Win32 Programming for Microsoft Windows NT

Thread Synchronisation

 Why is thread synchronisation necessary?

* Thread-synchronisation primitives
= Event objects
- Semaphore objects
- Mutex objects
— Critical sections
— Interlocked variables

* Choosing the appropriate synchronisation
* Thread deadlock and race conditions

In amultitasking environment it is essential to coordinate the execution of multiple threads in one or more
processes. In a multitasking environment where thread execution is conceptually concurrent (actually concurrent
in Windows NT SMP systems) programmers must be careful to coordinate the execution of multiple threadsin
one Or MOore Processes.

The scheduler may pre-empt a thread at any time, including while it isin the middle of accessing a data area,
device, or section of non-reentrant code. Such ‘serially reusable resources’ (SRRs) should only be used by one
thread at atime, otherwise their data may become corrupted or a deadlock may occur. Also, it is sometimes
important to coordinate threads; one thread may need to wait for another to compl ete an action before carrying
out its task. The work of ensuring that only one thread at atime accesses an SRR is known as ‘arbitration’ or
‘mutual exclusion’, while the coordination of threadsis referred to as synchronization

The Win32 synchronization objects are essentially flags maintained by the operating system, which enable
threads to signal each other in order to synchronize their activities and to protect non-reentrant code and
resources by providing mutual exclusion.

This chapter looks at the four different types of synchronization object provided by Win32, and demonstrates
how each kind is used.

Objectives
When you have completed this chapter, you should be able to:

Explain why thread synchronization is necessary.

Make an appropriate choice for the method of synchronizing threads.

Use Event objects to signal that a significant event has taken place.

Use Semaphore objects to act as a resource gate.

Use Mutex objects and Critical Section objects to provide mutual exclusion.
Synchronize threads using one or more Win32 objects.

Avoid thread deadlock and race conditions.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Characteristics

« A synchronisation object is a flag or signal with two states
— Signalled or unsignalled

* Threads wait by putting themselves to sleep until a
synchronisation object becomes signalled

* Major uses
- Synchronisation (signalling events)
— Arbitration to shared resources (mutual exclusion)

* Interprocess types
— Mutex; mutual exclusion from shared resources
- Semaphore; ‘counting’ allows multiple users to share resource
- Event; signal an event has taken place

= Within Process
— Critical Section; like Mutex, but faster

The Win32 synchronization objects maintain a state of either ‘signaled’ or ‘unsigned’ and are used to coordinate
the threads of one or more processes. This is a cooperative affair and the programmer must code the
synchronization logic.

A thread tests to see whether a synchronization object is signaled just before using an SRR or performing an
operation that must be synchronized with other cooperating threads. If the synchronization object is signaled, the
thread carries on. If it is not signaled, the thread must wait. A waiting thread isimmediately suspended, stays so
while the state of the synchronization object is unsigned, and does not use any time slices. One or more of the
cooperating threads waiting on the synchronization object is woken up to resume execution when it becomes
signaled. The synchronization object typically becomes signaled due to another of the cooperative threads
signaling it upon a certain condition being met. Perhaps it has finished accessing an SRR or it has formatted
some data ready for another thread to use.

There are three types of synchronization objects that can be used by the threads of one or more processes, for
intra-process or inter-process synchronization:

Event objects, which signal that a significant logical event has taken place.
Semaphore objects, which act as a resource gate, allowing limited multiple users of SRRs.
Mutex objects, which provide mutual exclusion to SRRs.

These objects are identified by ahandle. Any thread can control a synchronization object if it has a handle to it
with appropriate access rights. By default, synchronization objects are created with ‘synchronize' and ‘ modify’
access, so that the object can be waited on and signaled / unsignalled. These objects can be named for use across
processes, or unnamed. One of agroup of cooperating threads creates a synchronization object, thus obtaining a
handle, and all other threads open a handle to it. Each of these three objects has a different API to createit and
modify its state, but they all share the same ‘waiting’ API.

