Win32 Programming for Microsoft Windows NT

Exception-Handling Design Goals

A single mechanism to:

Be independent of programming language
Handle software and hardware exceptions
Handle kernel and user code

Provide debugger support

Be portable across hardware architectures

The design goals of Win32 exception handling are to provide a single mechanism for the handling or exceptions
that:

Isusable across al languages.

Allows the handling of hardware-generated, as well as software-generated, exceptions.
Can be used by privileged and non-privileged software.

Gives necessary support to sophisticated debuggers.

I's portable, separating machine-dependent from machine-independent information.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Exception Handlers

» A function to specifically handle exceptions
= Frame based and associated with a certain scope of code
— Language-specific syntax

« System provides default ‘handler for all exception types
— In most cases this terminates the current process

= Application needing to attempt recovery from a particular
exception can provide an exception handler

ERROR

Exception
Handler

When an exception is raised, the operating system performs a systematic search in order to find an appropriate
exception ‘handler’. An exception handler is afunction written to explicitly deal with the possibility that an
exception may occur in a certain sequence of code.

Exception handlers are declared in alanguage-specific syntax, and can be associated with a specific block of
code (i.e. aset of curly braces). Thisisreferred to as a ‘ guarded block’. Exception handlers are frame-based’,
which means they are associated with the current ‘ stack frame’ or ‘call frame’. A stack frameis an area on the
stack that encompasses all the data needed by a particular block of code; a block of code may be afunction.
Stack frames are linked together to enable a‘ call and return’ mechanism to work. In atypical piece of code,
where many function calls and blocks of code are nested, the stack will contain many stack frames.

Because an exception handler can be associated with each ‘call frame’ in a program, the Win32 APl definesa
standard calling convention for the construction of a call frame and its associated exception handler. All
language compilers for Win32 must follow this standard.

The operating system and Win32 provide default kernel-mode and user-mode exception handlers respectively,
which in most cases simply call Exi t Pr ocess() to terminate the process that caused the exception. Language
compilers may also provide exception handlers as part of their run-time support.

Sometimes, it is useful for an application to attempt to recover from exceptions, or at least to terminate

gracefully. For example, it is perfectly feasible to provide an exception handler that automatically commits
uncommitted pages in a sparse object.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Handler Types

* Exception handlers
— Deal with exceptions within a block of code

*» Termination handlers
- Executed no matter how control leaves a block

e e oxcephblion handler ()

termination handler()
p

A termination handler and an exception handler cannot be associated with the same block of code. 10 achieve
this you must use nested blocks.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Exception Dispatching

* When an exception is raised:
- Process debugger is notified (if any)
— Application-supplied exception handlers are sought
- Process debugger may be notified again (it any)*
— System default handler may be called*

» Application-supplied exception filter may:
— Not handle exception, forcing search of stack for another exception filter.
— If no more filters or none willing to help then*:
= Take action and continue executing, keeping stack intact
— Initiate stack unwind operation and execute exception handler

* Unhandled exceptions handled by Win32

— Try/except around each thread function
— Behaviour can be amended

* In Windows 95, fault handler runs on separate thread for
robustness

When an exception occurs, the operating system saves the state of the current thread in a ‘ context record’. It then
determines why the exception occurred and constructs an ‘exception record’ that describes it. The executive then
‘dispatches’ the exception; the result of this depends on the processor mode.

If the processor was in kernel mode, the kernel stack call frames are searched, looking for a handler. If no
handler is found or none handle the exception, then thisis considered fatal and the system is shut down. The

operating system provides exception handlers for all kernel-mode exceptions, so this should never happen in
practice.

If the exception occurred when the processor was in user mode, then:

An attempt is made to notify the debugger of the processin which the exception occurred. The debugger
may handle the exception (e.g., breakpoint or single step) and modify the thread state as appropriate. If
the processis not being debugged, or if the associated debugger does not handle the exception, then:

The current threads call frames are searched, looking for an exception handler. If no handler can be
found, or none of them deal with the exception, then:

The debugger is given another chance. If the exception remains unhandled, the system provides default
handling based on the exception type.

