detail, we may insert one or two remarks on

Functions of a complex variable.

If to every point z within a circle $ (or more generally, a

domain 17
)
a value w is made to correspond in any particular manner,

we say that a junction w = f(z) of the complex variable z is given in

this circle (or domain). The correspondence may be brought about in

a great number of ways (cf.
the corresponding remark on the concept

of a real function, 19, Def. l) ; in all that follows, however, the func-

tional value will almost always be capable of expression by an explicit

formula in terms of z, or else will be the sum of a convergent series

whose terms are explicitly given. Numerous examples will occur very

shortly; for the moment we may think of the value w, for instance,

which at each point z within the circle of convergence of a given

power series represents the sum of the series at that point.

The concepts of the limit, the continuity, and the differentiability of a

function are those which chiefly interest us in this connection, and their

definitions, in substance, follow precisely the same lines as in the real

domain :

1. Definition of limit. If the function w=f(z) is defined 18 for 231.
every z in a neighbourhood of the fixed point , we say that

iim
f(z]

= co

or_ f(z)-+a> for *-*,

17 A strict definition of the word "domain" is not needed here. In the

sequel, we shall always be concerned with the interior of plane areas bounded
by a finite number of straight lines or arcs of circles, in particular with circles

and half-planes
18

f(z) need not be defined at the point itself, but only for all z's which

satisfy the condition 0< |* | <Q. The d of the above definition must then
of course be assumed
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if, given an arbitrary e > , we can assign d d (e) > so that

\f(z)-a>\<e

for every 2 satisfying the condition <
|

z
\
< 6; or which comes

to exactly the same thing
19

if for every sequence (zn) converging
to , whose terms lie in the given neighbourhood of and do not

coincide with , the corresponding functional values wn
=

f(zn)
con-

verge to co.

If we consider the values of f (z) , not at all the points of a neigh-

bourhood of , but only at those which lie, for instance, on a parti-

cular arc of a curve ending at , or in an angle with its vertex at ,

or, more generally, which belong to a set of points M, for which

is a point of accumulation, we say that limf(z) = co or f(z)*-co
as z+> along that arc, or within that angle, or in that set M, if the

above conditions are fulfilled, at least for all points z of the set M which

come into consideration in the process.

2. Definition of continuity. If the function w = f(z) is defined

in a neighbourhood of and at itself, we say that f(z) is continuous

at the point , if

lim f(z)

exists and is equal to the value of the function at , i. e. if f(z) */"()
We may also define the continuity of f(z) at when z is restricted to an

arc of a curve containing the point , or an angle with its vertex at ,

or any other set of points M that contains and of which is a limiting

point; the definitions are obvious from 1.

3. Definition of differentiability. If the function w = f(z) is de-

fined in a neighbourhood of and at itself, f(z) is said to be differ-

entiate at , if the limit

lim '

exists in accordance with 1. Its value is called the differential coeffi-

cient of f(z) at and is denoted by /"(). (Here again the mode of

variation of z may be subjected to restrictions.)

We must be content with these few definitions concerning the

general functions of a complex variable. The study of these functions

in detail constitutes the object of the so-called theory of functions, one
of the most extensive domains of modern mathematics, into which we
of course cannot enter further in this place

30
.

19 Same proof as in the real domain.
80 A rapid view of the most important fundamental facts of the theory

of functions may be obtained from two short tracts by the author : Funktionen-
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The above explanations are abundantly sufficient to enable us to

transfer the most important of the developments of 20 and 21 to

power series with complex terms.

In fact, those developments remain valid without exception for

our present case, if we suitably change the words "interval of conver-

gence' to "circle of convergence" throughout Theorem 5 (99) is the

only one to which we can form no analogue, since the concept of

integral has not been introduced for functions of a complex argument.
All this is so simple that the reader will have no trouble, on looking

through these two sections again, to interpret them as if they had been

intended from the first to relate to power series with complex terms.

At the most, a few remarks may be necessary in connection with

Abel's limit theorem 100 and theorem 107 on the reversion of

a power series. In the case of the latter, the convergence of the series

y + As y'
2
H---- > an(^ hence of the series y -f- b^ y

1

-\
----

,
which satis-

fied the conditions of the theorem, were only proved for real values of y.

This is clearly sufficient, however, as we have thereby proved that this power
series has a positive radius of convergence, which is all that is required.

As regards Abel's limit theorem, we may even corresponding
to the greater degree of freedom of the variable point z prove more

than before, and for this reason we will go into the matter once more:

Let us suppose 2 an z
n

to be a given power series, not everywhere

convergent, but with a positive radius of convergence. We first observe

that, exactly as before, we may assume this radius = 1 without intro

ducing any substantial restriction On the circumference of the circle

of convergence,
|

z
\

= 1, we assume that at least one point z exists

at which the series continues to converge. Here again we may assume

that ZQ is the special point + 1. In fact, if z 4s + 1> we need only put

"n*0* =*,!>

the series 2an
'

z
n

also has the radius 1 and converges at the point -j- 1.

The proof on^mally given, where everything may now be

interpreted as "complex", then establishes the

Theorem. // the power series 2' an z
n

has the radius 1 and remains

convergent at the point -f- 1 of the unit circle, and if 2 an
= s t then

we also have

if z approaches the point + 1 along the positive real axis from the

origin
21 0.

theorie, I. Teil, Grundlagen der allgemeinen Theorie, 4th ed., Leipzig 1930; II.

Teil, Anwendungen und Weiterfiihrung der allgemeinen Theone, 4th
ed., Leipzig

1931 (Sammlung Goschen, Nos. 668 and 703).
21 We are therefore dealing with a limit of the kind mentioned above in

231, 1.

14 (051)
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233. We can now easily prove more than this:

Extension of AbeVs theorem. With the conditions of the preceding

theorem, the relation

remains true if the mode of approach of z to +1 is restricted only

by the condition that z should remain within the unit circle and in

the angle between two arbi-

trary (fixed) rays which pene-

trate into the interior of the

unit circle , starting from the

point + 1 (see Fig. 10).

The proof will be con-

ducted quite independently of

previous considerations, so that

we shall thus obtain a third

proof of Abel's theorem.

Let ZQ , k , . be

Fig. 10.

We have to show that

any sequence of points of

limit -\- 1 in the described

portion of the unit circle

fto-

if, as before, we write 2an z
n =

f(z). In Toeplitz theorem

choose for a
ftn

the value

and apply the theorem to the sequence of partial sums

sn
=

"o + i H !->

which, by hypothesis, converges to s. It follows immediately that

- **)<* =
(
]

n=0

also tends to s as k increases. This proves the statement, provided

we can show that the chosen numbers akn satisfy the conditions
(a),

(b) and (c)
of 221. Now (a)

is clearly fulfilled, as *
fc 1, and the

CO

sum of the & th row is now A
k
=

(l z
k] ^zk

= 1, so that
(c)

is

n=o

fulfilled. Finally (b) requires the existence of a constant K such that

for all points z = z
k

1 in the angle (or any sector-shaped portion

of it with its vertex at +1). It only remains, therefore, to establish
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the existence of such a constant. This reduces (v. Fig. 10) to proving

the following statement: If z= l Q (cos <p+ * sin
9?) w#A | <P | ^ <P < ^

and < Q <I QQ < 2 cos <p , a constant A = A (<^ , ^ ) exists, depending

only on <p and QO , such that

^^ A

for every z of the type described. In the proof of this statement, it is

sufficient to assume QQ = COS<PQ> and in that case we may at once
o

show that A = is a constant of the desired kind. In fact, the
cos<p

statement then runs:

1 - yi
- 2 Q cos <p + e

a cos <Po

or

2 Q cos 9? + 2
<I cos 9? + Q* cos2

<p ,

for < Q<L cos9? and
\<p\ <; goQ

. By replacing 99 by <p and 2
by

cos<p on the left hand side, the latter is increased; therefore it cer-

tainly suffices to show that

q cos 9 ^ q cos
<p + ^ <P cos2 9 ,

- which is obviously true. This extension of Abel's theorem to "com-

plex modes of approach" or "approach within an angle" is due to

O. Stolz 22
.

This completes the extension to the case of complex numbers of all the

theorems of 20 and 21 with the single exception of the theorem on inte-

gration, which we have not defined in the present connection. In particular,

it is thereby established that a power series in the interior of its circle of

convergence defines a function of a complex variable, which is continuous

and differentiable the latter "term by term" and as often as we please

in that domain, and accordingly possesses the two properties which

above all others are required, in the case of a function, for all purposes
of practical application. For this reason, and on account of their great

importance in further developments of the theory, a special name has

been reserved for functions representable in the neighbourhood of a point

28 Zeitschrift f. Math. u. Phys., Vol. 20, p. 369, 1875. In recent years the

question of the converse of Abel's theorem has been the object of numerous investi-

gations, i. e. the question, under what (minimum of) assumptions relating to

the coefficients an , the existence of the limit of J (z) as z > 1 (within the angle)

entails the convergence of an . An exhaustive survey of the present state of research

in this respect is given in papers by G. H. Hardy and J. E. Ltttlewood, Abel's theorem

and its converse, Proc. Lond. Math. Soc. (2), I. Vol. 18, pp. 205 235, 1920; II.

Vol. 22, pp. 254269, 1923; III. Vol. 26, pp. 219 23G, 1926. Cf. also theorems
278 and 287.
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z by a power series E an (z zQ)
n

. They are said to be analytic or regular

at ZQ . By 99, such a function is then analytic at every other interior point

of the circle of convergence; it is therefore said simply to be analytic or

regular in this circle
23

. In particular, a series everywhere convergent re-

presents a function regular in the whole plane, which is therefore shortly

called an integral function.

All the theorems which we have proved about functions expressed

by power series are theorems about analytic functions. Only the two fol-

lowing, which are of special importance in the sequel, need be expressly

formulated again.

234. 1- If two functions are analytic in one and the same circle
,
then so are

(by 21) their sum, their difference, and their product.

For the quotient the corresponding statement is primarily true (by

105, 4) only if the function in the denominator is not zero at the centre

of the circle, and provided, if necessary, that this circle is replaced by a

smaller one.

2. If two functions, analytic in one and the same circle, coincide in a

neighbourhood, however small, of its centre (or indeed at all points of a set

having this centre as point of accumulation), the two functions are completely

identical in the circle (Identity theorem for power series 97).

Besides stating these two theorems, which are new only in form,

we shall prove the following important theorem, which gives us some

information on the connection between the moduli of the coefficients of

a power series and the modulus of the function it represents :

00

235. Theorem. If f(z) = Z an (z zQ)
n
converges for \

z ZQ \
< r, then

= o

\^\^ MP (P = 0, 1, 2, . . .),
G

if < < r and M ~ M (Q) is a number which
\ f(z) \

never exceeds along

the circumference \

z ZQ \

=
Q. (Cauchy's inequality.)

Proof 24
. We first choose a complex number

77,
of modulus = 1,

for which however
-rf

1
3= 1 for any integral

25
exponent q^ 0. Now we

consider the function

*(*) = (*- *o)
k

28 A function is accordingly said to be "analytic" or "regular" in a circle ,ft

when it can be represented by a power series which converges in this circle.

24 The following very elegant proof is due to Weierstrass (Werke II, p. 224)
and dates as far back as 1841. Cauchy (Me"moire lithogr., Turin 1831) proved the

formula indirectly by means of his expression for / (z) in the form of an integral.

The existence of a constantM that
| f(z) \

never exceeds on
|
z z

\ 2 is practically

obvious, of course, sinceM = 2
\
an

\ Q
n
clearly has this property. This Mis obviously

also such that
|
an

\ Q
n ^ M. But the above theorem states that every M that

| / (z) \

never exceeds has the property that
|
an

\ Q
n

is always 5^ M.
25 Such numbers 17 of course exist, for if t\ cos (a TT) + i sin (a TT), then

if* cos (q a
TT) + i sin (q a TT) ; this is never 1 if a is chosen irrational.
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for a specific integral value of the exponent k ^ and an arbitrary

constant coefficient a. If we denote by gQ , gl9 g>2
, ... the values of

this function for z = Z
Q + Q- rj

v
, v = 0, 1 , 2, . . . , we have for n ^ 1

fc 1 *i
kn

hence

I

The expression on the right hand side contains only constants, besides

the denominator n; it therefore follows that the arithmetic mean

\-gn-l ~

as n increases. In the case k 0, we should be concerned with the

identically constant function g(z) s= a, for which

since the ratio is equal to a for every n, in this case. If we consider

the rather more general function

^)-t? +^^^
where I and m are fixed integers ^> 0, and now form the arith-

metic mean
-----hgn-l

(where, as before, gv = g (z -f- Q rj

v
),

v = 0, 1, . .
.),

this clearly + b ,

by the two cases just treated. If, further, it is known that the function g(z)>

for every z of the circumference
|

z ZQ \

= Q, is never greater than a

certain constant K, we have also

gp-f ffi + " + gn-l ^ n A" ^
W ~~

7J

and therefore also

With these preliminary remarks, the proof of the theorem is now

quite simple: Let p be a specific integer ^0. As 2j\ an \Q* con

verges, given e > 0, we can determine q > p so that
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A fortiori, we then have for all values of z such that
|
z ZQ \

= Q ,

I !(*-*o)B
l<nq + l

and therefore, for the same values of z9

n=0

if M has the meaning given in the text. Accordingly, on the circum-

ference
|

Z ZQ |

= Q ,

The function between the modulus signs is of the kind just considered.

The inequality |

b
\ ^ K there obtained now becomes

, K^tf
I **p 1 === p *

and, as e was arbitrary and > 0, we have, in fact, (cf.
footnote to 41, l)

I I <

q. e. d.

55. The elementary analytic functions.

I. Rational functions.

1. The rational function w = - is expressible as a power series

for every centre Z
Q + + 1 :

1 1 11 S 1 / ..xi.

l-z I-ZQ -(Z-ZO) I~ 1~

and this series converges for
[

z z
|

<
1

1 z
\

i. e. for every z

nearer to z than -f- 1; in other words, the circle of convergence of

the series is the circle with centre ZQ passing through the point +1.
The function

1

- is thus analytic at every point different from +1.
With reference to this example, we may briefly draw attention to the

following phenomenon, which becomes of fundamental importance in the theory
of functions: If the geometric series 2zn

,
whose circle of convergence is the

unit circle, is expanded by Taylor's theorem about a new centre z within the

unit circle, we could assert with certainty, by that theorem, that the new series

converges at least in the circle of centre z
l
which touches the unit circle on

the inside. We now see that the circle of convergence of the new series may
very possibly extend beyond the boundary of the old. This will always, be the

case, in fact, when z
t is not real and positive. If zt is real and negative, the

new circle will indeed include the old one entirely. (Cf. footnote to 99, p 176.")
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2. Since a rational integral function

<*o + ai z + a
* z*-\-----1" am zm

may be regarded as a power series, convergent everywhere, such

functions are analytic in the whole plane. Hence the rational functions

of general type

are analytic at all points of the plane at which the denominator is

not 0, i. e. everywhere, with the exception of a finite number of

points. Their expansion in power series at a point z , at which the

denominator is 4s 0> *s obtained as follows: If z is replaced by
zo + (z *o) both in the numerator and denominator of such a function,

these being then rearranged in powers of (z * ),
the function takes

the form

where, on account ot our assumption, &
'

4. 0. We may now carry

out the division in accordance with 105, 4 and expand the quotient
in the required power series 26 of the form Scn (s #o)

n
*

II. The exponential function.

The series

is a power series converging everywhere, and therefore defines a func-

tion regular in the whole plane, i. e. an integral function. To every

point z of the complex plane there corresponds a definite number w,
the sum of the above series.

This function, which for real values of z has the value e z as de-

fined in 33, may be used to define powers of the base e (and then

further those of any positive base) for all complex exponents:

80 An alternative method consists in first splitting
1

up the function into

partial fractions. Leaving out of account any part which represents a rational

integral function, we are then concerned with the sum of a finite number of

fractions of the form
A A i 1 \tf

each of which we may, by 1, expand separately in a power series of the form
2cn (g z )*, provided z 4= a. This method enables us to see, moreover, that

the radius of the resulting* expansion will be equal to the distance of z from the

nearest point at which the denominator of the given function vanishes.
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236. Definition. For all real or complex exponents, the meaning to be

attributed to the power e* is defined, without ambiguity, by the

relation

And if p is any positive number, p
z shall denote the value determined,

without ambiguity, by the formula

where log/> is the (real) natural logarithm of p as defined
21 in 36.

(For a non-positive base b, the power b z can no longer be uniquely

defined; cf., however, 244.)

As there was no meaning attached per se to the idea of powers
with complex exponents, we may interpret ihom in any manner we please.

Reasons of suitability and convenience can alone determine the choice

of a particular interpretation. That the definition just given is a th )r-

oughly suitable one, results from formula 91, example 3 (leaving

out of account the obvious requirement that the new definition must

coincide with the old one for real values of the exponent
28
); this formula

was proved by means of a multiplication of series, the validity of which

holds equally for real and complex variables and the formula must

accordingly also hold for any complex exponent; it is

237. ei e z*= e i+*

whence also

This important fundamental law for the algebra of powers therefore

certainly remains true. At the same time it provides us with the key
to the further study of the function e z

.

238. 1. Calculation of ez . For real
y's,

we have

= cos y -f- i sin y .

27 It may be noted how far removed this definition is from the elementary
definition ltxk is the product of k factors all equal to x". At first sight, there is

no knowing" what value belongs e. g. to 2 l
; yet this value is in any case uni-

quely determined by the above definition.

28 By 234, 2, there can exist no other function than the function a
2

just

defined which is regular in the neighbourhood of the origin and coincides on

the real axis z = x with the function e
x defined by 33. For this reason we

may indeed say that every definition of e
z
differing from the above would

necessarily be unsuitable,
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Hence it follows that, for z ~ x + i y>

e* = e* + iv -== e x e iv e r
(cos j/

By means of this lormula 20 the value of e z may easily be determined

for all complex z's.

This formula enables us, besides, to obtain in a convenient and

complete manner an idea of the values which the function e z assumes

at the various points of the complex plane (in short, of its stock of

values}. We note the following facts.

2. We have \e
z

\

= **<*> = e*. In fact

\e**\
= (cosy -f isiny |

Vcos 2
y -j-sin

s
y = 1,

hence
|

e z
\

=
\

e x
\

-

\

e iy
\

= e x
, because e x > and the second factor

= 1. Similarly,
am e z = 3 (z)

= y,

also from the formula 238, 1 just used.

3. e z has the periods 2kni, that is to say, for all values of z,

e* = e*+**\ = e z *- 2 *w
<, (k ^0, integral).

For if we increase z by 2 71 i its imaginary part y increases by 2ji,

\\ hile its real part remains unaltered, and by 1. and 24, 2, this leaves

the value of the function unchanged. Every value which e z is able

to assume accordingly occurs in the

strip n < 3 (z)
= y <i n, or in any

strip which may be obtained from it

by a parallel translation. Every such

strip is called a period-strip; Pig. 11

represents the first-named of these strips.

4. e z has no other period, in- O

deed, more precisely: if between two

special numbers z and z^ we have

the relation

Fig. 11.
this necessarily implies that

For we first infer that e z*~~ z* = 1, then we note that if

e z = e x+ iv = ^(cos y -f- isiny) = 1,

ae Euler: Intr. in Analysin inf. Vol. T, 138. 1748.
14* (G51)
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we must by 2. have *=!, hence x = 0. Further, we also have

cos y -f- i sin y = 1

i. e.

cos y = 1 , sin y = 0,

hence y = 2 k n . Thus, as asserted,

5. e* assumes every value w 4= owc0 awd only once in the period

strip; or: the equation e z = wlt
for given ^=^0, has one and only

one solution in that strip.

If w^ = R^ (cos ^ + * sin &J with #
t
> 0, the number

is certainly a solution of e 3 = w
t , as

e zi = 6 \wRi e i'^ = R^ (
cos

By 3., the numbers

(ft
= 0, 1, 2,...)

are also solutions of the same equation, and by 4. no other solutions

can exist. Now k may always be chosen, in one and only one way,

so that

n < 3 (^ -f 2 k n i} <^ + n, q. e. d.

6. The value is never assumed by e z
\ for, by 237,

ez.e-z = \,

so that ez can never be 0.

7. The derivative (e
z
)'

of ez is again ez
y
as follows at once by differ-

entiating term-by-term the power series that defines ez .

8. From 238, 1, we also deduce the special values

III. The functions cos z and sin z.

In the case of the trigonometrical functions, we can again use the

expansions in power series convergent everywhere to define the functions

239* for complex values of the variable.

Definition. The sum of the power series, convergent everywhere,

z2 z* z2k
1 ""

2 !

+
il
- + + (- *)*

(2 k)\
+ ' ' ' '

is denoted by cos z, that of the power series, also convergent everywhere^

1~! ^ I

'

FT I

r + ( 1,
1 ! O ! J !

by sin z, for every complex z.



55. The elementary analytic functions. III. The functions cos z and sin z. 415

For real z = x, this certainly gives us the former functions cos x

and sin x. We have only to verify, as before, whether these defini-

tions are suitable ones, in the sense that the functions defined, which

are analytic in the whole plane, i.e. integral functions, possess the

same fundamental properties as the real functions 30 cos x and sin x.

Thai this is again the case, to the fullest extent, is shown by the

following statement of their main properties:

1. For every complex z, we have the formulae 240.

cos#+ /sin #= 0*%

whence further

e
** + e-** .--~-

, 81112

(Eider's formulae).

The proof follows immediately by replacing the functions on both

sides by the power series which define them.

2. The addition theorems remain valid for complex values of z:

cos (zl + 23)
= cos z

t
cos

z.}
sin z

1
sin

z^,

sin (^ -f- 22 )
= cos 2

i
sm ^3 + sm %i cos -?3 f

This follows from 1., since by 237

and the latter involves

cosfo +*9) + isin(*1 +*9)

==
(cos 2j + i sin zj (cos z

a -f- i sin z
a)

=
(cos Z

A
cos z

2
sin ^ sin ^) -f- i (cos ^ sin z

2 -f sin
2:,

cos *,) .

Substituting z and z^ for ^j and 2
a , and taking into account the

fact that cos z is an even, sinz an odd function, we obtain a similar

formula, which differs from the last only in that i appears to be changed
to i on either side. Addition and subtraction of the two relations

give us the required addition formulae.

3. The fact that the addition theorems for our two integral func-

tions are formally the same as those for the functions cos a; and sin a;

of the real variable x, not only sufficiently justifies our designating

these functions by cos,? and sins, but shows, at the same time, that

the entire formal machinery of the so-called goniometryt since it is

evolved from the addition theorems, remains unaltered. In particular,

90 Here again a remark analogous to that on p. 412, footnote 28, may
be made.
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we have the formulae

cos 3 z -f- sin 2 z = 1, cos 2 z = cos 9 z sin z 9

sin 2 z = 2 sin z cos z, etc.

valid without change for every complex z.

4. The period-properties of the functions are also retained in the

complex domain. For it follows from the addition theorems that

cos (z -f- 2 n) = cos z cos 2 n sin z sin 2 rc = cos 2,

sin (2 -f- 2
JT)
= cos 2 sin 2 JT + sin 2 cos 2 JT = sin 2 .

5. 77*0 functions cos z aw<2 sin z possess no other zeros in the com-

plex domain besides those already known in the real domain* 1
. In fact,

cos z = necessarily involves, by 1., e iz = e~ iz or

i. e.

By 238, 4, this can only occur when

Similarly, sinz = implies e iz ~ e" iz
, or e* iz = 1, i. e. 2 iz = 2 k jit,

or z = kn, q. e. d.

6. The relation cos z = cos z
2 is satisfied if, and only if,

z^
=

-j- z
^
-. 2 kn, i. e. under the same condition as in the real

domain. Similarly sm z^
= sin z^ if, and only ift z^

= z -f- 2 k n or

zg
= n z + 2 k n. It follows in fact from

cos z, cos 22 = 2 sm -~^ -
2
sin -1

-,,
3- =

,
> u

by 5., that either -JL
-Q

fl

r S>~
2 must = ft JT; similarly it follows from

i &

sin zt sin z%
= 2 cos L

g
g

sin -^-Q---
=

,

by 5., that either -^^ = ft ^ or ^-^ = (2 A + 1)
-*-

.

7. 77z functions cos,? aw^ sin^r assume every complex value w
in the period-strip, i. e. in the strip n < $1 (z) <I -f- n, the equations
cos 2 = w and sin 2 = w have indeed exactly two solutions in that strip,

if w ^ l, but only one, if ze> = 1.

81 Or in other words: The sum of the power series 1 -
-|

... =
if,

and only if, z has one of the values (2 k -f 1) ,
k = 0, 1 , 2, ...; and

A

.similarly for the sine series.
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;

lhe functions cot z and tan z.

Proof. In order to have cos z ~- w, we must have eiz -\- e~
iz 2 10

or e iz = w -f- Vw2
1. (Here V r (cos r* = w -f- V w* 1. (Here V Y (cos r/; + i sin

g?)
is defined as one

of the two numbers, for instance 72(0)8-?* +isin-~V whose square is

the quantity under the radical c
ign.)

Since in any case 32 w + Vw2 1 =}= 0,

there certainly exists a complex num-

ber / such that - n < 3(Y) < +n,
foi which e z

' = w -\-V w* 1,

by 238,5. Writing i z
' =

z, we
have n < 9R (2) <^

= w + '

Fig. 12.

ji and 12

or cos z = w. This

equation therefore certainly has at

least one solution in the penod-stnp.

By 6., however, a second solution,

different from it, (viz. z), exists

in the period -strip if, and only if,

z =H and =f= n, i. e. w + 1-

We reason in precisely the same manner with regard to the

equation sin z -- w. In this case, we can also easily convince our-

selves that there is always one and only one solution of the equation

in the portion of the period-strip left unshaded in Fig 12, if we in-

clude the parts of the rim indicated in black, but omit the parts re-

presented by the dotted lines (see VI below).

8. For the derivatives, we have as in the real case,

(cos z)' sin 3, (sin z)' cos z.

IV. The functions cot# and tan^gr.

1. Since cos z and sin z are analytic in the whole plane, the functions

cot z = ^? and
sin z

tan z = --
cos z

will also be regular in the whole plane, with the exception of the points

k TT for the former and (2 k + 1) for the latter, which are the zeros of

sin z and cos z respectively. Their expansions in power series may be

obtained by carrying out the division of the cosine and sine series. Since

this operation is of a purely formal nature, the result must be the same

as it was in the real domain. Accordingly, by 24, 4, where the result

of this division was obtained by a special artifice, we have

k -

t n __ / 1 \fc-ltan ~ -Z (- 1)

32 In fact, since w* 1 =+= w8
, Vw2 1 4= i ?.
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On account of 94 and 136, we are now also in a position to de

termine the exact radius of convergence of these series. The absolute

value of the coefficient of z2k in the first series, by 136, is

Its (2A)
th root is

if So t denotes the sum 5? ^r. The latter lies between 1 and 2 for&K *^
ft
VK

every k = 1, 2, ... (for it is
-^

when k = 1, and is less than this for

every other i, but > 1); therefore

1

-*' 12*) i

"^
IT'

and the radius of the cot-series = n, by 94. Similarly that of the

tan-series is found to be
-^

.

2. cot z and tan* Aatte tf/te period n. For cos 3 and sin^r ftott

change in sign alone when z is increased by n. Here again we may
show, more precisely, that

cot *a
= cot jgra

and tan jgr
a
= tan jgra

involve

*,
=

*, + ** (*-0, 1,...).
In fact, it follows from

cos z. cos z9 sin fo, *.)
COt Z, COt &. = : :

=
: .

X

1 2 sin 2r
t

sin 22 sin ^ sin z^

that in the case of the first equation sin
(za zj == 0, i. e. z

a z = kn.

Similarly in the case of the second.

3. In the "period-strip", i. e. in the strip ^ < SR (0) <I + ~ ,

cot 2r and tan 2 asswme every complex value w =f= * /ws^ once; /Ae

values wi are never assumed. To see this, write 2 *==. The

equation cot 2 = 10 then becomes

For each w *%* i, is a definite complex number 4s an(* (by

II, 5) there accordingly exists a / such that n <. % (/) <^ n>

for which e* = f . For z = *'-^, we then have
u

~ < SR (*) <; y and cot jar
= w,

i. e. z is a solution of the latter equation in the prescribed strip.

By 2. there can be no other solution in this strip. The impossibility
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of a solution for cot z = * results from the fact that these equations
both involve

which cannot be satisfied by any value of z, as cos a z + sin a = 1.

For tans the procedure is quite similar.

4. The expansion in partial fractions deduced in 24, 5 for the

cotangent in the real domain remains valid in the same form for every

complex z different from 0, 1* it 2,... (and similarly for the ex-

pansions of tans, etc.).
Indeed the complete reasoning given

there may be interpreted in the "complex" sense, without altering a

single word 33
. In particular, for every z satisfying the above con-

dition,

Now

it follows, if we substitute z for 2inz, that

_ ,

2 ^_
hence we obtain the expansion

i i 1

valid for every complex z=$=2kni (&0, integer). This is the ex-

tension to the complex variable z of the remarkable expansion in partial

fractions obtained on p. 378, and it exhibits the true connection

between this expansion and that of cots, which previously seemed
rather fortuitous.

V. The logarithmic series.

In 25, we saw that the series

represents for every
|

x
\

< 1 the inverse function of the exponential
function e v 1; i. e. substituting for y in

3!

33 It was precisely for this purpose that at the time we framed some of our
estimates in a form somewhat different from that required for the real domain

(e. g. those on pp. 200 207 to which footnote 26 refers).
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the above series and rearranging (as is certainly allowed) in powers of

x, we reduce the new series simply to x. This fact because it is purely

formal in character necessarily remains when complex quantities are

considered. Hence, for every |

z
\
< 1,

e" 1 = z or ew = 1 + z,

if w denotes the sum of the series

if\ T (l)71" 1
vn

{L.) W A Z .

We now adopt for the complex domain the

242. Definition. A number a is said to be a natural logarithm of c, in

symbols,

a =- log cf

if e = c.

In accordance with II, 5, we may then assert that every complex
number c 4= possesses one, and only one, logarithm whose imaginary

part lies between TT exclusive and + ^ inclusive (to the number 0,

however, by II, 6, no logarithm can be assigned at all). This uniquely

defined value will be more especially referred to as the principal value

of the natural logarithm of c. Besides this value, there is an infinity of

other logarithms of c, since with ea = c we have also ea + 2k = c\ thus

if a is the principal value of the logarithm of c, the numbers

a + 2 k TT i (k ^ 0, integer)

must also be called logarithms of c. These values of the logarithm (for

k =*= 0) are called its subsidiary values M . By 238, 4 there can be no further

logarithms of c. We have, for each of its values,

ffl (log*) = log |

c
|

,
3 (log c)

= amc,

if in the first of these relations log |
c

\
denotes the (single-valued) real

logarithm of the positive number \c\, and the second is interpreted as

meaning that, taken as a whole, all the values of the one side are equal to

all the values of the other.

With these definitions, we may assert in any case that the above series

(L) provides a logarithm of (1 + #) But we mav at once prove more,

namely the

43. Theorem. The logarithmic series (L) gives, at each point of the unit

circle (including its rim, with the exception of the point 1), the principal

value of log (1 + #).

34 If c is real and positive, the principal value of log c coincides with the (real)

natural logarithm as formerly defined (36, Def.).
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Proof. That the series converges for each z =t=
- 1 for which

|

z
|
^ 1 was shown in 230, 3. (We have only to put % for z there.)

For this z, am(l -|- #) has precisely that value
iff

for which

7T / -. I TT

2
< * < + 2-

Hence we have, for the imaginary part of the sum w of the series (L),

(3) 3(w) =

with integral k. Now w is a continuous function of z in
|

z
\
<. 1, and

assumes the value 1 for xr 0. Hence 3 (w) too is a continuous function

in
|

#
|
< 1. Therefore, in the equation (^)> ^ must have the same value

for all these z. But for JST \\e have clearly to take k 0; hence this

is its value in the whole of
j

%
\
< 1. Finally \ve learn from the application

of Abel's limit theorem that the sum of our series is still equal to the prin-

cipal value of log (1 + z) at the points 2 =|= 1 for which
|
z

\

= 1.

VI. The inverse sine series.

We saw in III, 7 that the equation sin w = #, for a given complex
~ ^ 1, has exactly two solutions, for xr

-
-[ :

1 exactly one, in

the strip TT < j)f (77) ^ + TT. The two solutions (by III, 6) arc sym-

metrical, either with respect to + \ or
^; accordingly, we may assert

more precisely that the equation sin w ^- z, for an arbitrary given z (in-

clusive of 1), has one and only one solution in the strip

-
I ^ SB (w) ^ + f ,

if the lower portions of its rim, from the real axis downwards, arc omitted

(cf. Fig. 12, where the parts of the rim not counted with the strip are

drawn in dotted lines, and the others are marked by a continuous black

line). This value of the solution of the equation sin w = z, which is thus

uniquely defined for every complex ^r, is called the principal value of the

function

tv sin" 1 z.

All the remaining values arc contained, by III, 6, in the two formulae

sin"1 z -\- 2k TT,

TT sin"1 z + 2 k TT,

and may be called subsidiary values of the function.
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For real values of x such that
|as| <l, the series 123,

. 1 x 9
,

1-8 * B
,

? ==a; + -2--3- + 274Tr +-
represents the inverse series of the sine power series

Exactly the same considerations as in V. for the case of the log-

arithmic series now show that, for complex values of z such that
|

z
\ <J 1 ,

the series

. 1 z 9
. 1-3 * B

,"' + T-T+2-4-5- + "-

w*
is the inverse series of the sine power series w --^7 -|

-- . It

therefore gives at any rate one of the values of sin" 1
z. That this

actually is the principal value, may be seen from the fact that, for

== sin" 1
|z| <: sin"" 1

1 =
-J,

a condition which the principal value alone fulfils.

VII. The inverse tangent series.

The equation tant0= z, as we know from IV, 3, has for every given

z =|= i i one and only one solution in the strip
-- - < 91 (w) <^ -f" -^-

.

This is called the principal value of the function

the other values of which (by IV, 2) are then obtained from the formula

tan" 1 z+ k 7t . The equations tan z = i have no solutions whatever.

Almost word for word the same considerations as above again
show that, for

|

z
\
<T 1 , the series

(A)
= 2_.+._ +...

gives one of the solutions of tznw z. To show that this is actually

the principal value of tan"" 1
,?, we have to show that the real part of

the sum of the series lies between --5- (exclusive) and -f- -5- (inclusive).

This remains true for every z 4s i on
|

*
|

=* 1> as we^ as for
|
ar

|
< 1,

and is proved as follows:

The sum w of the series (A), as may be seen by substituting the

log-series, is

w =
-^j-log (1 + iz) -^-log (1 iz)
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for every \z\ <[ 1, z 4s i> where principal values are taken for both

logarithms. Accordingly,

SRW = y3log(l + ^)~|3log (l-^);

by 243, both terms of the difference lie between - and + ~ ,

hence fR (w) lies between ~ and -f- ~rr > me two extreme values

being excluded in either case. Thus the series (A) certainly represents

the principal value of tan" 1
,?, provided |z|<^l and z + i> q- e. d.

VIII. The binomial series.

To complete our present treatment of the special power series in-

vestigated in the real domain, we have only to consider the bino-

mial series

in the case where the quantities occurring there i. e. the exponent a

as well as the variable x assume complex values. We start with the

Definition. The name of principal value of the power b a, where 244.
a and b denote any complex numbers, with b 4s as the only condi-

tion, is given to the number uniquely defined by the formula

when log b is given its principal value. By choosing other values of

log b 9 we obtain further \alues of the power, which may be called its

subsidiary values. All these values are contained in the formula

ta ^a[\ogb+2kai]u 6 ,

each value being represented exactly once, if log b is given its prin-

cipal value and k takes all integral values ^0.

Remarks and Examples.

1. A power 6 fl

accordingly has an infinite number of values in general,
but possesses one and only one principal value.

2. The symbol **, for instance, denotes the infinity of numbers (all real

numbers, moreover)

, (ft= , 1. 2, .. )
a

of which e
2

is the principal value of the power **.

3. The only case in which a power b a will not have an infinite number
of values is that in which

*"
(ft-0, 1,2. ...)
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gives only a finite number of values; this will occur if, and only if, ka
assumes, for = 0, 1, 2, ..., only a finite number of essentially different

values. Here two numbers arc described (just for the moment) ,is essentially

different if, and only if, they do not differ merely by a (real) integer. i\ow

this is the case if, and only if, a is a real rational number, as may be seen

at once; and the number of "essentially different" values which may in this

case be assumed by k-a is given by the smallest positive denominator with

which a may be written in fractional form.

J.

4. Tt follows that b m = yb, where m is a positive integer, has exactly

m different values, one of which is quite definitely distinguished as the prin-

cipal value.

