Win32 Programming for Microsoft Windows NT

I/O Model

= Asynchronous
¢ Installable File Systems
¢ Layered Architecture

User API

NT Executive /O Subsystem Driver API
! File System System
o Driver Process

Helper

|
Routines || Other Drivers II E ? -g- _
1 Elewic{e Driver b

—1 S —— T
Hardware E
T = T T T T

Input and output in Windows NT is done by the I/O system; a group of components responsible for processing
input from, and passing output to, a variety of devices. The Design goals of the Windows NT 1/O system were:

Easy driver development; Well-defined interfaces allowing driver layering. Generic hel per routines.
Portability; 1/0 system and drivers written in C. Layering isolates platform changes.

Security; Data from one processis protected against access or corruption by others.

Multi-user support; multi-threads, multi-processors to implement asynchronous I/O.

Installable file system support.

Layered driver model.

Object-oriented; all knowledge of adriver is confined to objects exposed to I/O system.

Fast; Disk caching. Operations are streamlined in kernel mode.

Multi-thread and multi-processor safe.

Support for al envisaged subsystems.

NT environment subsystems use the facilities of the NT kernel 1/0 system via a standard system services
interface. This implements the device-independent /O facilities and establishes an asynchronous I/O model.

A File System Driver (FSD) represents each file system in NT. The 1/O system communicates with each file
system through a dynamic link interface, issuing logical requests for file access, which the file system translates
into physical 1/0 requests for a particular device.

The low-level device drivers directly manipulate hardware and issue physical 1/0 requests to the device. NT
allows dynamic loading and unloading of device drivers and file systems.

The I/O system uses an asynchronous |/O model but the 1/0 system services offer both asynchronous and
synchronous I/O. Asynchronous I/O means that the caller makes an 1/0 request, and then gets notified later when
the device has finished the data transfer. Because I/O devices are usually slower than processors, the caller can
do other processing while waiting for 1/O to complete.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Asynchronous I/0O is made possible because each file system also has associated with it a kernel process whose
threads are able to perform I/O asynchronously from calling threads.

The drivers are modular with well-defined standard interfaces between them, which allow different file systems
to use the same device drivers, and alow alayered hierarchy of driversto implement intermediate processing.
For instance, layered between the file system driver and the device driver could be amirroring driver and/or a
UPS driver and/or adisk-striping driver. 1/O request packets (IRPJ) are passed up and down the layers; they
contain a ‘stack area’ per driver layer, containing specific driver parameters, and a header accessibleto al layers.
Standard I/O ‘helper’ routines are available for each FSD and device driver and for the system services.

There is aso a cache manager, which improves 1/O performance by caching recently read disk information. It
usesthe NT virtual memory management to implement asynchronous read-ahead and write-behind.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Installable File Systems

* Multiple active file systems

- FAT, HPFS, NTFS, CD-ROM, Named Pipes, Mailslots, Sockets, LAN
Manager Redirector

* Automatic mounting and verification

Windows NT /O system interface

3

s e e

WAL

T

FAT

File System
Driver

HPFS CD-ROM
FS Driver | | FS Driver

Floppy Disk |

Driw

Hard Disk | CD-ROM

er | Driver

R e S R B RS e

Because the file system for Windows NT, it isnot ‘embedded’ in the operating system kernel, but is kept
logically distinct, this allows Windows NT to support multiple Installable File Systems (IFS). The default file
systemisthe File Allocation Table (FAT) file system inherited from DOS and does not need to be installed.
Other installable file systems are OS/2 High Performance File System (HPFS), the new NT File System (NTFS)
and a CD-ROM File System. These need to be installed at set-up time by specifying the desired file-system
dynamic-link libraries and device drivers; the DRIVERS.INF file describes the driver to the setup procedure.
Loca named pipes and mail slots are referenced by names, which also existsin their own file system.

Thefirst time avolume is accessed, the appropriate File System Driver DLL and device drivers are established
and used for all subsequent 1/0 on that volume. Thisis all transparent to the calling application, which just uses
the appropriate subsystem open/close/read/write type API, regardless of the file system type.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

* NT File System
— Object-based

* Features

— Recoverability

— Security

— Support for POSIX requirements
— Extensibility

In addition to providing support for FAT and HPFS file systems, Windows NT has a new file system called
Windows NT File System (NTFS). It's main features are that it has no artificial limitations, good recoverability
and is secure.

