Win32 Programming for Microsoft Windows NT

Pipes and Mailslots

* Named pipes

* Mailslots

In this chapter, we look at how to use anonymous pipes, named pipes and mailslots to pass data between processes.

The client/server model is used to build distributed applications. A client application request serviceis provided by a server
application. The client and server require a protocol which must be implemented by both before a service may be rendered or
accepted.

A symmetric protocol iswhere either side may play the master or slave roles. An asymmetric protocol is where one sideis
immutably recognized as the master, with the other as the slave.

No matter whether the specific protocol used in obtaining a service is symmetric or asymmetric, when accessing a service
thereisa“client process’ and a “server process .

Named pipes and mailslots are designed around the client/server model of IPC. They both represent a named endpoint of a
communications link between processes. Named pipes provide bi-directional virtual circuit connections, and mailslots
provide uni-directional datagram-style communication. Both can be used across the network.
When using named pipes and mailslots, there is an asymmetry in establishing communication between the client and server
so that each has a different role. A server application normaly listens, using a wellknown name, for service requests,
remaining dormant until a connection is requested by a client’ s connection using the server name. At such atime the server
process wakes up and services the client, performing whatever appropriate actions the client requests of it.
Objectives
By the time you have completed this chapter, you should be able to:

Create and use an anonymous pipe to pass data in one direction between related processes on the same machine.

Create and use named pipes to pass data in both directions between processes that need not be related, possibly
across a network.

Create and use mailslots to pass data in one direction between processes that need not be related, possibly across a
network.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

A Pipe

« A pipe is a data storage buffer maintained by the system

in memory
+ Processes access pipes using standard file I/O API
—Eg. WriteFile() and ReadFile(]

* Two types of pipe:
— Anonymous pipes are unidirectional and are used between related
processes

— Named pipes are bidirectional, more flexible and may be used across a
network

A pipeis adata storage buffer maintained in memory by the system, which can be used to pass a continuous
stream of data between processes. Pipes are treated by the operating system as pseudo files.

Processes access a pipe using pseudo file handles, as though it were afile. Datais written to and read from the
pipe using the standard Win32 or C-Runtime file 1/0 API calls. Because pipes are pseudo files, some of the
standard 1/0 functions will behave dightly differently between pipes and real files. The SDK documentation is
an exact reference.

Datais added to the pipe asit is written in by one process, and removed asit is read off the pipe *at the other
end” by another process. Datain a pipe is accessed sequentially. Items are read off in the same order in which
they were written, that isto say, in“ First In, First Out” (HFO) order.

There are two types of pipe: anonymous and named pipes. Anonymous pipes are unidirectional and are used to
pass data between related processes. Named pipes can be bi-directional and may be used across a network,
between related or unrelated processes.

The pipeisa‘non-seeking’ device, and trying to set the file pointer, via Set Fi | ePoi nt er (), onapipe
handle has no meaning or effect.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Anonymous Pipe

* Used to communicate between RELATED processes
— Not over network

CreatePipel()
* size of pipe

Process |

w

Crante?ipa(l.
WriteFile()

= Data copied on and off pipe
- As a stream of bytes
— Separate read and write handles
= Unidirectional using
— FIFO read
handle §

T

Anonymous pipes are so called because they have no universally understood name, but are identified by handles.
One process creates the pipe and obtains a read handle (with read access to the pipe) and awrite handle (with
write access to the pipe). Another process must have one of these handles before it can communicate with the
process that created the pipe.

Anonymous pipe handles can be inherited by related processes, and the pipe can then be used to communicate
between these processes. Thisis normally how two processes communicate using an anonymous pipe.

Because anonymous pipes have no universal name and are referenced using machine-specific pipe handles, they

cannot be used over a network. They are also unidirectional. Data flow in both directions between two processes
requires two different pipes.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Simple Anonymous Pipe Operation

Server

inharitable pp]
handles

CreatePipe|)

* K#FHJ-1hﬁeﬁsupmﬂﬂnﬂnsi

|C:cuLc3:uccsu{J

- connection g .
establishment Client

blocks until bytes
avallzble

blocks unlif requesiad

\

B wrillen I

byt S— __data __
WriterFile() transfer

IE.:HREHLU.H:ZJ

Pipe handles are inheritableif Cr eat ePi pe() hasthe ‘inherit both handles’ field of the security attribute
parameter set to TRUE, and if Cr eat ePr ocess() hasthe ‘inherit open handles' parameter set to TRUE.
Dupl i cat eHandl e() can be used to duplicate inheritable duplicates of non-inheritable handles, and vice
versa. Set St dHandl e() isused to redirect the standard file handles, and Get St dHandl e() isusedto
ascertain the standard file handles. Here is the theory:

1. Create inheritable input and output pipes using Cr eat ePi pe() .

2. Duplicate a non-inheritable copy of stdout using Dupl i cat eHandl e() .Thisisused to restore stdout
later and is not inherited by the new process.