">. Tne number of different values of ba will reduce to one, by 3. and 4., if,

and only if, a is a rational number of denominator I, i. e. a real integer. For all

real integral exponents (but for these alone), the power thus remains now as before

a single-valued symbol.

6. If b is positive and a real, the value formerly defined (v. 33) as the

power b a is now the principal value of this power.

7. Similarly, the values defined in 23G for e
z and p

z
, (>0), are now,

more precisely, the principal values of these powers In themselves, these sym-
bols would represent, for complex values of z, an infinity of vakus, in ac-

cordance with our last definition. Nevertheless, we shall keep in future to the

convention that e
z
, and generally p

z
for any positive p t shall represent the value

defined by 236, i e the principal value only

8. The following theorems will show that it is consistent to define b a also

for b = when fll(a);>0. The value attributed to the po\\er in th.it case is

(uniquely).

After making these preliminary preparations, we proceed to prove
the following far-reaching

Theorem35
. For any complex exponent a and any complex z in

|
z

|
< 1 , the binomial series

converges and has for sum the principal value of the power

(1+1)-.

Proof The convergence follows word for word as in the case

of real zs and 's (v pp 200 -210), so that we haxr only to prove the

statement as to the sum of the series. Now for real x's such that \x \
< 1,

and real a's, we may substitute

T. f d remr n anjrrw Math, V 1, p. 311 1826.
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V"
for y in the exponential series = ! + )/ + --] and so obtain,

after learranging in powers of x fallowed by 1O4), the power series

for s log u + *) =
(l -f ar), i. e. the binomial series ("\x

n
. Let us

proceed in this manner, purely formally in the first instance, assuming
complex and writing z for x; i. e. we substitute

'x* ( ]\ n 1 ^ iti n

w = a .2
{-^ z

n
in e^^Z^-rnl n n=l nl

and rearrange in powers of z. We necessarily obtain without refer-

ence as yet to any question of convergence the series

whose sum would therefore be proved to be gi (*+*) =
(l -f- z)

a
(where

the principal value is taken for the logarithm and hence for the power

also), if we could show that the rearrangement carried out was per-

missible. Now by 1O4 this is certainly so; in fact the exponential

series converges everywhere and the series cc - -- z
n remains

convergent for
|

z
|

<. 1 when a and all the terms of the senes are

replaced by their absolute values. This proves the theorem in its full

extent.

If we split up (1 + z)
a

into its real and imaginary parts, we obtain

a formula due to Abel, which is complicated in appearance, but which

for that very reason shows how far-reac hing a result is contained in

the preceding theorem, and from which we also obtain a means for

evaluating the power (1 -f- z)

a
. Writing z = r (cos cp -f- i sin

cp)
and

a = /3 + iy, < r < 1 , r/>, /?, / all real, and writing

1 + z = R (cos + i sin 0) ,

we have

R = Vl + 2ycos//? + y'
2

,
= principal value 3G of tan-1 -

With these values of R and 0, we thus obtain

= Rfi . e -y * [cos (00 + y log R) + i sin (ji& + y log R)] .

For the case |^|<1, theorem 245 and the remark just made

completely answer the question as to the sum of the binomial series.

We have now only to consider the points of the circumference
|

z
\

= 1 .

From Abel's theorem, together with the continuity of the principal value

of log (1 -f- z)
for every 2 =}= 1 in

|

z
\ <[ 1 and the continuity of the

exponential function, we at once deduce the

has accordingly to be chosen between + -5- and -H~-
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246. Theorem. At every point of the rim |2|
= 1 of the unit circle,

at which the binomial series continues to converge, except possibly for

2 = 1, its sum remains now as previously the principal value of

(! + *)-.

The determination whether, and for what values of a and z, the

binomial series continues to converge on ike rim of the unit circle

presents no difficulties after the preparations made in this respect (and

chiefly for this purpose) in 53. The theorem we have is the following,

which sums up the entire question once more:

00 i

247. Theorem. The binomial series J^( }z
n
reduces, for real integ-

n=o > n '

ral values of tf^O, to a finite sum, and has then the (ipso facto

unique) value (\-\-z)
a

\ in particular for a = it has the value 1 (also

when z = 1)
. // # does not have one of these values, the series con-

verges absolutely for \

z
\

< 1 and diverges for \z\ > 1 , while it exhibits

the following behaviour on the circumference
\

z
\

= 1 :

a) if 91 (a) > , it converges absolutely at all points on the circum-

ference',

b) if 91 (a) ^ 1, it diverges at all these points;

c) if 1 < 91 (a) <I 0, it diverges at z= 1 and converges con-

ditionally at every other point of the circumference.

The sum of the series when it converges is invariably the principal

value of (I -\- z)

a
; in particular, its value is in the case z = 1.

Proof. Writing ( l)
w

(")
=

n + 1 ,
we have

*-(+!)
f

a \

U-i/

. __

hence theorem 229 may be applied, and the validity of a), b) and c)

follows immediately. Only the case of the point z = 1, i. e. the con-

vergence of the series

requires special investigation. Now

a (a
-

1) (a
-

2)
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and in general, as may at once be verified by induction:

the partial sums of our series are equal to the paitial products, with
00

/ cc \
the same index n, of the product //fl ) The behaviour of this

product is immediately evident. In fact

1. If <K(a)
= /?>0, choose ft*

such that </?'</?; for every

sufficiently large n, say n^tm,

hence

By 12t>, 2, it follows at once that the partial products, and hence the

partial sums of our series, tend to 0. The series therefore converges
37

to the sum 0.

2. If, however, R (a)
=

ft < 0, we have

a

n

whence it again follows by multiplication that

and hence that the left hand side tends to oo. The series therefore

diverges in this case.

3. If, finally, $ (a)
~

0, a = i y, say, with y ^ 0, the wth partial

sum of our scries is

The fact that this value tends to no limit as n + + may De proved
most speedily in the present connection as follows: On account of the ab-

solute convergence of the series J?( J
, we have, by 29, theorem 10.

Letting w> + oo, the right hand side evidently tends to no limit; on

the contrary, the points which it represents for successive values of n
circulate incessantly round the circumference of the unit circle in a

constant sense, the interval between successive points becoming smaller

37 The mere convergence of (!)*(
J

follows already from 228 and

we see that the convergence is absolute when SR(a)>0. It is the fact of the

sum being which requires the artifice employed above for its detection.
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and smaller at each turn. In view of the asymptotic relationship,

the same is therefore true of the left hand side. Hence our series

J( l)
w

( J
also diverges when s

Ji(a) = 0. Thus theorem 247 is

established in all its parts, the behaviour of the binomial series is de-

termined for every value of z and of a, and its sum for all points
of convergence is given by means of a "closed expression".

56. Series of variable terms. Uniform convergence.
theorem on double series.

The fundamental remarks on series of variable terms

n=0

are substantially the same for the complex as for the real domain

(v. 46); but instead of the common interval of definition we must

now assume a common region of definition, which for simplicity

this is also quite sufficient for most purposes we shall suppose to

be a circle (cf. p. 403, footnote 17). We accordingly assume that

1. A circle \z z
\
< r exists, in which the functions fn (z) are

all defined.

2. For every individual z in the circle
\

z ZQ \
< r, the series

n=0
is convergent.

The scries 2 fn (z) then has, for every z in the circle, a definite

sum, whose value therefore defines a function of z (in the sense of

the definition on p. 403). We accordingly write

00

2fn(*) = F(z).
=0

The same problems as those discussed in 46 and 47 for the

case of real variables anse in connection with the functions represented

by complex series of variable terms. In the real domain, however,

it is of the greatest importance, both for the theory and its appli-

cations, to make use of the concept of function in its most general

form, while in the complex domain this has not been fou:id profitable.

The usual restriction, which is sufficiently wide for all ordinary pur-

poses, is to consider analytic functions only. We therefore assume

further that

3. The functions fn (z) are all analytic in the circle
\

z 2
|
< r,

i. e. expressible by power series with z as centre and radius not less

than a fixed number r.
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We then speak for brevity of series of analytic functions**;
the chief problem concerning such a series is the following: Is the

function F(z) which it represents analytic in the circle \z |
< ?>

or not? Precisely as in the real domain, it may be shown by examples
that without further assumptions this need not be the case. On the

other hand, the desired behaviour of F(z) may be ensured by stipul-

ating (cf. 47, first paragraph) that the series converges uniformly.

The definition for this is almost word for word a repetition of 191:

Definition (2
nd form 39

).
A series 2 fn (z), all of whose terms are 248.

defined in the circle
\

z za \
< r or in the circle

\

z ZQ \ <^ r, and

which converges in this circle, is said to converge uniformly in this

circle if, for every e > 0, it is possible to choose a single number

N > (independent, therefore, of z) such that

for every n > N and every z in the circle considered.

Remarks.

1. Uniformity of convergence is here considered relative to all the points of

an open or closed circle* . Of course other types of region or indeed arcs

of curves or any other set $)t of points, not merely finite in number, may be

taken as a basis for the definition. The definition remains the same in sub-

stance. Tn applications, we shall usually be concerned with the case in

which the terms fn (z) are defined, and the series 2fn (z) converges, at every

point interior to a circle |* z |<; r (or a domain 0)), but the convergence
is uniform only in a smaller circle

\

z Z
Q \ < g, uhcre < r, (or in a smaller sub-

domain j, which, together with, its boundary, belongs to the interior of
(i))

2 If the power series ~an (z z
)
n has the radius r, and 0<0<>, the series

is uniformly convergent in the (closed) circle \Z ZQ\<Q- Proof word for

word as on p. 333.

3. If r is the exact radius of convergence of 2 an (z z
)
n

, the conver-

gence is not necessarily uniform in the circle
|

z z
\
< f . Example the geo-

metric series, proof on p 333.

4. Exactly as befoie, we may verify that our definition is completely

equivalent to the following:

88 Here again we may remark (cf. 190, 4) that there is no substantial

difference between the treatment of series of variable terms and that of sequences

of functions A series 2fn (z)
is equivalent to the sequence of its partial sums

s (z), Sj (z),
. . ., and a sequence of functions sn (z)

is equivalent to the series

s
fl (*)+(, (*) -* (*))H For simplicity, we shall hereafter formulate all

definitions and theorems for series alone; the student will easily be able to

enunciate them for sequences.
89 This definition corresponds to the former 2 nd

form. The 1st form 191

may here be omitted, as it did not appear essential for the application of

the concept of uniform convergence, but only for its introduction.
43 The set of points of a circle (or, for short, the citcle itself) is said to

be closed or open according as the points of the circumference are regarded
as included in the set or not.
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3rd form. S fn (z)
is said to be uniformly convergent in

\

* *
|

< Q (or in

the set
9ft), if, for every choice of points zn belonging to this circle (or set), the

corresponding remainders rn (zn) always form a null sequence.

The 4 th and 5 th forms of the definition (p. 335) also remain entirely un

altered and we may dispense with a special statement of them here.

On the other hand, it is impossible to give as impressive a geometrical

representation of uniform and non-uniform convergence of a series as in the

real domain.

We are now in a position to formulate and prove the theorem

announced.

249. Weierstrass9 theorem on double series
41

. We suppose given a

series

each of whose terms fk (z) is analytic at least for \z z
\
< r, so that

the expansions
42

all exist and converge at least for \z zQ \<r. Further, we assume

that the series 2f^(z) converges uniformly in the circle
\

z z
\

<
,

for every Q < r, so that the series converges, in particular, everywhere

within the circle \z zQ \<r, and represents a definite function F(z)
there. It may then be shown that.

1. The coefficients in a vertical column form a convergent series:

,
= 0, 1,2,...)-

2. ^j A n (z z )

n
converges for \

z z
\

< r .

n=0

3. For
|

z ZQ |

< r, the function

is again analytic, with

n

41 Werke, Vol. 1, p. 70. The proof dates from the year 1841.

42 The upper index, in the coefficient anM, indicates the place occupied

in the given series by the corresponding function, while the lower index relatec

to the position, in the expansion of this function, of the term to which th ?o
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4. For
|

z z
|
< r andfor every (fixed) v 1, 2, . . . ,

k-o

i. e. the successive derivedfunctions of F (z) may be obtained by term-by-term

differentiation of the given series
,
and each of the new series converges uniformly

in every circle
\

% #
|
5^ ,

with g < r.

Remarks.

1. If we direct our attention primarily to expansions in power series, the

theorem simply states that with the assumptions detailed above, an infinite number

of power series "may" be added term by term. If on the other hand we look rather

at the analytic character of the various functions, we have the following

Theorem. If each of the functions fk (z) is regular for \
z s

|
< r and the

series 27/fc (z) converges uniformly in
\
z z

\
^ g, for every g < r, then this series

represents an analytic function F (z), regular in the circle
\
z ZQ \

< r. The succes-

sive derived functions JFX") (z) of F (z) t for every v ^ 1, are represented^ in that circle\

by the serie* </&(") (z), obtained from 2fk (z) by differentiating term by term, v times

in succession. Each of these series converges uniformly in every circle
\
z ar

|

5^ g,

with Q < r.

2. The assumption that 27/7c (z) converges in
|
z #

|
5C g for every g < r

is satisfied, for instance, by every power series 27 ck (z zQ)
k with radius of con-

vergence r. It is also satisfied e. g. by the series J1
_ -

-, for r = 1
; cf. 58, C.*^ 1 ~~~ s

3. The first of our four statements shows that the present theorem cannot

be proved simply as an application of Markoff's transformation of series; for the

latter assumes the convergence of the columns, here this is deduced from the

other hypotheses.

Proof. 1 . Let an index m, a positive g < r and an e > be chosen

to be kept fixed throughout. By hypothesis, we can determine a kQ such

that, throughout |
z ZQ \

<^ g,

for every k such that k' > k > A
,

if we write

** = ** (*) =/o (*) + ...+/* (*)

Now the function sk > (z) sk (z) is a definite power series, whose i7t
th

coeiBcient is

By Cauchy's inequality 235, we therefore have

Hence the series

(a) *W +<> + + + =

A-0

is convergent, by 81. Let Am be its sum. As m could be chosen arbitrarily,

the first of our statements is thus established.
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2. Now let M' be the maximum 43 of
|

s
fco ^ i (z) \ along the circum-

ference
|

z - ZQ |

= y. We have then for every k > k on the same cir-

cumference

I ** (*) I
^ I **.+ 1 (*) I + I ** (*)

- %+i (*) \M' + t' = M.

Again, using Cauchy's inequality, we obtain, for every n - 0, 1, 2, . . .
,

whatever the value of k. Hence

M
00

and 27An (z zQ)
n therefore converges for

|

z z
\
< &. Since the only

n^O

restriction on g was that it should be < r, the series must even converge
for

|

z z
|
< r. (In fact, if z is any determinate point satisfying the

inequality |

z ZQ \
< r, it is always possible to assume Q to be chosen

so that
|

z ZQ |
< Q < r.) Let us for the moment denote by Fl (z) the

function represented by the series A n (z #o)
n "

ft ^s thus, by its defini-

tion, an analytic function in
|
z ^

|
< r.

3. We have now to show that Fl (z)
= F (z), so that F (z) is itself

an analytic function regular in
|
z ZQ \

< r. For this purpose, we choose,

as in the first part of our proof, a positive (/ < r
y
a positive Q in Q' < # < r,

and an e > 0, fixed. We can determine k so that, for all z in
|

z xr
| fj ,

for every k such that k' > k > & . By Cauchy's inequality, it follows as

before that, for k' > k > k and for every n ^ 0,

Making &' -> + ,
we infer that, for every k > k and every n S 0,

I

An
-

( + <*> + + an*) I
^

Now the expression between the modulus signs is the wth coefficient in
k

the expansion of Fl (z) Zfv (z) in powers of (z z
). Hence we have,

i>=o

for
|
z ZQ |

< g:

| F, (z)
-

If/, (*) \*'
v=-0

The right hand side is, for
|

z z
\ <^ Q',

43
I
Sk +i (z) I

is a continuous function of am z 9 along the circumference in

question and (9 being real) attains a definite maximum on this circumference.
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Thus, when e > and Q' < Q < r have been chosen arbitrarily, we
can determine k so that

for every k > kQ
and every \z ZQ \ <^ (/. This implies, however, that for

these values of z ^

r=0

The numbers @' and were subjected to no restriction other than

< Q' < Q < v\ hence (as above) it follows that the equation holds

for every z interior to the circle
|

z z
\

< r.

4. We write

/o' (*)
= V1" + 2 ./

0)
(z

- z
) + 3 aa (z

- z
)
9 +

fi' () ^ i
(1) + 2

s
(1)

(*
-

*o) + 3V (*
-

*o)
9 + ' ' '

A! + 2 AS (z- z ) + iA s (z
- 2

)
2 + .

.,

where the sum of the coefficients in any one column converges to the

value written immediately below them. Just as in 3. (we have only

to begin our evaluations with e' = (Q Q Y e) we deduce that for

|
z ZQ \

^ e
r < Q < r and every k > 7e

,

Hence for those values of z
y
F' (z)

= 2fk
'

(z). Indeed, by the same
A-O*

reasoning as before, this series converges uniformly in
|

z ZQ \

< r, for

every g <. r. If we write down the corresponding system of series for the

vth derived functions, we obtain, in the same manner:

F<"> (z)
= 27/fcW (z) (v

= 1, 2, . . . , fixed)
k o

for every |

z # |<:r; i.e. the scries Zf^(z) obtained by differ-

entiating term by term, v times in succession, converges in the whole circle

|

z ZQ \
<r (and converges uniformly in every circle

|

z z
\
5^ Q < r)

and gives the i>
th derived function of F (z) there.

Remarks.
1. A few examples of particular importance will be discussed in detail in

the next section but one.
2. The fact of assuming the convergence uniform in a circular domain is

immaterial for the most essential part of the theorem: If G is a domain of arbitrary

shape
44 and if every point ZQ of the domain is the centre of a circle

|
z ar

| g g

(for some Q) which belongs entirely to the domain, is such that each term of the series

Zfj. (z) is analytic there, and is a circle of uniform convergence of the given series,

then this series also represents a function F (sr) analytic in the domain in question,
whose derived functions may be obtained by differentiation term by term. Examples
of this will also be given in 58.

" Cf. p. 403, footnote 17.
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57. Products with complex terms.

The developments of Chapter VII were conducted in such a way
that all definitions and theorems relating to products with "arbitrary"

terms hold without alteration when we admit complex values for the

factors. In particular the definition of convergence 125 and the theo-

rems 1 , 2 and 5 connected with it, as well as the proofs of the latter,

remain entirely unchanged. There is also nothing to modify in 127, the

definition of absolute convergence, and the related theorems 6 and 7.

On the other hand, some doubt might arise as to the literal trans-

ference of theorem 8 to the complex domain. Here again, however,

everything may be interpreted as "complex", provided we agree to

take log (1 + aJ to mean the principal value of the logarithm, for every

sufficiently large n. The reasoning requires care, and we shall therefore

carry out the proof in full:

250. Theorem. The product 77(1 + 0J converges if, and only if, the

series, starting with a suitable index m,

whose terms are the principal values of log (1 + an), converges. If Lm is

the sum of this series, we have, moreover,

77(1 -|- an) = (1 + a,) (1 + *2) . . . (1 + am) *'-.

n-i

Proof, a) The conditions are sufficient. For if the series

O w*m tne principal values of the logarithms, is con-
n-m+i

vergent, its partial sums sn , (n > m), tend to a definite limit L, and

consequently, since the exponential function is continous at every

point,

i. e. it certainly tends to a value + 0. Hence the product is con-

vergent in accordance with the definition 125 and has the value

stated.

b) The conditions are necessary. For, if the product converges,

given a positive e, which we may assume < 1, we can determine n
so that

(a)
| (1

for every n ^> nQ and every fcj>l. We then have, in particular,

I an |

< ~ <
-g-

for every n > n , and the inequality
|

an \
< -- is thus

certainly fulfilled for every n greater than a certain index m. We may
now show further that for the same values of n and k hisine' the
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principal values of the logarithms)
45

(b)

n I k

E \ <e

and therefore the series 27 log (1 + an) is convergent. In fact, as
|
av \

< ^
Ji-mi-l *

for every v > 0> we also have 46
, for these values of v,

(c) I log (! + ,) | <e,
and likewise, by (a),

I log [(1 + re+1) . . . (1 + +*)] I
< *

for every w ^ w and every k ^ 1. Accordingly, for some suitable integer
47

qy we certainly have

| log (1 + an+J + log(l + an ^) + . . . + log(l + an+k) + 2qni\<s,
and it only remains to show that q may in every case be taken = 0. Now
if we take any particular n ^ #

,
this is certainly true for k = 1, by (c).

It follows that it is true for k = 2. For in the expression

log (1 + an+1) + log (1 + an+2) + 2q*i
the modulus of either of the two first terms < e, by (c), and by (d) the

modulus of the whole expression has to be < e; as e < 1, q cannot, there-

fore, be an integer different from 0. For corresponding reasons, it also

follows that for k = 3 the integer q must be 0, and this is then easily seen

by induction to be true for every k. This establishes the theorem.

The part of theorem 127, 8 relating to absolute convergence may
also be immediately transferred to the complex domain, viz.

no 00

the series 2 log (1 + an) and the product // (1 + an)
n =m+ 1 n -m \ \

are simultaneously absolutely or non-absolutely convergent, in every case.

Similarly the theorems 9 11 of 29 and 30 remain valid. In fact, it

remains true for complex an
y

s of modulus < - that in

45 The logarithms are always taken to have their principal values in what
follows.

46 In fact, for
|
a

|
< ~,

I log (i + *) | ^ |
*

| + L* |a + . . . ^ |
*

! + i
* p + . . .

=
-jJ* Lj

< 2
1
z

|
.

47 For the principal value of the logarithm of a product is not necessarily

the sum of the principal values of the logarithms of the factors, but may differ from

this sum by a multiple of 2 TT i. Thus e. g. log i =
k>

-
, but

log (i *"" = log 1 = 0,

if we take principal values throughout.
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the quantities ?^n are bounded, since when
|

z
\

< 4
.

while the expression in square brackets clearly has its modulus < 1

for those z's.

Finally, the remarks on the general connection between series

and products also hold without alteration, since they were purely formal

in character.

251* Examples.

* IL (1
+

"-)
is Divergent. For 2

\

an |

2 ==
s

is convergent, so that

by 29, theorem 10, the partial products

the right hand expression represents, for successive values of
, points on the

circumference of the unit circle, which circulate incessantly round this circum-

ference at shorter and shorter intervals. pn therefore tends to no limiting
value. (Cf. pp. 4278.)

2. 21 f n n~"'i
=s '" 1 ' In fact

>
the wth Partial Product is at once

8. For
|

z |< 1, 7/ (1 -f- *
2
")
=

:p
. In fact the absolute) convergence

of this product is obvious by 127, 7 and its nth
partial product multiplied by

(1-*) is

which tends to 1.

The consideration of products whose terms are functions of a

complex variable,

n=l

like that of series of variable terms in the preceding section,

will be restricted to the simplest, but also the most important case,

in which the functions fn (z)
are all analytic in one and the same circle

|

z _ ZQ |
<; r

(i.
e . possess an expansion in power series com crgent in

that circle) and in which the product also converges everywhere in

the circle. The product then represents a definite function F(z) in

the circle, which is said, conversely, to be expanded in the given

product.
We next enquire under what convenient conditions the function

F(z) represented by ihe product is also analytic in the circle

|2 2 |<?. For the great majority of applications, the following

theorem is sufficient:
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Theorem. // the functionsfl (xr), /2 (xr), . . .
, fn (xr), . . . are all analytic 252.

at least in the (fixed) circle
\
z xr

|
< r

; if, further, the series

n-l

converges uniformly in the smaller circle
\

z z
\
^ g, for every positive

(j
< r\ then the product //(I +/n (#)) converges everywhere in

\

z xr
|
< r

and represents a function F (z) which is itself analytic in that circle.

The proof follows the same line of argument as that of the

continuity theorem 218, 1 almost word for word. To establish the con-

vergence and analytic character of the product at a particular point zl

in the circle
|

z z
|

< r, we choose a g < r and prove the two facts

first for every % of the circle
|

z ZQ \ <Q. The series 2
\ fn (z) \ converges

uniformly in the whole of
|

z #
|
^ g, so that the product //(I +/n (z))

certainly converges there (indeed absolutely). Choose m so large thatverges there (indeed absolutely). Choose

I /m+l (*) I
+

I /,+ 2 (*) I
+ + I fn (*) |

< 1

for every n > m and every |

z ZQ \
^ Q ; then for all these w's and #*s,

| Pn (z)\
=

| (1 +/whl (*)) ... (1 +/n (ar)) I
^ e I/M+1 Wl + - + !/<*) I < 3.

It follows precisely as on p. 382 that the series

/Wl + (Pm+* Pm+l) + + (Pn ^n-l) +

converges uniformly in
|

z ZQ \
^ Q. As all the terms of this series are

analytic in
|

z ZQ \

< r, the series itself, by 249, therefore represents

a function Fm (z) analytic in
|

# ZQ \

< g. Hence

F(*) =- II (I +/ (*))
=

(1 +A (*)) ... (1 +/, (*)) Fm (z)
w-1

is also an analytic function, regular in that circle.

From the above considerations, we may deduce two further theorems,

which provide an analogue to Weierstrass
1

theorem on double series:

Theorem 1. With the assumptions of the preceding theorem, the ix-253.

pansion in power series of F (z) may be obtained by expanding the product

term by term. More precisely, we know that the (finite) product

P* (*)
= //(!+/,(*))

P=l

may be expanded in a power series of centre ZQ which converges for

|
z ZQ |

< r, since this is the case with each of the functions flt /2 , . . . .

15 (051)
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Let the expansion be

P]c (
z

-)

= A >+A?\z-z ) + A!i''\Z -z }* + -. + A

Then for each (fixed] n = 0, 1, 2, . . ., the limit

lim A = Xn
&->+

exists, and

*(*) = JT(i + 4 0) = 1^ (*
- *)"

A;=l n=

Proof. By 46, theorem 2, the uniform convergence, in

I z z
I ^ , of the scries

used in the preceding proof, implies the uniform convergence in the

same circle of the series 48

PI W + [P. W -
PX ()] + + [PkW -

P*-, (*)] +
Applying W^f^ys^rass' theorem on double series to this series, we
obtain precisely the theorem stated.

Finally we prove a theorem about the derived function of F(z],

quite similar to 218,2:

Theorem 2. For every z in \z
- ZQ \

< r for which F(z)*^Q,
we have

*. . //t^ series on the right hand side converges for all these values

of z and gives the ratio on the left hand side, the logarithmic dif-

ferential coefficient of F(z).

Proof. We saw that the expansion

F(z) = PI(Z) + (P9 (z)
-

P, (z)) + ...

was uniformly convergent in \z z \^e<r- By 249,

F'W = P/W + (P,'W-P1

'

(*)) + -...

which implies that

PiW-^F'W
at every point in the circle. If at a particular point F(z) =J- 0, we
have PB (z) =^ for each n, and hence by 41, 11,

48 For the remainders of the latter scries only differ from those of

the former in that they contain the common factor Pm (*), which is a con-

ttnuous function for every z in the circle \z *
I SS i

and hence is bounded
in this closed circle.
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Since, however, *V(*) _ f,!(*)_
*

~
~il + M*)'

this is precisely what our theorem asserts.

Examples.
1. If 2a* is any absolutely convergent series of constant terms, the product 254.

77(1

represents a function regular in the whole plane, by 252. By 253, its ex-

pansion, in power series, which is convergent everywhere, is

with

Here the indices Aj ,
A2 ,

. , ., A/c independently take for their values all the natural

numbers, subject only to the condition At <C^a < <^&- The existence of

the sums ^1} ^2 ,
. . . is secured by theorem 253 itself; it is also easy to verify

that they are independent of the order of the terms. It was by applying
this theorem that Euler *9 and later C. G. J. Jacobi

60 were led to an abundance

of most remarkable formulae.

2. We have

where the product on the right hand side converges in the whole plane The

proof is word for word the same as that given in 219, 1 for a real variable.

3. Taking z = i in the above sine product, we obtain

XI
t

or

(Cf. however the extremely easy evaluation of J[ \\ -J
in 128, 6).

4. The sequence of functions

n\n 2

converges for every z in the whole plane. In fact

by 127, theorem 10,

*9 Introductio in analysin inf. Vol. 1, Chap. 15. 1748.
60 Fundamenta nova, Kbnigsberg 1829.
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also, by 128, 2, the numbers yn = (1 -|-
--

-f- H--
j

log n tend, as n > -f OO ,

to Euler's constant C, so that the right hand expression, which is

when divided by n z
,
tends to a definite limit as n * + OO. This proves the

statement. Further, the limit
y K(*) say, becomes only for z = Q, 1,

-
2, .... Excluding these values, we have, for all other values of z,

lim = lim
H

~

This function of a complex variables (restricted only to be
={= 0, ~1 , 2, . .

.)

s the so-called GaWHHI-function F(z) which we have already defined on

p. 385 for real values of the argument.
We proceed to show that K(z) is analytic in the whole plane (i.

e. an

integral function). For this, it suffices to show that the series

K to = ft to + fea W -
ft <*)) H-----h te (<*)

- gn - 1

converges uniformly in every circle
|

z
\

< Q . Now

to - gn-l W = *l (l)
[(l

also a constant ^ exists B1 such that
| g t

, (z)\< A for every v -=
1, 2, 3, . . . and

every |
z

\ <J g, and further, we may write (see p. 283 and p. 442, footnote 54)

where |#n (*)| remains less than some constant B for every n = 2, 3, ... and

51 Let
|

z
|

< and n > w > 2 ^ . Then

+ . . . i + . :

where log l+i = i + ^-.
As <I (cf. p. 435) we have

| r,v \

<
|,|
<

ff

and the last factor in the preceding expression therefore remains << e
b = ,4

3 ,

for every |^|<^ and every w;> w. Similarly the last factor but one (see p. 295),
also remains less than a fixed number A9 . As the remaining factor is also

always less than a fixed number A for every \z\ fj #> it follows that

I * (?) I ^ ^i'^a'^8 f r a^ these values of * and every n >> m . On the other

hand, the first m functions
| g1 (z) \ ,

|
g.2 (z) \ ,

. . ., | ^OT U) |

also remain bounded
for every

|

z
\

<
g> ;

the existence of the number A as asserted in the text is

thus established.

If z is restricted to lie in a circle
,
in the interior and on the boundar}'

ot which s=^0, 1, 2, ... and
|

z
\

< Q ,
then for every n > m

From this we infer in exactly the same way that a constant A' exists such

that
| ,-;- | < A' in ft, Cor every n = 1

, 2,
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every
| *[<(> Thus for all these z's and w's,

/N.^ , I
* 2

, #(-) . *'#nM
I
fi,

~ In- 1 W |

< A .

I

- _ + -^L + - -V-

where C is a suitable constant By 197, it follows that the series for K(z)

converges uniformly in the circle |*|<e, indeed the series of absolute

values 2
1
gn (z) gn-l (*) |

does so, and, by 249, K(z) is analytic in the

whole plane

58. Special classes of series of analytic functions.

A. Dirichlet's series.

A Dirichlet series is a scries of the form 52

Here the terms as exponential functions are analytic in the

whole plane. The chief question will therefore be to determine whether

and where the series converges and, in particular, whether and where

it converges uniformly. We have

Theorem 1. To every Dirichlet series there corresponds a real 255,
number X known as the abscissa of conrerf/ence of the series

such that the series converges when $R (z) > A and diverges when >H (

z) < A .

The number I may also be oo or +00; in the former case

the series converges everywhere, in the latter nowhere. Further, if

jl =|= -|- oo and X>h, the series is uniformly convergent in every

circle of the half-plane $ft (z) ^> /' and accordingly the series, by Weier-

strass
1

theorem 249, represents a function analytic and regular in every sucn

circle and hence in the half-plane
63 W (z) > A.

The proof follows a line of argument similar to that used in the

case of power series (cf. 93) We first show that if the series con-

verges at a point ZQ> it converges at every other point z for winch

9t (z) > SR (* ).
As however

it suffices, by 184, 3 a, to show that the series

A1

n=i

- 1

form

5<J iMore generally, a sories is called a Dirichlet series \\hen it is of the

~-m~ or of the form ^an e~^
nZ

,
where the pn's are positive numbers

and the An 's any real numbers increasing monotonely to -f oo.
63 The existence of the half-plane of convergence was proved by /. L. W. V.

Jensen (Tidskrift for Mathematik (5), Vol. 2, p. 63. 1884); the uniformity of the

convergence and thereby the analytic character of the function represented
were pointed out by E. Cohen (Annales fie. Norm. sup. (3), Vol. 11, p. 75. 1894;
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is convergent. Writing (for a fixed exponent (z Z
]

ZD ,0,4 i

"
n

the numbers 0-n -> (* #<))> ^ 's at once seen M J tneY are therefore cer-

tainly bounded, \ 8-B |
< A, say. The th term of the above series is therefore

and the series is accordingly convergent when ?R(z z )>0.
As a corollary, we have the statement: If a Dirichlei series is

divergent at a point z = z^ 9 it is divergent at every other point whose
real part is less than that of z

1
. Supposing that a given Dirichlet

series does not converge everywhere or nowhere, the existence of the

limiting abscissa Jl is inferred (as in 93) as follows: Let z' be a

point of divergence and z" a point of convergence of the series, and

choose a? <SR(^) and y >5R(O> both real - For z = xo thc

series will diverge, for z= y it will converge. Now apply the method

of successive bisection, word for word as in 93, to the interval

/ = x . . . y on the real axis. The value i so obtained will be the

required abscissa.

Now suppose X > i (for i = oo, A' may therefore be any real

number); if z is restricted to lie in a domain G in which JR^^Jl'
and |2|f^-R, so that in general G will take the shape of a seg-

ment of a circle, our series is uniformly convergent in that domain.

To show this, let us choose a point ZQ for which A< 3l(zQ)<A'; as

before, we write

54 More generally, we may at once observe that if |*|
< - and \w\ < /?,

Ct

and if we write, taking the principal value,

the factor &, which depends on z and w, remains less than a fixed constant

for all the values allowed for z and w. Proof:

(l-f-z)
W -^ 10 ^^ =^^^a)

,
With iy=

*
+/---.fl+....

u o 4

For every |

z
\

<
-^- ,

we therefore have
1 17 |

< 1
;
hence in

the expression in square brackets, which was denoted by #, satisfies the in-

equality

1*1 <* 2jR
-

This is at once obvious if we replace all the quantities in thc brackets by theii
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V is a convergent series of constant terms; by 198, 3 a it there-
n z

fore suffices to show that

1 1

converges uniformly in the domain in question and that the factors

- are uniformly bounded in G. Now, writing X 91 (z^)
= d (> 0),

1 1

i*~* (n +!)*-*

Using the evaluation given in the preceding footnote (or else directly, by

expanding (1 -| J
=0 in powers of (z

- ZQ)) we now

see that a constant A certainly exists such that the difference within

the modulus signs on the right hand side of the above inequality is

in absolute value

<4
for every z in our domain and every n

expression on the right is thus

1, 2, 3, The whole

On the other hand, since T-, the factors are

uniformly bounded in G. By 198, 3 a, this proves that the Dirichlet

series is uniformly convergent in the domain stated, and hence, in

particular, that every Dirichlet series represents a function which is

analytic in the interior of the region of convergence of the senes (the

half-plane 9tf (z) > X) .

From
1

yr
<*LJ

it follows at once that if a Dirichlet series converges absolutely at a

point ZQ , it does so at any point z for which 9^(2) >SK(2 ),
and if it

does not converge absolutely at ZQ) then it cannot do so at any point

z for which 9fi (z) < SR (ZQ)
. Just as before we obtain

Theorem 2. There exists a definite real number I (which may
also be +00 or oo) such that the Dirichlet series converges ab-

solutely for $l(z)>l, but not for ft(z)<l.
Of course we have A<^Z; over and above this, the relative posi-

tions of the two straight lines $R (z)
= Jl and jR (2)

= / is subject to the

following
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Theorem 3. We have in every case I A<^1.

Proof. If J is convergent and 9t (z) > 9ft (z ) + 1 , then

an
is absolutely convergent, for with

$1 (z ZQ) > 1 . This proves the statement at once.

Remarks and Examples.

.
1. If a Dirichlet series is not merely everywhere or nowhere convergent the

situation will in general be as follows, the half-plane *)t (z) < A of divergence of

the series is followed by a strip A < $ft (z) < I of conditional convergence of the series;

the breadth of this strip is in any case at most 1, and in the remaining half-plane

$R (#) > /, the series converges absolutely.

2. It may be shown by easy examples that the difference / A may assume

any value between and 1 (both inclusive), and that the behaviour on the bounding
lines 8t (z)

= A and 9} (z) = / may vary in different cases.

1 2n
3. The two series J?on~~ z

anc*
z provide simple examples of Dirichlet

series which converge everywheie and nowhere.