Another file system was required for NT because of security and reliability requirements of the Windows NT
system, plus new functionality is needed to meet the requirements of the POSIX subsystem. The goals of NTFS
arc:

Recoverability -Full recoverability after system failure checking avolumein seconds. Thisis achieved by
logging file system changes to alog file which time-stamps changes to the disk structure. On reboot from a
crash, thelog fileis replayed to make appropriate changes to the disk structure, keeping it consistent. This does
not assure data integrity within files, but assures file system integrity.

Support for POSIX requirements .case-sensitive names, links; hard and symbolic (only hard-links are supported
currently), sparse files.

Security -NTFSis object-based and like other objectsin NT, files can have security attached to them. Access
control lists, which specify users and their corresponding access permissions, can be attached to each file and
directory. NTFSisthe only securefile system.

Extensibility -Multiple data streams per-file, popular file server support; e.g. Novell, AppleShare, SUNNFS
Removal of limitations.64-bit file addressing -large storage media up to 2764 bytes, Unicode for file and volume
names, aiding localization of files, hardware sector size independence, MS-DOS name space and name
generation

Utilities are provided to convert existing FAT and HPFS partitions to NTFS, but not in the other direction.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Creating and Opening Files

« CreateFile ()

- creates new or opens existing file by name
= Other para meters

= read/write access and share options

— openfcreate action

- many attributes and flags

= security descriptor

* Returns handle
— valid until file glosed; Closetandle)
— used for all AP calls
- ¢an be inherited

Calling Cr eat eFi | e() not only creates anew tile, or opens or truncates an existing one, it also specifies way
in which the file will be accessed by other API functions. It accepts a name and returns avalid open handle if
successful, used for al further accessto the file, or INVALID_HANDLE_VALUE if not.

The ‘access mode’ parameter specifies whether datais allowed to be read/written and the file pointer modified,
and is a combination of the following. GENERIC_READ allows reading and GENERIC_WRITE allows writing.

The ‘share mode' parameter specifies how thefileis shared if it is subsequently opened one or more times, and
is acombination of the following; 0 means no sharing, FILE SHARE_READ means other open operations may
be performed for read access and FILE_SHARE_WRITE means other open operations may be performed for
write access.

The ‘open or create mode parameter setsthe action that Cr eat eFi | e() should takeif the file does or does
not exist, and must be one of the following. CREATE_NEW creates anew file but failsif it aready exists,
CREATE_ALWAY Screates anew file and overwriteit if it aready exists OPEN_EXISTING opens afile but
failsif it does not exist, OPENALWAY S opens afile and creates a new oneif it does not already exist,
TRUNCATE_EXISTING opens afile of length 0 but failsif it does not exist (must have write access).

The ‘attributes and flags' parameter marks the file attribute and other interesting options. Attributes can be
FILE_ATI’'RIBUTE_NORMAL or any combination of FILE_ATTRIBUTE ARCHIVE,
FILE_ATITRIBUTE_NORMAL,FILE_ATTRIBUTE_READONLY ,FILE_ATTRIBUTE_HIDDEN,
FILE_ATTRIBUTE_SYSTEM,FILE ATTRIBUTE_TEMPORARY.

Other flags, amongst many, can be combined with thisto

disabling caching and lazy-writing (FILE_FLAG_NO_BUFFERING, FILE_FLAG_WRITE_THROUGH)
allowing asynchronous 1/0 for lengthy operations (FILE_FLAG_OVERLAPPED)

specifying whether sequential/non-sequential accessis required to help optimize caching
(FILE FLAG_RANDOM_ACCESS, FILE_FLAG_SEQUENTIALSCAN)

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

specifying if the file is deleted when all open handlesto it are closed
(FILE FLAG_DELETE_ON_CLOSE)

Note that the Windows 3.1 OpenFi | e() istill supported but Cr eat eFi | e() ispreferred.

Get TenpPat h() and GetTempFileName() are also still supported to aid the creation of unique temporary files
in a multi-tasking environment.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Multi-tasking Considerations

» Be careful of concurrent access
» File Locking

“reatefile () with share mode 0

» File Region Locking

LockFiled) ==

- Different processes can simultaneously update different parts of same file

A multi-threaded application must be careful when manipulating files, for example, setting afile pointer.
Threads of the same process sharing afile handle and updating the file pointer must protect their access with a
Mutex or Critical Section. Processes that have inherited handles to objects or duplicated them, have the handles
mapped into their local handle table; the handles reference the same object and other processes see changes to
the object made in one process via one handle. Threads of different processes using handles, which reference the
same object, should protect their access with aMutex, or file locks.