Another type of Win32 synchronization primitiveisa Critical Section, which issimilar to aMutex but faster, as
it can only be used by the threads of one process. This object has a different API for create/destroy, modify and
wait from the three previously mentioned.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Waiting : ¢ ;

» Each object type has its own API l . '
- Create, open, release, etc. ‘< '

* Two generic functions used for waiting on objects: |

WaitFerSingleObject () :
WaitForMultiplebDbjects () 1 : F
u HE 4 o
* Threads wait for an object to be signalled -

— Used with Event, Mutex and Semaphore

— Also with process, thread, file ...
* Thread is blocked while object not-signalled

- Can abort wait if timeout period specified

- Can merely test signalled state

* This does require cooperation!

All synchronization in Win32 applications is via cooperative waiting. To wait on a Win32 object, an open handle
to the object with ‘synchronize’ accessisrequired. Wi t For Si ngl eCbj ect () will then wait for any
appropriate object to become signaled.

The Event, Mutex and Semaphore objects we are about to discuss are specifically designed for the purpose of
arbitrating access or serializing operation. However, other types of Win32 object can be waited on. For instance,
aWin32 thread object is unsignalled for the whole of its lifetime and becomes signaled when it terminates. So
you could wait for athread to die by waiting for it to become signaled. A Win32 file object is signaled when an
outstanding /O request on it is completed. So you could perform asynchronous I/O on afile by issuing an 1/0
request and waiting on its handle for it to become signaled. There are good reasons, discussed later, why you
would not want to do this.

A timeout period can be specified, in ins, as the maximum time Wai t For Si ngl eCbj ect () will wait for the
object before returning.

If an object is not signaled, the function blocks until another thread signalsit, or the timeout elapses. A timeout
value of INFINITE will wait indefinitely.

A timeout value of 0 causes Wi t For Si ngl eQbj ect () to return immediately, even if the object is not
signaled. Thisisuseful if you want athread to do something while it iswaiting for clearance. It will cause the
calling thread to lose the rest of itstime dlice.

If the state of the object is signaled, or becomes signaled before the time period el apses, the function returns
WAIT_OBJECT_0 and the thread can resume execution.

If the timeout elapses before the object is signaled, the function returns WAIT_TIMEOUT.

Wi t For Mul ti pl eQbj ect s() waitsfor amultiple number of objects, potentialy of different types. For
instance, you might wait for athread to terminate and for a Mutex to be unowned. An array of object handlesis

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

specified, and another parameter dictates whether all objects need to be signaled before the function returns, or
whether the signaling of any one object will satisfy. Again, atimeout period can be specified with mostly the
same operation as above. If it iswaiting for only one of many objects to become signaled, the function returns
(WAIT OBJECT_0 + index), where index is the array item that satisfied the wait. If several objectsin the array
are signaled, the object with the lowest array index is returned.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Using a Mutex

« Arbitrate single access to a shared resource
* Concept of ownership

1 = Unowned = Go
- Wait to , Release
—_— 0 = Owned = Wait —-

claim Mutex N Mutex

i

1%
Wait to Release

Threads | ce—j-
e claim Mutex e Mutex
Resource

" Wait to Releasa
- claim Mutex Mutex

Multiple threads needing to use a serially reusable resource (SRR), such as a data area, device or section of non-
reentrant code, should use a Mutex to ensure that only one thread at a time has access to the resource. The
threads may be in the same process, in which case they are likely to use an unnamed Mutex, or in different
processes, when they should use a named Mutex. If a process other than that which created the Mutex wishesto
useit, it must first open a handle to it, specifying its name.

Each thread should request ownership of the Mutex before attempting to access the resource. Only the thread
that owns the Mutex can proceed to enter the resource, and it should release the Mutex as soon as it has finished
using it. The system queues subsequent requests to claim the Mutex, and transfers ownership to one of the
waiting threads as soon as the Mutex is released. Threads, which have requested the Mutex, are blocked until it
istheir turn to own it.

A typical situation in which one would need to synchronize the operation of different threadsin order to guard a
SRR, would be when multiple threads have read and write access to shared memory. Each thread would need to
request ownership of the Mutex (wait on it) before it could perform read/write operations on the memory. When
access to the memory was finished, the Mutex would be rel eased.