4. 27 - has the abscissa of convergence A = 1
; thus it represents an analyticnz

function, regular in the half-plane fll (#) > 1. It is known as Riemann\ ^-function

(v. 197, 2, 3) and is used in the analytical theory of numbers, on account of its

connection with the distribution of prune numbers (see below, Rem. 9)
55

.

5. Just as the radius of a power series can be deduced directly from its co-

efficients (theorem 94), so we may infer from the coefficients of a given Dirichlet

series what positions the two limiting straight lines occupy. We have the following

Theorem. The abscissa of convergence A of the Dirichlet series 2 n
z

is invariably

given by the formula _ j l

A = lim log au+l -f a^ 2 -f- . . . + avx

where x increases continuously and

[eW] =w, 0*] =;.

Substituting an for an in this formula, we obtain I, the limiting abscissa of absolute

convergence
66

.

0. A concise account of the most important results in the theory of Dinchlet's

series may be found in G. H. Hardy and M. Riesz, Theory of Dirichlet's series,

Cambridge 1915.

65 A detailed investigation of this remarkable function (as well as of arbitrary

Dirichlet series) is given by E. Landau y Handbuch der Lehre von der Verteilung der

Primzahlen, Leipzig 1909, 2 Vols., in E. Landau, Vorlesungen uber Zahlentheorie,

Leipzig 1927, 3 Vols., and in E. C. Titchmarsh, The Zeta-Function of Riemann, Cam-

bridge 1930.
56 As regards the proof, we must refer to a note by the author: "Uber die

Abszisse der Grenzgeraden emer Dinchletschen Reihe" in the Sitzungsberichte der

Berliner Mathematischen Gesellschaft (Vol. X, p. 2, 1910).
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7. By repeated term-by-term differentiation of a Dinchlet series F (*)
~ 2 ***>

we obtain the Dirichlet series n

-
(fixed,).

As an immediate consequence of Weierstrass' theorem on double scries, these neces-

sarily cannot have a larger abscissa of convergence than the original series, and,
owing to the additiopal factors log" n, they can obviously not have a smaller one
either. They represent, in the interior of the half-plane of convergence, the derived
functions F<v) (z).

8. By 255, the function represented by a Dinchlet series can be expanded
in a power series about any point interior to the half-plane of convergence as

centre. The expansion itself is provided by Weierstrass' theorem on double
co 1

series. If, for instance, it is required to expand the function (*)
=
*=1 k z

about ZQ
=

-j~ 2 as centre, we have for k = 2, 3, ...

and this continues to hold for k = 1 provided we interpret (log lj as having
the value 1. Hence for n>0-

which gives the desucd expansion

9. 1'or (*)>!,
CO

J J
the series VJ and the product 77-

n=in 2 ' JI
l-/>'

2

(where p takes for its values all the prime numbers 2, 3, 5, 7, . . in succession)
have everywhere the same value, and accordingly both represent the Riemann - func-
tion (z). (Euler, 1737; v. Introd. in analysin, p. 225)

Proof. Let z be a definite point such that 5H (z)
= 1 -f-<5 > 1 . By our

remark 4 and 127, 7, the series and product certainly converge absolutely at

this point. We have only to prove that they have the same value. Now

multiplying these expansions together, for all prime numbers p< AT, _ whore
AT denotes an integer kept fixed for the moment, the (finite) product so
obtained is

where the accent on the 2"* indicates that only some, and not all, of the terms
of the series written down are taken. Here we have made use of the elemen-

tary proposition that every natural number > 2 can be expressed in one and
only one way as a product of powers of distinct primes (provided only positive

15* (G5l)
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integral exponents are allowed and the order of succession of the factors is

left out of account). Accordingly

7T * V> V

On the right hand side \ve have the remainder of a convergent series, which

tends to when N - + co. This proves the equality of the values of the

infinite product and of the infinite series, as was required.

10. By 257, we have for ffi (z) > 1

where

H (1)
=

1, M (2) = -
1, p (3) = -

1, p (4)
=

0, p (5) - -
1, p (6) = + 1, . . .

and generally /x (w) 0, + 1
,
or 1 according as n is divisible by the square of

a prime number, or is a product of an even number of primes, all different, or of

an odd number of primes, all different. The product-expansion of the ^-function

also shows that for JR (#) > 1, we always have (z) =t= 0. The curious coefficients

fi (n) are known as Mobius* coefficients. There is no superficial regularity in the

mode of succession of the values 0, -f- 1, 1 among the numbers
/LI (n).

11. Since f (z)
- ^ converges absolutely for 81 (?)>!, we may form

n z

the square (f(*))
2
by multiplying the series by itself term by term and re-

arranging in order of increasing denominators (as is allowed by 91). We thus

obtain

where in denotes the number of divisors of n. These examples may suffice

to explain the importance of the - function in problems in the theory of

numbers.

B. Faculty series.

A faculty series (of the first kind) is a scries of the form

/n V
( '

which of course has a meaning only if 2 + 0, 1, 2, .... The

questions of convergence, elucidated in the first instance by Jensen,

are completely solved by the following

258. Theorem of />/.rfu 67
. The faculty series (F) converges with

the exclusion of the points 0, 1, 2, ... wherever the "asso-

ciated" Dirichlet series ^

converges, and conversely the latter converges wherever the series (F) con-

verges. The convergence is uniform in a circle for either series , when it

is so for the other, 'provided the circle contains none of the points

0, 1, 2, ... either in its interior or on its boundary.

6
J Uber die Grundlagen der Theorie der Fakultatenreihen. MUnch. Ber

Vol. 36, pp. 151218. 1906.
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Proof. 1. We first show that the convergence of the Dirichlet

series at any particular point =j= 0, 1, 2,... involves that of

the faculty series at the same point. As

>...(*+ n) n * gn (z)'

if gn (z) has the same significance as in 1354, example 4, it is sufficient,

by 184, 3 a, to show that the series

n=l &(*) 8* + i(*) n=l I &W'& + i (*) I

is convergent Now tends to a finite limit as w increases, namely
Sn (2)

t> the value F(z); hence, in particular, this factor remains bounded for

all values of w (z being fixed). Hence it suffices to establish the con*

vergenee of the series

But this has been done already in 254, example 4.

2. The fact that the convergence of the faculty series at any

point invoK es that of the Dirichlet series follows in precisely the same

manner, as again, by 184, 3 a, everything turns on the convergence of

-!&,(*) -ft,+il-
3. Now let be a circle in which the Dirichlet series converges

absolutely and which contains none of the points 0, 1, 2, . . .,

either as interior or boundary points. We have to show that the

faculty scries also converges uniformly in that circle. By 198, 3 a,

this again reduces to proving that

a fg\.a (zBn \
z
)

* Sn + 1 \*.

is uniformly convergent in $ and that the functions 1
/ gn (z) remain

uniformly bounded in . The uniform convergence of

n=l

was already established in 254, 4. Also it was shown on p. 440,

footnote 51, that there exists a constant A' such that

1

for every z in Jf and every w. This is all that is required. (Cf. -H>,

theorem 3.)

4. The converse, that the Dirichlet series converges uniformly in

every circle in which the faculty scries does so, follows at once by

198, 3 a from the uniform convergence of the series 2
\ gn + ,() gn (2) |

and the uniform boundedness of the functions gn (z)
in the circle, both

of which were established in 254, 4.
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Examples.
1. The faculty series

S 1 '

converges at every point of the plane =(=0, 1, ... . For the Dirichlet series

00 I

z 1

n=l

is evidently convergent everywhere.
As .111 1

x x x+l x(x+l)'
/I*

1 - 2!
A* 1 kl

A T /.. 7~iT~/ .

"
?i\ > *> /3 - '=_ _ ___

x *(*+l)(ar+ 2)
f ""' x x (x -f 1) - - (x+ *)

'

the given faculty series results simply, by Euler's transformation 144, from
the series

~~

To show this, we have only to subtract the terms of the right hand side sue

cessively from the left hand side. After the w th subtraction we have

n\ 1 n\n z

2. It is also easily seen (cf. pp. 2656) that for $R (z)>
1 01 ._11__ , . (*-!)!"""""

). ..(*+) z-n* *

and this, by 254, example 4, tends to when w-*oo, provided

(Stirling Methodus differentialis, London 1730, p. 6 seqq.)

C. Lambert's series.

A Lambert series is a series of the form 58

If we again inquire what is the precise region of convergence of the

series, it must first be noted that for every z for which zn 1 can

be equal to zero, an infinite number of the terms of the series be-

come meaningless. For this reason, the circumference of the unit circle

will be entirely excluded from consideration 59 while we discuss the

68 A more extensive treatment of this type of series is to be found in a paper

by the author: Cber Lambertsche Reihen. Journ. f. d. reine u. angew. Mathem.,
Vol. 142, pp. 283315. 1913.

59 This does not imply that this series may not converge at some points ar t

of this circumference, for which zf =t= -f 1 for every n *Z 1. This may actually

happen; but we will not consider the case here.
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question of convergence of these series, and the points inside and

outside the circle will be examined separately. We have the following

theorem, which completely solves the question of convergence in

this respect:

Theorem. // 2an converges, the Lambert series converges for every z 259.

whose modulus is 4s ! W ^ an *s n t convergent, the Lambert series

converges at precisely the same points as the "associated" power
series an z

n
provided \

z
\
+ 1 as before.

Further, the convergence is uniform in every circle & which lies

completely (circumference included} within one of the regions of convergence

of the series and contains no point of modulus 1.

Proof. 1. Suppose 2an divergent. The radius r of 2 an z
n

is

in that case necessarily <^ 1 and we have to show first that the Lambert

series and the assoaated power series converge and diverge together

for every \z\ < 1, and that the Lambert series diverges for \z\ > 1.

Now y w = y z"

.(\
n
\

and vi ** v-. n 1

Accordingly, it suffices, by 184, 3 a, to establish the convergence of

the two series

and
I 7* I

- M _ L V I* I

for |s|<l. The first of these facts is obvious, however, while the

second follows from the remark that for
|

z
\

< 1, we have
1

1 z
n

\
> -x-

for all sufficiently large w's.

On the other hand, if the Lambert series converged at a point zv
where

|

Z
Q |
> 1 , the power series

would converge for z = 2 , and by 93, theorem 1, would have also

to converge for z = + 1. Hence the series

would also have to converge, which is contrary to hypothesis.

Finally, the fact that the Lambert series converges uniformly in

\z\ <* Q <. r may at once be inferred from the corresponding fact in

the case of the power series \an z
n

\, by 46,2, in virtue of the

inequality
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The case where 2an diverges is thus completely dealt with.

2. Now suppose an convergent, so that 2 an z
n has a radius

?^> 1. The Lambert series is certainly convergent for every
|

z
\

-< 1 and
indeed uniformly so for all values of z such that

|

z
\ <^ > < !

For I z I ^> Q
f > 1 , we have

and as I

.-6T-,
"!_(!)'

z

'

< 1, this reduces the later assertions to the pre-

ceding ones, and the theorem is therefore established in all its parts.

By the above, a very simple connection exists, in the case where

_T an is com ergent, between the sum of the series at a point z

outside the unit circle and the same sum at the point inside it.

Accordingly it will suffice if we consider only thdt region of

convergence of the series which lies inside the unit circle. This is

either the circle
|

z
\

< ? or the unit circle
|

z
\

< 1 itself, according as

the radius r of the series 2 an z
n

is < 1 or ^> 1. Let r
1
denote the

radius of this perfectly definite region of convergence.
The terms of a Lambert series are analytic functions regular in

l^l^fj, and for e\ery positive Q <: rlf the series is uniformly con-

vergent in
|

z
\
<LQ'- hence we may apply Weierstrass* theorem on double

series to obtain the expansion in power series of the function re-

presented by a Lambert series m
|

z
\

< r . We have

+ aa ** + a,2 +

and we may add all these series together term by term. In the th

row, a given power z
n

will occur if, and only if, n is a multiple of k,

or k a divisor of n. Therefore An , the coefficient of z
n

in the result-

ing series, will be equal to the sum of those coefficients av whose

suffix r is a divisor of n (including 1 or w). This we write sym-

bolically
60

A n
= ad ,

d/n

and we then have, for
|

z
\
< r

l ,

In words: the sum of all ad's for which d is a divisor of n.
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Examples. 26O.
1. an = 1. Here An is equal to the number of divisors of n t which (as in 257,

example 11) we denote by rn \ then

= z -}- 2 z* + 2 as
3

-f 3 s4 + 2 #5 + 4 z* -f 2 37
-f 4 z* -f . . . .

In this curious power series, the terms #n whose exponents are prime numbers are

distinguished by the coefficient 2. It was due to the misleadmgly close connection

between this special Lambert series and the problem of primes that this series (as

a rule called simply the Lambert series)
61

played a considerable part in the earlier

attempts to deal with this problem. But nothing of importance was obtained in

this manner for some time. Only quite recently AT. Wiener 62 succeeded by this means
in proving the famous prime number theorem.

2. an = n. Here An is equal to the sum of all the divisors of n, which we
will denote by rn '. Thus for

|
z

\
< 1

E n T *---.= J7Tn's = sr+3s8 + 4*8 + 7* + 6* + 12*' + ----
n 1

L ~~ z n=\

3. The relation An Zad 1S uniquely reversible, i. e. for given An's, the

din

coefficients an can be determined in one and only one way so as to satisfy the relation.

We then have in fact

where /i (k) denotes the Mobtui coefficients defined in 257, example 10, whose
values are 0, -|- 1 and 1. In consequence of this fact, not only can a Lambert

series always be expanded in a power series, but conversely every power series

may be expressed as a Lambert series, provided it vanishes for z = 0, i. e. A -
0.

But it should be observed that a relation of the form

need not remain true for
|
3

\

> 1, even when both series converge there.

4. For instance, if A = 1 and every other An
=

0,

an - /* (),
and we have the curious identity

=. J7 /iW r
S
\n <I

71=1
* ~~ ~

6. Similarly, we find the representation, valid for
|
2

|
< 1,

where 9 (n) denotes the number of integers less than n and prime to , a number
introduced by Euler.

oo ^n on

6. Writing Z an .-^~n = f(z) and Z an z
n g (z), and grouping the terms

n 1
X ~ n 1

by diagonals in the double expansion of the Lambert series on p. 450 (which is

allowed), we obtain

/(*)*(*) + *<*) + ...- 27 *(").

61 Lambert, JH. Anlage zur Architektonik, Vol. 2, p. 507. Riga 1771.

62
Wiener, N., a new method in Taubenan theorems, J. Math. Massachusetts,

Vol. 7, pp. H>1184, 1928, and Taubenan theorems, Ann. of Math. (2), Vol. 33,

pp. 1100, 1932.
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1 (_i)n-i
7. bor an =

( I)*
1"1

,
= n, =

( I)""
1

, =--,==
v ^

,
= an , . . . , wen \ / , v / '

w n

obtain in this way, successively, the following remarkable identities, valid for

|
#

|
< 1, in which the summations are taken from n 1 to oo :

zn zn
a) 2 ( l)

n~ L

.-__ ^ --- 2
1
7 n >

b> ^"i^h ^
-^(1 -^i*

e) 27
- '

"
--- Z*log(l 4- ^n),W 1

l) ^ Qt
1

~ ===
/^/ i n (I OC

I
<C 1),

etc.

8. In the two identities d) and e) we have on the right hand side a series

of logarithms (for which of course we take the principal values) ;
thus simple con-

nections can be established between certain Lambert series and infinite products.

E. g. from the two identities in question:

^.1 zn

y
II (1 h *") = ", with - Z1 - -'

, .
71 I /

9. As an interesting numerical example we may mention the following: Taking
MO

-- 0, HI I, and for every n > 1, */n wn_i + wn-2 w^ obtain Fibonacci's

sequence (cf. 6, 7)

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ....

We then have

Z l i. 1 .!*... 1
.

1
. A= f r /3

- V'5\ r /7 - 3 A

,-*
* +

3
+

8
+

21
+

55
+ ' - - V5 [L (-

-V
J
-

,

^
._ __

JC
n

where L (je) denotes the sum of the Lambert series 3
, _ n . The proof is based

on the fact, which is easily established, that
x

where a and ft are the roots of the quadratic equation x2 x 1 = 0. (Cf. Ex. 114.)

Exercises on Chapter XII 64
.

174. Suppose zn -> and bn -> b 4= 0. Under what conditions may W3 infer

that bj* -* tfl

175. Suppose zn -> X) (i. e.
|
zn |

-> -f- oo). Under what conditions may
we then infer that

a) (l + -)* -> e*,
\ zn/_ b) zn

- (zl
l
sn - 1) -> log *?

es Landau, E.: Bull, de la Soc. math, de France, Vol. 27, p. 298. 1899.
64 In these exercises, wherever the contrary does not follow clearly from the

context, all numbers are to be regarded as complex.
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176. The principal value of z* remains, for all values of z
t less in absolute

value than some fixed bound.

177. If zn = j?(- If (*),v \ v /

either zn -> or -> 0, according as 9R (z) > or < 0. What is the behaviour
sn

of Csyn) when 9R (z) -= 0?

178. Let 0, A, c, </ be four constants for which a d b c ^ and let # be

arbitrary. Investigate the sequence of numbers (z ,
z lt z 2t ) given by the re-

currence formula

z LI
a~n~- (n 1 2 >n hi _ _ i V v J

>
^ /

C5rn -t- a

What are the necessary and sufficient conditions that (zn) or
( )

should converge?
\xrn/

And if neither of the two converges, under what conditions can zp become z

again for some index />? When are all the -3rn's identically equal?

179. Let a be given 4= and ZQ chosen arbitrarily, and write for each n ^
1

(zn) converges if, and only if, ZQ does not lie on the perpendicular to the straight

line joining the two values of V a through its middle point. If this condition is

fulfilled, (zn) converges to the value ofV a nearest to sr . What is the behaviour of

(xn) when s lies on the perpendicular in question?

180. The scries 27- {+
~ does not converge for anv real y ; the series 27 TV---- ,

--
,~* n ~ "

log n

on the other hand, does converge for every real y =4= 0.

180 a. The refinement of Weierstrass's theorem 228 that was mentioned in

footnote 13, p. 399, may be proved as follows in connection with the foregoing

example: From the assumptions, it follows, firstly, that we may write

(n

^^r - - l +& (y - Min (A> 2) > X)'

where the Bn 's are bounded; hence, secondly, that we may write

(C N""
1

1 -H -~x
~

) satisfy the as-

sumptions of the test 184, 3. If 2 an were to converge, then 2 an bn = E - would

also have to converge, contrary to the preceding example and theorem 255.

181. For a fixed value of z and a suitable determination of the logarithm,

does

tend to a limit as n -> -|-QO?

182. For every fixed x with < SR (z) < 1,

lim 1 + tt , -h -, + ...+

exists (cf. Ex. 135).

183. The function (1 z)
- sin Hog = 1 may be expanded in a power

series 27 an zn for
|
z

|
< 1

,
if we take the principal value for the logarithm. Show

Jhat this senes stjjl converges absolutely for
J
z

J
1.
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184. If x tends to + 1 from within the unit circle, and "within the

angle", we have

a) l_,+ .,_,,<>+ ,t_4. _!..

b) (l- . ..- _

d) (1-,
. 2 an z n

,. an
e) y

* --*lim 5
^&* n bn

provided the right hand limit exists, bn is positive for each w, and Sbn is

divergent.

185. Investigate the behaviour of the following power series on the
circumference of the unit circle:

V1 ( ^) n v **

n '

tt
+ f

e) 2i f"
2

*"> wnere n has the same meaning as in Ex. 47.

186* If S an z n
converges for

|

z
\
-< 1 and its sum is numerically

for all such values of *, then ^|an
|

a
converges and its sum is < 1 .

187. The power series

h) J-__
all have the unit circle as circle of convergence. On the circumference, they
also converge in general, i. e. with the possible exception of isoLited points.

Try to express their sums by means of closed expressions involving elementary
functions; separate the real and imaginary parts by writing 2 = 7 (cos x -\-i sin x),
and write down the trigonometrical expansions so obtained for r < 1 and for

r = 1 separately. For which values of x do they converge? What are their
sums? Are they the Fourier series of their sums?

188. What are the sums of the following series:

Y7 cos nx cos n y coswccsinwy
H ft

. -_. sin n x sin nyf\ X' ^,
/ -*-/ M

rl

and of the three further series obtained by giving the terms of the above series

the sign (- 1)
B
?
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189. Proceeding with the geometric series z* as in Ex. 187, but leaving

1 ,
we obtain the expressions

1 r cos x
a) V r n cos nx = -

b) >7 ?" sin n a;

-,
- ---

;

1 2 r cos x-}-r*

rsma;
=-
1

Deduce from them the further expansions

f costta;

ŵ i (2 cos x)
n

and indicate the exact intervals of validity.

19O. In Exercise 187 a the following- expansion will have been obtained,

among others.
r n . f rsin x \

y. sin nx tan ~ x
I .

^Tj n \ 1 r cos x J

Deduce from it the expansions
00 ( & \
y, ( 1)"

"* r n sm n x- sinn a; = tan - x
(r -f- cot x) f -5- x\ ,

n=L

and determine the exact intervals of validity.

191. Determine the exact regions of convergence of the following series

[log log n]

where (#>) is real and increases monotonely to +OO.

1!>2. Establish the relations

*" -' l +*

where the summation begins with n = l.
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193. Corresponding to Landau's theorem (258) we have the following: The

Dirichlet series 27 (~ I)""
1 " and the so-called binomial coefficient series 2an (

are convergent and divergent together, the points z = 1, 2, 3, . . . being disregarded.

194. For which values of z does the equation

hold good?

195. Determine the exact regions of convergence of the following in

finite products:

77(1

196. Determine, by means of the sine product, the values of the products

a) //(l+J*), *>//(!+) 0)^(1 + 5).
for real values of a;. The second of these has the value

2~ 2 g [cosh (jtx^ 2) cos (jr x \/ 2) ]
.

Does this continue to hold for complex values of xl

197. The values of the products 195, i)
and k), can be determined in ihe

form of a closed expression by means of the F- function.

198. For
1
1 1< 1 ,

199. By means of the sine product and the expansion of the cotangent
in partial fractions, the following series and product may be evaluated in the

+ <

form of closed expressions; x and y are real, and the symbol 2 f(n) indicates
n= oo

-f CO +00
the sum of the two series 2 f(n)

and 2 f(-~ k)> &nd similarly for the
n=0 k=l

product:
+ 00

J
+00

a) *' b) -

<0 2
n=s-
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Chapter XIII.

Divergent series.

59. General remarks on divergent sequences and the

processes of limitation.

The conception of the nature of infinite sequences which we have

set forth in all the preceding pages, and especially in 8 11, is of

compai ativdy recent date; for a strict and irreproachable construction

of the theory could not be attempted until the concept of the real

number had been made clear. But even if this concept and any one

general convergence test for sequences of numbers, say our second main

criterion, were recognized without proof as practically axiomatic, it

nevertheless remains true that the theory of the convergence of infinite

sequences, and of infinite series in particular, is far more recent than

the extensive use of these sequences and series, and the discovery of

the most elegant results of the subject, e. g. by Euler and his con-

temporaries, or even earlier, by Leibniz, Newton and their contem

poraries. To these mathematician?, infinite series appeared in a very

natural way as the result of calculation, and forced themselves into

notice, so to speak : e. g. the geometric series 1 -\- x -\- x* -\- oc-

curred as the non-terminating result of the division l/(l x); Taylor's

series, and with it almost all the series of Chapter VI, resulted from

the principle of equating coefficients or from geometrical considerations.

It was in a similar manner that infinite products, continued fractions

and all other approximation processes occurred. In our exposition,

the symbol for infinite sequences was created and then worked with;

it was not so originally, these sequences were there, and the question

was, what could be done with them.

On this account, problems of convergence in the modern sense

were at first remote from the minds of these mathematicians 1
. Thus

it is not to be wondered at that Euler, for instance, uses the geometric
series

i-y-^x-f-*/ -,
\ X

even lor x = 1 or x = 2, so that he unhesitatingly writes 2

1 Cf. the remarks at the beginning of 41.
a This relation is used by James Bernoulli (Posit, arithm., Part 8, Basle 1696)

and is referred to by him as a "paradoxon non inelegans". For details of the

violent dispute which arose in this connection, see the work of R. Reiff men-
tioned in 69,8.
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or 1 - 2 + 22 - 2J + ... =
^

;

similarly from f^_ -)
= 1 + 2 x + 3 x2 + . . . he deduces the relation

i-a + 3-*+-... = i;

and a great deal more. It is true that most mathematicians of those times

held themselves aloof from such results in instinctive mistrust, and recog-

nized only those which are true in the present-day sense 3
. But they had

no clear insight into the reasons why one type of result should be admitted,

and not the other.

Here we have no space to enter into the very instructive discussions

on this point among the mathematicians of the 17th and 18th centuries 4
.

We must be content with stating, e. g. as regards infinite series, that Euler

always let these stand when they occurred naturally by expanding an

analytical expression which itself possessed a definite value 5
. This value

was then in every case regarded as the sum of the series.

It is clear that this convention has no precise basis. Even though,

for instance, the series 1 1 + 1 1 H ... results in a very simple

manner from the division 1/(1 x) for x 1 (see above), and there-

fore should be equated to ^ there is no reason why the same series should

not result from quite different analytical expressions and why, in view

of these other methods of deducing it, it should not be given a different

value. The above series may actually be obtained, for x = 0, from the

function f(x) represented for every x > by the Dirichlet series

f(*\ = J? ir-J)-"
1 = i_L4_!_!-LJ{)

-l "* 2*t-3- 4* -*-'

or from
t +

putting x = 1. In view of this latter method of deduction, we should have

2
to take 1 1 + . . . =

g,
and in the case of the former there is no im-

mediate evidence what value /(O) may have; it need not at any rate be + -
.

2

3 Thus d'Alembert says (Opusc. Mathem., Vol. 5, 1768, 35; M^moire, p. 183):
"Pour moi, j'avoue que tous les raisonnements et les calculs fond^s sur des series

qui ne sont pas convergentes ou qu'on peut supposer ne pas 1'fitrc, me paraitront

toujours tr&s suspects".
4 For details, see R. Reiff, loc. cit.

5 In a letter to Goldbach (7. VIII. 1745) he definitely says: ". . . so habe ich

diese neue Definition der Summe einer jeglichen seriei gegeben: Summa cujusque
seriei est valor expressions illius finitae, ex cujus evolutione ilia series oritur".
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Eulers principle is therefore insecure in any case, and it was

only Enter* unusual instinct for what is mathematically correct which

in general saved him from false conclusions in spite of the copious
use \vhich he made of divergent series of ihis type 6

. Cauchy and

Abel were the first to make the concept of convergence clear, and to

renounce the use of any non-convergent series; Cauchy in his Analyse

algebrique (1821), and Abel in his paper on the binomial series (1826),

which is expressly based on Cauchy s treatise. At first both hesitated to

take this decisive step
7

, but finally resolved to do so, as it seemed
unavoidable if their reasoning were to be made strict and free from gaps.

We are now in a position to survey the problem from above, as it

were; and the matter at once becomes clear when we remember that

the symbol for an infinite sequence of numbers in whatever form it

is given, sequence, series, product or otherwise has, and can have,

no meaning whatever in itself) but that a meaning was only assigned
to it by us, by an arbitrary convention. This convention consisted

firstly in allowing only convergent sequences, i. e. sequences whose
terms approached a definite and unique number in an absolutely de-

finite sense; secondly, it consisted in associating this number with the

infinite sequence, as its value, or in regarding the sequence as no

more than another symbol (cf 41, 1) for the number. However ob-

vious and natural this definition may be, and however closely it may
be connected with the way in which sequences occur

(e. g. as suc-

cessive approximations to a result which cannot be obtained directly),
a definition of this kind must ne\ ertheless in all circumstances be con-

sidered as an arbitrary one, and it might even be replaced by quite

different definitions. Suitability and success are the only factors which

can determine whether one or the other definition is to be preferred;

in the nature of the thing itself, that is to say, in the symbol (sw) of

an infinite sequence
8

, there is nothing which necessitates any preference.

We are therefore quite justified in asking whether the compli-
cation which our theory exhibits (in parts at least) may not be due

6 Cf. on the other hand p. 133, footnote 6.

7 So far as Cauchy is concerned, cf. the preface to his Analyse algibrique,

in which, among other things, he says: "Je me suis vu force d'admettre plusieurs

propositions qui paraitront peut-ctre un peu dures, par exemple qu'une serie diver-

gente n'a pas de somme". As regards Abel, cf. his letter to Holmboe (16. I. 1826)f

in which he says: "Les series divergentes sont, en general, quelque chose de bien

fatal, et c'est une honte qu'on ose y fonder aucune demonstration". As already

mentioned (p. 458, footnote 3), J. d'Alembert had expressed himself in a similar

sense as early as 1768.

8
(sn) may be assumed to be any given sequence of numbers, in particular,

therefore, the partial sums of an infinite series 27 an or the partial products of an

infinite product. We use the letter s, with its reminder of the word "sum", because

infinite series are by far the most important means of defining sequences.
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to our interpretation of the symbol (sn ), as the limit of the sequence,

assumed convergent, being an unfavourable one, however obvious

and ready-to-hand it may appear. Other conventions might be drawn

up in all sorts of ways, among which more suitable ones might per-

haps be found. From this point of view, the general problem which

presents itself is as follows: A particular sequence (sw ) is defined in

some way, either by direct indication of the terms, or by a series or

product, or otherwise. Is it possible to associate a "value" s with it,

in a reasonable way?
"In a reasonable way" might perhaps be taken to mean that the

number s is obtained by a process closely connected with the previous

concept of convergence, that is to say, with the formation of limsw s.

This has been found so extraordinarily efficacious in all the preceding
that we will not depart from it to any considerable extent without

good reasons.

"In a reasonable way" might also, on the other hand, be inter-

preted as meaning that the sequence (sn) is to have such a value s

associated with it that wherever this sequence may occur as the final

result of a calculation, this final result shall always, or at least usually,

be put equal to s.

Let us first illustrate these general statements by an example.
The series

5862. 2:(-l)" = l-l+l-l+-...,
i. e. the geometric series 2xn

for x = 1, or the sequence

(sjel, 0, 1, 0, 1, 0, ...,

has so far been rejected as divergent, because its terms sn
do not

approach a single definite number. On the contrary, they oscillate

unceasingly between 1 and 0. This very fact, however, suggests the

idea of forming the arithmetic means

c
9

Sn

Since
S||
= ~

[1 + ( l)
n
],

we find that

i + C- p.]

'

~"~
2 (n + 1) 2 '

4 (n + 1)
'

so that sn
f

(in the former sense) approaches the value
-^

:

By this very obvious process of taking the arithmetic mean, we
have accordingly managed, in a perfectly accurate way, to give a

meaning to Euler's paradoxical equation 11 + 1 --[-... = --., to
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associate with the series on the left hand side the number ^ as its
LI

"value", or to obtain this number from the series. Whether we can

always equate the final result of a calculation to whenever it ap-
Ct

pears in the foim (- l)
n

, cannot of course be determined off-hand.

In the case of the expansion ^
--- = 2xn

for x = 1, it is certainly
i ~~ x

/_ j\n 1

so; in the case of --~ for x = 0, it is equally true, as may
be shown by fairly bimple means

(cf.
Exercise 200); and a great

deal more evidence can be adduced to show that the association of

the sequence 1, 0, 1,0, 1, ... with the value obtained in the manner
Lt

described above is "reasonable" 9
.

We might therefore, as an experiment, make the following de-

finition. If, and only if, the numbers

c
' __ SQ + *i -f ... + * , __ , 9 .

sn
-- ---- ~ ~~ ' "

tend to a limit s in the previous sense, the sequence (SM ), or series

2 an > will be said to "converge" to the "limit", or "sum", s.

The suitability of this new definition has already been demon-
strated in connection with the series 2( l)

n
, which now becomes

convergent "in the new sense", with the sum -=-, which seems
j

thoroughly reasonable. Two further remarks will illustrate the ad-

vantages of this new definition:

1. Every sequence (sn), convergent in the former sense and of

limit s, is so constituted, in virtue of Cauchy's theorem 43, 2, that

it would also have to be called convergent "in the new sense", with

the same limit s. The new definition would therefore enable us to

accomplish at least all that we could do with the former, while the

example of the series
-Z*( l)

n shows that the new definition is more

far-reaching than the old one.

2. If two series, convergent in the old sense, -2*0n
= A and

2bn
= B, are multiplied together by Cauchys rule, giving the series

2cn E 2(aQ bn + !&-.! H-----t-0n fy))>
we know tliat mis series is

not necessarily convergent (in the old sense). And the question when

cn does converge presents very considerable difficulties and has not

been satisfactorily cleared up so far. The second proof of theorem 189,

9 From the series (see above) for -- -^ also we can accordingly de-

2
duce the value ~ for x = 1 . We have only to observe that the series, written

o
somewhat more carefully, is 1 4- 0-a; x- -\- X9 + 0# l

a;
5
-f--l

--
,
and is

therefore l + O l + l + O l+H----- for a; = J f
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however, shows that in every case

if Cn denotes the n th
partial sum of 2cn . The meaning of this is

that <Scn always converges in the new sense, with the sum AB. Here

the advantage of the new convention is obvious: A situation which,

owing to the insuperable difficulties involved, it was impossible to

clear up as long as we kept to the old concept of convergence, may
be dealt with exhaustively in a very simple way, by introducing a

slightly more general concept of convergence.
We shall very soon become acquainted with other investigations

of this kind (see 61 in particular); first of all, however, we shall

make some definitions relating to several fundamental matters:

Besides the formation of the arithmetic mean, we shall become

acquainted with quite a number of other processes, which may with

success be substituted for the former concept of convergence, for the

purpose of associating a number s with a sequence of numbers (sn).

These processes have to be distinguished from one another by suitable

designations. In so doing it is advisable to proceed as follows: The
former concept of convergence was so natural, and has stood the test

so well, that it ought to have a special name reserved for it. Accor-

dingly, the expression: "convergence of an infinite sequence (scries,

product, . . .)" shall continue to mean exactly what it did before. If

by means of new rules, as, for instance, by the formation of the arithmetic

mean described above, a number s is associated with a sequence (sn),

we shall say that the sequence (sn )
is limitable* by that process, and

that the corresponding series 2a^ is summable by the process, and
we shall call s the value of either (or in the case of the series, its

sum also).

When, however, as will occur directly, we are making use of

several processes of this kind, we distinguish these by attached initials

A, B, . . ., F, . . ., and speak for instance of a F- process
10

. We shall say

that the sequence (sn)
is limitable F, and that the series 2an is summ

able F; and the number 5 will be referred to as the Flimit of the

sequence or Fsum of the series; symbolically

F-lim sn
== s, V-2an

= s .

When there is no fear of misunderstanding, we may also express the

* German: hmitierbav.
10 In the case of the concept of integrability the situation is somewhat

similar and it was prob.ibly in this connection that the above type of notation

was first introduced. 'Ihus we say a function is integrable /? or integrable L
according as we are referring* to integrability in Riemann's or in Lebesgtte's

sense.
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former of the two statements by the symbolism

which more precisely implies that the new sequence deduced from (sn) by

the F-process converges to s.

When, as will usually be the case in what follows, the process admits

of a &-fold iteration, or can be graded into different orders, we attach a

suffix and speak of a V^-limitation process, a V^-summation process, etc.

In the construction and choice of such processes we shall of course 263.
not proceed quite arbitrarily, but we shall rather let ourselves be guided

by questions of suitability. We must give the first place to the fundamental

stipulation to be made in this connection, namely that the new definition

must not contradict the old one. We accordingly stipulate that any F-

proccss which may be introduced must satisfy the following permanence

condition :

I. Every sequence (sn) convergent in the former sense, with the limit s,

must be limitable V with the value s. Or in other words, lim sn = s must

in every case imply
u F-lim sn s.

In order that the introduction of a process of this kind may not

be superfluous, we further stipulate that the following extension con-

dition is to hold:

II. At least one sequence (sj, which diverges in the former sense,

must be limitable by the new process.

Let us call the totality of sequences which are limitable by a

particular process the range of action of this process. The condition II

implies that only those processes will be allowed which possess a

wider range of action than the ordinary process of convergence. It

is precisely the limitation of formerly divergent sequences and the

summation of formerly divergent series which will naturally claim the

greater part of our attention now.

Finally, if several processes are employed together, say a V-process

and a HP- process simultaneously, we should be in danger of hopeless

confusion if we did not also stipulate that the following compatibility

condition should be fulfilled:

III. // one and the same sequence (sn) is limitable by two different

processes, simultaneously applied, then it must have the same value

by both processes. In other words, we must in every case have

= W'\imsn , if both these values exist.