Filelocking is supported by the Cr eat eFi | e() share modes, which enable one processto exclude al others
while it accesses afile, or to allow read-only access by other processes.

File region locking permits a process to lock only that part of the file it is working with, excluding other
processes from reading or writing, but giving them free access to the rest of the file. Any 264 range may be
locked. Processes should obtain an open file handle with the access mode set to GENERIC_READ
GENERIC_WRITE and share mode set to FILE_SHARE_READ | FILE_SHARE_WRITE. Each process can
then call LockFi | e() just beforeitisabout to read or write to the file, specifying the file handle, and the range
to be locked. These ranges are expressed in terms of an offset from the start of the file, and the number of bytes
to be locked or unlocked. A process can move itsfile pointer to the start of the record it has designated for
locking with Set Fi | ePoi nt er (), and read or write data with ReadFi | e() and Wi t eFi | e() . Any other
process attempting to perform aread or write which overlaps the locked areawill fail. A process should unlock a
record after use with acall to Unl ockFi | e() , specifying the file handle, and the range to be unlocked.

Cl oseHandl e() asoremoveany filelocksstill in place. Locking beyond the end of afile is not an error,
although overlapping locks is. File locks are not inherited.

Here is an dternative example of appending to the end of a shared file:

char szBuf[50]

DWORD dwbytesWitten, dwPos;

HANDLE hFile = CreateFil ¢(“shared. cxc”, GENERI C_ WRI TE,
FI LE_SHARE_READ | FILE_SHARE WRI TE
, NULL, OPEN_EXI STI NG
FI LE_ATTRI BUTE_NORMAL, NULL);

if (hFile !'= 1NVALI D HANDLE VALUE)

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

{
dwPos = SetFilePointer(hFile, 0, NULL FILE END);
if (LockFile(fFile, dwPos, CL, SQ., CL))
{
if (WiteFile(hFile, szBuf, SQ., &dwBytesWitten, NULL) &&
dwBytesWitten SQ) /*success*/
{
}
Unl ockFile(fFile, dwPos, CL, SQ., CL);
}
Cl oseHandl e(hFile);
}

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

File Information

B I IR .

* Attributes » Time
SetFileAttributes () - Create, last accessed, last modified time
GetFileAtcributes|() SetFileTime |
™ Type GetFileTima(|
GetFileTypel) * Version
- disk, character, pipe GetFileVersionInfol)
» Size .

Security
FileSize|) SetFileSecur_ty ()

CatFirlaeSecurity ()

There are seven file attributes, six of which can be combined:

FILE_ ATTRIBUTE_ARCHIVE marked for backup or removal
FILE_ATTRIBUTE_NORMAL normal file, can only be used on its own
FILE_ATTRIBUTE_READONLY cannot be deleted or opened for writing
FILE_ATTRIBUTE_HIDDEN cannot be displayed in normal directory listing
FILE_ ATTRIBUTE_SYSTEM excluded from normal directory search
FILE_ATTRIBUTE_DIRECTORY directory

FILE_ATTRIBUTE_VOLUME_LABEL volume |abel

File attributes can be set or queried using Set Fi | eAttri butes() /Get Fil eAttri butes() . Obviousy
the directory attribute or the volume label attribute cannot be set.

Because there are different types of file systemsthat sharet he samefile 1/O API, e.g. named pipes, console
1/O, then thereisaGet Fi | eType() function that returns the type based on an open handle. Returned types are
pipe, disk, character or unknown.

File time stamps for last modification, last access and creation can be set and queried with

SetFil eTinme()/GetFil eTime().TheConpareFil eTi ne() compares file times thus obtained.
Thereisaso an API for converting between a system time and afile time;

Fi | eTi meToSyst enili me() and Syst enili neToFi | eTi me() .

Version information can be retrieved using Get Fi | eVer si onl nf o() and then Ver Quer yVal ue() there
is a whole version control API, Ver XXX() in Win32. Version information is stored as a resource in an
executable file, and so retrieving version information only makes sense for .EXEsor .DLLSs.

