Win32 Programming for Microsoft Windows NT

Multitasking

Architecture
Applications, processes and threads
Creating asynchronous processes
Creating and controlling threads
The scheduler and priorities

e C run-time library issues

Multitasking is a key feature of Windows 9x and Windows NT. Welook closely at two Win32 primitives; processes and
threads. A process is an instance of an executing program. A thread is a unit of execution within a process.

In this chapter, we look at how to launch, control and close processes and threads from within an application. We study the
operation of the scheduler, and examine the implications of writing multi-threaded applications.

Objectives
When you have completed this chapter, you should be able to:

Describe the architecture of Windows 95 multitasking.

Describe the role of processes and threads.

Write programs, which launch asynchronous processes.

Create and control multiple threads within a process.

Explain the operation of the scheduler, and the way that it distributes CPU cycles amongst threads according to their
state and priority.

Use C run-time library support for multi-threaded applications.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

16-Bit Tasking Vs 32-Bit Tasking

16-bit

(et

16-bit | [16-bit [32-it 32-bit 4_52"—”&1”
App [**]App \App App | | |ApP

KERMEL USER GDI

* Non pre-emptive multitasking amongst 16-bit
applications

* Pre-emptive multitasking for 32-bit applications

= A word of warning - badly-written 16-bit applications
can hang Windows 95 user interface

Existing 16-bit applications running under Windows 95 are non pre-emptively multitasked against each other as
they were under Windows 3.x, but are collectively, pre-emptively multitasked against al other threads (some of
which will include those bel onging to 32-bit applications).

Under Windows 3.x, there was only ever one thread of execution, and applications were expected to be
cooperative, something that caused problems when one application hogged the CPU. With the arrival of pre-
emptive multitasking in Windows 95, supporting Windows 3.x applications posed problems.

Multitasking issues arise because Windows 3.x applications never expect to be pre-empted; the only instances
where Windows took back control of the CPU were through control APIs such as GetM essage() or

PeekM essage() This gave rise to a serious problem in the DLLs USER.EXE and GDI.EXE, which both serve 16-
bit and 32-bit applications concurrently. The problem isthis: code in these DLLS s non reentrant; that is, a
thread cannot be in the midst of executing this code and be preempted by another thread that also wants to
execute code in the same DLL. Thisis because of state data contained within the DLL, which cannot be restored
to the original thread when it getsto run again. So, the designers chose to guard sensitive non-reentrant 16-bit
code with a single mutex, which means only one thread can ever be executing that code at atime, effectively
blocking all other threads wanting access until it has completed and released the mutex. When a 16-bit
application gains access to the CPU to do some work, the mutex isimmediately and transparently locked until
the task yields through one of the control APIs mentioned earlier, at which point, the mutex isreleased. If a
Win32 process needs to execute any of the 16-bit code mentioned, it must wait until the mutex is released.
Should abadly behaved 16-bit application hang, then the user interface also hangs, as the user interfaceis
sensitive 16-bit code and the application has the mutex locked!

Thisis not a problem for a system in which only 32-bit applications are running. When a 32-bit application
makes a call that translates to sensitive 16-bit code, the mutex is only locked at the point of call and immediately
released after the call, as opposed to locking the mutex for the duration the application is running.

It should be noted, however, that even though the user interface may be hung by a badly behaved 16-bit

application, 32-hit application threads that do not make user interface calls will not suffer (as they never haveto
wait for exclusive ownership of the mutex) and will continue to execute as normal.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Processes and Threads

« A process is an instance of a running program
— It owns a collection of system resources

* A thread is the asynchronous unit of execution within a
process
- A process may have several threads

Windows 95 allows a user to run several applications simultaneously, so that non-interactive tasks can berunin
the background while the user continues with other work in the foreground. The user can aso run multiple
copies of the same program at the same time.

Less obviously, Windows 95’ s facility for running several parts of a single application simultaneously allows the
programmer to improve the performance of many applications by designing them so that individual
programming tasks are carried out independently and in parallel (asynchronously), rather than in sequence.

The two key operating-system object types that have amajor role to play in multitasking are the 'process’ and
the ‘thread’. A processis an instance of arunning program. Each process owns its own resources (code, data and
thelike), which are located in its own private 4GB address space. Any such resources created by a process are
destroyed when the process terminates. A thread is a unit of execution within a process. Each thread has a
function to execute, and a CPU register state and stacks to enable the operating system to pre-emptively schedule
them. Processes can contain several threads. Threads are used by the programmer to perform asynchronous
subtasks that cooperate towards a common goal, their combined effect being the purpose of the process to which
they belong.