11 We might also be satisfied if some convergent sequences at least are

limitable with unaltered value by the process considered. This is the case e. g
with the E

f
- process discussed further on, provided the sutfix p is complex
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We shall only consider processes which satisfy these three con

ditions. Besides these, however, we require some indication whether

the association of a value 5 with the sequence (sj effected by a parti-

cular V- process is a reasonable one in the sense explained above

(p. 460). Here widely-varying conditions may be laid down, and the

processes which are in current use are of very varied degrees of ef-

ficiency in this respect. In the first instance we should no doubt require

that the elementary rules of the algebra of convergent sequences (v. 8)

should as far as possible be maintained, i. e. the rules for term-by-term

addition and subtraction of two sequences, term-by-term addition of a

constant, and term-by-term multiplication by a constant, and the effect of

a finite number of alterations (27, 4), etc. Next we might perhaps

require that if, say, a divergent series 2an
has associated with it the

value s, and if this series is deduced, e. g. from a power series

f(x)
= 2cnx

n
by substituting a special value X

L
for x, then the number 5

should bear an appropriate relation to f(x^) or to Mmf(x) for x^x^\
and similarly for other types of series (Dirichlet series, Fourier series etc.).

In short, we should require that wherever this series appears as the final

result of a calculation, the result should be s. The greater the

number of conditions similar to the above which are satisfied by a

264. particular process let us call them the conditions F, without taking

pains to formulate them with absolute precision and at the same

time, the greater the range of action of the process, the greater will

be its usefulness and value from our point of view.

We proceed to indicate a few of these processes of limitation

which have proved their worth in some way or another.

205. v 1. The Cr , H^ 9
or Af-process 12

. As described above, 262, we

form the arithmetic means of the terms of a sequence (sn):

0.1.2,...)

which we will denote by cn\ hn', or mn . If these tend to a limit s in

the older sense, when n -> oo, we say that (sn) is limitable C or

limitable Hl or limitable Af with the value s and we write

Af-lim sn = s or M (sn)

or use the letters Cx or H^ instead of M. The series Z an with the partial

sums sn will be called summable C
l

or summable H
l

or

summable Af, and s will be called its C^-, //!-, or M-sum.

The sequence of units 1, 1, 1, ... may be considered to be the

simplest convergent sequence we can conceive. The process described

above consists in comparing, on the average, the terms sn of the sequence

18 The choice of the letters C and H is explained in the two next sub-sections.
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under consideration with those of the sequence of units:

- ' = 1. ' = __ o + Si -f- . . + sncn - nn w. n
j + j + _ ^ + r .

This "averaged" comparison of (sj with the unit sequence will be met

with again in the case of ihe following processes.

The usefulness of this process has already been illustrated above

by several examples. We have also seen that it satisfies the two con-

ditions 263, I and II, and 111 does not come under consideration at

the moment. In 60 and 61 it will further be seen that the con-

ditions F (264) are also in wide measure fulfilled.

2. irolder's process, or the H
p

- process
13

. If with a given

sequence (sn ),
we proceed from the arithmetic means hn

f

just formed

to their mean

and if the sequence (hn") has a limit in the ordinary sense, lim hn
" =

$,

we say that 14 the sequence sn is limitable Jf2 with the value s.

By 43, 2, every sequence which is limitable H^ (and therefore

also every convergent sequence), is also limitable H^, with the same
value. The new process therefore satisfies the conditions 263, I, II and

III; moreover, its range is wider ihan that of the ^-process, for

the series

=o

for instance, is summable //2 with the sum .-, but not summable

HI nor convergent. In fact, we have here

and

(hn')
== 1, 0, ~, 0, j! , 0, ....

These sequences arc not convergent. On the other hand, the numbers

hn
"

*~T as is easily calculated. This is precisely the value which

one would expect from

1 \ 9 n

' n=0
for x = 1.

13
Holder, O.i Grenzwerte von Reihen an der Konvergenzgrenze. Math.

Ann., Vol. 20, pp. 535549. 1882. Here arithmetic means of the kind described
are for the first time introduced for a special purpose.

14 The rest of the notation is formed in the same way, //d -lim $n = s,
H%-2an = s, //3 (sn)-+.s, etc. but hereafter we shall not mention it specially.
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If the numbers hn
"

do not tend to a unique limit, we proceed to

take their mean
/, " I J, " 1 Z, //

h '" "*" * ~*~ ' * ' "n Cfi 1 2 *"n w + 1 * ' ' ' " *
*'

or, in general, for 15
/> ^ 2, the mean

,,....

between the numbers /*
""^ obtained at the previous stage; if these new

numbers A^ -> $, for some definite />, we say that the sequence (sn) is

litnitable Hv with the value s.

It is easy to form sequences which are limitable H9 for any particular

given p, but for no smaller value of p than this 16
. This, together with

43, 2, shows that the /^-processes not only satisfy the conditions 263,
I III, but that their range of action is wider for each fixed p ^ 2 than

for all smaller values of p. As regards the conditions F, we must again

cfer to 60 and 61.

3. Cesaro's process, or the C^-process 17
. We first write

n ='S^
Q
\ and also, for each k ^ 1,

and we now examine the sequence of numbers 18

,<*-

for each fixed k. If, for some value of k, c^ -> 5, we say that the sequence

(sn) is limitable Ck with the value s.

In the case of the //-process, we cannot obtain simple formulae giving

h^ directly in terms of sn ,
for larger values ofp. In the case of the C-process,

this is easily done, for we have

(*) _ n + k - 1\
, fn

+ k - 2\ /* - 1\-
> + \ k-i y *i ' U - 1/ Jm

15 Or indeed for p ^ 1, provided we agree to put h 0) = sn and take the HQ
-

process to be ordinary convergence, as we shall do here and in all analogous cases

in future.
16

Write, for instance, (^
1>
~ 1)

)
=

1, 0, 1,0, 1, ... and work backwards to the

values of sn . Other examples will be found in the following sections.
17

Cesdro, E.i Sur la multiplication des series. Bull, des sciences math. (2),

Vol. 14, pp. 114120. 1890.
18 The denominators of the right hand side are exactly the values of S

obtained by starting with the sequence (sn)
==

1, 1, 1, . . . , i. e. they indicate how

many of the partial sums sv are comprised in S. Thus the C
fc-process again in-

volves an "averaged" comparison between a given sequence (sn) and the unit

sequence.
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or if we wish to go back to the scries -i'an , with the partial sums sn ,

This may be proved quite easily by induction, or by noticing that,

by 102,

n=o n=o

so that for every integral k

(i-xy~- n=o

whence, by 108, the truth of the statement follows 19
.

In the following sections we shall enter in detail into this process

also, which becomes identical with the preceding one (hn
' = cn') for

^ 4. AbeVs process, or the A -process. Given a series 2an with

the partial sums sn , we consider the power series

If its ladius is ^> 1, and if (for real values of x) the limit

lim 2an x
n = lim (1 x) 2s n

x
n = s

a;->l-0 ->l-0

exists, we say that the series 2Jan is
2Q summable A, and that tlis

sequence (sn ) is limitable A 9 with the value s\ in symbols:

A-2an
= s, A-\imsn

= s.

In consequence of Abel's theorem 100, this process also fulfils

the permanence condition I, and simple examples show that it fulfils

the "extension condition" II; for instance, in the case of the series

2( l)
n

already used, the limit for x *1

exists. Thus Euler's paiadoxical equation (p. 457) is again justified

19 In view of these last formulae, it is fairly natural to allow non-integral values
> 1 for the suffix k also. Such limitation processes of non-integral order were
first consistently introduced and investigated by the author (Grenzwerte von Reihen
bei der Annaherung an die Konvergenzgrenze, Inaug.-Diss., Berlin 1907). We
shall however not enter into this question, either here in the case of the C-process,
or later itfi that of the other processes considered.

20 If the product (1 x) 2sn xn is written in the form

we see that it is again an "averaged" comparison of the given sequence with the

unit sequence which is involved, though in a somewhat different manner.
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by this process. If we now use the more precise form

x-^(-i)---J or c^c-iy-A.
we thus indicate two perfectly definite processes by which the value

- may be obtained from the series J?( l)
w

.

5. Hitler's process, or the K- process. We saw in 144 that if

the first of the two series
oo c

^(-l)-. and
rt=0 &--

converges, then so does the second, and to the same sum. Simple

examples show, however, that the second series may quite well con-

verge without the first one doing so:

1. If an 2= 1, then aQ
= 1 and A k

a = for &I>1. Accordingly,
the two series are

1 1 + 1 H----- and -L + O-fO + OH----

the second of which converges to the sum - -.

2. If, for M = 0, 1, 2, ...,

an
== 1, 2, 3, 4, ...,

then

Aan
= - 1, 1, 1, -

1, ...,

and for k^ 2

A*an
= 0, 0, 0, 0, ----

Accordingly, the t\\o series are

1_ 2 + 3-4 -\
----- and - ~ + + -|

----
.

the second of which converges to the sum
-^

.

3. Similarly for an = (n + 1)
3 we find <40 = 7, /I

a a =12,
-d

s a = 6, and, for &>3, zl
fe

a =0. The two series are thus

1 _ 8 + 27 - 64 + ---- and \ - -J-
+ ?|

- ^ + + + - -
-,

the second of which converges to the sum --
5- .

o

4. For an =2 n
, A k

aQ
=

( 1)*. Thus the two series are:

! _ 2 +4 - 8 H----- and -L - A + 1 - -I H----- ,

the second of which converges to the sum y i. e. the sum which we should

expect for x = 2 from
j-

= Z xn.

5. For an=( l)
n
z
n

, d
k
a = (l+ z)

k
. -The two series are therefore

the second of which converges to the sum
1 _ , provided |j?+ l( < 2.
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If we start with any scries 2a
n , without alternately ~f- and

signs, the series

will be an Eiders transformation of the given series, which we ma>
also obtain as follows: The series 2'an results from the power series

for x = \, hence from

for y = . Expanding the latter in powers of y, before substituting

y = -
,
we obtain Eulers transformation. In fact

In order to adapt this process for use with any sequence (sj we write,

deviating somewhat from the usual notation,

o+ aiH-----Hn-i = sn for w ^!> and So^ '

and also

*o'-!-i'H-----Mn-i = sn
'

for w^l, and V^ -

It is now easy to verify that 21 for cvvry n .2.

We accordingly make the following definition: A sequence (sn) is said

to be limitable E\ with the value s, if the sequence (sn') just de-

fined tends 22 to s. If, without testing the convergence of (sn'), we write

21 From 2an x
n+l = 2f

an
/

(2y)
n+1

it follows, by multiplication by

L-o n-o
Hence

n=0

whence the relation may at once be inferred.
88 Here also the denominator 2" is obtained from the numerator

by replacing: each of the sn 's by 1. Thus we are again concerned with an

"averaged" comparison, of a definite kind, between the sequence (sn) and the
unit sequence.
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and in general, for r ^> 1 ,

^-TrKD^^ + ffl-^+'-' + C)^"
1

*];
(0,1,2,...).

we shall similarly say that the sequence (sn) is limitdble E
r
and

regard s as its E
r

- limit, if, for a particular r, s^ >s.

Our former theorem 144 (see also 44, 8) then shows in any
case that this E- process satisfies the permanence condition I, and the

examples given there show that the condition II is also satisfied. This

process will be examined further in 63.

6. JRfesz's process, or the Jf^- process
23

. For making the

principle of averaged comparison of the sequence (sn)
with the unit

sequence more powerful, a principle which, as we saw, lies at the

basis of all the former limitation projesscs, a fairly obvious pro
cedure consists in attributing arbitrary weights to the various terms sn .

If /z , /x 1 , /z 2 , . . . denote any sequence of positive numbers, then

_
Mo + Ml + - + J"n

is a generalized mean of this kind. In the special case of /^n -,

we speak of a logarithmic mean.

As with the //-, C-, or ^-processes, this generalized method of form-

ing the mean may of course be repeated, writing, for instance, as in the

C-process,

>-, and ^=1,
and then, for k ^ 1

,

n

and

and then proceeding to investigate, for fixed k ^ 1, the ratio

<*)

p
<*> = ""

A
tf>

for n -> + oo. If these tend to a limit 5, we might say that (sn) was

Hmitable 24 R
/Jk

with the value s. This definition, however, is not

in use. The process in question has reached its great importance only

by being transformed into a form more readily amenable to analysis, as

23
Riesz, M. : Sur les series de Dirichlet et les series entieres. Comptes rendus

Vol. 149, pp. 909912. J909.
24 Here we add a suffix /* to Rk, the notation of the process, as a reference to

the sequence (/in) used in the formation of the mean. For \JLU =
1, this process

reduces exactly to the C^-process.



69. General remarks on divergent sequences. 471

follows: A (complex) function s (t) of the real variable / ^ is defined by

s(t)
= sv in A^ < t^ A^

(1)
(v
= 0, 1, 2, . . . ; A^ = 0)

with s(0) = 0; then

and it is natural to substitute repeated integration for the repeated sum-

mation used in the formation of the numbers cr^ and A*\ A A-ple in-

tegration
a5

gives

000
instead of an

(fc)
. Similarly, instead of the numbers An

(ft)
, we have to

take the values which we obtain by putting sn = 1 in the integrals

just written down, i. e.

We should then have to deal with the limit (for fixed k)

lim A

If this limit exists and = s, the sequence (sw) will be called limitdble

-K** with the value s.

Here we cannot enter into a more detailed examination of the

question whether the two definitions given for the R^- process are

really exactly equivalent, or into the elegant and far-reaching appli-

cations of the process in the theory of Dirichlets series. (For refer-

ences to the literature, see 266.)

7. .Borel's process, or the /J- process. We have just seen how
Riesz' process tends to increase the efficiency of the H- or C- pro-

cesses, by substituting for the method of averaged comparison be-

tween the sequence (sn ) and the unit sequence a more general form

of this procedure. The range of Abel's process may be enlarged in

a similar way by making use of other series instead of the geometric
series there used for purposes of comparison. Taking the exponential
series as a particular case, and accordingly considering the quotient
of the two series

> 4* oo ~n

2sn
X
-, and 27 J.n=0 n - n-0 ni

25 The equality of the two sides is easily proved by induction, using inte-

gration by parts.
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that is to say, the product

n=o
n wl

for x *4-oo> we obtain the process introduced by ZT. Borel 29
. In

accordance with it we make the following definition: A sequence (sw)

x n

such that the power series ^ sn converges everywhere and the

function F(x) just defined tends to a unique limit s as # * -f" >

will be called Hinitable B with the value s.

In order to illustrate the process to some extent, let us first take

2an s= 2( l)
n once more; then sn

= 1 or 0, according as n is even

or odd. Accordingly

y i-L. + -4-.=^
e *+ e~*

and we have to deal with the limit

lim e~*-- -
,

which is evidently -^
. Thus 2

( l)
n

is summable B with the

sum -jr . More generally, taking an = z
n

> we have, provided only

that * 4. -f 1,

and

which +-- when x -j-oo, provided $l(z) < 1. 77w/s ^ geometric

series 2 z
n

is summable B with the sum = --
throughout the half-

plane
27

5ft (-s) < 1.

This process also satisfies the permanence condition; for we have

If 5 * 5 in the ordinary sense, we can for any given e choose m so
"n

28 Sur la sommation des series divergentes, Comptes rendus, Vol 121, p. 1125.

1895, and in many Notes in connection with it. A connected account is given
in his Lecons sur les series divergentes, 2nd ed., Paris 1928.

27 By the C-processes, as shewn in 268, 8, the geometric series is summable,
beyond |

z
\
< 1, only for the boundary points of the unit circle, -f- 1 excepted;

by Enters process it is summable throughout the circle
|

z -f- 1
|
< 2, which en-

closes the unit circle, with a wide margin; by Borel's process it is summable in the

whole half-plane 9ft (z) < 1, the value in this and the preceding cases being every-

where .
__ .
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large that
|

sn s
\
< \z for every n > m. The expression on the right

hand side is then in absolute value

<: r- .

J7J
in -t\.*g e~* .

J7J
*.
-

|

*" + *

for positive #'s. Now the product of e~x and a polynomial of the wth

degree tends to when x ~> + oo
;
we can therefore choose so large

that this product is < s for every x > . For these #'s the whole ex-

pression is then < e in absolute value, and our statement is established.

8. The J5r-process. The range of the process just described is, in

a certain sense, extended by substituting other series for 27*-,,
in the first

instance 27
>--y(

, say, where r is some fixed integer > 1. We accordingly

say that a sequence (sn) is limitable Br with the value s if the quotient

of the two functions

00 xrn rn ^i xrn
27 sn 7^-. and 27

, %-:, i. e. the product r e~x 2 sn 7-^
n-O (rn> ! n-o(rw> ! n-0 (rw> 1

tends to the limit s when # -> -j- oo . (We must, of course, assume again

here that the first-named series is everywhere convergent.) Thus the

fi-process, for instance, is quite useless for the sequence sn = ( l)
n n !,

since here sn
x
^
= 27 ( l)

n xn does not converge for every x\ whereas

xrn
the series 27 sn

( r, already converges everywhere
28 when we take r 2.

9. Le jRoy's process. We have usually interpreted the limitation

processes by saying that by means of them we carry out an "averaged"

comparison between the given sequence (sn ) and the unit sequence 1, 1,

1, ... We may look at the matter in a slightly different way. If the numbers

sn are the partial sums of the series 27 an> we have to examine, for instance

in the Cx-process, the limit of

* + *i 4- . . . + sn

Here the terms of the series appear multiplied by variable factors which

reduce the given series to a finite sum, or at any rate to a series convergent
in the old sense. By means of these factors, the influence of distant terms

is destroyed or diminished; yet as n increases all the factors tend to 1

and thus ultimately involve all the terms to their full extent. The situation

is similar in the case of Abel's process, where we were concerned with

the limit of 2an x
n for x -> 1 0; here the effect described above is

28 This does not mean that the #r-process (r > 1) is more favourable than
the B-process for every sequence (sn ). On the contrary, there are sequences that

are hmitable B but not limitable B a.
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brought about by the factors xn , which, however, increase to 1 as x -> 1 0.

This principle appears most clearly as the basis of the following process
29

:

The series

n=0

is assumed convergent for ^ x < 1. If the function which it defines

in that interval tends to a limit 5 as # >1 0, the series San may
be called summable R to the value s.

This method is not so easily dealt with analytically, and for this

reason it is of smaller importance.

10. The most general form of the limitation processes. It will

have been noticed that all the processes so far described belong es-

sentially to two types:

1. In the case of the first type, from a sequence (sn), with the

help of a matrix (cf. Toeplitz theorem 221)

r=(<O
a new sequence of numbers

*' **o*o + *ii H-----M ft
5n + -"> (A

= 0, 1, 2,...)

is formed by combination of the sequence s , s^j..., sn , ... with the

successive rows ak0 , akl , ..., a
fcw , . .. ,

the assumption being, of

course, that the series on the right hand side represents a definite

value, i. e. is convergent (in the old sense)
30

. The sequence SQ', sx', . . . ,

sh', . . . will be called for short the T-transformation
31 of the sequence

(sn ) and its nth
term, when there is no fear of ambiguity, will be denoted

by T (sn). If the accented sequence (sk
f

) is convergent with the

limit s, the given sequence is said to be limitable T 'with the value s. In

symbols :

TMim sn
= s or T(sw) + s .

29 Le Roy: Sur les series divergentes, Annalcs de la Fac. des sciences

de Toulouse (2), Vol. 2, p. 317. 1900.
* If each row of the matrix T contains only a finite number of terms,

this condition is automatically fulfilled. This is the case with the processes

1, 2, 3 and 5.

31 The series 2 aj/9 of which the sk
ft
s are the partial sums, may similarly

be called the T- transformation of the series 2 an with the sn's as its partial
sums. Thus e. g. the series

is the Cj- transformation of the series 2 an . In this sense, all T-processes

give more or less remarkable transformations of scries, which may very often

he of use in numerical calculations. (This is particularly the case with the

E -process). The transformation of the series may equally, of course, be re-

garded as the primary process and the transformation of the sequence of partial
sums may be deduced from it. Indeed it was in this way that we were led

to the E- process.
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It is at once clear that the processes 1, 2, 3, 5, and the first one

described in 6 belong to this type. They differ only in the choice of the

matrix T. Theorem 221, 2 also immediately tells us with what matrices

we are certain to obtain limitation processes satisfying the permanence
condition 32

.

2. In the case of the second type, we deduce from a sequence (sn)9

by combining it with a sequence of functions

(9w) = 9o (*)> 9i (*)> > 9n (*)> 9

the function
pi /M\ fn f*A\ O I / \ |

I / \
|

where we assume, say, that each of the functions <pn (x) is defined for every

x > x and that the series Syn (x)sn converges for each of these values

of x. In that case F (x) is also defined for every x > #
,
and we may in-

vestigate the existence of the limit lim F (x). If the limit exists and = s
t

x->+v>

the sequence (sn) will be called 33 limitable cp with the value s.

By analogy with 221, 2, we shall at once be able to assign conditions

under which a process of this type will satisfy the permanence condition.

This will certainly be the case if a) for every fixed n,

lim 9n (x)
-

0,

if b) a constant K. exists such that

I <Po(*) I
+

I <Pi (*) I
+ . +

I <P (*) I
< K.

for every x > XQ and all rc's, and if c) for x -> + oo

Km-

It will be noticed that these conditions correspond exactly to the assump-
tions 34

a), b) and c) of theorem 221, 2. The proof, which is quite analogous

to that of this theorem, may therefore be left to the reader.

Borers process evidently belongs to this type, with epn (x)
= e"x ^.

The same may be said of Abel's process, if the interval . . . + oo

32 The importance of theorem 221, 2 lies chiefly in the fact that the con-

ditions a), b) and c) of the theorem are not merely sufficient, but actually necessary

for its general validity. We cannot enter into the question (v. p. 74, footnote 19),

but we may observe that in consequence of this fact, the T-processes whose matrix

satisfies the conditions mentioned are the only ones which fulfil the permanence
condition.

33 In all essentials this is the scheme by means of which O. Perron (Beitrage
zur Theorie der divergenten Reihen, Math. Zschr. Vol. 6, pp. 286 310. 1920)
classifies all the summation processes.

34 Like these they are not only sufficient, but also necessary for the general

validity of the theorem. Further details in H. Raff, Lineare Transformationen bes-

chrankter integrierbarer Funktionen, Math. Zeitschr, Vol. 41, pp. 605 629. 1930.
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is projected into the interval ... 1 which is used in the latter, that

is, if the series (1 x)2 sn x
n

is replaced by the series

and the latter is examined for x+-{-oo. In an equally simple

manner, it may be seen that Le Roy's process belongs to this type.

The second type of limitation process contains the first as a par-

ticular case, obtained when x assumes integral values ^ only

dpn (k)
~ akn) u ^e merely use a continuous parameter in the one case,

and a discontinuous one in the other. Conversely, in view of 19,

def. 4 a, the continuous passage to the limit may be replaced by a

discontinuous one, and hence the ^-processes may be exhibited as

a sub-class of the T- processes. These remarks, however, are of little

use: in further methods of investigation the two types of process

nevertheless remain essentially different.

It is not our intention to investigate all the processes which come
under these two headings from the general points of view indicated

above. Let us make only the following remarks. We have already

pointed out what conditions the matiixTor sequence of functions (cpn )

must fulfil, in order that the limitation process based on it may satisfy

the permanence condition 263, I. Whether the conditions 263, II

and III are alo fulfi led, will depend on fuither hypotheses regarding
the matrix T or sequence (9^,);

this question is accordingly be t left

to a separate investigation in each case. The question as to the ex-

tent to which the conditions F (264) are fulfilled, cannot be attacked

in a general way either, but must be specially examined for each

process. One important property alone is con.mon to all the T-

and (^-processes, namely their linear character: If two sequences (sn)

and (tn) are limitable in accordance with one and the same process,
the first with the value s, and the second with the value t, then the

sequence (asn -{- btn ), whatever the constants a and b maybe, is also

limitable by the same process, with the value as-\-bt. The proof
follows immediately from the way in which the process is constructed.

Owing to this theorem, all the simplest rules of the algebra of con-

vergent sequences (term-by-term addition of a constant, term-by-term

multiplication by a constant, term-by term addition or subtraction of

two sequences) remain formally unaltered. On the oth^r hand, we must

expressly emphasize the fact that the theorem on the influence of a

finite number of alterations (42, 7) doe> not necessarily remain valid 35
.

35 For this, the following simple example relating to the B-process was first

given by G. H. Hardy: Let sn be defined by the expansion
00 xn

sin(e*) = H sn .

n-Q n '

$ince e~x sin (tF)
-> as x -> + oo

?
the sequences s0t slt j

?> . . f is



59. General remarks on divergent sequences. 477

If we wished to give a general and fairly complete survey of the

present state of the theory of divergent series, we should now be

obliged to enter into a more detailed investigation of the processes which

we have described. To begin with, we should have to deal with the

questions whether, and to what extent, the individual processes do

actually satisfy the stipulations 2G3, II, III and 264; we should have

to obtain necessary and sufficient conditions for a series to be summable

by a particular process; we should have to find the relations between

the ways in which the various processes act, and go further into the

questions indicated in No. 10, etc. Owing to lack of space it is of

course out of the question to investigate all this in detail. We must be

content with examining a few of the processes more particulary;

we choose the H-, C-, A-, and E- processes. At the same time we

will so arrange the choice of subjects that as far as possible all

questions and all methods of proof which play a part in the com-

plete theory may at least be indicated.

For the rest we must refer to the original papers, of which we may men-

tion the following, in addition to those mentioned in the footnotes of this

section and of the following sections:

1. The following- give a general survey of the group of problems:

Borel, E.: Lecons sur les series divergentes, 2 ld
ed., Pans 1928.

Bromwich, T. J. PA.- An introduction to the theory of infinite series.

London 1908: 2nd ed. 1926.

Hardy. G. H., and S. Chapman A general view of the theory of suramable

series. Quarterly Journal Vol. 42, p. 181. 1911.

Chapman, S.: On the general theory of summability, with applications to

Fourier's and other series. Ibid., Vol. 43, p. 1 1911.

Carmichael, R. D.: General aspects of the theory of summable series.

Bull, of the American Math. Soc. Vol. 25, pp. 97131. 1919.

Knopp t K.: Neuere Untersuchungcn in dcr Theorie dor divergenten Reihen.

Jahresber. d. Deutschen Math.-Ver. Vol. 32. pp. 4367. 1923.

2. A more detailed account of the l?^*- process, which is not specially

considered in the following sections, is given by

Hardy, G. H., and M. Riesz. The general theory of Dirichlet's series.

Cambridge 1915.

The B- process is dealt with in the books by Borel and Bromwich
mentioned under 1., and also in more detail by

Hardy , G. H.: The application to Dinchlet's series of Borel's exponential
method of summation. Proceedings of the Lond. Math. Soc. (2) Vol. 8, pp. 301

to 320. 1909.

w.th the value 0. By differentiation of the relation above, we obtain

n=0 -
nt

this shows, since cos (e*) tends to no limit when as * + OO, that the sequence
s
i

5i. *a> is wo/ limitable B at all!
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Hardy. G. //., and /. E. Littlewood: The relations between Borel's and

Cesaro's methods of summation. Ibid., (2) Vol. 11, pp. 116. 1913.

Hardy, G. //., and /. E. Littlewood: Contributions to the arithmetic theory
of series. Ibid., (2) Vol. 11, pp. 411478. 1913.

Hardy, G. H., and /. E. Littlewood: Theorems concerning the summabilitjr

of series by Borel's exponential method. Rend, del Circolo Mat. di Palermo

Vol. 41, pp. 3653. 1916.

Doetsch, G.: Kine neue Verallgemeinerung der Borelschen Summabilitats-

theorie. Inaug.-Diss., Gottingen 1920.

3. Apart from the books mentioned under 1., a full account of the theory
of divergent series is to be found in

Bieberbach, L.: Neuere Untersuchungen liber Funktionen von komplexen
Variablen. Enzyklop. d. math. Wissensch. Vol. 11, PartC, No. 4. 1921.

4. Finally, the general question of the classification of limitation processes
is dealt with in the following papers:

Perron, O.: Beitrag zur Theorie der divergenten Reihen. Math. Zeitschr.

Vol. 6, pp. 286310. 1920.

Hatisdorff, F. : Summationsmethoden und Momentenfolgen I und II. Math.

Zeitschr. Vol. 9, p. 74 seqq- and p. 280 seqq. 1920.

Knopp, K.: Zur Theorie der Limitierungsverfahrcn. Math. Zeitschr. Vol. 31;
1st communication pp. 97 127, 2nd communication pp. 270 305. 1929.

60 The C- and /^-processes.

Of all the summation processes briefly sketched in the preceding

section, the C- and /^-processes and especially the process of limitation

by arithmetic means of the first order, which is the same in both arc

distinguished by their great simplicity; they have, moreover, proved of

great importance in the most diverse applications. We shall accordingly

first examine these processes in somewhat greater detail.

267. In the case of the //-process, Cauchy's theorem 43, 2 shows that,

for p ^ 1, h^~
1 ^ -> s implies

3e
h^ -> s, so that the range of the //^-process

contains that of the //p.^process. The corresponding fact holds in the

case of the C-process:

Theorem 1. If a sequence is limitable Ck^l with the value s
t (k ^ 1),

it is also limitable Ck with the same value. In symbols: From *~

it follows that c
( -> s. (Permanence theorem for the C-process.)

36 Cf. p. 466, footnote 15. By the Oth degree of a transformation, higher

degrees of which are introduced, we mean the original sequence.
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Proof. By definition
(v. 265, 3)

s<* s

whence by 44, 2 the statement immediately follows.

Accordingly, to every sequence which is limitable C , for some

suitable suffix p, there corresponds a definite integer k such that the

sequence is limitable C
fc
but is not limitable Cfc-1

.
(If

the sequence
is convergent from the first, we of course take k = 0.) We then say
that the sequence is exactly limitable C

ft
.

Examples of the C^-limitation Process 87
. 268.

00 1
1. 2 ( l)

n
is summable C

4
with the value --. Proof above, 262.

2. 2 ( l)
n

(
,

)
is exactly summable Q+i, to the value $ =

k ,

n=o \ / ^ "*"

In fact, for an ^(- l)
n

(

n
"j" *),

we have by 265,3
\ K /

Accordingly
"-M\ ^

)
or =0, according as n = 2y or

" /

Hence both for n = 2v and for n = 2 v+ 1
>

whence the statement follows immediately.

3. The series 2(- 1) (n+ 1)*== 1 - 2*+ 3*-4*+ ----
, summable C^ to

the value
-g-

for ^ = 0, by Example 1., is for each k> 1 exactly summable C
fc + 1

to the sum s = r : ^t+ii if Bv denotes the yth of Bernoulli's numbers.
^4- 1

The fact of the summability indeed follows directly from Example 2. For the

moment denoting the series there summed by 2^, we at once see, from the

linear character of our process (v. p. 476), that the series, obtained from 2^

37 As a result of the equivalence theorem established immediately below
these examples he'd unaltered for the HA

- limitation processes. On account

of the explicit foimulae for S^ and
GJf\ given in 265,3, to which there is

no analogue in the H- process, the C- process is usuallv Dreferred.



480 Chapter XIII. Divergent series,

by term-by-term addition, of the form

is exactly summable Cfc+l if c0t c^ . . . , ck denote any constants, with ck =f= 0. Now
the cv may obviously be chosen so that we obtain precisely the series S ( l)

n
(n + l)

fc
.

The value s is most easily obtained by ^-summation ; see 288, 1.

1

2

the sum 0, provided x ^ 2 k n.

Proof. By 201,

sin

sn o 4- cos x -f cos 2 x + . . . 4- cos n x =
2 sin

for each w = 0, 1, 2, . . . ; hence

sin* ("4- 1)*

(

~ \ '

x ^x . #\ _
sin + sm 3 o + . . . -f- sin (2n -f- 1) J TT

~ Oi.l
4

'
9 elr|2

and consequently
. . + _ __ _ _

n+l i-+~ 2smS *_

For a fixed x 4= 2 & TT, the expression on the right tends to as n increases, which

proves what was stated. This is our first example of a summable series with

variable terms. The function represented by its "sum** - in every interval not

containing any of the points 2 k IT. At the excluded points, the series is definitely

divergent to -f oo !

5. The series sin x -f- sm 2 # 4- sin 3 x -f . . . is obviously convergent with

the sum 0, for x k ir. For x 4= k n it is no longer convergent, but it is summable

d, and it then 38 has the "sum" -* cot -*
.

Proof. From the relation

j
cos (2 n + 1)

*

fn == sin x 4- ... 4 sin n # _ cot --------- 1

o ^
2sm

2
the statement follows as in 4.

6. cos x 4 cos 3 x 4 cos 5 x + is summable Ct to the sum 0, for x =N k TT.

7. sin # + sin 3 x -f- sin 6x4-... is also summable C l to the sum rt
-

.
-

,

for ** ATT.
2 sin *

8. 1 4- z + z l + . . . is summable C^ on the circumference
|
s

\

=
1, ex-

cepting only for z 4- I
,
and the sum is .

-__
. (Examples 4 and 5 result from

this by separating real and imaginary parts.) Here, in fact,

, - -J_- *-- so that
' + *i + - + *

* ~
1 - * 1 - S mat

/i+l

whence the statement can be inferred at a glance.

38 The graph of this function thus exhibits "infinitely great jumps" at the

points 2 k n.
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1 *
(n _L 1\

9. The series /i IT^AA- ^ ( L, i )
~n remains summable C& to the

v ~ ; w-0 \ A /w-0

sum >i _ v\ k
n the circumference

|
z

|

=
1, provided only z 4= + 1. For the

corresponding quantities S^
k)

are, by 265, 3, the coefficients of xn in the expansion of

_J L_ = 4.
(1
_ X)k+i (l- x Z)k (i

_ X)k+i
-T i

(the right hand side being the expansion in partial fractions of the left hand side).

All the partial fractions after the one written down contain in the denominator

the & th power of (1 x) or (1 x z) at most. Hence, multiplying by (1 x)
k+l

and letting x -*- I, we at once obtain a r: ^ . Accordingly

where it is sufficient to know that the supplementary terms within the square bracket

involve binomial coefficients of the order nk
~l with respect to n at most. Therefore,

as n -* -f- 00,

*

Since the //-process outwardly seems to bear a certain relationship

to the C-process, it is natural to ask whether their effects are distinguish-

able or not. We shall see that the two ranges of action coincide completely.

Indeed we have the following theorem, due to the author 39 and to W.

Schnee* :

Theorem 2. If a sequence (sn) is, for some particular k, limitable 41 Hk

to the value s, it is also summable Ck to the same value s and conversely. In 269.

symbols :

h^ -> s always involves c^ -> s,

and conversely. (Equivalence theorem for the C- and It-processes.)

Many proofs have been given for this theorem 42
, among which that

of Schur 43
is probably the clearest and best adapted to the nature of the

39 Cf. the paper cited on p. 467, footnote 19.
40

Schnee, W. : Die Identitat des CV^iroschen und Holderschen Grenzwertes.

Math. Ann. Vol. 67, pp. 110125. 1909.
41 Since for k 1 the theorem is trivial, we may assume k ^ 2 in the sequel.
42 A detailed bibliography, for this theorem and its numerous proofs, may

be found in the author's papers: I. Zur Theorie der C- und H-Summierbarkeit.
Math. Zeitschr. Vol. 19, pp. 97113. 1923; II. Uber eine klasse konvergenz-
erhaltender Integraltramformationen und den Aquivalenzsatz der C- und H-Ver-

fahren, ibid. Vol. 47, pp. 229264. 1941; III. Uber eine Erweiterung des Aquiva-
lenzsatzes der C- und H-Verfahren und eine Klasse regular wachsender Funktionen,
ibid. Vol. 49, pp. 219255. 1943.

43
Schur, /.: (Jber die Aquivalenz der Oftiroschen und Hdlderschen Mittel-

werte. Math. Ann. Vol. 74, pp. 447 458. 1913. Also: Einige Bemerkungen zur
Theorie der unendhchen Reihen, Sitzber. d. Berl. Math. Ges., Vol. 29, pp. 3 13.

1929.
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problem. Combined with a skilful artifice of A. F. Andersen 44
,
the proof

becomes particularly simple.

We next show that the equivalence theorem is contained in the fol-

lowing theorem, simpler in appearance:

270. Theorem 2a. If (zn), for k ^ 1, is limitable Ck with the value
,
the

sequence 270 of the arithmetic means zn
' = -O-i 1̂ + _ :JL+_^

able Ck_ l
with the value

,
and conversely.

By this theorem, each of the k relations

is in fact a consequence of any of the others; in particular, the first is a

consequence of the last. But that is what the equivalence theorem states.

It suffices, therefore, to prove Theorem 2 a. But this follows immedi-

ately from the two relations connecting the CK
- and C^^-transformations

of the sequence (zn) with those of the sequence (zn') y
viz.