3. Duplicate a non-inheritable copy of the read handle of the output pipe using Dupl i cat eHandl e() .

Close the inheritable copy of the read handle of the output pipe. This ensures that this process has a read
handle to the output pipe that is not inherited by the new process.

4, Set stdout to be the inheritable write handle of the output pipe using Set St dHandl e() . Thiswill be
inherited by the new process.

5. Duplicate a non-inheritable copy of stdin using Dupl i cat eHandl e() Thisisused to restore stdin
later and is not inherited by the new process.

6. Duplicate a non-inheritable copy of the write handle of the input pipe using Dupl i cat eHandl e() .

Close the inheritable copy of the write handle of the input pipe. This ensures that this process has a
write handle to the input pipe that is not inherited by the new process.

7. Set stdin to be the inheritable read handle of the input pipe using Set St dHandl e() Thiswill be
inherited by the new process.
9. Create child process using Cr eat ePr ocess() , making sure open handles are inherited.

10. Reset stdin and stdout handles from duplicates; Set St dHandl e() .

Step 6 is particularly important. We don’t want the write end of the input pipe to be inherited by the child. The
child will read from the input pipe until it gets EOF. Thisis sent when the last handle to the write end of the
input pipeisclosed. If the child inherits a write handle to the input pipe, then even if the parent closes the write
handle of the input pipe, the child still has one. EOF will not be sent and the child will block indefinitely

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Named Pipe

* More powerful than anonymous pipes

- Processes need not be related CreateNamedPipe ()

— Can be used across network ssizes of pipe

~ Bidirectional osing *UNC name

— Multiple clients server b \iserver\pipelname
jhandie § smodes

Remaote
Client Process

Server Process

CreateNamedPipe ()

wriéaFila{}
ReadFile()

CreateFile()

Raa&?ils{} r
WriteFile() /

Named pipes are much more powerful than anonymous pipes. The differences between named pipes and anonymous pipes
are:

Named pipes can be bi-directiona or duplex; processes can use a named pipe both to receive and send information.
Named pipes may be used to pass data between unrelated processes as well as related processes.

Named pipes can be used between processes running on the same machine, or on different machines linked across a
network.

Named pipes can be used to pass a stream of bytes, or application-defined messages.

Named pipes are used to connect serversto clients; a server process creates a named pipe instance and waits for a
connection to it. Subject to security validation, any available named pipe instance can be connected to and used by any
client process that knows its name.

Named pipes provide a virtual circuit interface; a telephone style connection. Once a connection is established by awilling
receiver, data may be sent and received over the connection channel. The destination for the datais set up when the
connection is made, and doesn’t need to be sent with each data block. The client and server communicate by using the file
1/0 APIs plus dedicated named pipe API functions.

A named pipeis apseudo file (on Windows NT, nhamed pipes have their own file system). When apipeis created by the
server or opened by the client, a handle is returned. The pipeis written to, and read from, using standard Win32 or C-
Runtime file 1/0 functions with this handle. Unlike disk files, however, pipes are temporary, and when every handle to a pipe
has been closed, the pipe and al the data it contains are del eted.

A server process can create multiple instances of the same named pipe, to meet the concurrent needs of multiple client
processes. Note that Windows 95 has no support for named pipe servers, only named pipe clients.

A 16-hit client application (Windows 3.x, DOS or OS/2) may use a named pipe that was created previously by a Win32
server application.

On Windows NT, named pipe clients and servers may connect locally on the same machine, in which case networking
doesn't need to be enabled.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Simple Named Pipe Operation

Client

Server [‘while ERROR_PIPE_BUS"

CreateNamedPipel) |

7 _[unbiocks
Y v e -

ConnectNamedPipe() ! waltNamedripe |)

con ne_-:tior‘- -
establishment

Imnllr:mmod | ¥
Baadm 1e i F |:l.a1a BaadEFilel]
meads 1L Lle g) £ pedddt LLEL |
WriteFile () transfer WriteFile()

L |
I: izsconnectNamedPipe ()] CloseHandle() I

IL.'_.'_:s:uEi..-.a:'.L:.'_-'_' [l t

The server process creates one or more instances of a pipe, using Cr eat eNanedPi pe() . A handleisreturned and used
in all subsequent API calls. The nameisin the form \\server name\\pi pe\\pipename. Servers use a server name of “.“ to
indicate the local machine, as servers cannot create pipes on remote machines. Clients must specify the name of the server to
open apipe on aremote server or “.“ for alocal pipe. The pipename part of the name must conform to the rules for Win32

filenames, but no actual fileis created for the pipe.