Win32 puts atry/except block around each thread function in a process. The associated filter picks up the fact
that the whole thread stack has been traversed and the exception not dealt with. By default, it passes unhandled
exceptions to the debugger, if the processis being debugged. Otherwise, it optionally displays an Application
Error message box and causes an exception handler to be executed, which exits the process.

This behavior can be overridden. See alater dide.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Handling Exceptions: C/C++ Syntax

» Try/except statement is language specific

Ly body
except | exception_fil

exception_handler
- exception_filter evaluated on exception in cry_body
— evaluation determines action
EXCEPTION CONTINUE_SEARCH
EXCEPTION _CONTINUE_EXECUTION
EXCEPTION EXECUTE_EANDLER passes control to
exception_handler

Applications can provide an exception filter and exception handler for each call frame (block of code). Thetry {
_clause defines acall frame around a ‘ guarded statement’ or 'try_body’ . If an exception occurs during execution
of the guarded statement, the ‘ exception _filter’ in the _except() clauseis evaluated.

The exception filter may be an in-line expression or a separate function, and may be as complex as desired. The
Win32 documentation says that the exception filter is evaluated in the context of the try body, thus local
variables may be accessed. This does not work with the Visual C++ compiler!

The evaluation of the exception filter determines what happens next. The exception filter could decide not to
handle the exception by evaluating EXCEPTION_CONTINUE_SEARCH, which causes the operating system to
keep searching through the stack call frames, looking for an exception handler.

The exception filter could handle the exception, but continue executing. An example of taking action might be to
commit areserved page on a memory-access violation. If execution can be continued, the filter may change the
machine state by modifying the context record (for example, advance the continuation instruction address) and
evaluate to EXCEPTION_CONTINUE_EXECUTION, telling the operating system to abandon its search for a
handler and to continue from the machine state in the context record. In this case the stack is unaffected.

If execution cannot be continued from the point at which the exception occurred, then the exception filter could
evaluate to EXCEPTION_EXECUTE_HANDLER, which causes the operating system to execute the handler
associated with thistry_body. To execute the exception handler the stack is unwound by traversing back through
the stack frames to point on the stack frame that contains the exception handler. Unwinding the stack in this way
will cause any termination handlers associated with a stack frame to be called first. After the exception handler is
called, execution continues sequentialy in the stack frame in which the exception handler was found.

Even though the exception filter is executed in the context of the try body, the stack is not unwound to get there.

If it was, then it would be impossible to continue execution if any filter evaluated to
EXCEPTION_CONTINUE_EXECUTION.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Handling Termination - C/C++ Syntax

* Try/finally statement is language specific

termination_handler

« termination_handler always entered
— Will be executed even on
return from the function in Ly _body

sovo out of the £y body

You may not have both _except () and_finall y{} clausesonthesameblock. The finally { = .}
clause defines a ‘termination handler’ that will be called whenever the try body is exited. There are three
possibilities for the exit from atry-body:

1. Normally exit (i.e. sequential execution past the final curly bracket, return, break, continue or goto
statements).

2. Viaan exception handler (the termination handler is called before the exception handler).

3. Viaan unwind (the termination handler is called before unwinding).

4

The termination handler itself can exit in avariety of ways:

A jump (return, break, etc.). Any exception handling/unwinding that led to the calling of the termination
handler is completed.

Normally. Control continues according to how it reached the handler. This could mean going back to an
exception handler (case 2 above), continuing to unwind (case 3) or going back to the instruction to
which the try-body passes control (case 1).

The guarded statement, exception filter, exception handler and termination handler al share the same set of
automatic (stack) variables, because they execute within the same call frame.