(I) Ck (zn ) = k C^ (zn ')
- (A-l) Ck (*'),

n
(

j

For if, in the first place, we have Ck_i (zn')
-> ^, then, by

f

rheorem 1, we

have also Ck (zn') -+ t>. Hence by (I),

Cafo.) -**-(*-!)=.
If, in the second place, Ck (zn) -> , then, by 43, 2, so do the arithmetic

means

and, with equal ease, (II) provides that 45

Accordingly all reduces to verifying the two relations (I) and (II),

and this may be done for instance as follows:

44
Andersen, A. F.: Bemerkung zum Beweis des Herrn Knopp fur die Aqui-

valenz der Cesdro- und //o/^r-summabilitat. Math. Zeitschr. Vol. 28, pp. 356 359.

1928.
46 If M denotes the operation of taking the arithmetic mean of a sequence,

the above relations (I) and (II) may be written in the short and comprehensive form

(I) Ck
= k Ck_!M -

(k
-

1) Cfc M,
(II) Ck = k Ck_! M-(k-l)M Ck .

Each of these follows from the other if it is known *hat the C^-transformation and
the process of taking the arithmetic mean are two commutable operations.
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In 265, 3, the iterated sums S^ were formed, to define the C&
-

transformation of a sequence (sn). Let us denote these sums more precisely

by S^ (s), and use the corresponding symbols when starting with other

sequences. The identity

then implies

n + k 2 v

Here write i> + 1 = (n + k) (n + k 1
i/),

and observe that

in + k 2 A
,

. - , /7 T N (n + k 1

It then follows further that

(*) ^ (*)
= (* + *) S^*-

1 '

(-') -(*-

Dividing by f
w

,

J,
we deduce at once the relation (I).

On the other hand, by the definition of the quantities S(

n , we have

.

Substituting in (*), we get

(**) sf? (*)
-

( -J- 1)^ (-')
-

( + *) s^ (*'),

and hence, dividing by (
"

k J,

Ck (arn)
=

( + 1) Ck (.')
- n CA (y_i).

Substituting in turn 0, 1, . . . ,
n for n in this relation, and adding, we

obtain finally

Ck (*) + Ck (*J + . . . + Ck (xrn)

w 4- l
= ^fc().

Put into words, this relation signifies that the arithmetic mean of the C
fc
-

transformations of a sequence is equal to the C
fc
-transformation of its

arithmetic means, or, as we say for short, the C^-transformation and the

process of forming the arithmetic mean are two commutable operations
4d

.

*6 Cf. preceding footnote 45.
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Now if we substitute for Ck (zn
f

)
in (I) tue expression just found, we

obtain (II) at once. This completes the proof of the Equivalence Theorem.

After thus establishing the equivalence of the C-process and the

//-process, we need only consider one of them. As the C-process is easier

to work with analytically, on account of the explicit formulae 265, 3 for

the S^'s, it is usual to give the preference to it.

We next inquire how far its range of action extends, i. e. what are

the necessary conditions to be satisfied by a sequence in order that it may
be limitable Ck . Using the notation, which was introduced by Landau

and has been generally adopted, xn -- O (w
a
),

a real, to indicate that the

sequence ( *JM is bounded, and xn o (w
a
) to indicate that (*%\ is a null

sequence
47

,
we have the following theorem, which may be interpreted by

saying that sequences whose terms increase too rapidly are excluded from

CA-limitation altogether:

271.
j
Theorem 3. If 2 an ,

with partial sums snj is summable Ck ,
then

an = o (n
k
) and sn = o (n

k
).

Proof. For k = 0, the statement is a consequence of Theorem 82,

1, which we are generalizing. For k ^ ], with the notation of 265, 3,

the sequence of numbers

c<*) o^*" 1 )
i i o<4 -*)

(n +
\ k

k\ n + k

k

is convergent. Since (
n + * ~~ l

\ ~ (
n

"t
*),

the sequence

cn
is convergent, with the same limit. The difference of the two quotients,

viz. S*'
1

/^
1

*"*)'
therefore forms a nul1 sequence. As

this implies that S^~
l) = o (n

k
).

It follows that

s (k-2) = S (k-l) __ s (k- = Q^ + Q
(//fc)

= Q (n

and similarly
48

47 The first statement thus implies that the quantities |
xn \

are of at moit

the same order as const. wa
, the second that they are of smaller order than w a

,
in

the way in which they increase to +on.
48 The reader will be able to work out quite easily for himself the very simple

rules for calculations with the order symbols O and o which are used here and in

the sequel.
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The intermediary result 4S^~
1) = o (n

k
) just obtained in the proof may

be interpreted as an even more significant generalization of the theorem

in question. In fact, it means that

rn
We accordingly have the following elegant analogue of 82, 1:

Theorem 4. In a series E a n >
summable CA ,

we necessarily have 272.

C
fc
-Iim nw - 0.

Moreover, even Kronecker's theorem 82, 3 has its exact analogue,

though we shall confine ourselves to the case pn = n:

Theorem 5. In a series an ,
summable CkJ we necessarily have 273.

+ 2 "2 f + " <*n<*n\ __

)
- u.

In fact, it follows from the corollary to 270 that C\ (sn )
-> s involves

CK-I \

Sl

T~{~ J
~^ s

'
anc^ therefore by the permanence theorem

Ck
(-

"*"

^A^p^
1- 71

)
-> * Subtracting this from Ck (sn) ~> s, we at once

obtain the statement

r lim (< *o I- *i + + *n \ r 1- /i + 2 2 I- . . . H- ;/ a n \ _ ftC,-lim ^w
- -

|rrr J
-- C,-hm

(^ ^ {
x J

0.

By means of these simple theorems, the range of action of the C
fc
-

process is staked off on the outside, as we might say, for the theorems inform

us how far at most the range may extend into the domain of divergent

scries. Where this range properly begins is a much more delicate question.

By this we mean the following: Every series convergent in the usual sense

to the value s is also summable CK (for every k > 0) to the same value s.

Where is the boundary line, in the aggregate of all series which are summable

C
fc ,

between convergent and divergent series? On this point we have the

following simple theorem, relating solely to the C^-process:

Theorem 6. If the series 2 an is C^summable to sum s, ami if 274,

8, = ^i^^^~-^
w -> Q, then Zan is in fact convergent with sum

s. For (v. supra)

_ _ _
w

"

w -h i

~~
ii

- 1

whence the proof of the statement is immediate 49
. The last expression

49 With reference to 262, 1 (or 43, Theorem 2), and to 82, Theorem tt, \\e may
express the theorem as follows: A series an converges if, and only if, it is C\-
summable with Sn -> 0,
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tends, in particular, to if an = o
(~j

. A much deeper result is the fact

that an = O (j suffices, i. e.

Theorem 6a. Ifa series E an is summable Ck and if its terms an satisfy

the condition

then Z an is convergent. (O-Ck -> K-theorem)
50

.

A proof of this theorem may be dispensed with here, since it will

follow as a simple corollary of Littlewood's theorem 287. The direct proof

would not be essentially easier than the proof of that theorem.

00 00
I

Application. The series 2 an = 2
1+a< ,

a ^ 0, is not convergent,
w = l n = l

w

as it is easy to verify, by an argument modelled on the proof on p. 442, footnote

54 , that for n = 1, 2, . . . ,

with (^w) bounded. Further, for this series (n an) is bounded, hence the series cannot

be summable Ck to any order.

Closely connected with the preceding, we have the following theorem,

where for simplicity we shall confine ourselves to summation of the first

order.

275* Theorem 7. A necessary and sufficient condition for a series Zan , with

partial sums sn9 to be summable Cl to the sum s, is that the series

60
Hardy, G. II. : Theorems relating to the convergence and summability

of slowly oscillating series. Proc. Lond. Math. Soc. (2) Vol. 8, pp. 30J 320. 1909.

Cf. also the author's work I. quoted on p. 481, tootnote 42. The theorem deduces

convergence (K) from C-summabihty. We accordingly call it a C ->K theorem for

short, and more precisely an O-C -> K theorem, since an O (that is, the bounded-

ness of a certain sequence) is employed in the determining hypothesis. A theorem

of this kind was first proved by A. Tauber, in his case, for the .^-process (v.

286) ; for this reason, Hardy gives the name of "Tauberian theorems" to all theorems

in which ordinary convergence is deduced from some type of summability. We
shall call them converse theorems or, more precisely, hmitizing converse or averaging
converse theorems,.
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should be convergent and that for its remainder

the relation

(B) ** + (

holds 5l
.

If crn denotes the partial sums of the series (A), and a its sum, then

(B) asserts that

(B') *-*w -(w+l)(or-an)^0,
i. e. that the error (s sn) is n times as large as the error (or an), except
for a difference that decreases to with n.

Proof. I. IfE an is mmmable Clt we have by 183, since av
~

sv *-!,

V _ __ *__ ,- -r
*

,
*

and, since $ 6V *^v-i> on again applying Abel's partial summation

this becomes
*n Sn'_

n + 2 (n + 2) (n + 3)

i o >" ^1' _ i _J*J> I &n+v
*' n \ I (" + !) ( p "+ 2> (^ + '*) w + /> + 2 ( + /> + 2) (~+ /> + 3)*

As w -> + GO, all five terms of the right hand side tend to 0, whatever

the value of />, for by the assumed CVsummability and theorem 3, sn = o (n)

and Sn
' O (w). Hence (A) holds. At the same time, keeping n fixed

and letting p > + GO, we obtain

. + (n + 2) e. = - , + 2 ( +
2)| f i (TTT)(.)

S '

This tends to s, by 221, because
" ->s. Hence (B) also holds,

since n -> 0. Thus (A) and (B) are necessary.

II. Suppose conversely the conditions (A) 0wrf (B) hold good. Then,
if we write Tn for the expressions on the left in (B), we have

Tn+i Tn = an+l + (n + 2) gn+1 (/i + 1) en
= 6n + *+i + (w + 2) (en+1 en)
=

6n,
and hence

^n = *n + (n + 1) (Tn+1 Tn).

61
Knopp, K.: Uber die Oszillationen einfach unbestimmter Reihen, Sit-

zungsber. Bcrl. Math. Ges., Vol. XVI, pp. 4550. 1917.

Hardy, G. H.: A theorem concerning summable series. Proc. Cambridge
Phil. Soc. Vol. 20, pp.

304307. 1921.

Another proof is given in the author's work I. quoted in footnote 42, and
another again in G. Lyra. Uber einen Satz zur Theorie der C-summierbaren Reihen.

Math. Zeitschr. Vol. 45, pp. 559 572. 1939. This latter work has furnished the

above proof of the sufficiency of (A) and (B) for the C l-sumrnabihty of 2 an *
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Consequently

* = 2TB -[(/H-l)Tn+1-Tn]

and therefore

__
n + I

But owing to Tn -> $, it follows from this that the sequence (sn) is limitable

C1 to the \ aluc s, as required
52

.

We shall content ourselves with these general theorems on C-sum-

mability
53 and we shall now proceed to a few applications.

Among the introductory remarks (pp. 461 102), it was pointed out

that the problem of multiplication of infinite series, which remained very

difficult and obscure as long as the old concept of convergence was scrupu-

lously adhered to, may be completely solved in an extremely simple manner

when the concept of summability is admitted. For the second proof of

Abel's theorem (p. 322) provides the

276. Theorem 8. Cauchy'sproductScn = Z(aQ bn + a
l
bn_ 1 + . . . + an bQ)

of two convergent series 2an A and Sbn B is always summable C
1

to the value C = A B.

Over and above this, we now have the following more general

277. Theorem 9. // 2an is summable Ca to the value A and 2 bn is sum-

mable Cp to the value B, then their Cauchy product

2cn
= ZK bn + ai *_! + . . . + an *

)

is certainly summable C
t
, to the value C A B, where y a + /? + 1.

Proof. Let us denote by A (

*\ B%\ C(^ the quantities which in

the case of our three scries correspond to the S
n

s of the general C-process

as described in 265, 3. For
|

x
\

< 1, since

Zan **-Zbn x = 2:cn & 9

we have 54

Hence, by 265, 3,

62 The theorem may be established similarly for summability C
fc ; cf. the

paper quoted in footnote 42, p. 481.
63 A very complete account of the theory is given by Andersen, A. P.: Studier

over Cesaro's Summabihtetsmetode, Kopenhagen 1921, and E. Kogbetliantz , Som-
mation des series et integrates divergentes par des moyennes arithme'tiques et

typiques, Memorial des Sciences math., Fasc. 51, Paris 1931.
54 Since an = o (

a
), bn

= o (n^), the power series employed are absolutely

convergent for
|
x

\
< 1.
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But from this the statement required follows immediately, by Theorem

43, 6. We need only write

^(oe) B(ft) /i' -f a\ /n v -f-

*"(":? """c:"')'
'~~~!

~r.T
in that theorem, so that

c(r)
^-

By the h)
r

potheses made, we have xn > A, yn -> /?, and the arn . clearly

satisfy the four requirements of the theorem. Hence the last expression

tends to A B as n -> -I- GO.

Examples and Remarks.

1. If the series S ( l)
n

is multiplied by itself (k 1) times in succession,

we obtain the series

The original scries (k -- 1) being summable Cj by 262, its square is (certainly)

summable C3 ,
its cube summable C5 ,

etc. However, by 268, 2, we know that the

kth of these series is (exactly) summable Ck .

2. These examples show that the order of summability of the product-series

given by theorem is not necessarily the exact order, and that in special cases it

may actually be too high. This is not surprising, inasmuch as we already know
that the product of two convergent series (k 0) may still be convergent. The
determination of the exact order of summability of the product series requires a

special investigation in each case.

In conclusion, we will investigate one more theorem which may be

materially extended by introducing summability in place of convergence,

namely Abel's limit theorem 100 and its generalization 233:

Theorem 10. If the power series f(x) = Za n z
tl

is of radius 1 and is 278.
summable Ck to the value s at the point + 1 of the circumference of the unit

circle^ then

for every mode of approach of z to + 1 in which z remains within an angle

of vertex + 1, bounded by two fixed chords of the unit circle (v. Fig. 10,

p. 406).

Proof. As in the proof of 233, we choose any particular sequence
of points (s ,

z
l9

. . . , A > . . .)
within the unit circle and the angle, and

tending to + 1 as limit. We have to show that/(#A) -> $, Apply Toepfitz
9
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theorem 221 to the sequence
55 an = S(

/ ("
+ k\ which by hypothesis

converges to s, using for the matrix (0An)

We deduce at once that the transformed sequence also tends to s:

w-O w-0

Since Z* St zn = __.^ /(~)> this is exactly what our statement im-

plied. For this proof to be correct, we have, however, still to verify that

the chosen matrix (a\n) satisfies the conditions (a), (b) and (c) of the

theorems 221. Since #A -> 1, this is obvious for (a); and, since

(c) is also fulfilled. The condition (b) requires the existence of a constant

K! such that

1 __ y I \*+l* ^X I

(I

1 _
I

*

T

for every A. By the considerations on p. 406, this is obviously the case

with K' = Kk+1
,

if K has the meaning there laid down.

For k = 0, this is exactly the proof of Abel's theorem as carried out

on pp. 406 407, in the generalized form of Stolz. For k = 1, we obtain

an extension of this theorem, first indicated by G. Frobenius 56
,
and for

k 2, 3, . . . we obtain further degrees of generalization, due in sub-

stance to O. Holder 57
taking Hk

- instead of C
/c-summability and

approaching along the radius instead of within the angle only and first

expressed in the form proved above (though with entirely different proofs)

by E. Lasher 58 and A. Pringsheim
59

.

By this theorem 10, we have, in particular, lim (2 an x
n
)
=

s, for

real x's increasing to + 1, and accordingly we can express the essential

content of the theorem in the following short form, which is more in

keeping with the context:

Theorem 11. The Ck~summability of a series E an to a value s always

involves its A-summability to the same value.

66 h is now the fixed order of the assumed summability.
56

Journ. f. d. reme u. angew. Math. Vol. 89, p. 262. 1880.
57 Cf. the paper cited on p. 405, footnote 13.
58 Phil. Trans. Roy. Soc., Series (A), Vol. 196, p, 431, London 1901.
69 Acta mathematica Vol, 28, p, 1, 1904,
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With the exception of the C^-summation of Fourier sene^, \\hich

will be considered more fully in the following section, further applications

of the Cfc-process of summation mostly penetrate too deeply into the

theory of functions to permit us to discuss them in any detail. We should,

however, like to give some account, without detailed proofs, of an appli-

cation which has led to specially elegant results. This is the application
of C

7c
-summation to the theory of Dirichlet series.

The Dirichlet series

is
60

convergent for every z for which M (xr) > 0, divergent for every other
r

z. At the point 0, however, where it reduces to the series 21 ( I)""
1
,

n 1

it is summable C
l to the sum at the point 1, where it reduces to

*
I

( l)"^
1
n, it is (cf. p. 465) summable C2 to the sum

; and the in-
n \

4

dications given in 268, 3 show that for z (k 1) the series is sum-

mable Ck to the sum
"

-,
- Bk ,

for every integral value of k '^~ 2.

This property of being summable CA ,
for a suitable /e, outside its

region of convergence 9i (z) > 0, is not restricted to the points mentioned;

it can be shown by relatively simple means that our series is summable
C

fc
for every z with SR (z) > k. Moreover the order of summability

is exactly k throughout the strip

*<8t(*)^-(*- 1).

Thus in addition to the boundary of convergence, we have boundaries

of summabilily of successive orders, the domain in which the series is

certainly summable to order k being, in fact, the half-plane

%(#)>- (*-0, 1, 2, . ..).

Whereas formerly it was only with each point of the right hand half-

plane JR (z) > that we could associate a "sum" of the series Z -

-j- -,

we now associate such a sum with every point of the entire plane, thus

defining a function of z in the whole plane. In a way quite analogous to

that used for points within the domain of convergence of Dirichlet's series,

further investigations now show that these functional values also repre-

flo /() --

(l
-

2*)
*

(;?) ' where <-) ^ J? ^ is Riemann** ^-function. (Cf.

256, 4, 9, 10 and 11.)
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sent an analytic function in the domain of summability i. e. in the

whole plane. Our series therefore defines an integral function
61

.

Quite analogous properties of summability belong in general to

every Dirichlet series fi2

00

z".
W"l n

Besides the boundary of convergence $1 (z)
= A, or AQ, as we shall

now prefer to write, since convergence coincides with C -summability,
we have the boundaries $1 (z) A

fc
for C

fc-summability, k -= 1, 2, . . . .

They are defined by the condition that the series is certainly summable
to the 7*

th order for Sft (z) > Xk ,
but no longer so for 3J (z) < AA . We of

course have A ^ Aj ^ A 2 ^ . . . ,
and the numbers A*, therefore tend

cither to oo or to a definite finite limit. Denoting this in either case

by A y
the given Dirichlet scries is summable Ck for every z with $R (z) > A,

\\here k is suitably chosen, and its sum defines an analytic function which

is regular in this domain. If A is finite, the straight line JR (z) A
is called the boundary of summability of the series.

For the investigation of the more general Dirichlet series, (v. p. 441,

footnote 52)

Zan e-* s
,

it has been found more convenient to use Riesz
9

/^-summation. Cf.

the tract by Hardy and Riesz mentioned in 266, 2.

61. Application of C^-summation to the theory
of Fourier series.

The processes described above possess the obvious advantage of

all summation processes, namely, that many infinite series which pre-

viously had to be rejected as meaningless are henceforth given a useful

meaning, with the result that the field of application of the theory of

infinite series is considerably enlarged. Apart from this, the extremely

satisfactory nature of these processes from a theoretical point of view

lies in the fact that many obscure and confusing situations suddenly be-

come very simple when these processes are introduced. The first example
of this was afforded by the problem of the multiplication of infinite series

(see p. 461-2, also p. 488). But the application of C^-summation which

61 From this it follows fairly simply that for Riemann's f-function the differ-

ence (z) -^_- , is an integral function, an important result.

62
Bohr, H. : Ober die Summabilitat Dirichletscher Reihen, Gott. Nachr.

1909, p. 247, and: Bidrag til de Dinchletske Rakkers Theon, Dissert., Kopenhagen
1910.
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is, perhaps, the most elegant in this respect, as well as the most important

in practice, is the application to the theory of Fourier series, due to L.

Fejtr
63

. As we have seen (pp. 369370), the question of the necessary

and sufficient conditions under which the Fourier series of an integrable

function converges and represents the given function is one which pre-

sents very great difficulties. In particular, it is not known e. g. what type

of necessary and sufficient conditions a function continuous at a point

x must satisfy at that point in order that its Fourier series may converge

there and represent the functional value in question. In 49, C, we became

acquainted with various criteria for this; but all of these were sufficient

conditions only. It was for a long time supposed that every function /(#)
which is continuous at x possesses a Fourier series which converges at

that point and has the sum/(# ) there. An example given by du Bois-

Reymond (see 216, 1) was the first to discredit this supposition. The

Fourier series of a function which is continuous at XQ may actually diverge

at that point.

The question becomes still more difficult, if we require only as

the minimum of hypotheses regarding f(x) that the (integrable) func-

tion f(x) should be such that the limit

Km | [/(* + 2 t) + f(x
- 2 0] - * (* )

*->* o

exists. What are the necessary and sufficient conditions which must be ful-

filled by f(x) in order that its Fourier series may converge at x and have

the sum s (x )
?

As was pointed out, this question is not yet solved by any means.

Nevertheless, this obscure and confusing situation is cleared up very

satisfactorily when the consideration of the summability of Fourier series

Q-summability is quite sufficient is substituted for that of their

convergence. In fact we have the following elegant

Theorem of Fejer. If a function /(#), which is integrable in 280.
fg x ^ 2 77 and periodic with period 2 TT, is such that the limit

Um } [/(* + 2 /) + /(*
- 2 /)]

= i (* )

->o

exists
t

then its Fourier series is always summable Cl at this point, to the

value s (XQ).

Proof. Let

1
a + Z(an cos n XQ + bn sin n XQ)* M-l

63
Fejir, L.: Untersuchungen uber die /'Ywricrschen Reihen. Math. Ann.

Vol. 58, p. 51. 1904,
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be the Fourier series of f(x) at the point # ; we know, from pp. 356

359, that the nih
partial sum may be expressed by

(n = 0, 1, . . .)

Consequently, for n = 1, 2, . . . ,

Now by 201, 5, we have, for t =4= &TT,

sin t + sin 3 *+...+ sin (2n l)t = n--
-,

sin t

and this continues to hold for t = k TT, if we take the right hand side to be

in this case the limit of the ratio for t -> k IT, which is evidently 0. Hence **

_ _
"- 1
~

n

As contrasted with Dirichlet's integral, the critical factor ~L? occurs

to the second power in the above integral which is called Fejfr's

integral for short and therefore the latter can never change sign ; to

this and to the fact that the whole is multiplied by - the success of the

subsequent part of the proof is due. If then the limit

-2 0] = * (*o)
= *

exists, Fejfr's theorem simply states that o-w -> s.

We observe that

C /sin n

J (~sin-

since ^ the integrand is

f, sin (2 v 1) t

,,-i sin t

64 Here the arithmetic mean of the numbers sn is denoted by an = an (x)

instead of by sn
' == sn

'

(x), to avoid confusion with the notation for differentiation.
65 The value of the integral may also be inferred directly from Fefer's integral

itself, for/(ar) = 1, for which a = 2 and the remaining Fourier constants = Of
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and each term of this, when integrated from to ^, contributes the value

2
,

since

sin^.v-vj = 1 + 2 cos 2 * + 2 cos 4H + 2 cos 2 (v
-

1) *.
sin *

Hence we may write

5
nit

and therefore

n

2 C f~ f (x 4-2

V-i
~ S "

n*j L~"

'

2
4
J

"

Vl,in* ./

o

By hypothesis, the expression in square brackets tends to when t -> + 0.

In order to prove that an-1 or <rn -+ s, it is therefore sufficient to show that

If 9 (t) is integrable i/i . . . f and 281.

lim 9 (t)
= 0,

as n increases.

Now this follows from a very simple train of inequalities. As 9 (t)
-> 0,

we can determine 8 < ^ ,
for a given e > 0, so that

| 9 (t) |
< |

for every

/ such that < t^ 8. Then

* a

e 2 r/sinA , *

2'nJ (linTy
J/<

2
o o

since the last integral has a positive integrand, and therefore remains

less than the integral of the same function over the whole range to -.

On the other hand, a constant M exists such that
| 9 (t) \

remains <M
throughout < t < JTT. Consequently

ff J_ %

w 2 "sin1 8*
(5

On the right hand side, everything but n is fixed, and we can therefore
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choose w so large that this expression becomes < ^e for every n > .

We then have

|

o-w_!
- s

|
< e

for these w's; hence an ->s. Thus Fejfr's theorem is completely estab-

lished 66
.

282. Corollary 1. If f(x) is continuous in the interval ^ x ^ 2 IT,

and if further /(O) =/(27r), /fow /fo Fourier series off(x) is summable C
l to

the sumf(x),for every x. For the hypotheses of Fcjer's theorem are now cer-

tainly fulfilled for every x, and s (x)
= f(x) everywhere. We assume, as usual,

that the function f(x) is defined in the intervals Zkir <^ x < 2(k+ I)TT, for

*= i 1 i 2, . . .
, by means of the periodicity condition, f(x) =f(x 2kfr).

We now further state:

Corollary 2. With the conditions of the preceding corollary, the Ct
-

summability, which has been established for all x's, is, moreover, uniform

for all x's, i. e. the sequence of functions an (x) tends uniformly to f (x) for

all x's. In other words : Given e > 0, we can determine one number N
such that for every n > N, irrespective of the position of x, we have 87

K (*)-/(*) I
<*

Proof. We have only to show that the inequalities in the proof

of the theorem can be arranged so as to hold for every x. Now

9 (0 = 9 ft *)
=

| [/(* + 2 -/<*)] + \ [/(* - 2 -/(*)];

since f(x) is periodic and is continuous everywhere, it is uniformly con-

tinuous for all #'s (cf. 19, theorem 5), and, given e, we can choose one

8 > such that

|/(* 20 -/(*)!<!
for every |

t
\
< 8, and every x. This implies that for all these t's

irrespective of x\ hence, as before,

5

I
2 r /.\ /sinw A 2 .

-
/ <pu) ( . ) dt

\nir J Yvy \sm*/

Further, since /(#) is periodic and is continuous everywhere, it is bounded,

say \f(x) |
< K for every x. It follows at once that for all t's and all #'s,

66 Note in passing that the curves of approximation y <rn (a:) do wo* exhibit

phenomenon (v. 216, 4). (Fejtir, L.: Math. Annalen, Vol. 64, p. 273. 1907.)
87 The corresponding statement holds, moreover, in the case of the general

theorem of Fejer for every closed interval entirely contained, together with its end-
rwiint in an rtnn interval in whirh /Vv^ ic r-nntinnrniQ
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and hence, as before,

f \ sin

,

a t <z
l 2 K-~
n sm2 8"

o

Now we can actually determine one number N such that the last ex-

pression remains < e for every n ^ N. For these w's we therefore have

|

crn_1 s\ < e, so that, as asserted, we can associate with every given e

orte number N such that

KM -/(*)! <e
for every n > N, irrespective of the position of x.

As an easy application, the following important theorem results from

the above theorems:

Weierstrass's Approximation. If F (x) is a function continuous282a.
in the closed interval a ^ x 5^ b, and if e > is arbitrarily assigned, then

there is always a polynomial P (x) with the property that, in a ^ x ^ 6,

|F(*)-P(*)|<.

Proof. Put F (a +
b

-^ *)
- /(*). Then / (x) is defined and

continuous in <^ x <^ TT. In TT <^ x ^ 2 ?r, write as in 50, 2nd method.

/(*) =/(%'* *) Define /(^) for all other * by the periodicity con-

dition f(x \-27r)=f(x). Then f(x) is everywhere continuous. Now,
for this /(#), let <rn (^) have the meaning laid down in the statement of

the preceding theorem. An index m may then be found such that

\f(x)-*m (x)\<\

for all x. This am (x) is the sum of a finite number of expressions of the

form a cos/) x + b sin <?#; hence it can be expanded in a power series

convergent everywhere, by means of the power series of 24. Let

CQ + ^X+ ... + Cn X
n + ...

denote this expansion. Since it converges uniformly in ^ x 5^ 77, we

can determine a finite k so that the polynomial
k

satisfies the inequality |

am (x) p (x) \
<

|

throughout 5^ x ^ TT. Hence it satisfies

!/(*)- H*)l<*

Putting finally /> (J^J n)
- P (*),

we see that P(x) is a polynomial of the required kind, since, throughout

a ^ * ^ b,

\FM-PM\ <e.
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62. The -^-process.

The last theorem of 60 has already shown that the range of action

of the ^-process embraces that of all the C
fc-processes. In this respect

it is superior to the C- and //-processes. Also, it is not difficult to give

examples of series which are summable A but not summable Ck to any
order &, however large. We need only consider Zan x

n
, the expansion

in power series of

at the point x = 1. Since obviously limf(x) exists for x -> 1 +
and = Ve, the series S ( l)

n an is summable A to the value Ve. If,

however, it were summable Ckt for some specific k, by 271 we should

require to have an = o (n
k
).

Now a particular coefficient an is obtained

by adding together the coefficients of xn in the expansions of the indi-

vidual terms of the series, which is uniformly convergent for
|

x
\
^ g < 1 :

1

21

(v. 249). As all the coefficients in these expansions are positive, an is

certainly greater than the coefficient of xn in the expansion of a single

term. Picking out the (k + 2)
th

term, we see that

n*(* + 2)! V *+l (k + 2)! (* + !)!

For a fixed k, an/n
k therefore cannot tend to 0; on the contrary, it tends

to +00.

Although the ^4-process is thus more powerful than all the (^-processes

taken together, it is, nevertheless, restricted by the very simple stipulation

that in order that it may be applicable to a series S ant the series S an x
n

and 2 sn x
n must converge for

|

x
\
<l:

283. Theorem 1. If the series S aw with partial sums sny is summable A,

ecessarily have

fim~v']~07[ g 1 and Ifin v'j"^"] ^ 1

or, what comes to exactly the same thing,

fln = 0((l + e)) and sn = O ((1 + e)) ,

for every s > 0, however small.

In this we have a companion to theorem 3 of 60; but theorems

4 and 5 of that section also have literal analogues in this connection:

284. Theorem 2. In a series E an ,
which is summable A, we necessarily have

A i- rv j j j AT fa i + 2 fl g -i
----

-f nan\ n
-4-hm an = and indeed A-\im -~- -- = 0.
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Proof. The first of these two relations indicates that (1 x) S an x
n

must tend to as x -> 1 0. This is almost obvious, since by hypothesis

E an x
n -> s. The truth of the second statement follows, on the same

lines as the proof of 273, from the two relations

(*) (!-*)*,,*-.* and (l-^-^ +
VVi '"*"-**

by subtraction; the first of these is nothing more than an explicit form

of the hypothesis that 2 an is summable A, while the second is quite

easily deduced from it. In fact, from (1 x) 2sn x
n -> s, we first infer

that

by 102. That the second of the relations (*) follows from this, is a special

case of the following simple theorem:

Auxiliary theorem. //, for x - 1 0, a function f(x), which is 285.

integrable in 0^ x^l, satisfies the limiting relation

a -*)*/(

then, for x -> 1 0, we also have

The proof follows immediately from the rule known as PHospitaPs,

by which

r FM ,- F'(v)nm = lim '

provided the right hand side exists and G (x) is positive and tends to

+ 00 as #-> 1 0. The direct proof is as follows 68
:

Put (1 x)
2
f(x) = s + g (x). The function g (x) tends to as

x -> + 1 0, and so for any given e > 0, we can assign an xl in < x1 < 1,

such that
| g (x) \

remains < 2 for x < x < 1. We then have, for these

values of x,

From this the statement follows in the usual way.

By these theorems 1 and 2 we have to some extent fixed outer limits

to the range of action of the -4-process. As before (cf. the developments

68 The proof is on quite similar lines to that in 43, 1 and 2. The meaning
of the assertion under consideration, that the first of the relations (*) implies the

second, may also be stated thus:

^4-lim sn
= s implies A C^lim sn = s.

For in the case of the second relation we are concerned with the successive appli-

cation first of the Ci-orocess. and then of the ^4-orocess. for the limitation of (s-\
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on p. 485
-()), th'j question as to the point, beyond the region of series which

actually converge, at which its action begins is a much more delicate one.

In this connection we have the following theorem due to A. Tauber*9
:

286. Theorem 3. A seriesZ an> which is summable A, andfor which nan ^>0,

i. e. for which

--Q-
is convergent in the usual sense. (o-A

- > K-theorem.)

Proof. If we are given e > 0, we can choose nQ > so that for

every n > ;/

\ \ a l^ e
, M l*il + 2 l*l + -" + "l*l

a) I

n an
\
< $ b)

------- < ?

c) <5

(Here a) and c) can be satisfied by hypothesis, and b) by referring to

43, 2.) For these 's and for every positive x < 1, we then have

n r>

sn s=f(x) s + Sav (1 xv
) E av xv.

v-l v n \ 1

If we now observe that in the first of the sums

(1
-

*")
= (1

-
*) (1 + * + . . . + ff-1

) < v (1
-

x),

and in the second
|

av
\

= "* < ^ ,
it follows that

I
*. -*

I
^ !/(*)

-
I
+ a-

*)^l
** I + -r,r(r- 3'

for every positive x < 1. Choosing, in particular, x = 1
,
we obtain,

by a), b) and c),

for every n > nQ . Hence sn -> 5, q. e. d.

In this proof, if we interpret e as being, not an arbitrary prescribed

positive number, but a suitably chosen (sufficiently large) one, then we

may infer the following corollary:

Corollary. A series 2 an ,
summable A, with (nan) bounded, i. e. one

for which

-
has bounded partial sums.

On account of the great similarity between this theorem and theorem

6 of 60, it appears likely that an O-A -> J^-theorem also holds, i. e. one

69
Tauber, A.: Ein Satz aus der Theorie der unendlichen Reihen, Monats-

hefte f. Math. u. Phys., Vol. 8, pp. 273277. 1897. Cf. p. 486, footnote 50.
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which deduces the convergence of S an from its ^-summability, by as-

suming, as regards the n's, merely the fact that they arc O
(-J.

This

theorem is actually true. It goes very much deeper, however, and was

proved for the first time in 1910, by J. E. Littlewood:

1 Theorem 4. A series 2 ant which is summable A, and whose terms 3^7 .

satisfy the relation

.=<),
i. e. for which (n an)

is bounded, is convergent in the ordinary sense.

(O-A -> K-theorem.)

Before going on to the proof, we may mention that this theorem

contains, as a corollary, Theorem 6 of 60, as already stated there. For

if a series is summable Cky then by Theorem 11, 60, it is also summable

A. Every series, therefore, that satisfies the assumptions of Theorem 6,

60, also satisfies those of Littlewood's theorem just stated, and is therefore

convergent.

Previously known proofs of Littlewood's theorem were very com-

plicated, in spite of the number of researches devoted to it
71

,
till in 1930

J. Karamata 72 found a surprisingly simple proof. We shall preface his

argument with the following obvious lemma:

Lemma. Let g and e be arbitrary real numbers, and let f(t) denote the

following function
73

, defined and integrable (in the Riemann sense) over the

interval ^ * <^ 1 (v. Fig. 13):

Then there exist two polynomials p (t) and P (t) for which

(a) p(t)f(t)P(t) in O^/^l,

(b)

70 The converse of Abel's theorem on power series: Proc. Lond. Math.
Soc. (2) Vol. 9, pp. 434448. 1911.

71 Besides the paper just mentioned, cf. E. Landau, Darstellung u. Begrun-
dung einiger neuerer Ergebnisse d. Funktionentheorie. lrt ed. pp. 45 46. 1916;
2** ed. pp. 5762. 1929.

72
Karamata, /., l)ber die Hardy-Littlewoodsche Umkehrung des -4fo/schen

Stetigkeitssatzes. Math. Zeitschr. Vol. 32, pp. 319 320. 1930.
73 The theorem holds unaltered for every function integrable in the sense of

Riemann.
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Proof. Let OAA'E'BE (cf. the rough diagram, Fig. 13) be the graph
of the function /(*), so that A and A' have the abscissa e~(ll e\ while that

of B and B' is e~l . Now choose a positive 8 less than the abscissa of A
y

less than half the difference between the abscissae of A and B, and further-

more

On the graph, mark the points A lt A 2 with the abscissae e-O+e) ^ 8, and

the points B 9
B2 with the abscissae e l 8. Then the lines OAA 2B^BE

i^B

A, A B E
. 13.

and OA^A'B'BJE (with ^4 2#i and .4'JS' taken along the curve -
9 the other

portions being straight) are the graphs of two continuous functions g (i)

and G(t) respectively, for which, obviously,

(*')

(b')

g(t)<f(f)^G(t) in

1

f(G(*)-g(t))dt

By Weterstrass's approximation (282 a), there exists a polynomial p (/)

that differs by less than - from the continuous function g (i)
- in the

interval < t < 1 :

e

4
n

Similarly there exists a polynomial P (t) that differs by less than
e
from

there:

:|
m o^t^i.