Cr eat eNanmedPi pe() aso alows the specification of the pipe type, read mode, access modes and some other control
attributes. Some of these can be changed on a per-instance basiswith Set NanmedPi peHandl eSt at e() , but othersare
adopted by subsequent pipe instances and cannot be changed. These are all investigated in later slides.

Having created an instance of the pipe, the server indicates that it iswilling to receive incoming calls, using
Connect NanedPi pe() . Thiscall will block until aclient process tries to initiate a connection with Cr eat eFi | e() .

Subject to security validation, another client process connects to the other end of the pipe by name, using Cr eat eFi | e()
to open its handle to the pipe. If the pipe exists, but no instances of the pipe are available, Get Last Er r or () returns
ERROR_PIPE_BUSY and the client process can use Vi t NanedPi pe() towait for one to become available, specifying
atimeout period or waiting indefinitely. ai t NanedPi pe() will eventually be successful when the server cals
Connect NanedPi pe() , a which time the client can retry CreateFile() . The read/write access specified by a client using
Cr eat eFi | e() must be compatible with the access mode specified by the server when it was created.

Once connected, the server and client processes communicate by writing to and reading from the pipe using the Win32 or C-
Runtimefile I/O API or the dedicated named pipe API. Overlapped 1/0 is supported on a Windows NT system. The behavior
of these functions depends on the type of the pipe, the read mode of the pipe handle, and on the I/O modes that are in effect
for the pipe handle.

When the client and server have finished using the pipe, either the server can call DisconnectNamedPipe() to close the
connection to the client process, or the client can call O oseHandl e() . Either will invalidate the clients handle, and any
unread datain the pipe is discarded. To ensure that all data written to the pipe has been read by the client, the server can first
cal Fl ushFi | eBuf f er s() . Once the client has been disconnected, the server can call Cl oseHandl e() to closethe
pipe handle, or it can use Connect NanmedPi pe() to listen and connect the instance to a new client.

The simplest server process would create a single instance of a pipe, connect to asingle client, communicate with the client,
disconnect the pipe, close the pipe handle and terminate. Typically, however, a server process will be created to communicate
with multiple client processes. This could be done with a single pipe instance connecting to and disconnecting from each
client in sequence, but to handle multiple clients simultaneously you would need to create multiple pipe instances.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

I/0 Modes: Blocking

+ Wait Mode
PIPE_WAIT @©f PIPE_NOWAIT
— Set by server per instance with CrezteiamadPipa () or
SetNamedPipeHandleState()

* Affects situations where operations would block
indefinitely
—= Writing to full pipe
-~ Reading from empty pipe
= Connecting to listening pipe

* Doesn’t affect Transactions
* Use r1PE_NOWAIT to achieve asynchronous /O only when
overlapped I/O is not supported

The 'wait mode’ of a named pipe handle determines what happens with pipe operations that would normally block
indefinitely; thisis only important when trying to read an empty pipe, write to afull pipe or connect to a
listening pipe. The wait mode of a pipe handle can be set per instance by Cr eat eNanedPi pe() or

Set NanedPi peHandl eSt at e() .

If the pipeis not empty, ReadFi | e() returns TRUE immediately, reading one or more bytes, and indicates the
number of bytes read. Thisistrue whatever the wait mode of the pipe handle. The wait mode of the pipe handle
isimportant when the pipeis empty. If the pipe is empty and the wait mode of the pipe handleis PIPE_WAIT
ReadFi | e() blocksand only returns when one or more bytesis available. If the pipeis empty and the wait
mode of the pipe handleis PIPE_NOWAIT, ReadFi | e() returns FALSE immediately, with

Cet Last Error () returning ERROR_NO_DATA.

If the pipeis not full (more bytes available than the number you want to write), Wit eFi | e() returns TRUE
immediately, writing the number of bytes specified. Thisis true whatever the wait mode of the pipe handle. The
wait mode of the pipe handle isimportant when the pipeisfull. If the pipeis full and the wait mode of the pipe
handleis PIPE_WAIT Wit eFi |l e() blocksand only returns when the specified number of bytesis free on
the pipe. If the pipeisfull and the wait mode of the pipe handleis PIPE_NOWAIT WiteFil e() returns
TRUE immediately . not writing anything for a message-mode pipe, or writing as much asit can for a byte-mode
pipe, indicating the number of bytes written.