The size of afileisretrieved using Get Fi | eSi ze() . Thesize of afileisset by writing to it or calling
Set EndOF Fi | e()

Get Ful | Pat hNane() retrieves the full path name for afile. Most of this information, and some extra, can be

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

obtained in one go with Get Fi | el nf or mat i onByHandl e() which returns a
BY_HANDLE FILE INFORMATION structure.

Note that the Windows 3. 1 CGet Fi | eResour ceQ, for extracting resourcesfrom files, isno longer
supported.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Searching for Files

hSearech = FindFirstFile(lpName, lpFound)

& 5 2 - — . = .
FindNextFile(hSearch, lpFound)
it directory
FindCleose(hSearch) SOarch Agui

hfsarch = PindPiratFila lpNama, IpPound)

Fi pxtFile(hSsarch, lLpFoumsd) ‘

FindClosa| hSaarch)

— e T —

FindFirstFile() createsa‘filesearch’ handle and establishes afile pattern to search for in the current
directory. Note this can only be used for name-based searches, not attribute-based searches. It returns
information about the first matching file, if any. Subsequent files can be found with Fi ndNext Fi | e() . When
the search is over, the search handle isinvalidated with Fi ndCl ose() . An application can search for asingle
file on a specific path with

Sear chPat h() .

Here is an example of a recursive subdirectory search to find all archived *.txt files under the \Imp
directory. Assume the existence of some utility functions.

Syntax: FindFiles(“\\tnp”, *.tnp, FILE ATTRI BUTE_ARCH VE);

void FindFiles(LPSTR | pStartDir, LPSTR | pFil eSpec, DWORD dwAttrib)
WLN32_FI ND_DATA fd;

HANDL E hSear ch;

char szCurrDir[256];

GetCurrentDirectory(sizeof (szCurrDir) ,szCurrDir);
SetCurrentDirectory(l pStartDir);
hSear ch=Fi ndFirstFil e(*, & d);
if (hSearch !'= | NVALI D_HANDLE VALUE) {
if (fd.dwFileAttributes & FILE_ATTRI BUTE_DI RECTORY && fd. cFil eName
[0] '=0)
LPSTR | pNewDi r = | pRecurseDi r Nanme(l pStartDir, fd.cFil eNane);
if (IpNewDir) {
Fi ndFi | es(| pNewDi r, | pFi | eSpec, dWAtitrib)
free (I pNewDir)
}

while (FindNextFile (hSearch, &fd))

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

if (fd.dwFileAtitributes & FILE_ATTRI BUTE_DI RECTORY &&
fd.cFileNane[0] !="*.")

LPSTR | pNewDi r = | pRecurseDirNane (I pStartDir, fd.cFileName);
if (IpNewDir) {

FindFiles (I pNewDir, ipFileSpec, dwAttrib);

free(l pNewDir)

}
i f (bNemeMarchFound(&f d, | pFil eSpec) && dWAttrib &
fd.dWFi | eAttributes) printf(’found %\\%\n",|IpSrartDir,fd.cFil eNane)

Fi nddl ose(hSearch);
SetCurrentDirectory(szCurrDir);
}

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

File Change Notification

 Can specify directory sub-tree and filter conditions
- name change, attribute change, contents change, ...

Thread k

hNotify=FindFirstChangeNotification(...);
WaitForSingleObject (hNotify, ...):
Thraad j s)
}nlmud ‘ .
| WriteFile() =

FindCloseChangeNotification(hNotify) ;

Fi ndFi r st ChangeNot i fi cati on() createsa file change notification handle for directory or subtree
based on filter values. The handle references a waitable object and can be used with

Wi t For Si ngl eCbj ect () or WAi t For Mul ti pl eObj ects().

A wait on this handle is satisfied (the handle is signaled) when a change matching the filter conditionis metin
the specified directory or subtree. Filter values can be a combination of:

FILE_NOTIFY_CHANGE_FILENAME filerenames, creations or deletions
FILE_NOTIFY_CHANGE DIRNAME directory creations or deletions
FILE_NOTIFY_CHANGE_ATTRIBUTESfile attribute changes
FILE_NOTIFY_CHANGE_SIZE file size changes on disk
FILE_NOTIFY_CHANGE_LAST WRITEfilelast write time changes on disk
FILE_NOTIFY_CHANGE_SECURITY file security descriptor changes

When await is satisfied, Fi ndNext ChangeNoti fi cati on() requeststhe handleto be signaled again the
next time the filter condition is met in the specified directory or subtree, and the handle is re-waited on When no
longer interested in file change notification, Fi ndCl oseChangeNot i fi cati on() shouldbecalledto
invalidate the handle.