These polynomials clearly satisfy the conditions (a) and (b) of the lemma.
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Proof of Littlewood's theorem.

I. By the corollary to theorem 3, the sequence ($n), under present

hypotheses, is certainly bounded.

In proceeding with the proof, it will be no restriction to assume the

terms of the series Z an to be real. For, once the theorem is proved for real

series, it can be inferred immediately for series of complex terms by split-

ting these up into their real and imaginary parts.

II. Let g be given > 0, and put [(1 + g) n]
== k (n)

= k. Let sn denote

as usual the partial sums of anj and
y for n > -, write 74

u

Max
|
sv sn |

= pn (e),
n<v^_k

and

lim p.n (Q)
=

//. (g).
n-> I

Then
JJL (g) -> as g -> 0.

Indeed, for n < v ^ k, we have

| Sv Sn |

=
I nn + n+2 + + <*v I

^ (k n) Max ( |
an+1 \ , |

an+2 1 ,
. . , |

ak \ ).

If
|
ar \

be this maximum, it follows further that

\*v -tn\< -^ ' r
I

ar |
^ Q r

\

ar \.

Now, (// a n ) being assumed bounded, there exists a constant K such that

n
I
an \

< ^ for all //, and so

Mn (6)
= Max

|
^ *n |

^ 6 ^-
n<-v<k

Thus /* (e) ^ e ^
whence the statement follows.

III. Suppose the sequence (sn) ts

(i) bounded on one side> say sn ^z. A/, (A/sg 0);

00

(ii) limitable A, say (1 x) 2 sv xv -> $, /or A; -> 1 0.
v-o

74 The symbol Max (/ lf t2t . . .
, fp),

or Max tv (1 ^ ^ />), denotes the largest

of the numbers t l9 t 2 > . . . , tv (assumed real).
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Then 75
iff(t) denotes the function defined in the lemma,

(*) (!-*) */(*) >#>^s }/(<) dt, i. e. = g s.

V-0

For, by 2, we have, for every integer k ^ 0,

(1 x*+l
) I! sv (x^y -> s,
v-O

as x -> 1 0, so

Now if (#)
= bQ + 6 X je + . . . + bq x

q is any polynomial, it follows at

once that

v-O -Jo = * . } w */.
9 T- I/ o

Now let denote any positive number. Then a pair of polynomials

p (/), P (i) can be assigned, by the lemma, so that

(a) p(t)^f(t)^P(t) in O^J^l,

(b)
o

irrf assume M = 0, $0 ffeatf sv ^ 0/or a// v; then

(1 x) Ssvp (x
v
) -xv^(l x) Ssvf(x

v
) xv ^ (1

-
x) Ss

v=0 v-0 v=0

For x -> 1 0, it follows by (**), that

i _ i

5 lp (t) d t^ lim (1
-

x) Z svf(xv
) xv ^ 5 J P (i) d t.

" ~
V-O U

By (a) and (b), the integrals on the left and on the right differ from each
i

other and from J/ (t) d t by less than e. Hence
o-00 1

lim(l x) Esvf(x
v
) xv s \f(t}dt <: * e.

v=0

Since e > was arbitrary, it follows that the statement (*) is true for

non-negative sn .

75 This is J. Karamata's Main Theorem. Both theorem and proof apply un-
altered to any function integrable in the Riemann sense over ^ t ^ 1, except

1

for the special value p s of the integral J/ (t) d t in our case.
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If however M > 0, apply the theorem as so far proved to the two

sequences tn = sn + M and un = M instead of to sn . Subtracting the

results, we get (*) in its full generality.

IV. In III (*), put x = e~ n on the left hand side, and refer back to the

definition of f(t) in the lemma; writing as before [(1 + g) n] k (n)
=

k,

we infer that as n -> + GO,

(1 *-s)_27
SV -*QS.

Since n (1 *"") -> 1 and -~ w
->

g,

1
^

we have then , ^ 27 sv -> ^.
^ w y-ni 1

1 A

Writing, therefore, ^_: w 27 fv s = 8n ,

v-ni 1

we have Sn -> 0, and

S - A' = T - Z ^ - S) - 8n k n
v ._. n ^i

v n "

Hence

|
s sn |

^ Max
|

sv ^n |
+

|

8n |

=
fjin (Q) + |

3n \
.

Making w -> + oo
, we deduce

and as this holds for every g > 0, it follows by II that, for g -> -f" 0,

lim
|

^ $n |

= 0,

i. e. s

This completes the proof.
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28S. Examples and Applications.

1. Every series which is summable C is also summable A, to the same value.

This often enables us to determine the values of series which are summable C.

Thus in 268, 3 we saw that the series S ( l)
n
(n -f l)

k are summable C
fc+1 ; by

means of the ^4-summation process we can now obtain the values of these series,

which occur conveniently as the #h derivatives of the geometric series -( l)
n xn

t

when the exponential function is inserted by substituting x e~*. In this way we
obtain the series

e-t _ e-*t + tr* -+...,

convergent for t > 0. The sum of this series is

__ e-* _ __1 e t - 1 _ ^j-J_-_2 1__ 2 __-
l~+~j=i

~
et + i

"

e*t _ i
-

e*t _ i
-=

er_ i 62i _ i

It__ 1 2t
**

t' el - 1 / e** -I*

For a sufficiently small t > 0, these last fractions may be expanded in power series

by 105, 5; the first terms of the two expansions cancel each other and we obtain

Differentiating k times in succession with respect to t
t
we further obtain

oo on-f-i _ l

= (~ !)*+' 27
(^ + ,}y

& H (
-

1) . . . (
- A + 1) "-*.

Now, letting i diminish and -> + 0, we at once obtain on the right hand side 76

Putting e~~* = x on the left hand side, we see that we are dealing with a power series

of radius 1; when / decreases to 0, x increases to + 1. The value just obtained is

therefore by definition the ^4-sum of the series

1 _ 2* + 3* - + . . . + (- 1) (n + 1)* + . . .

for integral & p^ 0. And as this series was seen to be summable Ck+i in 268, 3,

we have thus obtained its C^+1-sum also, by 279.

2. If the function represented by a power series 2 cn zn of radius r is regular

at a point z^ of the circumference of the unit circle, lim / (x zj for positive in-

creasing x -> 4- 1 certainly exists and =/(ari). At every such point the series

2 an = S cn z^ is therefore summable A and its ^4-sum is the functional value

78 For h > 0, the sign ( I)**
1 may simply be omitted, by footnote 4, p. 237
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3. Combining the preceding remark with theorem 4, we get the statement:

If f(x) = Scn zn converges for
|
s

\
< 1 and (n cn) is bounded, then the scries

continues to converge (in the ordinary sense) at every point zlt on the circumference

of the unit circle, at which /(#) is regular.
4. Cauchy's product 2 cn 2 (a bH -| |- an bQ) of two series 2 an and

2bn ,
which are summable A to the values A and B, is also summable A,

to the value C = AB, as an immediate consequence of the definition of ^-sum-

mability.
oo I

5. With regard to the series J5J T^Ti*'
a ^0> we have already seen

w 1

in 274 that these do not converge, and that they are not summable C^ to any
order k. By Ltttlewood's theorem 4, we may now add that they cannot be
summable A either.

63. The E- process. 7?

The ^-process was introduced on the strength of Euler's trans-

formation of series (144). Starting from any series 2 an (not having

alternately -|" and
signs), we should have to write

and we should have to consider an
'

as the
Zf,

- transformation of

H an . We had agreed to depart from the usual notation so far as to write 78

SQ
= and s

ti
= aQ + &\ + + -i fc>r > 0, and similarly for

the accented series. Then (v. 265, 5)

is the EI - transfoi mation of the sequence (sw ). Applying this again,

we obtain for the Zfa
-transformation, after an easy calculation,

San', with ^.-
the partial sums of which are now

7 A detailed investigation of this process is to be found in two papers

by the author, Uber das Eulersche Summierungsverfahren (I: Mathemat. Zeitschr.

Vol. 15, pp. 226253. 1922; II: ibid., Vol. 18, pp. 125156. 1923). Complete

proofs of all the theorems mentioned in this section are given there.

78 It may be verified without much difficulty that in the case of the E^-

process "a finite number of alterations" is allowed, as in the case of con-

vergent series. (A proof, into which we shall not enter here, is given in

the first of the two papers mentioned in the preceding footnote.) Conse-

quently the shifting of indices has no effect on the result of the limitation

process.
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For the Ev
-transformation we obtain in the same way the series

**?>
with terms

OyV ' \1/ ^ ' I

and partial sums 79
(n > 0)

(p) i (p^ i i (p) ( p)

The examples given in 265, 5 have already illustrated the action

of the E
l

-

process; the last of them shows that the range of the

ZTj- process is considerably wider than those of the C- and //-processes.

By analogy with that example, we may form the
/^-transformation of

the geometric series 2zn
, and we shall obtain

This series converges
80

, to the sum
5-37-* if, and only if,

1

2 _[_ (2
P

1) |

< 2 P , i. e. if 2 lies within the circle of radius 2 P round

the point (2
P

1). Evidently ^v^yy point in the half-plane 9ft (z) < 1

can be made to lie inside such a circle, by taking the exponent p
sufficiently large. We may accordingly say: The geometric series 2zn

is summable En to a suitable order p for each point z interior to the

1

half -plane 9ft(z)<l. The sum is in every case , i. e. it is the

analytical extension of the function defined by the series in the unit

circle.

The case of any power series is quite similar, but in order to carry out

the proofs we require assistance from the more difficult parts of function theory.
We shall therefore content ourselves with indicating the most tangible results 81

:

The power series 2cn z
n is assumed to have a finite positive radius of

convergence, and the function which it represents in its circle of convergence
is denoted by f(z). This function we suppose analytically extended along every
ray am z <p

= const, until we reach the first singular point of ^(*) on this

ray, which we shall denote by 7?- (If there is no singular point at all on the

ray, it may be left entirely out of account.) For a particular integer p ^>
we now describe the circle

which corresponds to the one occurring in the case of the geometric series,

and which we shall denote by Kv . The points common to all the circles K<p

70 The formula of this transformation suggests that, for the order p, the

restriction to integers I> might be removed. Here, however, we shall not

enter into the question of these non-integral orders. Cf. p. 467, footnote 18.
80 This series is then, moreover, absolutely convergent.
81 As regards the proof, see p. 507, footnote 77.
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will, in the simplest cases
(i.

e. when there are only a small number of singular

points), make up a curvilinear polygon whoso boundary consists of arcs of

the different circles, and tt every case they will foim a definite set of points

which we denote by (V)p . We then have the

Theorem. For each fixed p, 2cn z n is summable Ep at every interior point o/289
<&p and the Ep

- transformation of 2cn z n is indeed absolutely convergent at that

point. The numerical values thus associated with every interior point of &p form

the analytical extension of the element 2cn z n into the interior of p . Outside &p9

the Ep- transformation of Scn z n is divergent.

After noting these examples, we now return to the general question,

within what bounds the range of action of the E- process lies; in this

as in further investigations, we shall restrict ourselves to the first order,

i. e. to the ^-process. The cases of E- summation of higher orders

are, however, quite analogous.

Since Z^-summability of a series 2an means, by definition, the

convergence of its E
}
transformation

the general term of the latter must necessarily tend to 0:

which we may now write, for short,

^-lim an = 0.

In this form, we again have an exact analogue to 82, 1 and 272
or 284. Kronecker's theorem 82, 3 also has its analogue here. For

if
(sn)

is a sequence which is limitable E
l

with the value s, its E^
transformations E

1 (sn)
= sn

' > s . The arithmetic means

of the latter therefore also tend to s; we may denote them for short by
C

1 1 (sn ), since they are obtained by applying in succession first the

Ej- transformation and then the C
x
-transformation. Now it is easy to

show by direct calculation we prefer to leave this to the reader
,

that we obtain exactly the same result if we apply the C - transfor-

mation first, and then the /^-transformation, i. e. if we form the

sequence E, C, (sj= E,
(*o

+ *. + --- +^ . m hmg^ ^ (sj ^ E^ (^.
the two transformations are completely identical

82
. Thus we also

82
By calculation, the identity to be proved is at once reduced to the

relation

for < n < k, which is easily seen to be true. On account of the property
in question, the Er and C

t
- transformations are said to be commutable. The

corresponding property holds good for Ep
- and C

tf

- transformations of any
order; in every case, Ev CQ (sn)

= CQ Ev (sn). Cf. p. 482, footnote 45, and p. 4S3.

!? (a 51)
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have

E MLAIUM + sM n + l )
**

and subtracting this from

Ei(O-**
we obtain, exactly as on p. 485, the relation stated, namely

as a necessary condition for the Ej-sumrnability of the series 2an .

To determine further what the condition E
l
-Yiman

= implies as

regards the order of magnitude of the terms a
n ,

we deduce from

the expression for the
M
's in terms of the an"s:

whence, as an'+Q, it at once follows, by 4ft, 5, that

J=-0 or
a,,
= o(3").

If we carry out the corresponding calculation lor sn
and sn',

we simi-

larly find that sn
= o(3

n
). Summing up, we therefore have

290. Theorem 1. The four conditions

an
= o(3

n
) and sn =--o(3

n
)

are necessary in order that the series 2an , with partial sums sn ,

may be summable E
{

.

A comparison of this theorem with the theorems 271 and 283
and the examples for 265, 5 shows that the range of the /s'j-process is

considerably more extensive than those of the C- and ^f-processes ; the

/^-process is a good deal more powerful than these. The question, how-

ever, which in the case of the C- and v4-processes led to the theorems

274 and 287, here reveals what may be described as a loss of sensitiveness

in the /^-summation process, as compared with the C- and ^-processes.
We in fact have

5891. Theorem 2. // the series 2an , with partial sums sw , is sum-

mable E
t

to the value s, so that the numbers

and if, besides this, we have

W fl =

then the series 2 a is convergent with the sum s -

(0-Et
* K- theorem}.
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Proof. We form the difference

and we split up the expression on the right hand side into three parts:

7\ + T2 + TV T\ is to denote the part from v = to v w, T3 the

part from i/ 3 ;/ to ^ = 4 w, and T*2 the remaining part in the middle.

In virtue of (13) there certainly exists roughly estimated a constant

K
l
such that

|

sn \

5> ^i ^ n - Hence there also exists a constant K such

that

I

sv s2n |

< A: v^"

for every //, provided ^ v ^ 4: w. Hence
|

T1 \

and
j

7"3 |

are both

Now for every integer k > 1, we have 83

'

*'<*).
and accordingly

84

16\
n

Therefore 7\ and 7'3 both tend to as n increases.

In To, i. e. for n <. v <. 3 w, \ve have, by (B),

if en denotes the largest of the values
| a^+l \ \/n -f- 1, |

an+2 \ \/n + 2, . . . ;

en must tend to as n increases. Therefore

I 2 I
-

\ it tZ^^ ' * \ v / *>4W \f n /-w V v i
*

"
l> ll~\ L

*" '* y \^^

This last sum is however easily seen to have the value n
(<>)\

it suffices

to separate 2 n v into 2 n and v. Thus

88 This somewhat rough estimation for k ]

t which, however, is often useful,

is most simply obtained by multiplying together all the inequalities

(l\v
/ l\vfl1+

i) <.<(1+ _)

(see 46 a) for v 1, 2, ...,* 1.

84 Substitute (
J
~ ~

1(3 )\
ancl use ^n t^ie numerator tne upper estimate

for &', in the denominator the lower estimate.
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Thus, as fin -*0, we have, by 219, 3,

r,-*o.

Summing up, we therefore have

r
t + ra + r

3
= s

4

'

M
-

S3n -*o.

Now by hypothesis s^ >s, hence san *s also; and further, since

a
v Q by (B),

it finally follows that

*n-* s >

q. e. d. 85
.

In conclusion, we shall also consider the question of the E-summa-

bility of the product of two series which are summable E19
as well

as that of the relation of the range of action of the E-process to that

of the C-process.

As regards the multiplication problem, we have two theorems,

which are the exact analogues of Mertens* theorem 188 and Abel's

theorem 189. We confine ourselves to the development of the former

and we therefore proceed to prove

292. Theorem 3. Let the two series 2an and 2bn be assumed to be

summable Elt
i. e. let their E^- transformations, which we shall denote by

2an
'
and 2bn', be convergent. If one at least of the two latter series

converges absolutely, then Cauchy's product

Scn
= 2(aQ

bn + a, bn _ l -\ \- an bQ)

is also summable E^ y and between A, B, and C, the E^-sums of the

three series, we have the relation A B = C.

v
Proof. By 265,5, for & = - - and for all sufficiently small

values of x (v.
theorem 1), we have

f, (x)
= 2X,*"+1 = ^ B'(2y),

/;(*)
= 2" &*+' = 2bn'(2 y),

ft (x)
= 2 cn x* = 2 cn

'

(2y)+.
On the other hand

/;(*)/;(*)
= */;(*).

Thus we have the identity

84 The theorems 274 and 287 suggest that an O-E-+K- theorem may
also hold here, i. e. one which enables us to infer the convergence of 2'an

from its ^-summability, provided that an = O I =
)

. This is actually the

\V*7
case, but the proof is so much more difficult than the above that we must

omit it here. (Cf. the second of the papers referred to on p. 507, footnote 77.)
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whence, besides cj = 2 aQ
f

6 ', we obtain the general formula for n ^> 1:

< = 2 &' + <c, + +' v) -- K' *i-i--+ ;~i v)
Since by hypothesis one at least of the two series 2an

' and 2bn
'

is

absolutely convergent, Cauchy's product, 2(aQ'bn
'

-]
-----h^/V)' *

these two series is convergent and =/!#, by 188 From the last-

obtained expression for cn', the convergence of cn
'
follows at once,

and for its sum C we obtain

- AB = AB,
q. e. d.

86

Finally, we shall examine the question of the relation between

the C- and E -processes. It is very easy to show, in the first in-

stance, that the processes fulfil the compatibility condition 263, III;

i. e. that we have

Theorem 4. If a series is summable C^ and also summable E
lt

'two processes give it the same value.

Proof. If
(cn')

is the C
1
-transformation and

(s n')
the E

'formation of
(sw),

both these sequences are convergent, by hypothesis:

say c^^c't sn
f

*$'. Since both processes satisfy the permanence

condition, the T
1

- transformation of
(sw') also converges to s':

and the E
l
-transformation of (cn

f

) converges to c':

With the abbreviated notation, these two relations are

c*EM-** and ^cM-^tf.
But, as was pointed out on p. 509, these two sequences are identical,

so that s' must be equal to c', q. e. d.

We have already seen
(p. 508), from the example of the geometric

series 2z n
, that the ^-process is considerably more powerful than

the C^- process. In fact, we cannot sum the geometric series by the

latter anywhere outside the unit circle, while the E^- process enables

us to sum it at every point of the circle
|

z + 1
1
< 2 . But this must

not be interpreted to mean that the range of action of the Zij-process

completely includes that of the Cj- process, much less those of all

C
k
-

processes. On the contrary, it is easy to give an instance of a se-

86 The form of this proof suggests that in certain cases it will be con-

venient to introduce the concept of absolute suramability: A series 2 an will be

said to be absolutely summable E
l

if 2*an', its Et
- transformation, converges

absolutely.
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quence (sn) which is limitable C
t , but not limitable Ev The sequence

(sw)
= 0, 1, 0, 0, 2, 0, 0, 0, 0, 3, 0, ...

is of this type, where sv = v and every other sn
=

(i.
e. for every

index n which is not a perfect square).

This sequence is limitable C
1

with the value ^ . For the largest

values of the arithmetic means
S

' MIL-g are obviously attained
n-\- 1

J

for n= v* and the least for n= v9 1. The latter = ^~~j-^, the former

~S7i!rn5'
both of which -^ ' e - ci(O-*^-

If the same sequence were also limitable E
l
we should therefore

require to have ^(SjJ * -: but, for n = y'
2
, the (2 n)

ili term of the

E transformation is

The expression on the right hand side tends to ^_ by 219 3, so
\l jt >

that for all sufficiently large n's the terms remain >
-J- > --, and E

1 (sj

cannot
-^.

The sequence (sj is therefore not limitable E^ We may

accordingly state:

294. Theorem 5. Of the two ranges, that of the C^- process ant that

of the E
1 -process, neither contains the other entirely. There are series

which can be summed by the C^-process, but not by the E^ process,

and conversely
87

.

This circumstance raises the further question: which series, sunun-

able Cj, can be summed by the Zs^ process? Little is as yet known on

this subject, and we shall content ourselves with mentioning the foLow-

ing theorem:

295. Theorem 6. // 2an is summable C
x , with

*0-M|-f--"fr3|i __ c ,

then 2an is also summable E^. (o C
l

E
1

theorem 88
.)

87 The statement remains the same when higher orders of both processes
are considered.

88 The corresponding O-theorem does not hold, as has already been shown

by the example on theorem 5, where the arithmetic mean is actually -f O {
.

)
-s \ \/ 11 /
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Proof. Writing sn s = on , the sequence (an) is limitable C
l
with

the value 0. Put

<*o+ a
i H h <*n ^ /.

^r+i
an >

by the hypotheses, we then have not only crn
'

>0, but also Vnon
' *0.

Now we have the following general inequality, due to Abel: If

<7 , a , . . ., an are any numbers, a/ = ^ gl

y+'i"
~

, (r
= 0, 1, . . . , w),

the corresponding arithmetic means; if, further, r is a number greater

than all the (n + 1) quantities \ov'\ 3 for v = 0, 1, ...,n, and rk a

number greater than all the quantities |av'|, for &<^v<In; then, given

any set of (n -f- l) positive numbers , #t ,
. .., #n ,

which increase

monotonely to the term ccm and decrease monotonely from that term

on, we have the following inequality
89

,
if < p ^ m < n:

0J -f 4- 4- ^i) > " n

h + *

Applying this, for a fixed n > 8, to the numbers <Jv> ov
'

intro-

duced above, and taking a
v
= ( J, v = 0, 1, 2, . . ., , we can choose

for p the greatest integer <^
-

, i. e. p = .- , and we may similarly

take w ~ TT . We then obtain

This inequality will hold a fortiori if we assume i to be greater than

all the quantities | oj \

and r
fe greater than all the quantities

| aj
with v ^> ^ . Now, by 219, 3, the greatest term

( )
of the values

\m/

(")
satisfies the limiting relation ^ fy ->

-7=, so that ^? (^)
is cer-

tainly < 1 from some stage on. Since from some stage on we have also

V?i < 3 Vp 9
it follows that, for all sufficiently large n,

89 In fact, (TV = (v -f- 1) a^ v CTV_I and therefore, taking an+1 0,

n ft I m-l n

Z(v -I" 1) <, (*r
- av+1)

=- 27 + 27 -f 27 -

y.,-0 p-o v0 v=p v-w

Noting that (oc^ ar+ 1) is negative in the first and second sums and positive in

the third, it follows that

;/

I 27 a,, av | ^ T p ap -f- Tjl m am f- rrn (m am -f m + a
rrt-n + . . + >

!

whence the above relation follows directly,
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Since r
p V/>

was to tend to 0, since, further, p and m tend to -{-

as w does, and at the same time -r * 0, it follows that when

n

i. e.

q. e. d.

Exercises on Chapter XIII.

200. With the help of example 119 (p. 270), prove the fact mentioned
on p. 461, namely that

oo A-nn-l i

Hm (- ''-- = *

*->+o w== i n* ^

What summation process related to the /J- process might be deduced from
this? Define it and indicate some of its properties.

201. Is the condition

given in 273, substantially equivalent

a) to Cfc+i-lim (nan )
= 0, b) to

202. With reference to the relations (*) in the proof of 284, show that

in general A lim sn s always involves A C^-lim sn s, i e.

. S<

(1 x) 2sM x* -* s always involves (1 x)
"- o;

n -* s,

=o^
n + *A

V * )

(for *-* 1-0).
2O3* Show similarly that B- lim sn =s always involves B Ck - lim sn = 0, i.e.

5 (fr)
r n-a; vi n

_ __
nti/n + AN n!

I * )
for a:-*4-oo.

204. Are the conclusions mentioned in 2O2 and 2O3 reversible, e. g.

does the relation (1 x)

5 '"*"'""*" n
xn _^ s imply, conversely, that

(l-x)2sn x n -+s1
QO /* I fc _____ "I V

205. The series
(

T" )^
n is summable C

fe
for |*| =1,

n=0 ^ /i ~ 1 /

Put z cos 9? -4-isin<p, separate the real and imaginary parts and write down the

trigonometrical series summed in this way, as well as their respective values.

E. g.,

1 + 2 cos x -f- 3 cos 2 x -f- 4 cos 3 x 4- =
-75"

-cosn;4-2 cos2a:-f 3 cos3a;+- =--
, eta



O6. If (an) is a positive monotone null sequence, and if we put

aO+ a
i + a

2 H-----h *n = *>n >

the series

&0-&1 + &2-&3 + ----

is summable Ct to the sum s = -~-J*( l)
n an .

o

207* If we write 1 + -~- -f- -5- + H-- = ^n it follows from the preceding
6 O W

exercise that the C^-sum

*i-A + *-*4 + ---- =
2
log2 '

and similarly that the Cj-sura

log 2 - log 3 -f log 4 - H---- =
2

log~ .

208. If -!' is convergent or summable C
%

with the sum s, the follow-

ing series is always convergent with the sum s:

209. If -TflM is known to be summable C, and 2"w | n |

a is convergent,
then 2au is itself convergent.

f,

210. Prove the following extensions of Frobenius' theorem (p. 490) : If a n

is summable Cj to the sum s, then for z > H- 1 (within the angle)
n=1

-+$ and *"'-**
n=l n=0

and in general, for every fixed integer p > 1
,

Jan<e
p
->5.

n=0

But San z
nl does not necessarily tend to s, as may be shown by the example

jf (-1)"*"
1

n=0
for real x > 1 0. (Hint: The maximum of t t

n
,
and the value of t for

which it is attained, both ->-f 1 from the left as n increases.)

211* For every real series E an% for which an x
n

converges in ^ x < 1,

we have

Hm

(Cf. Theorem 161.)

212. With reference to Feje"r's theorem, show that the arithmetic means
an (x) considered there do not exhibit Gtbbs' phenomenon. (Cf. p. 496, footnote 66.)

213. The product of two series which are summable E is invariably
summable

, Q
214. If 2an is summable Ei9 then 2 an x

n
is also summable Ev for

< x < 1 and

215. Give a general proof of the commutability of the Ep - and C9- processes.
216. Deduce the o-Ep -+K- theorem (what is its statement?) by induction

from the o-E^-*- /f- theorem.
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Chapter XIV.

Euler's summation formula and asymptotic

expansions.

64. Euler's summation formula.

A. The summation formula.

The range of action of all the summation processes with which we
became acquainted in the last chapter was limited. It is only when the

terms an of 2 aw the divergent series under consideration, do not increase

too rapidly as n increases that we can sum the series. Thus in the case

of the .B-process, it is necessary that 27 -n
f

xn should be convergent every-

where, i. e. that r-^- or -V^l^nj should tend to zero. Hence the
\ n\ n

B-process cannot be used e. g. for the series

27 (- l)
n H!=l- l!+2!-3! + 4l- + ... + (- !)! + ... .

n-O

Series like this one, and even more rapidly divergent series, occurred,

however, in early investigations of the most varied kind. In order to deal

conclusively with them by the methods used hitherto, we should have to

introduce still more powerful processes, such as the l^-process. How-

ever, no essential results have been obtained in this way.
At a fairly early stage in the development of the subject other methods

were indicated, which in certain cases lead more conveniently to results

useful both in theory and in practice. In the case of the numerical evalua-

tion of the sum of an alternating series 27 ( l)
n any in which the an's

constitute a positive monotone null sequence, we observed (see pp. 250

and 251) that the remainder rn always has the same sign as the first term

neglected, and, moreover, that it is less than this term in absolute value.

Thus in the calculation of the partial sums we need only continue until

the terms have decreased down to the required degree of accuracy. A
somewhat similar state of affairs exists in the case of the scries

t- = 1 - x + |
a - + . . . + (- 1)- J + . . . , x > 0,



64. Euler's summation formula. A. The summation formula. 519

xn
since the terms -, likewise decrease monotonely when n > x. We can

therefore write

for every n > #, where & stands for a value between and 1
, depending

on x and n, but is otherwise undetermined. It is impossible in practice,

however, actually to calculate e~x from this formula when x is large, for

e. g. when x 1000, the thousandth term is equal to
"JQQQI.

As 1000 1

is a number with 2568 digits (for the calculation see below, p. 529), the

term under consideration is greater than 10431
,
so that the evaluation of

the sum of the series cannot be carried out in practice. From the theoretical

point of view, on the other hand, the series fulfils all requirements, since

its terms, which (for large values of x) at first increase very rapidly, never-

theless end by decreasing to zero, and that for every value of x. Hence

any degree of accuracy whatever can be obtained in theory.

The circumstances are exactly the reverse, if we know that the value

of a function /(#) is represented by the formula

< # < 1,

for every n. The series E'( l)
n ~, whose partial sums appear in this

formula, diverges for every x: but in contrast to nearly all the divergent

series met with in the last chapter, the terms of the series (for large values

of x) at first decrease very rapidly the series at first behaves like a con-

vergent one and it is only later on that they increase rapidly and without

limit. Hence we can calculate e. g. /(1000) to about ten decimal places

with great case; we have only to find an n for which
JQQQn+f < 2

l^"10.

As this is true even for n = 3, the value sought is given by

1 - 4-
2-- ~1

103 ^ 10 10*

to the desired degree of accuracy. Thus it happens here that an expansion
in powers, which takes the form of an infinite series which is divergent

everywhere and very rapidly so, nevertheless yields useful numerical

results, because it appears along with its remainder. We are not in a position,

however, not even in theory to obtain any degree of accuracy what-
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ever in the evaluation of /(#), since f(x) is given by its expansion only
with an error of the order of one of the terms of the series. The degree
of accuracy therefore cannot be lowered below the value of the least term

of the series. (A least term certainly exists, seeing that the terms finally

increase.) As the example shows, however, in suitable circumstances all

practical requirements may be satisfied.

Series of the type described were produced for the first time by Euler's

summation formula 1
,
which we shall now consider more closely.

If the terms a
,
alt . . . , an , . . . of a series 2 are the values of a func-

tion f(x) for x = 0, 1, . . . , n, . . . , we have already proved by the in-

tegral test (176) that in certain circumstances there is a relation between

the partial sums sn = aQ + #1 + + <*n and tne integrals

Jn =]f(x)dx.

Euler's summation formula throws further light on this relation. If f(x)

possesses a continuous differential coefficient in ^ x ^ n
9 then, for

v = 0, 1, ...,- 1,

v\\
1

J (*
- v - )/' (*) dx = [(*

- v - *)/(*)]
-

J /(*) dx.
V V

Now, for each of the values v, we can put v = [x] in the integrand on the

left, at least for v fg x < v + 1. Since, however, by 19, theorem 17,

the one value x = v + 1 does not matter, we get

v+l v+1

i (fv +/M-I) = J /(*) rf * + J (* M - t)/ (*) ^*.
v v

(To simplify the writing, we denote by / and f^ respectively the values

of f (x) and of its derivative f^(x) for integral values x= v.) Adding
these relations for the relevant values of i>, and adjoining the term J (/ -f- /n),

we finally obtain the formula

1 With regard to the summation formula cf. footnote 3, p. 521. The pheno-
menon described above was first noticed by Euler (Commentarii Acad. sc. Imp.
Petropolitanae, Vol. 11 (year 1739), p. 116, 1750); A. M. Legendre gave the name
of semi-convergent series to series which exhibit this phenomenon. This name has

survived to the present time, especially in astronomical literature, but nowadays
it is being superseded by the term "asymptotic series", which was introduced by
H. Poincare on account of another property of such series.

8 In the subsequent remarks all the quantities are to be real.



64. Euler's summation formula. A. The summation formula. 521

This in fact is Euler's summation formula in its simplest form 3
. It gives

a closed expression for the difference between the sum / + /i + +/
n

and the corresponding integral ff(x)dx.
o

We shall denote the function which appears in the last integrand

byPi():

P (*)
= *-[*]-[

This is essentially the same function as the one which we met with

in one of the first examples of Fourier expansions (see pp. 351, 375).
It is periodic, with period 1, and for every non-integral value of

x we have

A simple example to begin with will illustrate the importance of this

formula.. If f(x) i
-

,
we obtain, by replacing n by n 1,

n

~2"
+

2 J" x

n-1

f P (x)We may substitute the latter integral for
^ r-g dx, since Pt (x-}- 1)

= P
t (a;).

o

As P! (j;)
is bounded in 2; > 1 ,

the integral obviously converges when n *OO f

and we find thai

lira

8 The formula, in its general form 298, originated with Euler, who men-
tioned it jn passing in the Commentarh Acad. Petrop., Vol. 6 (years 17323,
published 1738) and illustrated it by a few examples. In Vol. 8 (year 1736,

published 1741) he gives a proof of the formula. C. Maclaurin uses the formula

in several places in A Treatise of Fluxions (Edinburgh 1742), and seems to

have discovered it independently. The formula became well-known, especially

through Euhr's Institutiones calculi differentials, in the fifth chapter of which
it is proved and illustrated by examples. For long it was known as Maclaunns

formula, or the Euler-Maclaurin formula; it is only recently that Euler's un-

doubted priority has been established.

The remainder which is most essential was first added by 5. D. Poisson

(v. Me"moires Acad. scienc. Inst. France, Vol. 6, year 1823, published 1827). The

particularly simple proof given in the text is due to W. Wirtinger (Acta mathe-

matica, Vol. 26, p. 255, 1902).
An up-to-date, detailed, and expanded treatment is to be found in N.E. Ndr-

lund's Differenzenrechnung, Berlin 1924, especially in chapters II V.
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We already know that this limit exists, from 1S8, 2. Now we have a new
proof of this fact, and In addition we have an expression in the form of an

integral for Ruler's constant C, by means of which we can evaluate the con-

stant numerically.

From the formula 296, i. e.

(*) /o r- /i +-

integration by parts leads to more advantageous representations. In

order to be in a position to carry it out, we must first assume that/(#)
has continuous derivatives of all the orders which occur in what follows;

then we have to select an indefinite integral of P1 (x), and an integral of

the latter, and so on. By suitable choice of the constants of integration

the further calculations are greatly simplified. We shall follow Wirtinger
4

and set

-ii / \ i \ i " {

n~i \.*
nn

)

Then P
3

'

(x) P
l (x),

for every non-integral value of x, and Po(0)

1 oo i
i=

-p 2
- J? a-

=
yo- Moreover, P

9 (#)
is continuous throughout, and

n=l

has the period 1. We now proceed to set

P.f*) = + S~
whence we have P

8'(ic)
= P

2 (a;)
for wgyy value of x, P

3 (0)
=-= 0,

and in general

297. (
a
)

Then, for A = l, 2, ..., all these functions are throughout continuous

and continuously differentiable, and have the period 1; and we have

for ^, A = 1, 2, . . . (cf. 136). As is immediately obvious from the proof,

in the interval 5^ x ^ 1 and for k ^ 2, the functions Pk (x) are rational

integral functions. Besides the fact that Px (x)
= x

2
in < x < 1,

4 Cf. the last footnote.
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we have, in 5^ x ^ 1,

pM-_^__ *
. 1 -2ljL*LJL+**.1

2W 2 2 ' 12
~~

2!
*

1 ! 1 1
^ 21

>

^ '
\ __ J?l!. __ _?ll L_ J?L

a?3 ^1 **
I

B g
*a (

x
) -Q y -r 12

""
"sT ~*" TT 2!

+
2! TF'

~4 ,~3 ~.s 1 -4 w ,>. /? ^.a n
p (y\ === ^___ j_ i 5___L_ _ j?L_i.L:r__u i __I-

4^ V
x

; 24 i 2 r 24 720 4! ^ l! 3'
^ 2l 2!

^ 41
'

Hence in general, as may immediately be established by induction,

P^_^:+ B
.

**-*
. 5t **"9

+...4.5*nW ^) -I- Tf (*^ i)T
^

21 (T^-2)!
^ ^ *i

or

if we employ the symbolic notation already used in 1O5. These are

the so-called Bernoulli's polynomials
5

, which play an important part in

many investigations
6

. We shall meet with some of their important

properties directly.

First of all, however, we shall improve the formula (*) by means
of these polynomials. Integration by parts gives

P f'\
n _. r p ?'

> / JQ / *2 '

6 They first occur in James Bernoulli, Ars conjcctandi, Basle 1713.
There the polynomials appear as the result of the special summation problem
which will be dealt with later in B

y
1.