It is always important to have the smallest possible critical section of code (that which is guarded by a Mutex) to
avoid unnecessary waiting.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Using a Mutex

« CreateMutex () to create, OpenMutex () to open
= ‘Named or ‘unnamed
— Create with initial 'owned state

« WaitForsingleObiject () to wait for Mutex and claim it
» ReleaseMutex () to release it

Time Thread i Thread j Thread k
WaitPorSingleObject ()
Towaad | WaitForS8ingleObjact())
Murloei i owns I Thread | is Naitfurﬁ}nqleﬂhject { }
I blocked |
— ReleaseMutesx() BT
Thread | owns | I isplocked
e |
ReleasaMutax() I =
". Thréad k owns
' + Mubax

A Mutex is created by Cr eat eMut ex() and opened with OpenMut ex() Cr eat eMut ex() will openthe
Mutex if it already exists. They both take the name of the Mutex as a parameter and return ahandle, whichis
used in al Mutex API calls. The name may be NULL, in which casethe Mutex is unnamed, and will usually be
private to the process in which it was created. Cr eat eMut ex() aso specifies whether the Mutex isinitialy
owned or unowned and, optionally, a security descriptor can be specified, which will dictate how the M utex may
be accessed. Default accessis ‘modify’ and ‘synchronize’. OpenMut ex () specifies which kind of accessis
required to the semaphore. Asking for all access gives modify and synchronize access.

Threads wishing to use aresource protected by a Mutex may request ownership by calling

Wi t For Si ngl ebj ect () , specifying the handle. If the Mutex is unowned, one of the threads requesting
ownership will be given it, and may then access the resource. When finished with the resource, it should release
the Mutex by calling Rel easeMut ex() A thread requesting ownership of an owned Mutex will be blocked
until the Mutex is unowned once more and it gets aturn to have possession, or until the specified timeout period
expires.

While athread has ownership of a Mute, it can make additional wait calls on the same M utex without blocking.
However, it must release the Mutex for each satisfied wait before the Mutex is unowned. Thisis useful when
separate service functions, which could be called from any thread at any time, need to protect the same resource
with the same Mutex. If one such function is called from another in athread that currently owns the Mutex, the
additional wait is satisfied. If, however, the same function is called from another thread, the wait is not satisfied.

Hereis an example of creating an unnamed Mutex with default security, which isinitially unowned:

HANDLE hMutex = CreateMitex(NULL, /* no security */
FALSE, /* unowned */
NULL); /* no nane */

and then to wait on it indefinitely:
Wi t For Si ngl ebj ect (hMutex, | NFIN TE);

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Mutex Protection

* If a thread dies owning a Mutex
— Subsequent wait satisfied with WaATT_ARANDONED
— Waiting thread assumes ownership

« Assume that shared resource protected by Mutex is in
inconsistent state

It is possible that a Mutex may be abandoned, due to the owning thread terminating without releasing the Mutex,
and thus locking up the resource. Only Mutex objects can be abandoned, since Event and Semaphore objects
cannot be ‘owned’.

The system will guard against this. If athread terminates whilst owning a Mutex, the next wait on that Mutex is
satisfied and the waiting thread will be given ownership.

Wi t For Si ngl eQbj ect () returnswith avalue of WAIT_ABANDONED to let the successful thread know
the circumstances. Wai t For Mul ti pl eObj ect s() returnswith avalue of WAIT_ABANDONED if waiting
on al objectsto be signaled, or a value of (WAIT ABANDONED_0 + nindex) if waiting on any object to
become signaled, where nindex is the array index of the abandoned Mutex.

Hereis an example of waiting for the first of an array of Mutex objects to become signaled within half a second:

HANDLE hMut ex[3] ;
DWORD dwResult = WaitForMiltiplebjects() 3, hMiutex, FALSE, 500);

switch (dwResult
case WAIT_OBJECT_O + O: /* object ahMutex[0] was signal ed */
case WAIT_OBJECT 0 + 2: /* object ahMutex[2] was signaled */
case WAI T_ABANDONED 0 +0: /* object abMutex[0] is an abandoned Mutex */
case WAI T_ABANDONED 0 +2: /* object hMiutex[2] is an abandoned Mitex */

case WAI T_TI ME_QUT: /* timeout expired before any object becane
signal ed */

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Using a Semaphore

» CreateSemaphore () to create, OpenSemaphore () 10
open
- ‘Named" or 'unnamed
- Create with initial ‘count’, maximum ‘count’ (2 here)