Hereisan exampleto wait for temporary file changes:

BOOL bNoError TRUE;
HANDLE hNotify Fi ndFirstChangeNotification(“c:\\tnmp”, /*subtree root*/
TRUE, /*watch subtrees*/
FI LE_NOTI FY_CHANGE_FI LENAVE
FI LE_NOTI FY_CHANGE DI RNAME) ;

/*watch for file and

di rectory changes*/
if (hNotify | NVALI D_HANDLE_VALUE)

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

while (bNoError)

Wi t For Si ngl eoject(hNorify, INFINITE); /“re-read directory and
t ake action*/

bNoEr r or Fi ndNext ChangeNot i fication(hNotify);

Fi ndCl oseChangeNotification(hNotify);

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

File System Information

* Volume information @ E:[STACVOL DSK]

T F oo

CetvVolumeInformation()

¢ Logical drive information
GetLogicalDrives ()
GetlogicalDriveStrings|()

CatDrive™ynal)
Cet reType |

letDiskFraeaSpace ()

It is possible to obtain information about afile system.

Get Vol unel nf or mat i on() returns information about the file system on a given volume. It yields the following
information:

Volume name and serial number file system root directory file system name, e.g. FAT, HPFS
File system flags concerning case sensitivity and UniCode maximum length of file names for the file system

It is possible to find which drives are present on the system. Get Logi cal Dri ves () returns abitmask
specifying which drives are present (bit O -a, bit | -b: etc.) and Get Logi cal Dri veSt ri ngs () returnsdrive
root directory names in a string formatted thus:

“c:\\0d:\\O\\server\share\0\0".

Windows 3.1 routines like:

Get DriveType() removable, fixed or network

Get SystenDirectory()

CGet W ndowsDi rectory()

Cet Di skFreeSpace() bytes per sector, sectors per cluster, free clusters, total clusters etc are till
supported.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Overlapped I/O

alj {Reseved.
{igh: fMMRasaved.
t; fiFile offset of WO
tHigh: foparation,
HMUnsignalled MR
Ewent.*/

AV EFRT.ATPRERED
OVERLAPPEE

APPED ovl;

ovl . Cffaet 100; | OVERLAFPED;

gy

CreateBvent (NULL, TRUE, FALSE, NULL) ;

/* some other processing?

Y

WaitForSingleOoject (owl.h

Thrasad = -
blocked

Set MR Event ____|I/0 —_—
{ ovl , hEvent complete

Applications may use ReadFile() or WriteFile() to perform * synchronous' or ‘ asynchronous

1/0. Synchronous I/O means that the caller will be blocked until the 1/O operation completes. Asynchronous 1/0
means that the caller may return immediately from instigating the I/O operation, and will be notified at alater
date of the I/0O completion. Asynchronous I/O allows the caller to continue processing while an 1/O operation
completes. The caller could perform more asynchronous I/0O and have many 1/O operations outstanding at any
time. Thisiscalled ‘overlapped’ 1/0 and is amajor benefit of asynchronous I/O operations. Extended 1/0, using
the ReadEileEx() and WriteFileEx(), alows asynchronous I/O only. Thisis discussed on the next slide.

To perform asynchronous 1/0, the file must have been opened with the FILE_FLAG_OVERLAPPED flag set in the
‘attributes’. If not, an asynchronous read or write will return FALSE and

GetLastError() Will return ERROR_INVALID_PARAMETER. When an asynchronous read or write is performed, the
address of an OVERLAPPED structure is passed. The position of the file pointer isignored in asynchronous I/O
operations because of the possibility of overlapped I/O; the

OVERLAPPED structure specifies where to begin the operation, and the file pointer must be updated after the
operation completes, if desired.

With an asynchronous read or write performed with ReadFile() or WriteFile(), the function may behave as for a synchronous
operation, if the operation can be performed quickly enough. However, if it can’t, the function returns FALSE immediately,
and Get Last Error () returns

ERROR | O_PENDI NG. In this case a handle to a Manual Reset Event object, which is specified in the

OVERLAPPED structure, will be signaled when the operation completes and the caller can wait on this usi ng
Wi t For Si ngl eCbj ect () or Wai t For Mul ti pl eCbj ects() The event handl e nust be reset
before each transfer ensues. Get Over | appedResul t () reports the results of the I/O operations for functions
that returned FAL SE with ERROR_I0_PENDING.