6 Many writers call the polynomial <p (x)
= (-f B)

k B k the th Bernoulli

polynomial; others, again, give this name to the polynomial

These differences are unimportant.
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and, generally,

n

f PM-I/'**-"
-

(
-,

. -.

for A I> 1. Hence, for every ^ 0, provided only that the derivatives

of f(x) involved exist and are continuous, we can write:

n

\(fn +f )

+ if (/' -/.') + If (/'" -/'") +

+(W W*"" -/o'
2
*^) + ^*-

where we put

) (x) dx

for short. This is Euler's summation formula.

Remarks.

1. Since in the last integration by parts, namely

the integrated part vanishes, on account of the fact that Pa*fi(w)
'-= P2k+i(0) -

0,

we may also write

**-- fa* (*)/<*>(*)**
o

for the remainder term in the summation formula.

2. If we put F (a + x h) = / (#), the formula takes the somewhat more general

form, in which

F(a) + F(a + h) + ... -f F(a + nh)

forms the left hand side. The formula may therefore be used for the summation'

of any equidistant values of a function.

3. With suitable provisos, it is permissible t6 let n -> QO in the summation

formula. According as Zfn converges or diverges, we then obtain an expression

for the sum of the series or for the growth of its partial sums. The statement is.

different (on the right hand side) for every value of k.
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4. If we let k -> oo, Rk may tend to 0. We should then have an infinite series

on the right hand side, into which the sum on the left hand side is transformed.

This case actually occurs very seldom, however, since, as we are aware (v. p. 237,

footnote), Bernoulli's numbers increase very rapidly. The series

k-1

will turn out divergent for almost all the functions / (x) which occur in applications,

no matter what n may be. Thus the formula suggests a summation process Jor a

certain type of divergent series. Cf. however the example B. 3 below.

6. Provided that the differences
(f^ /o /

^ave t^ie same sign m
series just discussed is an alternating series, since the signs of the numbers B 2\

are alternating. We shall see that, in spite of the divergence, the above-mentioned

evaluation of the remainder of the alternating series remains valid. (Cf. the intro-

ductory remarks to this section.)

6. The formula will be useful only in the cases where, for a suitable value of

k
t
R

fc
is small enough to give the desired degree of accuracy. At first sight, we have

only the inequality

at our disposal for the estimation of Rk , for k S 2: but, as we see subsequently,
the inequality also holds for k 1, and by 136 it can be put in the more precise

I Ft I

form
|
Pk (x) | ^ J * J for even values of k.

B. Applications.

1. It is obvious that the most favourable results are obtained when 299.
the higher derivatives of f(x) are very small, and especially when they

vanish. We therefore first choose f(x) == xp
, where p is an integer ^ 1,

and we have

Here the series on the right hand side is to be broken off at the last positive

power of nt for (/^
}

f
(

) vanishes not only when /
(/t)

(x)
= 0, but also

(by 297 b) when f
(K)

(x) is identically equal to a non-vanishing constant.

Thus by transferring np to the right hand side we have

1* + 2 +... + (- 1)"
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or since there is no constant term appearing inside the brackets

on the right hand side

2. The sums dealt with above can be obtained in quite a differ-

ent way. If we imagine that each term of the sum

is expanded in powers of t, the coefficient of r is obviously

On the other hand, if we use symbolic notation (cf. 105,5), the first

sum is equal to

e
nt

1 e
nt

1 e (n+B)t e Bt___ = ___ eSt= _

Hence we immediately obtain the expression

for the coefficient of .

3. If we put f(x)
= e ax , n = l, we obtain

or

Since we can immediately prove, by 208, 6, that the remainder tends

to zero in this case, provided only that ||< 2n, we have, for these

values of cc,

which is the expansion stated in 105.

Similarly, by putting f(x)
= cos ax, n = l, we obtain the expan

sion 115 for -cot.
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4. If we put f(x)
=

y-r
, we have, by replacing n by (n 1),

_i_
B */i M /

^-----r 2M1 5J (

Since here we may let M > oo , just as on p. 521 above, we obtain the

following refined expression for Eulers constant:

In this case the remainder certainly docs not decrease to as A in-

creases ; and the series J -5 diverges rapidly, so rapidly that even

the corresponding power series J^T^M
2 *

diverges everywhere; for,

by 136,

Nevertheless, we can evaluate C very accurately by means of the above

expression (cf.
Rem. 6

).
If we take e. g. k = 3 ,

we have, in the first

instance,

(a) 120

If we take only the part of the integral from x = 1 to x = 4, the

absolute value of the error is

4

Hence
4

71
*

f^ _ _J'li_
'

(2jr)'J a;
8
~

(2 jr)
7 .7-4'

i> where

1

The required evaluation of the integral is also given by the first

formula written down, for n = 4, namely

1459 __1,__1___L_4__J_
2520 2-4 ' 12- 4a 120-4* "*" 252-4

"
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Hence
0-5772146 < C < 0-5772168.

In this way we can easily obtain C with much greater accuracy than

before, and theoretically to any degree of accuracy whatever. The reason

for this favourable state of affairs lies solely in the fact that we may regard
the logarithms as known.

5. We now put f(x) = log (I + x) and proceed just as we did in

the previous examples on pp. 525 7. If we again substitute (n 1) for

n
%
we first of all obtain, from 298 with k = 0,

or

log 1 + log 2 + + log n =
/log

xdx + l\ogn+f^ dx

log n ! =
(n
+

1) log n -(n-l)+f-^ d x.

i

Integrating by parts, we have

1 1

which shows that the integral converges as n -> oo. Hence we can put

(*) log n \ == (n + 2) log n n + ym

and we know that

lim yn = Y

exists. Its value is obtained as follows: by (*) we have

2 log (2 4 . . . 2 n)
= 2 n log 2 + 2 log n\

= 2 n log 2 + (2 n + 1) log n 2 n + 2 ya

= (2 n + 1) log 2 n 2 n log 2 + 2 yn

and

log (2 n + 1) I =
(2

n +
1) log (2 + 1)

-
(2 + 1) + y2n+1.

By subtraction
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If we now transfer the term -=- log (2 w + 1) to the left hand side and

let n *oo, we know, from Wallis* product (219, 3), that

log J/%
= - 1 + 1 - log 2 + 2 y

-
so that

Y = log v~2i* .

Hence, finally, we have

(**) log! = n + logn - n

n
If we multiply by M, the modulus of the Bnggian logarithms (pp. 256 7),

and denote the latter logarithms by Log, we have

Logn! =
(*+ ^Logn-nM+Logv/ITi-Mj

^^) dx.

n
Tfcis gives, e. g. for n = 1000,

Log 1000! - 3001-5 - 434-29448 . . . + 0-39908 .

1000

Since

... -M I AM d*.

x
1000

iooo
1000

_ ^-__"

(2 w)

'

1000
<

10000
'

it follows that

Log 1000 1 = 2567-6046...

with an error < 10~ 4 in absolute value, so that 1000! is a number with 2568

digits, which begins with the figures 402 ....

Just as in the previous example, we can now improve our result (**)

considerably by means of integration by parts. Since

after 2 k steps we obtain

f
j

As here the remainder (for fixed k) is less than a certain constant

divided by w 2
*, we can also write the result in the form
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in which the An's always (i. e. for every fixed k) form a bounded sequence.
The result in either form is usually known as Stirling's formula 7

.

6. If we take the somewhat more general form f(x) = log (y -\- x\
where y > 0, Euler's formula for k = gives, to begin with,

logy + log (y + 1) + . . . + log (y + n) = (y + n) log (y + n) n

n

-y logy +
*

(ig (y + ) + logy} +

Hence we can obtain a corresponding expression for the gamma-function

(v. p. 385 and pp. 439 40) as follows: subtract this equation from the

equation (**) in the last example, add log n
v to both sides, and we obtain

+ logVTu - f
<*>d*- Pl (x) dx.6 J y + x J x

n

!-> oo , this relation becomes
00

log r (y) = ( y
-
1) log y - y + log V2^ - f-*_

dx.

By integrating this expression by parts 2 k times (or by at once using

Euler's formula for any value of k), we deduce the following generalized

Stirling's formula 8
:

log T (y) = y logy y + log

+ #2 1
I ^*1 1

372 J + 3~5 y3

7. We now put f(x) = (1
, ^5,

where 5C > and 5 is arbitrary.

As we have already dealt with the cases 5=1, 1, 2, ..., and the

case s = is trivial, we shall consider s as being different from any of

these values. If we again replace n by (n 1), Euler's formula now gives

7
y. Stirling, Methodus differentialis, London 1730, p. 135. But the fact

that the constant y is log V~2 it was not discovered till later.

8
Stirling (loc. cit.) gives the formula for the sum

log x + log (x -f a) + log (x + 2 a) -f . . . + log (x + n a).
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/. 1 \ 1 /I
,

-\

(
l ~

n-0 + 2 (n- + V
B-zk (

s + 2 * - 2Ui ___l

2k \ 2k - 1 / \
L

n*+2*-

1 1

* - s -

If s > 1 we can let w -> oo, and we obtain the following remarkable ex-

pression for Riemann's ^-function (cf. pp. 345, 444 6, and 491-2):

+ 2k -
2k- I

Since the right hand side has a meaning for s > 2 &, 5 =f= 1, and since

k can take any positive integral value whatever, we immediately infer

from the above the details of the proof belong to the theory of com-

plex functions that

is an integral transcendental function (cf. p. 492, footnote 61). Further

this expression gives the values

and for s = p (p a positive integer), if we suppose that 2 k >/>:

---ri-i-*+*(-.')+*(~V
Here the series terminates of itself, and we can write

-- ____L_ n 4- B)v+l = __-*W-
/> + 1 ^ ^ ; P + P

where the last step follows from the fact (v. 106) that

= 0.

C. The evaluation of remainders.

The evaluation of the remainder in Euler's formula, which for prac-

tical purposes is particularly important, we have avoideii hitherto. Now,

however, the question becomes imperative whether we cannot formulate

some general statement as to the magnitude of the remainder in Euler's
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summation formula. It may be shown that, very generally, the remainder

is of the same sign as, but smaller in absolute value than, the first term neglected,

i. e. the term which would appear in the summation formula, if we

replaced k by k -f- 1. This will, moreover, always be the case iff(x) has

a constant sign for x > and iff(x) and all its derivatives tend monotonely
to as x tends to + oo.

In order to prove this, we must examine the graph of the function

y = Pk (x), & ^ 2, in the interval ^ x ^ 1, somewhat more closely.

We assert that the graph is of the type represented in Fig. 14; 1, 2, 3, 4,

according as k leaves the remainder 1, 2, 3, or 0, when divided by 4.

Fig. 14.

More precisely, we assert that the functions with odd suffixes have exactly

three zeros of the first order at 0, , 1, but those with even suffixes exactly

two zeros of the first order within the interval, and, moreover, that the

functions have the signs shown in the graphs. More shortly: P^ (x)

is of the type of the curve (
-
I)*"

1 cos 2 TT x and P^+i (x) is of the type
of the curve ( I)*"

1 sin 2 TT x.

These statements are proved directly for the suffixes 2, 3, 4, by using
the methods which follow, or they can be deduced from the explicit for-

mulae on p. 522. We may therefore assume that the assertions arc

proved up to P2A (#)> ^ == 2, inclusive. It is immediately obvious, by

297, that PSA*! (*) vanishes for x = 0, J, 1, and also that

so that P2A+1 (x) is symmetrical with respect to the point x =
g, y

= 0.

Thus if P2A+1 (*) has another zero, it must have two more at least, i. e.

five in all, and P%\(x) must have at least four zeros by Rollers theorem

( 19, theorem 8), which is contrary to hypothesis. The sign of P2A+1 (x)

in < x <
g

is the same as that of PSZA+I (0)
= PZA (0), that is, the same

as that of -82 A > i- e. the sign is given by ( I)*"
1
.
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Since P^A-HI (*) = PZX+I (#), P*\ \ 2 (x) has only one stationary value

in < x <
: 1, namely at x -

fc>
. Its value PgAf i> f

J
must have the opposite

sign to P;sA+2(0), for otherwise PZ\M(X) would have a constant sign in

^ x ^ 1, and consequently we should have

J Pan 2 (*) /* - [P2A.3 (*)] J 4= 0,

which is certainly not the case, because of the periodicity of our functions.

Finally, since PgA+aCO) has the same sign as #2A+2, i. e. the sign (
-

1)\
all our assertions are now established 9

. Since

P2A (x) is symmetrical with respect to the line x = .

Now, if h (x) is a positive and monotone decreasing function for x ^ 0,

*+i

J P2A-n (*) h(x)dx (p an integer ^ 0),
p

obviously has the sign of P2A+1 (x) in < # <
2 , i. e. the sign ( 1)

A~ 1
.

For, on account of the symmetry of the graph of P2 Ahi (x) and the fact

that h (x) decreases, we have

Hence

also has the sign of ( 1)
A" 1

,
so that, in particular, the signs are alter-

nating, if A 0, 1, 2, ... . The exact opposite signs occur, of course,

when h (x) is always less than and increasing.

Now if we assume that f(x) is defined for x ^ 0, and, together with

all its derivatives, tends monotonely to as a: -> oo, each of these deriva-

tives is of constant sign
10

,
and /<2*+D (x) has the same sign as/<

2*+3>
(x).

The remainder in Filler's summation formula is given by

(*)<**

9 The fact that only zeros of the first order come under consideration follows

immediately from the relation

-PlUiM-P*W.
10 The possibility that one of these derivatives is always = from some point

onwards is to be included here.

18 (051)
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Hence Rk and Rh + 1 have opposite signs, and therefore Rk and (Rk Rk+i)

have the same sign, and we have, moreover,

Now, by Euler's summation formula,

** = (/o !.-.- -
. . .
-

whence it follows that

_ /(
'O

, * - _
k k+l

(
2 * + 2) !

But this is the "first term neglected", so that its sign also is the same as

the sign of Rk ,
whereas its absolute value exceeds the absolute value of

Rk> q. e. d.

Thus we have the

300, Theorem : Iff(x) is defined for x ^ 0, and, together with all its deriva-

tives, tends monotonely to as x-> oo, Euler's summation formula may be

stated in the simplified form

o

r(2* 1) A2k IK
,

B
2jc \ 2 , r('2k+l) r(2k \ IK

o<a<i.
Thus in this form the series (divergent in general), of which the

first few terms appear on the right hand side, effectively possesses the

characteristic property of alternating series (mentioned on p. 518) which

is particularly convenient for numerical calculations.

Remarks and Examples.

1. As Cauchy remarks, the characteristic property of alternating series just

mentioned is exhibited by the geometrical series

2 -h ^ h . . . , c > 0, * > 0,
c + t c c9 c3

' ' '

not only when it converges, but for arbitrary (positive) c and t. For, if we write

it with the remainder, i. e. in the form

it is true without exception. For any (positive) c and t, the value of the left hand
side is represented by the nth

partial sum, except for an error which has the sign

of the first term neglected, but is less than this term in absolute value.

If we carry out this process with the fractions_ __ _
4 v* w -f t' \(2 IT)' (2 v w)

"*"

(2 v w)
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and add, we see that the value of

2

for every t > is also equal to the sum

. , _
21 4T '"

(2)! (2* + 2)!

where all that is known about ^ is that it lies in the interval ... 1.

If we now multiply by e~xt and integrate from to + oo, it follows, since

that

oo

/Y -1 '^V
J \e* - 1 ~"t * 2J "t x 3 -

_ .

J

(2 k + 1) (2 k + 2)

<r 1
t < 1.

also can be equated to the expression found in 1, for the remainder term used in

B. ti may be replaced by the one just written down, by 300. But wj may not conclude

from this, without further examination, that

2. By B. the function

- log* - * -f log

- * + log

00

f(gt 1 1
-

I

(cf. 301, 4). We have indeed proved that both sides agree very closely for large

values of #; but we may not conclude from the previous considerations that they
are actually equal for any value of x. (In fact, however, the equation written above
is true.)

3. Just as before, we can also briefly evaluate the remainder in the examples

4, 5, 6, 7 of section B., from the fact that the remainder has the same sign as, but

is smaller in absolute value than, the "first term neglected". For it is immediately
obvious that the functions / (x) used in these examples satisfy the hypotheses of the

theorem 300.

65. Asymptotic series.

We now return to the introductory remarks of 64, A. The series

which we obtain from Euler's summation formula in examples 4 7,

by continuing the expansion to infinity instead of writing down the

remainder, are divergent. In the cases when they are power series in

- or -, we can say, more precisely, that they are power series which

diverge everywhere. In spite of this, they can be employed in

practice, since examination of the remainder shows that the error

corresponding to a particular partial sum is smaller in absolute value
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than, and of the same sign as, the first term neglected. Now at first

these terms decrease, and become even very small for large values of

the variable; it is only later on that they increase to a high value. Hence
the series can be used for numerical calculations in spite of its di-

vergence; with limited accuracy, to be sure, but with an accuracy
which is often close enough to be sufficient for the most refined practical

purposes (in Astronomy in particular)
11

. Moreover, the larger the variable

is, the more readily does the series yield the results just mentioned.
More precisely: if (as in B, 5 and 6) the expansion obtained from
Euler's summation formula is of the form

not only do we have

as x~*oo, for every fixed k, but even

A general investigation of this property of the expansions was
lade almost simultaneously by Th. J. Stieltjes

12 and H. Poincard.

bllowing the older usage, Stieltjes calls our series semi-convergent,
term which emphasizes the fact that so far as numerical purposes

re concerned they behave almost like convergent series. Poincare,
n the other hand, speaks of asymptotic seriesy thus putting the last-

lentioned property, which can be accurately defined, in the foreground.
'he older term has not held its ground, although it is often used,

specially in astronomical literature. The reason is that it clashes with

le terminology which is customary, particularly in France, whereby
ur conditionally convergent series are called semi-convergent. We
hall therefore adopt Poincar&'s term, and we proceed to set up the

blowing exact

11
Euler, who makes no mention of remainders whatever, frankly regards

ic left hand side of 298 as the sum of the divergent series on the right hand
1/97?

side. Thus he writes Css-jr-f-^-f-^-l-... without hesitation, on account of
fi It 4

299, 4. This interpretation is not valid, however, even from the general view-

point of 59, for the investigations of 64 have provided no process by which
the sum in question may be obtained from the partial sums of thq series by a

convergent process, as was always the case in Chap. XIII.
12

Stieltjes, Th. /. Recherches sur quelques series semi-convergentes, An-
nales de I'Ec. Norm. Sup. (3;, Vol. 3, pp. 201258. 1886.

w Poincave, H.: Sur les integrates irregulieres des Equations line'aires,
Acta mathematica, Vol. 8, pp. 295344. 1886.
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Definition. A series of the form ^o +^+^H----
(which need 301.

not converge for any value of x) is called an asymptotic representation

(or expansion) of a function F(x) which is defined for every suffi-

ciently large positive value of x, if, for every (fixed) n = 0, 1, 2,...,

as x *
-f- oo: and we shall write symbolically

Remarks and Examples.

1. Here the coefficients an are not bound to satisfy any conditions, since

the series ^~ need not converge. They may be complex, in fact, if F(x)
x

is a complex function of the real variable #. The variable may also be com-

plex, in which case x must approach infinity along a fixed radius am x --- con-

stant; for the asymptotic expansion may be different for each radius. In what

follows we shall set these generalizations aside and henceforward suppose alJ

the quantities to be real

On the other hand, it frequently happens that the function F(x\ is defined

for integral values of the variable only; e. g.

1 + 2* + . . . + *P, 1 -j- \ + . . . + 1
.

* x

In such cases we shall usually denote the variable by k, v, n, . . . Then F(x) simply

represents a sequence, the terms of which are asymptotically expressed as functions

of the integral variables.

2. If the series JjJ-J does converge for #> R, and represents the func-
x

tion F(x), the series is obviously an asymptotic representation of F(x) in this

case also. Thus .examples of asymptotic representation can be obtained from

any convergent power series.

3. The question whether a function F(x) possesses an asymptotic re-

presentation, and what the values of the coefficients are, is immediately settled

in theory by the fact that the successive limiting values (for a;-*--f-oo)

must exist. In fact, however, the decision can seldom be made in this way,
but these simple considerations show that any function can have only one

asymptotic expansion.

4. On the other hand, for f(x) = e-*
t a?>0, all the an's are zero, since



538 Chapter XIV. Euler's summation formula and asymptotic expansions.

for every integral #5^0, when x >oo. Thus

^ . .

a result which shows that different functions may have the same asymptotic

expansion. Thus, if F(x) has an asymptotic representation, e. g.

have the same asymptotic representation.

It was for this reason that we could not inter that the two functions

mentioned in 3OO, 2 were identical.

5. Geometrically speaking, the curves

y=o + + ...-f- and y = F(x)X X

have contact of at least the n** order at infinity; and the contact becomes
closer as n increases.

6. For applications it is advantageous to use the notation

F <*)~/(*) + g (*) (00+
2* +

a

xl + ...),

where / (x) and g (x) are any two functions which are defined for sufficiently large

values of xt and such that, further, g (x) never vanishes. This notation is intended

essentially to express that

Some of the examples worked out in 64, B may be regarded as giving the asymptotic

expansions, in this sense, of the functions involved, for we may now write

...1. .1
, ,>-,,! Bt I Bt 1

a) l + s + ... +
;j
~log + C + ^--2 ._- T'. --...;

b) logn!~ (n + I)
logn - + log V~2 +

|?| \
+ f^ ^ + . . . ;

c) iog(r(*~
(*
-

1)
log* - * + iog\/^ + ^

* + 3^4-^ *-;

__ _
2 \ln 4 3 n*

In the last formula we must have s 4= 1 ; for i = 1 it becomes the expansion in a).
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Calculations with asymptotic series.

In many respects we can make calculations with asymptotic series

just as we do with convergent series.

It is immediately obvious that from

and

C(*)

there results the expansion

where cc and
/?

are any constants.

It is almost as easy to see that the product of the functions also

possesses an asymptotic expansion, and that

if, as in the case of convergent series,

"(A + "A-iH-----hA
is set equal to cn

. For, by hypothesis, we may write (for fixed
ri),

if by e == e (x)
and

77
=

v\ (x)
we denote functions which tend to as

x+-\-oo. But in this case we have

.G(*)-(i^
a
t (bn , ,. - 1

-
* t , ,

'

a:
"r"""t"

and this obviously tends to as x >-{-c

Repeated application of this simple result gives

Theorem 1. // each of the functions F
l (x) 9 F% (x), ..., F

p (o;)802.

possesses an asymptotic representation, and if g(z.L> z^, -, z
p]

is a poly-

nomial, or if we anticipate what immediately follows any rational

function whatever, of the variables zl9 *
3 , ..., z

pt
then the function
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also possesses an asymptotic representation; and this is calculated exactly

as if all the expansions were convergent series^ provided only that the denom-

inator of the rational function does not vanish when the constant terms of

the asymptotic expansions are substituted for z lt #2, . . , , #.

Further, the following theorem also holds:

Theorem 2. Ifg (z)
= a + 04 z + . . . + an z

n + . . . is a power series

with positive radius r
y if F (x) possesses the asymptotic representation

and if \
a

\ <r, the function of a function

which is obviously defined for every sufficiently large x, since F (x) -> #

as x -> + >
and since

\

aQ \
< r also possesses an asymptotic repre-

sentation, and this is again calculated exactly as if 2 -^ were convergent.x

Proof. In order to calculate the coefficients of the expansion of

<p (x\ when Z^ converges for x > R, say, we have to set F (x) = aQ + /,

and assuming only that
|

aQ \
< r we obtain, in the first instance,

g (F) =- sK + /) = A, + J8i/+ . - . + &/* + . . . , (*)

where we put

& (*
= 0,1,2,...)

for short. This expansion (*) converges whenever |/(#)| < T |ol
which is certainly the case for every sufficiently large value of x, whether

2^converges or not, since in fact /(#)->() as x -> oo. In accordance

with the part of theorem 1 which has already been proved, from

we deduce the asymptotic expansion

(*> (*>

(**)

for every k = 1, 2, 3, . . . . Here the quantities a^
' have quite definite

values, obtainable by the product rule for asymptotic expansions (i. e.

as for convergent series). We must now substitute these expansions (**)

in (*) and arrange the result formally (i. e. again just as if the series (**)
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were convergent) in powers of Thus we obtain an expansion of the

form

4. + * + +

where the coefficients are given by

It remains to show that 27 ~ is an asymptotic expansion of <J> (#), that

is, that the expression

[*(*)
_

tends to for fixed n as # -> oo.

Now if e x
= E! (#), e2

^ e2 (#) denote certain functions which

tend to as JC->QO, it follows from (*) and (**) that

Hence, since /n+1 may be put equal to
n
^

x
,

and our assertion follows at a glance, for the expression in the last square
bracket tends to j&n+1 as x -*- + oo, and the (finitely numerous) v's tend

to 0.

Taking g (z) ~r and replacing F (x) by F (x) , it follows

as a particular case, provided only that a ={= 0, that

_1__^ Jl _ i 1
, ai

2 qu q a 1
,

F(v) a' a * X -r 3
jc

2 ^"

Hence we "may" divide by asymptotic expansions with non-vanishing
constant terms; this completes the proof of theorem 1.

Taking g (z)
= ez y

we obtain, without any restrictions,

In particular, we may write, by 299, 5,

n - r 11 139 1

Term^by-term integration and differentiation are also valid with

suitable provisos. We have
18 (051)
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Theorem 3. If F (x)
~ aQ + -- + ^J + . . . and ifF (x) is continuous

for x ;> # , then

If F (x) has a continuous derivative, and if F' (x) is known to possess
an asymptotic expansion, then this expansion may be obtained by

differentiating term-by-term, i. e.

F' (x^ ~ l 2 a * (" "~
-]) an~ l

1 (X) X2~ X3 . ^
- ....

Proof. Since t
2

{F (t) a
*l

)
-> a 2 as t -> + oo ,

the integral

which defines the function *P(x) always exists for x ^> XQ . Further, we may

set F(/)-* - fl

/-...--^ =^ (^1, fixed), where e(0->0 as

/->+oo. Hence

Now if e(#) denotes the maximum value of
| e(/)| in #f^f<+> then

C-
c (#) -> also as # increases ; and since the last integral ^ nxn, after

multiplication by xn it likewise tends to 0.

Now if the derivative F' (#), which is continuous for x ^> .r ,

possesses an asymptotic expansion

we have
X

log* + C3
-

where C19 C3 are constants. By what we have just proved, and be-

cause a function defines its asymptotic expansion uniquely, it follows

that & = ^ = and that bn
=

(n 1) an _ 1
for n ^> 2.

The expansion

exemplifies the fact that F'(#) need not possess an asymptotic ex

pansion, even when F(x) does.
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Theorems 1 3 lay the foundation for Poincarffs very fruitful

applications of asymptotic series to the solution of differential equations
14

.

A detailed account lies outside the plan of this book, however, and

we must content ourselves by giving an example of this application

of asymptotic series in the following section.

66. Special cases of asymptotic expansions.

The use of asymptotic expansions raises two main questions:
first there is the question whether the function under consideration

possesses an asymptotic expansion at all, and how it is to be found

in a given case (the expansion problem); on the other hand, there is

the question how the function, or rather, a function, is to be found,

which is represented by a given asymptotic expansion (the summation

problem). In the case of both questions, the answers available in the

present state of knowledge are not completely satisfactory as yet, for

although they are very numerous and in part of remarkably wide

range, they are somewhat isolated and lack methodical and funda-

mental connections. This section will therefore consist rather of a

collection of representative examples than of a satisfactory solution of

the two problems.

A. Examples of the expansion problem.

1. From the theoretical point of view, the expansion of given 303
functions was thoroughly dealt with in the note 301, 3; but it is only

seldom that the required determinations of limits can all be carried

out. The method also fails if lim F (x) does not exist, i. e. if only an
->QO

asymptotic expansion in the more general sense mentioned in 301, 6

can be considered. It is only when f(x) and g(x), the functions in-

volved, have been found that we can proceed as in 301, 3.

2. We have learned that asymptotic series very frequently arise

from Enter's summation formula: but there it is not so much a

case of expanding given functions as that by special choice of the

function f(x) in the summation formula we are often led to valuable

expansions.

3. As we have already emphasized, hitherto perhaps the most

important application of asymptotic expansions is Poincarfs use of

them in the theory of differential equations
14

. The simple fundamental

14 A very clear account of the contents of Pomcar&s paper, including alJ

the essential points, is given by E. Borel in his "Lecons sur les series diver-

gentes" (v.
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idea is this : suppose we know that a function y = F (x) satisfies a

differential equation of the w th order

where denotes a rational function of the variables involved. Now
if we know that y = F

(a?)
and its first n derivatives all possess asymptotic

representations, the expansions for y', y", ..., y<
n> follow, by 302

Theorem 3, from the first one,

If we substitute these expansions in the differential equation, in accord

ance with 3O2, Theorem 1, we must obtain an expansion which stands

for 0, all the coefficients of which must therefore vanish. From
the equations obtained in this way, together with the initial condi-

tions, the coefficients and hence the expression for F(x) are in general

found.

Thus e. g. the function

which is defined for x > 0, has for its derivative

X

that is, it satisfies the differential equation

1

for x > . It may be proved directly but we cannot give the details

here that this equation has only one solution y such that y and y'

exist for x > XQ I> and have an asymptotic representation. If we

accordingly set

y~o+ -S- + 3-+-' so that y'^_||._y?_...;
we have the equations

whence it follows that

*o
=

> i
= l> a

= 1, ..., fln + 1
=

( l)
n
n! .....

We therefore find that

_,, x 1 1,2! 3!
,

F(x) ~ ---;rH--=- --r-H-- .* \ / x x 2 X B x*
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4. The function in the previous example can be asymptotically

expanded by another method, which is frequently applicable. If we

put t = u + x, we have
GO

e
u

du.

o

Here, by Cauchy's observation (v. 3OO, l), we can put

for all positive values of x and u. It follows that

Thus we have again found the expansion in the last example
15

.

5. If /(w) is a function which is defined for u^O and is positive

there, and if the integrals

J/ ()-i <* = (- !)-' .

exist for every integral n ^ 1, we similarly obtain the asymptotic expan-
sion

for the function

Moreover, the partial sums of this series represent F(x), except for an

error which is less in absolute value than the first term neglected and is

of the same sign as the latter. Expansions of this kind have been investi-

gated especially by Th. J. Stieltjes
10

. (For further particulars, see below,

B, p. 549.)

"The function e~* F (x) = f -^> which becomes
~jf j^~ with the

x

transformation e~ i = v, is known as the Logarithmic-integral function of y e~~*.
16

Stieltjes, Th. J.: Recherches sur les fractions continues, Annales de la

Fac. des Sciences de Toulouse, Vols. 8 and 9, 1894 and 1895.
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6. Certain methods requiring the more advanced resources of the

, theory of functions date back to Laplace, but have recently been ex-

tended by E. W. Barnes, H. Burkhardt 18
, 0. Perron 19

, and G. Faber 20
.

We cannot go into details, but must content ourselves with the following
remarks. Barnes gives the asymptotic expansions of many integral

functions, e.g. n \(n+&}' (* ^ >
~~ 1 *

~~ 2 ' "")' and similar func'

tions. Besides the expansions we have met with, O. Perron obtains as

examples the asymptotic expansion in terms of n of certain integrals which
occur in the theory of Keplerian motion, such as

+a

J
e n(t-esmt)i

l-.cogf
dt ' lo < c ^ 1 , w an integer),

From our point of view it is noteworthy that in these examples the

terms of the expansion do not proceed by integral powers of , but by

fractional powers. Thus the expansion of C(ri) is of the form

This suggests another extension of the definition 301, 6, which, however,

we shall not discuss.

Numerous additional examples of asymptotic expansions of this

kind, in particular those of trigonometrical integrals occurring in physical

and astronomical investigations, are to be found in the article by H. Burk-

hardt: "Uber trigonometrische Reihen und Integrate", in the Enzyklo-

padie der mathematischen Wissenschaften, Vol. II, 1, pp. 815 1354.

7. An expansion, which was first given by L. Feyer
21

, and was

subsequently treated in detail by O. Perron 22
, is of a more specialized

nature; its object is to deduce an asymptotic representation for the
t

coefficients of the expansion in power series of e 1 "X
9 or, more gener-

17 Barnes. E. W.: The Asymptotic Expansions of Integral Functions defined

by Taylor's Series, Phil. Trans Roy. Soc., A, 206, pp. 249297. 1906.
18 Burkhardt, H.\ Ober Funktionen grofier Zahlen, Sit/ungsber. d. Bayr.

Akad. d. Wissensch., pp. 111. 1914.
19 Perron, O.'. t)ber die naherungsweise Berechnung von Funktionen grofier

Zahlen, Sitzungsber. d. Bayr. Akad. d. Wissensch., pp. 191219. 1917.
20 Faber, G.: Abschatzung von Funktionen grofier Zahlen, Sitzungsber.

d. Bayr. Akad. d. Wissensch., pp. 285304. 1922.

Fejer, L.: in a paper in Hungarian. 1909.
22 Perron, O.: t)ber das infinitare Verhalten dcr Koeffizienten einer ge-

wissen Potenzreihe, Archiv d. Math. u. Phys. (3), Vol. 22, pp. 329340. 1914.
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ally, of ^/d-*)9
,
where Q > and a > 0. We at once find that

*^= Z I (
a

l

*-J = 1 + c, x + c, & +
k^o *

'

where the coefficients cn have the values

c - Z (
n ~ l

\
a"

n
~~v-l \"- I/ 'I'

For these Perron showed in a later work 23 that they have an asymptotic

expansion of the form 24

A ,
*i

,

*
.

*
i \

\
l + ^ + v^ + 7* +

'*~V
8. Finally, we draw attention to the fact that the asymptotic repre-

sentation of certain functions forms the subject of many profound in-

vestigations in the analytical theory of numbers. In fact, our examples

301, 6, a, b, and d, belong to this class, for the functions expanded have

a meaning only for integral values of the variable in the first instance.

Just to indicate the nature of such expansions, we give a few more examples,
without proof:

a) If T (n) denotes the number of divisors of n,

+ (2 C-

where C is Euler's constant 25
. Regarding the next term 26

, practically

all that is known is that it is lower in degree than n~% but not lower than

n~*.

b) If a (n) denotes the sum of the divisors of w,

a (l) + q(2) + . + (*) ^ tr"
^ _ .

23 perroftt o. : tJbcr das Verhalten einer ausgearteten hypergeometrischen
Reihe bei unbegrenzten Wachstum eincs Parameters. J. reine u. angew. Math.
Vol. 151, pp. 6378. 1921.

24 An elementary proof of the far less complete result

log cn f*+* 2 V a n

is given by K. Knopp and /. Schur: Elementarer Beweis einiger asymptotischer
Formeln der additiven Zahlentheone, Math. Zeitschr., Vol. 24, p. 559. 1925.

26
Lejeune-Dirichlet, P. G. : t)ber die Bestimmung der mittleren Werte in

der Zahlentheorie (1849), Werke, Vol. II, pp. 4966.
20
Hardy, G. H. : On Dinchlet's Divisor Problem, Proc. Lond. Math. Soc.

(2), 15, pp. 115. 1915.
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c) If 9 (ri) denotes the number of numbers less than n and prime
to it,

9 (1) + <p (2) + + 9 (n) 3 . ..--_ ^ _
f
n +

d) If TT
(ri)

denotes the number of primes not greater than w,

In all these and in many similar cases, it is not known whether a

complete asymptotic expansion exists. Hence the relation which we have

written down only means that the difference of the right and left hand

sides is of smaller order, as regards ny than the last term on the right hand

side.

e) If p (n) denotes the number of different ways in which n may be

partitioned into a sum of (equal or unequal) positive integers
27

,

In this particularly difficult case G. H. Hardy and S. Ramanujan
28 suc-

ceeded by means of very profound investigations in continuing the

expansion to terms of the order --
.

B. Examples of the summation problem.

304. Here we have to deal with the converse question, that of rinding a

function F(x) whose asymptotic expansion

is an assigned, everywhere divergent series 2
^. The answers "to this ques-

tion are still more isolated and lacking in generality than those of the previous

division.

When the function F (x) is found, it has some claim to be regarded

as the "sum*
1

of the divergent series 2 in the sense of 59, since it

becomes more and more closely related to the partial sums of the series

as their index increases. This is the case only to a very limited extent,

however, since, as we have already emphasized, the function F (x) is not

17 E. g. (4) = 5, since 4 admits of the five partitions: 4, 3 + 1, 2 + 2,
2 + 1 + 1, and 1 + 1 + 1 + 1.

28
Hardy, G. H., and S. Ramanujan: Asymptotic Formulae in Combinatory

Analysis, Proc. Lond. Math. Soc. (2), Vol. 17, pp. 75115. 1917. See also

Rademacher, H.: A Convergent Series for the Partition Function. Proc. Nat.
Acad. Sci. U.S.A., Vol. 23, pp. 7884. 1937.

29 When the series converges, the required function is defined by the series

itself.
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defined uniquely by the series. Thus the question how far F(x) behaves

like the "sum" of the series can only be investigated in each particular

case a posteriori.