- WaitForSingleObiect () to wait for Semaphore and
decrement count
« BeleaseSemaphore () to increment count
Time Thread i Thread | Thread k

WaitPorS8ingleObjact ()

WaitForSingleObjeot()
WaitForSingleObject ()

I Thraad k is
1 hinckad

* ReleaseSemaphore () Jl_
1

— ReleaseSemaphore()

A Semaphoreis created by calling Cr eat eSermaphor e() and opened with OpenSenaphor e() . They both
take the name of the Semaphore and return a handle to the Semaphore, which is used in al Semaphore API calls.
If the name is NULL, the Semaphore will be unnamed, and will usually be private to the process that created it.
Cr eat eSemaphor e() specifiesamaximum and initial count for the Semaphore and, optionally, a security
descriptor can be specified, which will dictate how the Semaphore may be accessed. Default accessis modify
and synchronize. OpenSenmaphor e() specifies which kind of accessis required to the Semaphore. Asking for
all access gives modify and synchronize access.

Threads wait on a Semaphore by calling Vi t For Si ngl eObj ect () , specifying a Semaphore handle. All
waiting threads are suspended until the Semaphore count is greater than zero or their individual wait timeout
expires, whichever is sooner. If athread waiting on the Semaphore is successfully released, the count is
decremented. When finished with the resource, it should rel ease the Semaphore by calling

Rel easeSemaphor e() , which will increment the count by the specified amount. This can be useful if the
Semaphore with an initial count of zero, then releases the Semaphore later to increment the count to the
maximum. A Semaphore has no concept of ownership, so if athread successfully claims a Semaphore twice, the
count goes down by two.

Hereis an example of creating an unnamed Semaphore with default security, which has a maximum count of 5
and an initia count of O:

HANDLE hSem = Cr eat eSemaphor e(NULL, /* no security */
0, /= initial */
5, /* max

NULL); /* no nane */

and then later, after initialization of the resource it protects: Rel easeSemaphore(hSem 5, NULL);
and then, later still, waiting on it indefinitely: Wai t For Si ngl eCbj ect (hSem | NFI NI TE) ;

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Using a Semaphore

* Arbitrate limited multiple access to shared resource

* No concept of ownership

Threads -

R .

A Semaphore maintains a count, and is signaled if the count is greater than zero. An initial and maximum count
is specified when the Semaphore is created. The count is decremented each time a wait on the Semaphoreis
satisfied, and incremented when the Semaphore is released.

Typica use would be as aresource ‘gate’ for protecting a shared resource that can support alimited number of
multiple accesses. For example, aDLL arbitrating access to communication ports may only be able to support
the same number of simultaneous clients, as there are ports. In this case, the DLL client attach routine would use

Wait on
Semaphore

Wait on
Semaphore

Wait on

Semaphore

'h-ﬂ = Gﬂ
0 =Walt Release
& Semaphore
L
L Y
Release
Access ~* | semaphore
Resource
Release
Semaphore

a counting semaphore to limit the number of simultaneous clients.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Using a Manual Reset Event

* Trigger execution
= Synchronise multiple threads

Triggering Reset | Create Set
thread Event Resource Event -
=0 =1
f
0 = Wait i
1=Go g All walting
threads continue
Wait till synchronised
=8| Event Set | = = === =8>
Other e
non-gynchronised S R
threads Wait till
Event Set -

An Event provides a signaling mechanism to notify cooperating threads that a significant program event has
occurred.

There are two types of Event, ‘Manual Reset’ and ‘ Auto Reset’.

When a Manual Reset (MR) Event is set to signaled, all waiting threads are released. The MR Event must be
explicitly reset to unsignaled, unless the Event was ‘pulsed’ (set and reset atomically).

A typical situation in which one would need to synchronize the operation of different threads would be when one
thread is responsible for creating a file or buffer that other threads are going to write to or read datafrom. The
read and write threads must not attempt to access the data area until it has been created.

The thread responsible for creating the file or buffer must first create a Manual Reset Event in the reset state,
which it then sets when the file initialization is completed. Other threads wishing to use the file wait on the Event
signal, and are suspended until it is set. When this happens they unblock, and can safely start their read and write
operations. Of course, at that time they will probably then have to use a Mutex!