For non-overlapped /O it would be possible to wait on the file handle, which is set to non-signaled when the I/0

operation is started, and signaled when it completes. This wouldn’t work for overlapped 1/0, as there would be
no way of knowing which of a number of simultaneous requests has completed.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

The OVERLAPPED structure must not be an automatic variable, because otherwise it may become invalid
before the 1/0 operation completes. Each overlapped /O operation must have its own OVERLAPPED structure.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Extended I/O

OVERLAFF! i ; Any application defined
ovl.0ffsec = 100; reference
ovl.0f fsetHig a i S
ovl . hEvent = ‘nAppRef;
WriteFileEx(..., &ovl, ICCallBack };
/* gome other processing? */f
SleepEx(...): f/Alertable API —
1 I/0 —
: vaid IoCallback (: complete
Thread 1 I D e)
blockad I LPOVERLAPPED 1p0
|
Thread 1 ~ r
unolocked with '
WAT I0_COMPLETE *

Alternatively, ReadFi | eEx() andWiteFil eEx() alow acompletion callback function to be specified,
which will be called after the I/O operation completes when the caller isnext in an ‘alertable wait’ state.
ReadFi | eEx() andW it eFi | eEx() only alow asynchronous /O and return FALSE if thereis aproblem
(use GetL astError() for moreinformation) or TRUE to indicate that the operation has not yet completed.
ReadEileEx() and WriteFileEx() can use the Event handle member of an OVERLAPPED structure to pass
information to the completion routine, since an Event object is not needed.

Waiting is done with SleepEx() ,WaitForSingleObjectEx() or

WaitForM ultipleObjectsEx() which are the same as their non-Ex counterparts, except that they can be set to an
‘alertable’ state which means that they can return with WAIT_10_COMPLETE when an I/O completion routine
has been called, even though the object(s) being waited on have not become signaled. The I/0O completion
routineis called on anew thread, started by the Win32 subsystem.

The format of an 1/0 completion callback functionis:

voi d | OConpl eti on(DWORD dwEr r or Code,
DWORD nByt esXferred, LPOVERLAPPED i pOverl apped);

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Standard Handles and Redirection

Console
Process

Defaud
Stanciard
ot

3 ’ .
He-dimm}\
Standard
autput OR

* When a console process is created, file handles for
STDIN, STDOUT and STDERR are created by the system

- Input and output can be performed through these handles
» These handles may be re-directed to files or other devices

DuplicateHandleal)

o

Dwatait
Standard

nput

GerStdHandle) /SetStddandle ()

Win32 automatically opens three standard files for each process when it is created: standard input (stdin), output
(stdout), and error (stderr). These only make sense in a console application, where stdin is usually the keyboard,
and stdout and stderr are usually directed to the screen. These standard handles can be queried by using

Get St dHandl e() and redirected to the handle for an open file or device using Set St dHand1e(). For
instance, setting stdout as afile or device handle causes an application to write to the file or device instead of the
screen.

The standard handles, amongst others, can be duplicated with the Dupl i cat eHandl e() call. If an
application wishes to restore any redirected standard handles during the lifetime of the program, it will need to
have duplicated them. An unnamed pipe is often used to redirect standard output from a child to a parent process,
as detailed in the “ JPC: Pipes and Mailsiots’ chapter.

DuplicateHandle() can also be used to duplicate the following types of handles for passing to unrelated
processes:

-console 1/O

-event

-file and file mapping objects
- mutex

- pipe (unnamed and named)

- process

- semaphore

- thread

Dupl i cat eHandl e() requiresan open ‘source’ handle to be duplicated, and an open handle to the process

in whose context the source handle is valid. This requires the source process to pass the handle and its processid
tothe ‘target’ process, which can then call OpenPr ocess() to obtain the source process handle, and then call

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

DuplicateHandle() A ‘duplicate access can be requested for the handle, but specifying a ‘ duplicate option’ of
DUPLICATE_SANE_ACCESS is common, which causes the duplicate handle to have the same access as the
source. A ‘duplicate option’ of

DUPLICATE_CLOSE_SOURCE causes the source handle to be closed when the duplicate handleis created,
otherwiseit isleft open.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Summary

* Windows NT has an asynchronous I/O model
« Windows NT supports installable file systems

* A number of API functions exist to handle files and
devices

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