Compilers generate errors if you attempt to explicitly enter an exception or termination handler, e.g. withagoto
Statement.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Exception Handling API

» GetExceptionCode()
= Returns code describing exception type
— Callable from exception filter or exception handler
» GetExceptionInformation()
- Returns information describing exception
— Callable only from exception filter
« AbnormalTermination()
— Returns whether guarded code raised an exception
— Callable from termination handler

These three intrinsic functions are frequently used in exception handling code. Note that

Get Exceptionl nformation() returnsapointer to an EXCEPTION_POINTERS structure that is only
valid during execution of the exception filter. The exception filter must make a copy of any datathat is required
by the exception handler.

A full list of exception codes can be found in winnt.h.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Termination Handling Example

* Ensuring resources are freed |-crcoy () will fail if - is NULL.

char *CreateCopy | char “psz) arreopy () has no exception handler.]
1 The stack is searched to find one. E
char * p = NULL; . .]

i If an exception handler is found]

_ETY which handles the exception, the |

Y mnterCriticalSection! &g cs) : unwind causes the termination
o mailoc [steiem { pez 11; | handler to be executed. |

strepyl o, BPSE)

_finally

if (AabaormalTermination() && NULL ! P
i
free [p)
p = NULL;
LeavelriticalSection{ &kg_cs);
return p;

The termination handler will be called whether an exception israised or not, so this code fragment is guaranteed
to leave the critical section.

On exit from the termination handler in this example, control passes to the next statement if no exceptionis
raised, and unwinds to an exception handler in an enclosing call frame if an exception occurred.

The Abnor mal Terrm nati on() functionissupplied so that afinally block can check whether it has been
entered after the try body has raised an exception, or not (TRUE for an abnormal termination).

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Exception-Handling Example

« A safe floating-point division
float safeDivision(float diwvidend,

float divisor)
{
_try
{
return dividend/divisor;
}
_except
{CetExceptionlode () ==
EXCEPTION FLT DIVIDE BY ZERO 7
EXCEPTION_EXECUTE_HANDLER :
EXCEPTION CONTINUE_SEARCH)
{
return 0;
)

This code fragment returns O if the divisor is zero. Any exception other than a ‘floating point divide by zero’
unwinds through the stack call frames.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Exception Information

« CetExceptionInformation() returns a pointer to an
EXCEPTION_POINTERS structure containing:

— A chain of EXCEPTICN_RECCRD structures describing machine-
independent information:
— Exception code (a number)
- Exception flags (attributes)
- Pointer to next EXCEPTION RECORD (if any)
- Address where exception eccurred
— Additional information (array of 32-bit values)

— A hardware specific CONTEXT structure describing the CPU state at time
of exception

An exception filter can retrieve information describing the exception with the GetExceptioninformation() API .
This consists of achain of EXCEPTION_RECORD structures that identify the exception and provide processor-
independent information, together with a CONTEXT structure that provides processor-specific information
about the thread of execution at the time of the exception.

The EXCEPTION_RECORD looks likethis:

t ypedef struct _EXCEPTION_RECORD

{
DWORD Excepti onCode;

DWORD Excepti onFl ags;

struct _EXCEPTI ON_RECORD *Excepti onRecord;
PVO D Excepti onAddress;

DWORD Number Par anet er s;

DWORD Exceptionl nfornmati on [EXCEPTI ON_MAXI MUM_PARAVETERS] ;
} EXCEPTI ON_RECORD, *LPEXCEPTI ON_RECORD;

The contentsof Excepti onl nformati on and Excepti onFl ags members are dependent on the
Excepti onCode member.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Handling Memory-Access Violations

« Exception handlers can be used to commit pages in a
sparse memory region automatically

« When system raises an access violation exception, the
additional information in the EXCEPTION_RECORD
structure contains the virtual address causing the
exception

* This virtual address can be used in virtualalloc() to
commit the appropriate page

» Note: no easy way of automating memory de-commitment!