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Using a Manual Reset Event

« CreateEvent () to create, OpenEvent () to open
— ‘Named’ or ‘unnamed
— Create with ‘manual’ flag TRUE, Iinitial ‘signal state’
- ResecEvent () to set ‘signal state’to unsignalled
s« WaitForSingleObiject () to wait for signal
- SetEvent () to set ‘signal state’to signalled

Time Thread i Thread | Thread k

CreateEvent () Or
ResetEvent ()

HaitFaninglanj ect ()
E . 2
l }1Dﬁ“‘“ Thread | is WaitForsipgleobject ()

I [| 2
H Blocked H Thrndd Kk
] 1 i% Hlocked

- SetEvent{ | E'-'Elnt sat l 1

\J

A Manual Reset Event (MR Event) is created by Cr eat eEvent () (setting the ‘manual reset’ parameter to
TRUE) and opened with OpenEvent() They both take the name of the Event and return a handle to the Event,
whichisused in al Event API calls. If the nameis NULL, the Event will be unnamed, and will usually be
private to the process that created it.

Creat eEvent () acceptsa‘state’ parameter which specifies whether the Event isinitialized to signaled
(TRUE) or unsignaled (FALSE). It is normally important to set it to the reset state to avoid premature triggering.
Optionally, a security descriptor can be specified, which will dictate how the Event may be accessed. Default
access is modify and synchronize.

OpenEvent () specifieswhich kind of accessis required to the Event. Asking for all access gives modify and
synchronize access.

A thread can subsequently set an MR Event by calling Set Event () , which releases al threads waiting on the
MR Event, and reset an MR Event by calling Reset Event () , which blocks all threads subsequently
attempting to wait.

Set Event () will not automatically reset the MR Event, but Pul seEvent () will, after releasing all threads
waiting on the MR Event.

Threads wait on an Event by calling Wi t For Si ngl eCbj ect () specifying an Event handle. All waiting
threads are suspended until the Event is set or their individual wait timeout expires, whichever is sooner.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Using an Auto Reset Event

* Trigger execution
= Release one waiting thread

Triggering Reset
thread Event
=0

i
0 = Wait |
1=Go !%

waittin | _ __ __ _
Event Set -
Other
non-synchronised
threads
Wait till
s e e e — — — —— — — ——
Ewvent Set

The other type of Event is an ‘ Auto Reset Event’. When set to signaled, one waiting thread is released and the
Event is reset automatically to unsignaled as soon as the thread is released, blocking all other waiters.

Thistype of Event is used when the signaling thread does not care which of a number of competing threads gets
released. For instance, if aprint spooler is presiding over a pool of printersit may have a number of threads
waiting to dispatch print jobs to different printers.

If aprocess writing to the print spooler doesn’t care which printer the output goes to, perhaps just the first
available printer, then it might signal an AR Event when it had prepared its print job. The ‘ready’ threadsin the
print spooler wait on this AR Event. It isimportant that one, and only one, gets released to service the print job.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Using an Auto Reset Event

s CreateEvent () to create, OpenEvent () to open
- ‘Named' or ‘unnamed
— Create with ‘manual’ flag FALSE, initial ‘signal state’

« ResetEvent () to set ‘signal state’to unsignalled
« WaitForSingleObject () to wait for signal
- SetEvent () to set ‘signal state’to signalled
Time Thread i Thread | Thread k

CreateEvent () Or
ResetEvent () waitForSingleobject()

SetEvent () FEvantsatioi

_..._r.._ then reset to O
- L_J

Evert set : WBltFDrEiﬂ_ﬁlEDh]Eﬂt ()
e 0 : Thraad | iz :
SetEvent () Eventsatta i, 1 blocked :
then reset o0 4 =
L}
: L. Thread k
1 % blockad
[

An Auto Reset Event (AR Event) is created by Cr eat eEvent () (setting the ‘manual reset’ parameter to
FALSE) and opened with QpenEvent () They both take the name of the Event and return a handle to the Event
whichisused in all Event API calls. If thenameisNULL, the Event will be unnamed, and will usualy be
private to the process that created it.