A pipe-connection operation is affected by the wait mode of a pipe handle only when there is no client connected
or waiting to connect to the pipe instance. If the wait mode of the pipe handleis PIPE_WAIT,

Connect NanedPi pe() blocksand only returns when a client process connects to the pipe instance by calling
either Creat eFi | e() or Cal | NanedPi pe() If thewait mode of the pipe handleis PIPE_NOWAIT,
Connect NanmedPi pe() returns FALSE immediately, with Get Last Err or () returning
ERROR_PIPE_LISTENING.

The wait mode has no effect on transaction operations on the pipe. Note that non-blocking mode is supported for
compatibility with LanMan 2.0. If overlapped 1/0 is supported, it should be used to achieve asynchronous I/O
with named pipes. Note also the differences between reading from an empty pipe and writing to a full pipe, for
byte-mode and message-mode pipes. By default, the wait mode of a named pipeis PIPE_WAIT.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

I/0 Modes: Write-Through

+« Remote write operations are normally cached
— Can set maximum timeout or high-water mark
— Set per instance with SctNamedPipeHandleState()

* Can be disabled

— Set per instance with FILE FLAZ WRITE_THROUGH in
CreaceNamedPi pel] oF Createrile()

= Provides true synchronisation for write operations

Normally, when data is written to a client or a server on aremote machine, a caching mechanism is enforced to
enhance the efficiency of network operations. Datais buffered until a minimum number of bytes to be written
have accumulated, or until a maximum time period has elapsed, allowing multiple writes to be combined into a
single network transmission. In this way, a write operation may complete successfully when the dataisin the
outbound buffer cache, but before it has been transmitted across the network. This mode of operation is enabled
or disabled by the *write-through mode' of the pipe.

At the client end of the pipe, the number of bytes and timeout period before transmission can be amended using
the Set NanedPi peHandl eSt at e() function. However, this performance enhancement can be prevented
atogether by specifying FILEFLAG_WRITE_THROUGH in the Cr eat eNanmedPi pe() cal whenthe pipe
instanceis created, or in Cr eat eFi | e() when the client connects to the pipe. The write-through mode
prevents transmission from being delayed, and ensures that the write operation will not complete until the datais
in the pipe buffer on the remote machine. This *write-through’ to the remote client is useful for applications that
need true synchronization with every write operation.

By default, write through is disabled. The following code fragment creates a write-through mode pipe:

HANDLE hPi pe = Creat eNanmedPi pe(’ \\\\.\\ pi pe\\ pi pe, /*pi penanme*/
FI LEFLAG WRI TE_THROUGH
| PIPE_ACCESS DUPLEX, /*read/wite access,wite-through*/
0,/* defaults */

Pl PE_UNLI M TED | NSTANCES, /* maxi mum si nul t aneous i nstances */
1024, /* output buffer size */

1024, /* input buffer size */

10000, /* default timeout for Wit NamedPi pe */

NULL) /* no security attr, not inheritable */

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

I/0 Modes: Overlapped I/O

* Only supported on Windows NT
= Not on Windows 95
* Overlapped /O may be performed on named pipes
= Mainly as for file I'O
« Set by server and client per instance with
FILE_FLAG_OVERLAPPED in CreateNamedPipe () or
CreateFilel()
- Transactions can be overlapped
— Connection can be aoverlapped

« Used for a single threaded server with multiple clients

Refer to the *File I/O’ chapter for a detailed discussion of asynchronous and extended 1/0.

As mentioned in the aforementioned chapter, file 1/0 operations on Windows NT using ReadFi | e() and
WiteFile() maybeperformed either synchronously or asynchronously, and extended file 1/0O using
ReadFi | eEx() andWiteFil eEx() may only beperformed asynchronously.

Asynchronous I/O is not supported in Windows 95.

On Windows NT, thisis true when using the same routines with named pipes. Also, Tr ansact NanedPi pe()
and Connect NamedPi pe() may be performed on a named pipe either synchronously or asynchronously. All
these functions require an OVERLAPPED structure to be passed to them, specifying a handle to the Event object
to be signaled when the operation is complete; the file pointer in this structure isignored. To enable
asynchronous (possibly overlapped) operations, the named pipe must be created and/or opened with the

FILE_ FLAG_OVERLAPPED flag set in the ‘attributes' . Any of the wait functions may be used to determine
when an overlapped operation has completed.