Win32 applications cannot change the size of a memory region once it has been reserved; instead, they must
alocate a ‘'sparse’ region of the ‘worst case maximum size. To minimize the demands on physical memory and
disk swap space, only a minimum number of pages should be committed. By using an exception handler, it is
possible to commit reserved pages automatically, as they are accessed.

When the system calls an exception handler with an access-violation exception, it places the virtual address that
caused the exception in the Exceptioninformation array of EXCEPTION_RECORD structures.

If the ExceptionCode is EXCEPTION_ACCESS _VIOLATION, the Exceptionl nformation contains two
elements. The first isaflag signaling whether the thread did aread or awrite to the memory, and the second is
the virtual address that caused the exception.

Note that before calling Vi rt ual Al | oc() tocommit apage, the handler should call Vi r t ual Query() to
confirm that the violation was caused by attempted access to a reserved but uncommitted page.

System functions will probably not generate an exception on access to invalid memory. Instead, they test your
parameters and fail the call without raising the exception. Y ou must rely on return values from system callsto
indicate the outcome of the function.

Addresses could be touched first before passing them to the system call when using an exception handler to
automatically manage your memory. This way, your exception handler is able to manage your memory before it
is passed to system calls.

Note that there is no easy way of automating the decommitment of memory. A common techniqueisto usea

low-priority garbage-collection thread that knows when a page of memory is finished with. This assumes that
you have written your own kind of heap-handling code!

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Miscellaneous Exception-Handling API

« RaiseException()
- Generates an exception in the current thread

« No ability to raise exceptions in other threads
= j.e. no general purpose signals

 This is useful for extending the single exception-handling
mechanism to encompass program-defined errors

Rai seExcepti on() canbe used to raise exceptions that are not raised by the system. For example, if an
application-defined function gets an out of range parameter passed to it, this could be handled by calling
Rai seExcepti on() It effectively invokes the thread’ s own exception handler. Win32 provides no
mechanism for raising an exception in another thread.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

CTRL-Break/CTRL-C Signal Handling

« SetConsoleCtrlHandler ()
= Installs contral handler

— Returns TRUE if signal handled

* |f no handlers or all return false

— System handler is called which calls
ExitProceszss()

CTRL-C
» CenerateConsoleControlEvent () CTRL-BREAEK
— Sends signal to all processes in a ‘process CTRL-CLOSE

group’ that shares same console as caller

MS-DOS Prompt
;5 D:sWIN>
D:~UWIN2

D:=~UIN>

5
5 D:sUIN>
5
r Tigs DIT RIS

Console processes can install a“Control Handler’ to deal with CTRL-BREAK, CTRL-C and CTRLCLOSE
signals. Each console process hasits own list of handler functions that handle these signals. Initially, thislist
contains only a default handler function that calls Exi t Process() . A console process adds or removes
additional handler functions by calling Set Consol eCt r | Handl er () When aconsole process receives any
of the control signals, its handler functions are called on alast registered, first called basis until one of the
handlers returns TRUE. If none of the handlers returns TRUE, the default handler is called.

If aprocessis created with the CREATE_NEW_PROCESS GROUP flag, that process and any descendants of
that process are said to belong to the same process group. All processes attached to the same console as the root
process receive any signals.

It is possible for a process within this group to generate a CTRL-BREAK or CTRL-C signal by calling
Cener at eConsol eControl Event ()

The CTRL-CLOSE signal is generated when the user closes a console. This gives a process an opportunity to
clean up before termination. When a process receives this signal, the handler function can do one of the
following, after performing any cleanup operations:

Cadl Exi t Process() toterminate the process.

Return FALSE. If none of the registered handler functions returns TRUE, the default handler terminates
the process.