Creat eEvent () acceptsa'state’ parameter which specifies whether the Event isinitialized to signaled
(TRUE) or unsignalled (FALSE). It is normally important to set it to the reset state to avoid premature
triggering. Optionally, a security descriptor can be specified, which will dictate how the Event may be accessed.
Default accessis ‘modify’ and ‘synchronize’.

OpenEvent () specifieswhich kind of accessis required to the Event. Asking for all access gives modify and
synchronize access.

A thread can subsequently set an AR Event by calling Set Event () , which releases one thread waiting on the
AR Event, and automatically resets the AR Event. The AR Event can be reset by calling Reset Event ()
Threads wait on an AR Event by calling Wi t For Si ngl eCbj ect () , specifying an Event handle. All waiting
threads are suspended until the Event is set or their individual wait timeout expires, whichever is sooner.

Hereis an example of creating an unnamed AR Event, with default security and initially unsignalled:

HANDLE hEvent = CreateBEvent(NULL, /* no security */
FALSE, /*auto reset */
FALSE, /* not signaled */
NULL); /* no nane */

Hereis an example of waiting for it indefinitely:

Wi t For Si ngl ebj ect (hEvent, INFINITE);

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Time

Win32 Programming for Microsoft Windows NT

Multiple Waiting on Mutexes

to TRUE

|

claim Mutex

* ‘Wait alf parameter of WaitForMultipleObjects () set
& I
- Guaranteed to avoid deadlock
e
Wait to Shared Release
claim Mutex Resource 1 Mutex
o
'
vy
Wait to Shared Release
Resource 2 | Mutex
Wait to _
Thread k —— e —— — ————
[Thread k 0| cim both

Mutexes

Waiting on multiple Mutex objects would typically be used to ensure that a thread had simultaneous exclusive
access to two or more resources. To wait for al synchronization objectsin a group to become signaled, use
Wi t For Mul ti pl eObj ect s() witha'wait al’ flag set to TRUE.

n the diagrams above and below, thread k is waiting for ownership of both shared resource 1 and shared resource
2, each of which is protected by a Mutex object. These Mutexes are currently owned by threadsi and

respectively.

Thread k has requested ownership of both of the Mutexes. Thread k is suspended until this dual ownershipis

established.

When threadsi and j relinquish their respective Mutexes and they are both unowned, thread k obtains ownership

of both, and prevents any other threads from accessing the associated resources. When it has possession of both
Mutexes it has exclusive access to both shared resources. Once it has finished accessing the resources, thread k

Thraad

:

should release both Mutexes.

WaitForSingledbject (]}

Thinaad | oans
Puten 1

HelosagaMutaxi)

Thread |

\

WaitForSingleObject{)

\j

ReleasaMutax(]

WaitForMultipleObjectal. ..,

Tnread | qwrs
Miutex 2

Thresd k

I

THUE,

Thread k is
mlocked

Thread & oang balh
bulemas

ReleoaopeMutex{)
RealeaaseaMutex{)

mailto:jplachy@jps.at

Time

Win32 Programming for Microsoft Windows NT

Multiple Waiting on Events

* ‘Wait alf parameter of WaitFor

FATLSE

Wait till
either

Event set

MultipleObjects () setto

ar
o
Signal
S — -
Ewvent
7}
N
Signal
- Event .
N . E— E—— — .—

A thread waiting on the first of agroup of Events to be signaled would be suspended until the first of the Events
was signaled, and would then resume executing. To wait for one synchronization object in a group to become
signaled, use Wi t For Mul ti pl eObj ect s() with a‘wait all’ flag set to FALSE.

Thisisthe situation illustrated in the diagrams above and below. Thread k might be waiting to respond to data
from one of three potential sources. It would perform a compound wait, suspended and therefore not wasting
CPU cycles, until one of threadsi, j or n signaled an Event, to indicate that data was available.

Note that a wait records that an Event has been signaled, even if it is reset again before the thread waiting on the
Event semaphore is next scheduled to run.

Thread i

'

CreateEvent{) or
ResetEvent)

| Ewentl1seto$

= ZacEventc(} Ewenii seiioi

Thread j

CreateBEvent () or

RopetEvent ()

WaltForMultipleObjects(. .