Using overlapped /O alows simultaneous operations to be performed on multiple files or pipes, or even to

perform multiple operations simultaneously on the same pipe handle. This facility would be used in asingle-
threaded server handling communications with multiple clients.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Named Pipes and Security

* Only supported on Windows NT

— Not on Windows 95
+ ImpersonateNamedPipeClient ()

= Server thread can assume security-access level of client

— Ascertain whether client has access to privileged resources
« RevertToSelf ()

- Switch back to previous server-access level

Does he/she have 1
access to

Database

This discussion applies only to Windows NT, and not to Windows 95.

Like any other kernel-supplied, shareable object, any named pipe accessis validated against the security profile
for the pipe.

A server process can aso assume the security token of a client process that is connected to a specified pipe
instance using | nper sonat eNanmedPi peCli ent () Why would it do this?

Perhaps to determine whether the request of a client process should be granted. An example has previously been
cited using of a named pipe server to provide access to a database to which the server process has privileged
access. When a client makes a request to the server, the client will typically have alower level of security access.
By assuming the security token of the client, the server can attempt to access the protected database and the
system will grant or deny the server’s access, based on the security level of the client. When finished, the server
usesthe Revert ToSel f () function to restoreits original security token.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Mailslots

* One-way ‘datagram’ interprocess communication
= One-to-many, many-to-one broadcast
— To a specified computer or to every computer on a specified domain
— Mot reliably delivered

Remote
Client Process

* Max message size
* LUUINC name
imachine\mailsiot\name

CreateFile() %

WriteFile(¥

Remote
Client Process

CreateFile()

WriteFile()p

CraataMailslot ()

ReadFile ()

A maildot islike a post office. One process can send messages, or data grams, to the mailslot and one process
can take information from it. The server creates a mailslot and reads fromit, the client writes to the mailslot.
mailslots are connectionless; no one-to-one connection is ever made between client and server, as would be with
named pipes, and ‘ one-off messages are sent between processes. By analogy with the national mail system, a
datagram israther like aletter; it contains an address and the data to be sent to that address. Furthermore,
mailslots are second-class datagrams, whose reliable delivery is not guaranteed! Messages are free format.

Like anamed pipe, amailslot is a pseudo file (local mailslots have their own file system on Windows NT).
When amailslot is created by the server or opened by the client, ahandle is returned. The mailslot is written to,
and read from, by using standard Win32 or C-Runtime file 1/O functions with this handle. Unlike disk files,
however, mailslots are temporary, and when every handle to a mailslot has been closed, the mailslot and all the
datait contains are deleted.

Mailslot messages can be sent over a network either to a specified computer or broadcast to every computer on a
specified domain. In the latter case, if several processes within adomain each create a mailslot using the same
name, every message that is addressed to that mailslot and sent to the domain is received by each participating
process.

Unlike pipes, thereis no built-in limit to the size of a mailslot buffer. The mailslot buffer isa FIFO buffer.

Note that mailslots cannot be created and read from on Windows 95, but a mailslot can be opened and written to.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Simple Mailslot Operation

Client
[Createriie) |

data
transfer

The mailslot API is very much simpler than the named pipe API!

The server process createsamailslot, using Cr eat eMai | sl ot () and specifies aname and other control
attributes. A handleisreturned, and isused in all subsequent API calls. The nameisin the form
\\machinename\mailslot\mailslotname. Servers use a machinename of “.“ to indicate the local machine, as servers
cannot create mailslots on remote machines. Clients have several options. For alocal mailslot '." is specified for
the machinename. To write to a remote mailslot, the client specifies the machinename of a particular server, or the
domain name of a group of servers. The mailsiotname part of the name must conform to the rules for Win32
filenames, but no actual fileis created for the mailslot.

Subject to security validation, another client process opens the mailslot by name, using Cr eat eFi | e() with
GENERI C_WRI TE access mode and FI LE_SHARE READ share mode, to open its handle to the mailsot. The
client processes can then communicate with the server by writing to the mailslot using the file I/0 AP,
WiteFile().Theserver canread fromthe mailslot using the file 1/O API, ReadFi | e() . The exact
behavior of the server read functions depends on the read timeout of the maildlot, set when the mailslot was
created, or subsequently set with Set Mai | sl ot | nf o()

When the client or server have finished using the mailslot, either can call G oseHandl e() toinvalidate their
handle. The mailslot is deleted when all open handlesto it are closed.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Summary

» A pipe is a FIFO data storage buffer to pass data between
processes
— Maintained by the system
« Anonymous pipes allow two related processes to
communicate
« Named pipes provide bidirectional communication
between unrelated processes
— May be used across a network
— Client-server model
* A mailslot is a one-way, unreliable interprocess
communication

— Normally used across a network
- One-to many, many-te-one broadcast

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