Return TRUE. In this case, no other handler functions are called, and a pop-up dia og asks the user
whether to terminate the process.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

C++ Exception Handling

* Uses its own syntax

- T 1
-try {]

Chirow
Ensures object destructors are called
No termination handling
No exception filters

Nonresumable

Visual C++ provides support for C++ exceptions, as defined in the ANSI draft standard. Three keywords are
provided; try, catch and throw.

try is used to begin a guarded block similar to _cry in Win32 exceptions. An exception of any type can be
‘thrown’ by using the throw keyword. A thrown exception is then ‘caught’ by a catch compound statement.

The main advantage of C++ exception handling over Win32 exception handling is that C++ object destructors
are called if an exception occurs. This just won't happen with Win32 SEH. Indeed, if local stack-based C++
objects are declared in afunction, the Visual C++ compiler will give the following error if Win32 SEH is used:

"Cannot use try in functions that require object unwinding"

This error will always be generated if you have declared any objects with destructorsinside a function with try. .
_finally ortry... _except clauses.

Thereisnoequivaenttotry. .. finally inC++ exception handling. Object destructors do get called on a
stack unwind, so some cleanup can be done there. If you need try. finally semantics you may need to create a
class on entry to the try block, and put the cleanup codein its destructor.

try {
CWd eanUpd ass ci nup;
/1 Do sone work
/1 CWd eanUpC ass destructor called however the try block is left

catch (.
/1 Sone exception handl er

Thereis no exception filter in C++ exception handling, and also no opportunity to continue program execution.
Once control has left the try block, there is no way of resuming execution inside the try block.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Unhandled Exceptions

« Win32 provides default “unhandled exception” handling
for each thread in a process
— Normally this allows process to be debugged or
— Causes process to exit
e Can use Win32 setUnhandledExceptionFilter()to
override unhandled exception handling

s C++ calls run-time terminate () function
* Can redefine terminate () Uusing set_terminate ()

Win32 puts a try/except block around each thread function in a process and calls the Win32 API entry point
Unhandl edExceptionFilter () fromtheexception filter. This“unhandled exception filter function”,
installed on a per-process basis for each thread, picks up the fact that the whole thread stack has been traversed
and the exception not dealt with. Of course, filter functions can dictate whether an exception handler is called or
not and can provide limited exception recovery.

By default, Unhandl edExcepti onFi |l t er () passesunhandled exceptions to the debugger, if the processis
being debugged. Otherwise, it optionally displays an Application Error message box and causes the Win32
exception handler to be executed, which exits the process.

An application can amend the Win32 top-level exception handling by calling

Set Unhandl edExcepti onFi | t er () and supplying the address of a new filter function.
Subsequently, if Unhandl edExcepti onFi | t er () isreached and the application is not being debugged
then the application-defined unhandled exception filter is called instead.

UnhandledExceptionFilter() can be called from within (and only from within) the filter expression of any
try/except block.

In the C++ world, if a catch statement cannot be found to handle a thrown exception, then the default behavior is
tocal thet er mi nat e() run-timeroutine, which in its standard incarnation callsabor t ()

Y ou can supply your own termination routine by passing its addresstothe set _t er m nat e() function.

Y our termination routine must not return, i.e. it must call exi t (), or end the thread or process with some other
function.

If it doesreturn toitscaller then abort () iscaled.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Hereis an example:

void MyTerm nate(){
cout<<"MyTerm nate called by runtinme”<< endl;

exit(-1);

}

int main() {

try {
set _ternmnate (MyTerm nate); /1 Set term nation function
throw “Ch no, an exception”; /1 char * exception...

}

catch (int i) { // But we only have a catch for integers...
cout << "Integer exception caught: “ << i << endl;

}

return O;

}

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Summary

« An exception is an unexpected error that threatens
continued execution of a thread

« An application may provide exception and termination
handlers to attempt to recover from synchronous
exceptions

» Win32 provides limited support for raising and handling
asynchronous alerts

» C++ provides exception handling and object cleanup

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