Ewant 2 5&i fo O

Thraad k

Thread k i
mockan

SatBEvant ()} Evert F sot ol

\J

g

—

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

.+ FALEE,

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Sharing synchronisation Objects

» Named synchronisation objects
- Create with name in one process
— Open by name in another process
* Handle duplication
— Create unnamed object in one process
— Pass handle and process ID to another process
— Duplicate handle in receiving process
* Handle inheritance
— Dpen handles can be inherited by children
— Object handles and creating process must allow this

Example of using a named synchr onization object:

/*Any process can try opening, else create if it fails */
HANDLE hMut ex = OpenMut ex(MUTEX ALL_ACCESS, FALSE, “sharedmutex”);

if (!'hMutex)
hMut ex = CreateMutex(NULL, FALSE, “sharednutex”);

Example of using an unnamed synchr onization object: handle duplication:.

/ *sendi ng process*/
HANDLE hMut exAnon = CreateMutex(NULL, FALSE, NULL); /* use IPC to pass
DWORD dwPI D = Get Current Processl d(); /* these to another process */

/* receiving process */

DWORD dwPI D; /* receive these two from*/

HANDLE hMut exAnon; /* the other process */

HANDLE hMut exDup;

HANDLE hProcessCreate = QpenProcess(PROCESS DUP_HANDLE, FALSE, dwPID);

Dupl i cat eHandl e(hProcessCreate, hMitexAnon, GetCurrentProcess()
&Mt exDup, 0, FALSE, DUPLI CATE_SAME ACCESS);

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Example of using an unnamed synchronization object: handle inheritance

/* parent process*/

SECURI TY_ATTRI BUTES sa ={si zeof (sa), NULL, TRUE};/*inheritable*/
HANDLE hMut exTol nherit = CreateMitex(&sa, FALSE, NULL);

char szCndLi ne [25];

BOOL bl nherit = TRUE

STARTUPI NFO si ={0};

PROCESS | NFORVATI ON pl ;

sprintf(szCndLine, “% %", “child”, hMitexTol nherit);
Creat eProcess(szCndLine, NULL, NULL, blnherit, 0, NULL, NULL, &si, &pi);

/* child process*/
HANDLE hMut exI nherit ed;
char szExeNare [25];

sscanf (Get CommandLi ne() “% %", sztxeNanme, &hMitexl|nherited)

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Using Critical Sections

= Arbitrate single access to a shared resource

= Within a single process
* Very similar to Mutex, but faster because not in kernel
» Different API

— E=pecially waiting

« |deal for serialising access to GDI
- GDI abjects are per process, but not serialised on Windows NT platform

1 = Unowned = Go Leave
- Wait to —
o 0 =0Owned = Wny critsec
i
ol
Wait to \ L,?fn".”i
Threads - ™= | enter critsec e i
Resource
Leave
Wait to
=" | enter critsec critsec

Multiple threads within the same process needing to use a serially reusable resource(SRR), such asadata area, a
device, or a section of non-reentrant code, can use a Critical Section to ensure that only one thread at atime has
access to the resource. Thisis similar to a Mutex, but to use a Critical Section the threads must be in the same
process. Thereis no concept of waiting on multiple Critical Sections, nor isit possible to specify atimeout on
waiting for one to become unowned. Using a Critical Section is faster than a Mutex because it is purely a Win32
primitive, and not part of the underlying operating system.

Once the Critical Section has been initialized, each thread should request ownership before attempting to access
the resource. Only the thread that owns the Critical Section can proceed to enter the protected resource, and it
should relinquish ownership as soon asit has finished using it. The system queues subsequent requests for the
Critical Section, and transfers ownership to one of the waiting threads as soon as the Critical Sectionis|left.
Threads that have requested the Critical Section are blocked until it istheir turn to own it.