1 . The most important advance in this direction was made by Stieltjes
30

.

We saw above (v. A, 5), that a function given in the form

F(X)
= m- du' J x + u

possesses the asymptotic expansion ^ in which

(*) (- I)"'
1 = //()

"-' d u, (n = 1, 2, 3, . . .)

Conversely, if we are given the expansion 2 a
~, with coefficients a l9 a2,

#3 , . . . ,
and if we can discover a positive function f(u) defined in u > 0,

for which the integral in (*) has the given values a l9 a 2> #31..., for

n = 1, 2, 3, . . . , then the function

will be a solution of the given summation problem, by A. 5. The problem
of finding, given an> a function f(u) which srtisfies the set of equations (*)

is now called Stieltjes
9

problem of moments. Stieltjes gives the necessary
and sufficient conditions for it to be capable of solution, and, in particular,

for the existence of just one solution, with very general assumptions. In

particular, if/(w), and hence F(x), is uniquely determined by the problem

of moments such a series 2 a
- is called a Stieltjes series for short we

#n J

are more justified in claiming F (x) as a sum of the divergent series 27
~^,

for

instance as its S-sum.

Lack of space prevents us from entering into closer details of these

very comprehensive investigations. An account which includes every-

thing essential is given by E. Borel in his "Leons sur les series divergentes",

which we have repeatedly referred to. As an example, suppose we are given
the series

/4A X 1!
l

2! 3!

(t)
" + - + -----

80 Loc. cit. (footnotes 12, 16), and also in his memoir, Sur la reduction en
fraction continue d'une sine proceclant suivant les puissances descendantes d'une

variable, Annales de la Fac, Scienc, Toulouse Vol. 3, H. 1 17. 1889,
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The statement of the problem of moments is

//() iC-1 du = (-!)!, n=l,2, .
,

which obviously possesses the solution /() = e~u . In this case we can

prove without difficulty that the above is the only solution. Hence in

QO

/
Ue

^_ du
x + u

we have not only found a function whose asymptotic expansion is the

given series, but, in the sense of 59, we can regard F (x) as the ^S-sum 3l

of the (everywhere) divergent series (f).

2. The appeal to the theory of differential equations is just as useful

in the summation problem as in the expansion problem (v. A, 3). Fre-

quently we can write down the differential equation which is formally

satisfied by a given series and among the solutions there may be a function

whose asymptotic expansion is the original series. As a rule, however,

matters are not as described above, nor as in A. 3, but the differential

equation itself is the primary problem. It is only when this equation can

be solved formally by means of an asymptotic series, as was indicated

in A, 3, and provided we succeed in summing the scries directly that we
can hope to obtain a solution of the differential equation in this way. Other-

wise we must try to deduce the properties of the solution from the asymp-
totic expansion. Poincarfs researches 32

,
which were extended later,

especially by A. Kneser and J. Horn 33
, deal with this problem, which lies

outside the scope of this book.

3. In Stieltjes* process the coefficients an were recovered, so to speak,
QO

from the given series 2 ", by replacing an by
n~l x

J(_ I)"-*f (u) U
n~l d U

81 Thus for x = 1 we obtain the value

u = 0-596347 . . .

for the .9-sum of the divergent series 2 ( l)
n

! This series had already been
n-Q

studied by Euler (who obtained the same value for its sum), Lacroix, and Laguerre.

Laguerre's work formed the starting-point of Stieltjes
1

investigations.
82

Poincare, loc. cit. (footnote 13).
83 A comprehensive account is given by J. Horn: Gewohnliche Differential-

gleichungen, 2nd ed., Leipzig 1927.
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and hence the series by

In place of the series 2 xn there now appears the very simple geometrical

series, multiplied through by the factor f(u). The solution of the problem
of moments is necessary in order to determine /(*/), and this is usually

not easy. We can, however, make the process more elastic by putting

Un

and choosing the factors cn firstly so that the problem of moments

cn = Jf(u)u
n du

is soluble, and secondly so that the power series

**()*cn W
represents a known function. Thus we can for instance link up in this

way with Borel's summation process, by putting cn ~ n !. If the function

cn x/

can be regarded as known, then

o

is a solution of the given summation problem
M

. Here we cannot discuss

the details of the assumptions under which this method leads to the desired

34 The connection with Borel's summation process can be established as

follows. The function
v**

y ~ **&**
which was introduced in 59, 7 for the definition of Borers process, has for its

derivative

00 an
Thus if we set 27 - t

n =
(*) as in the text above, we have y' = e~x 0' (x), so that

nQ nl

o

Hence if the B-sum of H an exists, it is given by

an expression which, with suitable assumptions, can be transformed into }e~
f
(p(t) dt

o

by integration by parts. This corresponds precisely to the value of F (1) deduced
in the text.
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result. We shall conclude with a few examples of this method of sum-
mation: in these, of course, the question whether the function found is

really represented by the series must remain unsettled, since we have not

proved any general theorems. It can, however, easily be verified a posteriori.

a) For the series

1 1! . 2! 3! ,

*-** + **-*' + ---- '

which we have already discussed in 1, we have

an = (- I)*-
1
(n
-

1) !, so that g)
= log (l

+
?),

and accordingly

By integration by parts, it is easily shown that the function is identical

with that discussed in 1.

b) If we are given the asymptotic series

1
l

0-
1<3

4-...-J-/ nnllL 6 --^2 "- 1 )
. . t1 2-* + 2*~~x*

--
1

-----r( 1J 2~.*''~ ~r
* '

we have g)
=

(l
+

J)~*,
so that

00

F(x) = V^ -^^du = 2 e Vxe- tz d t.
^ ' J Vw-f x J-

V*

This provides, further, the asymptotic expansion

for what is known as Gauss's error-function, which is of special importance
in the calculus of probabilities.

c) If we are given the somewhat more general series

; + (+ 1)
- + +(-!)" (+!) '(a i n-l)

jjl +

ith a > 0, we have g)
=

(l
+ ?\ ", so thatwith

_d_ ^ = 1-1- rf- t
* ,~

2
dt.

o
(u + '
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d) For the series

i_2! + ii_ + ...
X X9 ^ X* +

we have - = tan"1 Y so that

g) rf. -^/^, <*.FW = tan-

If this is regarded as the S-sum of the given divergent series, we obtain

e. g. the value

=
!--.<*

= 0-6214...

for the sum of the series

1 _2! + 4! 6!+ ____

Exercises on Chapter XIV.

217. Generalize this result and prove the following statements:

if
e*Tl

= 1 + ?r* + ?f*
8 + + ??*" + " = <**

symbolically, we have, in the first instance,

_ (1 + 2B)**1 - (2B)n+l _ _ 2 (2"+*
-

1) Bn+1
Cn ~ n + l

~~
n + 1

and
(C + l)

n + Cn = for ^ 1,

so that

C -
1, Ct

= -
J,

Ca
=

0, C8
- ~, C4

= 0, C5
- -

|,
....

Using these numbers, we have (again symbolically)

IP__ 2P + 3P - + . . . H- (- l)
n

**> =
I {(- I)*-

1 (C -f 1 + n)P - C*}.

218. Generalize the result of Exercise 217 and deduce a formula for the sum

/(I) ~/(2) +/(3) _ + ... + (_ l)-i/(),

where / (x) denotes a polynomial.

219. Following 296 and 298, deduce a formula for

220. a) Following 299, 3, and using Euler's summation formula, derive the

- x
power series expansion for -

.^ *

b) In Euler's summation formula, put

/ (x) = x log x, x2
log x, xP- log a, x (log #)

a
,

and investigate the relations so obtained. (Cf. Exercise 224.)
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221. Filler's summation formula 298 can of course be used equally well

for the evaluation of integrals as for the evaluation of sums. Show in this way that

o

(v. Ex. 223 below).

222. a) The sum 1 +
* + -*. + ... + A has the value

7-485470 . . . for n ~ 1000,

ami the value 14-392720 . . . for n -- 1000000.

Prove this, first assuming that C is known, and then without assuming a knowledge
of C.

b) Prove that n \ has the value

10466 673 2-8242...
for n 10 5

, and the value

1Q5565708 g 2630 . . .

for n = 10".

c) Prove that F (x + ~^J
has the value

102566 . 1-272 3...
for x 103

, and the value

105 685 705. 8 2639...
for x = 10.

d) Without assuming a knowledge of the value of TT
Z

,
evaluate

A
t + A

2 + . . . + ^ for n = 10',

and find the limit of this sum as n -> oo. (We obtain 0- 104 166 83 . . . , 0-105 166 33 . . .).

e) Using d), show that

f) Show that

? = 1-64493406.. . .

6

2 \ - 1-20205690...,
=l w

and that
oo 1

2 -~ = 2-61237... .

-ln*

g) Prove that 1 -f- ~/-^- + ~
/ + -f- "/-- has the value

V * v ** V n

1998-540 14 ...

for n - 10.

223. Taking 66, B. 3 d as a model, find the S-sum of the following series,

for fixed p = 1, 2, 3, . . . :

a) E (- !)"(/>*)!, b) E (- l)
n (pn+l)\, ...,

w = n-O

c) f (-!)"(/> n +#-!)!, d) f
-0 w

(Cff Ex, 221.)
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224. Prove the following relationships, stated by Glai\heri

I' 2* 3' . . . nn^A -n*
* * '"

"'.

where A has the following value:

00
1

where C is Euler's constant and sk denotes the sum 2!
(
n~ 4. i\*.* ^^' ^xerclse

220, b.)
n ~ ( n + ;

225. For the function

f__ nn

^w^^^
obtain the asymptotic expansion

2 /t 1

and prove that the coefficient an has the value -- Bn for n ^ 2*



556 Bibliography.

Bibliography.
(This includes some fundamental papers, comprehensive accounts, and

textbooks.)

1. Newton, I.
f De analyst per aequationes numero terminorum infinitas. Lon-

don 1711 (written in 1669).
2. Wallis, John: Treatise of algebra both historical and practical, with some

additional treatises. London 1685.

3. Bernoulli, James: Pr opositiones arithmeticae de seriebus infinitis earumque
summa finita, with four additions. Basle 16891704.

4. Euler, L.: Introductio in analysin infinitorum. Lausanne 1748.

5. Enltr, L.: Institutiones calculi differentialis cum ejus usu in analysi infini-

torum ac doctrina serierum. Berlin 1755.

6. Euler, L.: Institutiones calculi integralis. St. Petersburg 1768 69.

7 Gauss, K. F.\ Disquisitiones generates circa seriem infinitam

Gottingen 1812

8. Cauchy, A. .: Cours d'analyse de l'cole polytechnique. Part I. Analyse
algSbrique. Paris 1821.

9. Abel. N. H.\ Untersuchungen liber die Reihe 1 +*^x+ ^""^a^
1 1 &

Journal fUr die reine und angewandte Mathematik, Vol. 1, pp. 311

to 339. 1826.

10. du Bois-Reymond . P.: Eine neue Theorie der Konvergenz und Divergenz
von Reihen mit positiven Gliedern. Journal fllr die rcine und ange-
wandte Mathematik, Vol. 76, pp 6191. 1873.

11. Pringsheim t A.: Allgemeine Theorie der Divergenz und Konvergenz von
Reihen mit positiven Gliedern. Mathematische Annalen, Vol. 35,

pp. 297394. 1890.

12. Pringsheim, A.: Irrationalzahlen und Konvergenz unendlicher Prozesse.

Enzyklopadie der mathematischen Wissenschaften, Vol. I, 1, 3

Leipzig 1899.

13. Borel, .: Lemons sur les series a termes positifs. Paris 1902.

14. Runge, C.: Theorie und Praxis der Reihen. Leipzig 1904.

15. Stole, O.j and A. Gmeiner: Einleitung in die Funktionentheorie. Leipzig 1905

16. Pringsheim, A. and /. Molk: Algorithmes illimite's de nombres re'els. En-

cyclopdie des Sciences Mathmatiques, Vol. I, 1, 4. Leipzig 1907.

17. Bromwich, T. J. I 1

A. : An introduction to the theory of infinite series

London 1908: 2 nd ed. 1926.

18. Pringsheim, A. and G. Faber: Algebraische Analysis. Enzyklopudie der

mathematischen Wissenschaften, Vol. II, C. 1. Leipzig 1909.

19. Fabry, .: The'orie des series & termes constants. Paris 1910.

20. Pringsheim, A. 9 G. Faber, and J. Molk: Analyse alge*brique, Encyclopedic
des Sciences Mathdmatiques, Vol. II, 2, 7. Leipzig 1911.

21. Stolz, O., and A. Gmeiner: Theoretische Arithmetik, Vol. II. 2nd edition.

Leipzig 1915.

22. Pringsheim, A.: Vorlesungen uber Zahlen- und Funktionenlehre, Vol. I, 2

and 3. Leipzig, 1916 and 1921. 2 d
(unaltered) ed. 1923.



Name and Subject Index.

The references are to pages.

Abel, N H., 122, 127, 211, 281, 290

seq., 299, 313, 314, 321, 424 seqq.,

459, 467, 556.

Abel-Dim theorem, 290.

Abel's convergence test, 314.

limit theorem, 177, 349.

partial summation, 313, 397.

series, 122, 281, 292.

theorem, extension of, 406.

Abscissa of convergence, 441.

Absolute convergence of series, 136

seqq., 396.

of products, 222.

Absolute value, 7, 390.

Adams, y. C., 183, 256.

Addition, 5, 30, 32.

term by term, 48, 70, 134.

Addition theorem for the exponential
function, 191.

for the binomial coefficients, 209.

for the trigonometrical functions,

199, 415.

Aggregate, closed, 7.

ordered, 5.

d'Alembert, .?., 458, 459.
" Almost all ", 65.

Alterations, finite number of, for se-

quences, 47, 70, 95.

for series, 130, 476.

Alternating series, 131, 250, 263 seq.,

316, 518.

Antes, L. D., 244.

Amplitude, 390.

Analytic functions, 401 seqq.
series of, 429.

Andersen, A. F. t 488.

Approach within an angle, 404.

Approximation, 65, 231.

Archimedes, 7, 104.

Area, 169.

Arithmetic, fundamental laws of, 5.

means, 72, 460.

Arrangement by squares, by diagonals,
90.

Arzeld, S., 344.

Associative law, 5, 6.

for series, 132.

657

Asymptotically equal, 68.

proportional, 68, 247.

Asymptotic series (expansion, repre-

sentation), 518 seq., 535 seqq.
Averaged comparison, 464-66.

Axiom, Cantor-Dedekind, 26, 33.

Axioms of arithmetic, 5.

Bachmann, F. t 2.

Barnes, E. W., 646.

Bernoulli, James and John, 18, 65, 184,

238, 244, 457, 523 seq., 556.

Bernoulli's inequality, 18.

Bernoulli, Nicolaus, 324.

Bernoulli's numbers, 183, 203-4, 237,
479.

polynomials, 523, 534 seqq.

Bertrand,J., 282.

Bieberbach, L., 478.

Binary fraction, 39.

Binomial series, 127, 190, 208-11, 423-8.

theorem, 50, 190.

Bdcher, M., 350.

Bohr, H., 492.

du Bois-Reymond, P., 68, 87, 96, 301,

304, 305, 353, 355, 379, 556.

du Bois-Reymond's test, 315, 348.

Bolzano, B., 87, 91, 394.

Bolzano-Weierstrass theorem, 91, 394.

Bonnet, O., 282.

Boormann, J. M., 195.

Borel, E., 320, 471 seqq., 477, 543, 549,

551, 556.

Bound, 16, 158.

upper, lower, 96, 159.

Bounded functions, 158.

sequences, 16, 44, 80.

Breaking off decimals, 249.

Briggs, H. t 58, 267.

Bromwich, VA., 477, 556.

Brouncker, W. t 104.

Burkhardt, H., 353, 375, 546.

Cahen, E., 290, 441.

Cajori, F., 322.

Cantor, G., 1, 26, 33, 68, 355.

Cantor, M., 12.



558 Index.

Cantor-Dedekind axiom, 26, 33.

Carmichael, R. Z>., 477.

Catalan, E., 247.

Cauchy, A. L., 19, 72, 87, 96, 104, 113,

117, 136, 138, 146, 147, 148, 154,

186, 196, 219, 294, 408, 459, 534,

546, 556.

Cauchy''s convergence theorem, 120.

double series theorem, 143.

inequality, 408.

limit theorem, 72.

product, 147, 179, 488, 512.

Cauchy-Toepht* limit theorem, 74, 391.

Centre of a power series, 157.

Cesdro, E. y 292, 318, 322, 466.

Chapman, S. t 477.

Characteristic of a logarithm, 58.

Circle of convergence, 402.

Circular functions, 59: see also Trigo-
nometrical functions.

Closed aggregate, 7.

expressions for sums of series, 232
to 240.

interval, 20, 162.

Commutative law, 5, 6.

for products, 227.

for series, 138.

Comparison tests of the first and second

kinds, 113 seq., 274 seq.

Completeness of the system of real

numbers, 34.

Complex numbers : see Numbers.
Condensation test, Cauchy' s, 120, 297.

Conditionally convergent, 139, 226 seq.
Conditions F, 464.

Continued fractions, 105.

Continuity, 161-2, 171, 174, 404.

of power series, 174, 177.

of the straight line, 26.

uniform, 162.

Convergence, 64, 78 seq.

absolute, 136 seq., 222, 396 seq., 435.

conditional, unconditional, 139, 227.

of products, 218, 222.

of series, 101.

uniform, 326 seq., 381, 428 seq.

Convergence, abscissa of, 441.

circle of, 402.

criteria of: see Convergence tests,

also Main criterion.

general remarks on theory of, 298 to

305.

half-plane of, 441.

interval of, 153, 327.

radius of, 151 seqq.

rapidity of, 251, 262, 279, 332.

region of, 163.

Convergence, systematization of theory
of, 305 to 311.

tests for Fourier series, 361, 364-72.
for sequences, 78-88.

for series, 110-20, 124, 282-90.
for series of complex terms, 396-401.
for series of monotonely diminishing
terms, 120-4, 294-6.

for series of positive terms, 116, 117.

for uniform convergences, 3328.
Convergent sequences: see Sequences.
Cosine, 199 seq., 384, 414 seq.

Cotangent, 202 seq., 417 seq.
Curves of approximation, 329, 330.

Decimal fractions, 116: see Radix frac-

tions.

section, 24, 51.

Dedekind, R., 1, 26, 33, 41.

section, 41.

Dedekind's test, 315, 348.

Dense, 12.

Diagonals, arrangement by, 90.

Difference, 31, 243.

Difference-sequence, 87.

Differentiability, 163.

of a power series, 174-5.

right hand, left hand, 163.

Differentiation, 163-4.

logarithmic, 382.

term by term, 175, 342.

Dim, U., 227, 282, 290, 293, 311,
344.

Dim's rule, 367-8, 371.

Dirichlet, G. Lejeune-, 138, 329, 347,

356, 375, 547.

Dinchlet's integral, 356 seq., 359.

rule, 365, 371.

Dirichlet series, 317, 441 seq.
Dirichlet's test, 315, 347.

Disjunctive criterion, 118, 308, 309.

Distributive law, 6, 135, 146 seq.

Divergence, 65, 101, 160, 391.

definite, 66, 101, 160, 391.

indefinite, 67, 101, 160.

proper, 67.

Divergent sequences, 457 seqq.
series, 457 seqq.

Division, 6, 32.

of power series, 180 seqq.
term by term, 48, 71.

Divisors, number of, 446, 451, 547,

sum of, 451, 547.

Doetsch, G., 478.

Double series, theorem on, 430.

analogue for products, 437-8.

Duhamel, y. M. C., 285.



Index. 559

e, 82, 194-8.

calculation of, 251.

Eisenstetn, G., 180.

Elliot, E. B., 314.

e-neighbourhood, 20.

Equality, 28.

Equivalence theorem of Knopp and

Schnee, 481.

Ermakqff's test, 296 seqq., 311.

Error, 65.

evaluation of: see Evaluation of re-

mainders.

Euclid, 7, 14, 20, 69.

Eudoxus, postulate of, 11, 27, 34.

theorem of, 7.

Euler, L., 1, 82, 104, 182, 193, 204,

211, 228, 238, 243, 244, 262, 353,

375, 384, 385, 413, 415, 439, 445,
457 seqq., 468 seq., 507, 518, 535-6,
556.

Eider's constant, 225, 228, 271, 622,
527 seq., 536, 538, 547, 555.

9-function, 451, 548.

formulae, 353, 415, 518, 636.

numbers, 239.

transformation of scries, 244-6,
262-6, 469, 507.

Evaluation, numerical, 247-60.

of <>, 251.

of logarithms, 198, 254-7.

of 7U, 252-4.

of remainders, 250, 525, 531-5.
more accurate, 259.

of roots, 257-8.

of trigonometrical functions, 2589.
Even functions, 173.

Everywhere convergent, 153.

Exhaustion, method of, 69.

Expansion of elementary functions in

partial fractions, 205-8, 239, 377

seqq., 419.

of infinite products, 437.

problem for asymptotic series, 543

seqq.

Exponential function and series, 148,

191-8, 411-4.

Expressions for real numbers, 230.

for sums of series, 230-73.

for sums of series, closed, 232-40.

Extension, 11, 34.

Faber, G., 546, 556.

Fabry, E. t 267, 556.

Faculty series, 446 seq.

Fatzius, N., 244.

Fejer, L., 493, 496, 546.

Fejer' s integral, 494.

Fejer's theorem, 493.

Fibonacci's sequence, 14, 270, 452.

Finite number, 15, 16.

of alterations : see Alterations.

Fourier, J. P., 352, 375.

coefficients, constants, 354, 361, 362.

series, 350 seqq., 492 seqq.
Riemann's theorem on, 363.

Frobenius, G., 184, 490.

Frullani, 375.

Fully monotone, 263, 264, 305.

Function, 158, 403.

interval of definition, limit, oscilla-

tion, upper and lower boundb ot,

158-9.

Functions, analytic, 401 seq.

arbitrary, 351-2.

cyclometrical, 213-5, 421 seq.

elementary, 189 seq.

elementary analytic, 410 seq.

even, odd, 173.

integral, 408, 411.

of a complex variable, 403 seq.
of a real variable, 158 seq.

rational, 189 seq., 410 seq.

regular, 408.

sequences of, 326 seq., 429.

trigonometrical, 198 seq., 258, 414

seq.
Fundamental law of natural numbers,

6-7.

of integers, 7.

laws of arithmetic, 6, 32.

of order, 5, 29.

Gamma-function, 225-6, 385, 440,
530.

Gaps in the system of rational numbers,
3 seqq.

Gauss, K. F., 1, 113, 177, 288, 289, 552,
556.

Geometric series: see Series.

Gtbbs* phenomenon, 380, 496.

Glaisher, J. W. L., 180, 555.

Gmeiner, y. A., 399, 556.

Goldbach, 458.

Goniometry, 415.

Grandi, G., 133.

Graphical representation, 8, 15, 20, 390

seq.

Gregory, y., 65, 214.

Gronwall, T. H., 380.

Hadamard,y., 154, 299, 301, 314.

Hagen.y., 182.

Hahn, H., 2, 305.

Half-plane of convergence, 441.



560 Index.

Hanstedt, B. t 180.

Hardy, G. H. t 318, 322, 407, 444, 477

seq., 486, 487, 547, 648.

Harmonic series: see Series.

Hausdorff, F., 478.

Hermann, Jr. t 131.

History of infinite series, 104.

Hobson, E. W., 350.

Holder, O., 465, 490.

Holmboe, 459.

Horn, J., 650.

Hypergeometric series, 289.

Identically equal, 15.

Identity theorem for power series, 172.

Improper integral: see Integral.

Induction, law of, 6.

Inequalities, 7.

Inequality of nests, 29.

Infinite number, 16.

series : see Series.

Infinitely small, 19.

Innermost point, 23, 394.

Integrabihty in Rtemann's sense, 166.

Integral, 165 seq.

improper, 169-70.

logarithmic, 645.

Integral test, 294.

Integration by parts, 169.

term by term, 176, 341.

Interval, 20.

of convergence, 153, 327.

of definition, 158.

Intervals, nest of, 21, 394.

Inverse-sine function, 215, 421 seq.

Inverse-tangent function, 214, 422 seq.

Isomorphous, 10.

JacoU, C. G. J. t 439.

Jacobsthal, E., 244, 263.

Jensen, J. L. W. V., 74, 76, 441.

Jones, W., 253.

Jordan, C., 16.

Karamata,J., 501, 504.

Keplerian motion, 546.

Kneser, A., 560.

Knopp, K., 2, 75, 241, 244, 247, 267,

350, 404, 448, 467, 477, 481, 487, 507,
547.

Kogbetliantz, E., 488.

Kowalewskiy G., 2.

Kronecker, L. t theorem of, 129, 485.

complement to theorem of, 150.

Kummer, E. E., 241, 247, 260, 311.

Kummer's transformation of series. 247,
260.

Lacraix, S. F., 650.

Lagrange, J. L., 298.

Laguerre, E., 650.

Lambert, J. H., 448, 451.

series, 448 seq.

Landau, E., 2, 4, 11, 444, 446, 452, 484.

Laplace, P. S., 646.

Lasker, E., 490.

Law of formation, 16, 37.

of induction, 6.

of monotony, 6.

Laws of arithmetic, 5, 32.

of order, 6, 29.

Lebesgue, H., 168, 350, 353.

Leclert, 247.

Left hand continuity, 161.

differentiability, 163.

limit, 159.

Legendre, A. M., 375, 620.

Leibniz, G. W., 1, 103, 131, 193, 244, 457.

equation of, 214.

rule of, 131, 316.

Length, 169.

Le Roy, E., 473.

Levy, P., 398.

Limit, 64, 462.

on the left, right, 159.

upper, lower, 92-3.

Limit of a function, 159, 403-4.
of a sequence, 64.

of a series, 101.

Limitable, 462.

Limitation processes, 463-77.

general form of, 474.

Limiting curve, 330.

Limiting point of a sequence, 89, 394.

greatest, least, 92-3.

Limit theorems : see Abel, Cauchy, Toe-

plitz.

Lipschitz, R., 368, 371.

Littlewood, J. E., 407, 478, 501.

Loewy, A., 2, 4.

Logarithmic differentiation, 382.

scales, 278 seqq.

series, 211 seq., 419 seq.

tests, 281-4.

Logarithms, 57-9, 211 seq., 420.

calculation of, 24, 198, 254-7.

Lyra, G., 487.

Machin, J., 253.

Maclaurin, C., 521.

Main criterion of convergence, first,

for sequences, 80.

for series, 110.

second, for sequences, 84, 87, 393,
395.
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Main criterion of convergence, second,
for series, 126-7.

third, for sequences, 97.

Malmsten, C.J., 316.

Mangoldt, H. v., 2, 350.

Mantissa, 58.

Markoff, A., 241, 242, 265.

Markoff's transformation of series, 242
to 244, 265 seq.

Mascheroni's constant: see Euler's con-
stant.

Mean value theorem of the differential

calculus, first, 164.

of the integral calculus, first, 168.

second, 169.

Measurable, 169.

Mercator, N., 104.

Mertens, F., 321, 398.

Method of bisection, 39.

Mittag-Leffler, G., 1.

Mobtus' coefficients, 446, 451.

Modulus, 8, 390.

Molk, y., 556.

Moments, Stieltjes* problem of, 549.

Monotone, 17, 44, 162-3.

fully, 263-4, 305.

Monotony, p-fold, 263-4.
law of, 5, 6.

de Morgan, A., 281.

Motions of x, 160.

Multiplication, 6, 31, 50.

of infinite series, 146 seq., 320 seq.
of power series, 179.

term by term, 70, 135.

Napier, y., 58.

Natural numbers: see Numbers.
Nest of intervals, 21, 394.

of squares, 394.

Neumann, C., 17.

Newton, /., 1, 104, 193, 211, 457,
556.

Non-absolutely convergent, 136, 396-7,
435.

Norlund, N. E., 521.

Null sequences, 17, 45 seq., 60-3, 72,
74.

Number axis, 8.

concept, 9.

corpus, 7.

Number system, 9.

extension of, 11, 34.

Numbers : see also Bernoulli's numbers,
Euler's numbers.

complex, 388 seq.

irrational, 23 seq.

natural, 4.

Numbers, prime, 14, 445 seq., 451, 548.

rational*, 3 seqq.

real, 33 seqq.
Numerical evaluations, 79, 232-73, espe-

cially 247-60.

Odd functions, 173.

Ohm, M., 184, 320.

Oldenburg, 211.

Olivier, L., 124.

Open, 20.

Ordered, 5, 29.

Ordered aggregate, 5.

Orstrand, C. E. van, 187.

Oscillating series, 101-3.

Oscillation, 159.

Pair of tests, 308.

Partial fractions, expansion of elemen-

tary functions in, 205-8, 239, 377

seqq., 419.

Partial products, 105, 224.

Partial summation, Abel's, 313, 397.

Partial sums, 99, 224.

Partitions, number of, 548.

Passage to the limit term by term,
338 seqq.: see also Addition, Sub-
traction, Multiplication, Division,

Differentiation, Integration.

Peano, G., 11.

Period strip, 413 seq., 416-8.
Periodic functions, 200, 413 seq.
Permanence condition, 463.

Perron, O., 105, 475, 478, 546.

TT, 200, 230.

evaluation of, 252-4.

series for, 214, 215.

Poincare, H., 520, 536, 543, 550.

Poisson, S. D., 521.

Poncelet, y. F., 244.

Portion of a series, 127.

Postulate of completeness, 34.

Postulate of Eudoxus, 11, 27, 34.

Power series, 151 seqq., 171 seqq.,
401 seqq.

Powers, 49-50, 53 seq., 423.

Prime numbers, 14, 445 seq., 451, 548.

Primitive period, 201.

Principal criterion: see Main criterion.

Principal value, 420, 421-6.

Pringsheim, A., 2, 4, 86, 96, 175, 221,

291, 298, 300, 301, 309, 320, 39<J,

490, 556.

Problem of moments, 559 seq.
Problems A and B, 78, 105, 230 seqq.
Products, 31.

infinite, 104, 218-29.
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Products with arbitrary terms, 221 seq.
with complex terms, 434 seq.
with positive terms, 218 seq.
with variable terms, 380 seq., 436 seq.

Pythagoras, 12.

Quotient, 31.

of power series, 182.

Raabe, J. L., 285.

Rademacher, H., 318, 548.

Radian, 59.

Radius of convergence, 151.

Radix fractions, 37 seq.

breaking off, 249.

recurring, 39.

Raff, H., 475.

Ramunujan, S. t 548.

Range of action, 463.

of summation, 398.

Rapidity of convergence: see Conver-

gence.
Ratio test, 116-7, 277.

Rational functions, 189 seq., 410 seq.
numbers : see Numbers.

Rational-valued nests, 28.

Real numbers: see Numbers.
Rearrangement, 47, 138.

in extended sense, 142.

of products, 227.

of sequences, 47, 70.

of series, 136 seqq., 318 seqq., 398.

theorem, main, 143, 181.

application of, 236-40.

Riemann's, 318 seq.

Reciprocal, 31.

Regular functions, 408.

Reiff, R. t 104, 133, 457 seq.

Remainders, evaluation of, 250, 259,

526, 531-5.

Representation of real numbers on a

straight line, 33.

Representative point, 33.

Reversible functions, 163, 184.

Reversion theorem for power series,

184, 405.

Riemann, B. t 166, 318, 319, 363.

Rtemann's rearrangement theorem, 318
to 320.

Riemann's theorem on Fourier series,
363.

Riemann 9

s ^-function, 345, 444-6, 491-2,
531, 638.

Riess, M., 444, 477.

Right hand continuity, 161.

differentiability, 163.

limit, 159,

Rogosinski, W. t 350.

Roots, 50 seqq.
calculation of, 257-8.

Root test, 116-7.

Runge, C. t 556.

Saalschutz, L., 184.

Sachse, A., 353.

Scales, logarithmic, 278 seqq.
Scherk, W., 239.

Schlonnlch, O., 121, 287, 320.

Schmidt, Herm., 212.

Schnee, W., 481.

Schroter, H., 204.

Schur, /., 267, 481, 547.

Section, 40, 99.

Seidel, Ph. L. v., 334.

Semi-convergent, 520, 536.

Sequences, 14, 43 seqq.

bounded, 16.

complex, 388 seqq.

convergent, 6478.
divergent, 65.

infinite, 15.

null, 17 seqq., 45 seq., 00-3, 72, 74.

of functions, 327 seqq., 429.

of points, 1 5.

of portions, 127.

rational, 14.

real, 15, 43 seq.

Series, alternating, 131, 250, 263 seq.,

316, 518.

asymptotic, 535 seqq.

binomial, 127, 190, 208 seqq., 423

seqq.

Dirichlet, 317, 441 seqq.
divergent, 457 seqq.

exponential, 148, 191, 411.

faculty, 446 seq.
for trigonometrical functions, 19?

seq., 414 seq.

Fourier, 350 seqq., 492 seqq.

geometric, 111, 179, 189, 472, 508.

harmonic, 81, 112, 115-7, 150, 237,
238.

hypergeometric, 289.

infinite, 98 seqq.
infinite sequence of, 142.

Lambert, 448 seq.

logarithmic, 211 seq., 419 seq.
of analytic functions, 428.

of arbitrary terms, 126 seqq., 312

seqq.
of complex terms, 388 seqq.
of positive terms, 1 10 seqq., 274 seqq.
of positive, monotone decreasing

terms, 120 seqq., 294 seq.
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Scries of variable terms, 152 seq. 320

seq., 428 seq.

transformation of, 240 seqq., 200

seqq.

trigonometrical, 350 seq.

Sierptriski, W. t 320.

Similar systems of numbers, 10.

Sine, 199 seq., 384, 414 seq.

Sine product, 384.

Squares, arrangement by, 90.

Stemitz, E., 398.

Stieltjes, Th. y., 238, 302, 321, 530, 545,
549 seqq., 554.

Stieltjes' moment problem, 649.

series, 549.

Stirling, y., 240, 448, 530.

Stirling's formula, 529 seq., 538, 541.

Stokes, G. G., 334.

Stolz, O., 4, 39, 70, 87, 311, 407, 550.

Strips of conditional convergence, 444.

Sub-sequences, 40, 92.

Sub-series, 110, 141.

Subsidiary value, 421.

Subtraction, 5, 31.

term by term, 48, 71, 135.

Sum, 30.

of divisors, 451.

of a series, 101 seq,, 402.

Summability, boundary of, 492.

Summable, 402.

absolutely, 513.

uniformly, 490.

Summation by arithmetic means, 400

seqq.
of Dirichlet series, 404, 491.

of Fourier series, 404, 492 seqq.
Summation formula, Eider's, 518 seqq.

Summation, index of, 99.

range of, 398.

Summation problem for asymptotic
series, 543, 548 seqq.

Summation processes, 404-76.

commutability of, 509.

Sums of columns, of rows, 144.

Sylvester, J. J., 180.

Symbolic equations, 183, 523, 520.

Tangent, 202 seq., 417 seq.

Tauber, A., 480, 500.

Tauberian theorems, 480, 500.

Taylor, B., 175.

Taylor's series, 175-0.

Term by term passage to the limit:

see Passage.
Terms of a product, 219.

of a series, 99.

Tests of convergence: see Convergence
tests.

Theory of convergence, general re-

marks on, 298-305.

systematization of, 305-11.

Titchmarsh, E. C., 444.

Toeplitz, O., 74, 474, 489-90.

Toeplitz' limit theorem, 74, 391.

Tonelli, L., 350.

Transformation of series, 240 seqq.,
200 seq.

Trigonometrical functions, 198-208,
414-9.

calculation of, 258-9.

Trigonometrical series, 350 seq.

Ultimate behaviour of a sequence, 16,

47, 95, 103.

Unconditionally convergent, 139, 2?6.

Uniform continuity, 102.

convergence of products, 381.

of series, 320 seq., 428 seq.
of Dirichlet series, 442.

of faculty series, 440-7.
of Fourier series, 355-0.

of Lambert series, 449.

of power series, 332 seqq.

convergence, tests of, 344 seq., 381.

summability, 490.

Uniformly bounded, 337.

Uniqueness of the system of real num-
bers, 33 seqq.

Uniqueness, theorem of, 35, 172.

Unit, 10.

Unit circle, 402.

Value of a series, 101, 400.

Vieta, F. y 218.

Vivanti, G., 344.

Voss, A., 322.

Wallis, y., 20, 39, 219, 550.

Wallis' product, 384, 529.

Weierstrass, K., 1, 91, 334
V 345, 379,

394, 398, 408, 430.

Weierstrass' approximation, 497.

test for complex series, 398 seq.
test of uniform convergence, 345.

theorem on double series, 430 seqq.
Wiener, AT., 451.

Wirtinger, W., 521 seq.

Zero, 10.

-function, Riemann's, 345, 444-6,
491-2, 531, 538.

Zygmund, A. 9 350.