A typical situation in which one would need to synchronize the operation of different threadsin order to guard a
SRR, would be when multiple threads have read and write access to a global variable. Each thread would need to
request ownership of the Critical Section beforeit could enter code that performs read / write operations on the
variable. When access to the variable was finished, the Critical Section would be relinquished.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Using Critical Sections

s TnitializeCriticalSection() to create
— Initially unowned
« EnterCriticalSection() to wait for Critical Section
available and claim it
» LeaveCriticalSection () to relinquish it

Time Thread i Thread | Thread k
— EntercCriticalSection()
EnterCriticalSection() t
Thread | owne EnterCriticalSaction()
Coritical Section I } L""’E:?':Ll
O HE

— LeaveCriticalSection() =y

Thraad j owns = blocked

Critic:al Section

Thread k owns
I~ Critical Section

|

|

|

|
LeaveCriticalSection() i:

! :

A Critical Sectioniscreatedby acalltol nitializeCritical Section() Thistakesasaparameter the

address of avariable of type CRITICAL_SECTION. This variable must not be modified, and must be treated as
opaque. The address of this variableis used in all subsegquent Critical Section API calls. The Critical Sectionis

initialized to unowned.

Threads wishing to use a resource protected by the Critical Section may request ownership by calling
EnterCritical Section() Ifthe Critical Section isunowned, the first thread requesting ownership will be
given to it, and may then access the resource. When it is finished with the resource, it should relinquish the
Critical Section by calling LeaveCriti cal Secti on() A thread requesting ownership of an owned Critical
Section will be blocked until the Critical Section is unowned once more, and it isthat thread’ s turn to have
possession.

While athread has ownership of a Critical Section, it can repeatedly enter the same Critical Section without
blocking. However, it must leave the Critical Section for each satisfied entry, before the Critical Sectionis
unowned.

Once finished with, Critical Sections can be deleted with DeleteCritical Section(), after which they become
invalid. Critical Sections cannot be deleted if they are owned.

Hereis an example of creating a Critical Section:

CRI TI CAL_SECTI ON cs;

InitializeCritical Section(&cs);

and then to wait on it indefinitely, enter it and relinquish it:

EnterCritical Section(&cs);/*access protected resource*/
LeaveCritical Section(&cs);

and then delete it when finished with:

Del eteCritical Section(&cs);

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Interlocked Variables

« Atomic operations on a 32-bit variable shared amongst
threads

* Increment and test
* Decrement and test

» These are the primitives on which higher-level
synchronisation features are built.

I nt er lockedl ncrenent () andl nterl ockedDecr enment () allow synchronized access to a 32-bit
variable that is shared by multiple threads in the same or in different processes. These functions automatically
increment and test or decrement and test the variable. This avoids the situation where thread | could increment a
variable but be interrupted by thread 2, which also increments the same variable, before thread | can check its
resulting value.

Obviously, the threads of different processes can use this mechanism only if the variable isin shared memory.

The variable should be 32-bit aligned to work on al Win32 processor configurations. These are the primitives
that alow the implementation of higher-level synchronization features.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Deadlock and Race Conditions

* Watch out for deadlock situations!

Process 1

WaitFor8ingledbject();

Process 2
WaitPFor8ingleObject();

'

WaitForsingleObject() ; Je

It is possible to have a situation where two different threads need access to the same two Mutexes
simultaneously. If the threads try to claim the Mutexes in the wrong order, they could end up in a position where
each has claimed one Mutex and is waiting to claim the other without any possibility of doing so. Thread 1 has
claimed Mutex A and is waiting on Mutex B. Thread 2 has claimed Mutex B and is waiting on Mutex A, which
it can’t get because thread 1 has claimed it and is waiting on Mutex B which has been claimed by Thread 2
whichis.... Deadly embrace!

This situation can be simply resolved by using Wai t For Mul ti pl eObj ect s() with the ‘wait all’ flag TRUE.
Thiswill not return until it can claim both Mutexes at the same time.

Situations can also occur where threads are racing against each other to complete atask and wait for a
synchronization object to become signaled. If one thread has a slightly higher priority it may be the one to keep
getting to proceed, in which case it is pointless having multiple threads. Make sure that al threadsin your
application are getting a chance to execute.

The exact release order of threads of the same, or different prioritiesis difficult to determine. One might expect
that it was based on the priority of the waiting thread or the length of time the thread had been waiting - perhaps it
is! It does seem to depend on a number of things -for instance, whether the code is running on Windows 9x or
Windows NT, since the schedulers behave slightly differently, and on the priority class of the waiting threads.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Summary

* 4 types of dedicated synchronisation object

= Mutex
— Semaphore within or between processes
- Event

— Critical Section within a process
* Each type has own API
« Common waiting API

» Other types of object can also be used for
synchronisation

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