The Virtual Machine Manager (VMM) component is responsible for determining how the operating system and
applications use the processor. Multitasking under Windows 95 is a priority-based pre-emptive implementation.

The VMM schedules threads for execution and maintains alist of threads that are ready to execute, but are
simply waiting their turn. When a currently executing thread reaches the end of itstime slice, or quantum (20
ins.), the VMM selects the highest-priority thread from the ready list and performs a context switch to it. A
context switch involves suspending the execution of the current thread, saving its state (e.g. the contents of the
processor registers), restoring the state of the new thread and allowing the new thread to resume execution. In
most cases, athread will not run for its complete time quantum, either because it blocks on an API function, or
because a higher-priority thread becomes ready. With the exception of the VMM and real-time threads, any
thread can be pre-empted at any time.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

To facilitate the ‘magic’ of multitasking, the VMM comprises two discrete software components. the primary
scheduler and the time slice scheduler. These two entities work together to ensure that the highest-priority thread
isaways running and that multitasking is as smooth as possible.

It should be noted that only 32-bit applications can make calls to the Win32 API, and as such are the only type of
application that can have multiple threads of execution. Existing 16-bit applications are inherently single
threaded, but may of course be ported to become 32-bit, enabling them to make calls to the Win32 API.

Note, Windows 95 is a single CPU operating system, unlike Windows NT which is multiprocessor aware.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

A Process

* A resource-containment environment

Static Process #
resources
{private) Environmaent Memory .
Dynamically
Data allocated
resource
Open Files
Containment
environment

A processisa‘resource ownership and containment environment’ that defines a program that is |oaded into
memory and is executing. A process defines the context in which the execution occurs, and owns statically
allocated resources, such as code, data and stack space, or dynamically allocated resources, such asfiles,
memory and pipes.

Windows 95 maintains a unique set of page tables for each process that define a private 4GB logical, or virtual,
address space and map it on to available physical memory. A process can only address memory that is referenced
by an entry in its page table, so virtual memory owned by one processisinvisible to al other processes, ensuring
that processes are protected from each other.

The work of aprocessisdone on its behalf by its threads of execution. Each process has at least one thread of
execution. When a processis started up it has asingle thread called the ‘primary’ thread, but additional threads
can be created. Because of policiesimposed by the C run-time libraries and Win32, this primary thread has some
attributes which differentiate it from subsequently created threads; it is, for instance, normally responsible for
ending the process. However, Windows 95 does not consider the primary thread as anything special, and will
only terminate the process when all threads have terminated. There is more on terminating processes and threads
later.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Creating a New Process

« New process starts asynchronously
* Options include starting:

- With separate console

- In background (detached)

- Initially suspended
- With new priority class

| Creating Process

CREATE FLAGS
PROGRAM MAME
ARGUMENTS

. ENVIRONMENT
.=~ APPEARAMCE
"~ & PROCESS INFO

CreateProcess()

* Returns PROCESS_INFORMATION
structure

- Handle to process, process |D

- Handle to thread 1, thread 1 1D

A thread in a process can start a new asynchronous process by using Cr eat ePr ocess() .If successful, this
causes the system to create a process object with a 4GB address space into which it maps an executable image.
The system also creates a primary thread object, which is made known to the scheduler. The main thread of the
new process won't necessarily be executing when Create Process() returns. It depends on a number of things;
whether the new process was created with its primary thread initially suspended, the thread priorities of the
calling thread and the primary thread of the new process. Do not make any assumptions. The primary thread of
the new process first executes the C run-time start-up code, which then calls the entry point of the application,
normaly mai n() or W nMai n() .

Theinitial execution environment of the new processis determined by the creating process in the parameters
passed to CreateProcess() . TO the system there is no special relationship between the two processes; for instance, the
creating process can terminate without affecting the execution of the new process.

There are anumber of parametersto Cr eat ePr ocess() .The‘image name parameter is a null-terminated
string defining a fully qualified path name for the executable image to be mapped into the address space of the
new process. Win32 will not look down the directories specified by the PATH environment variableif it cannot
find thefile, or if it isnot fully qualified.

If the image-name parameter is NULL, then the executable image is deduced from the first token (argv[Q]) in the
‘command line’ null-terminated string parameter, and Win32 will look down the PATH for the executable image
file. Tokens in the command-line parameter are space separated, as you would type them in a norma command
shell. This command lineis available to the new process by calling Get CommandLi ne() .or by using the
normal argc /argv mechanism in standard C programs. If the commandline parameter is NULL, then the new
process has no command line.

By default, a new process belongs to the same process group as the creating process. It can become the root
process of anew process group (CREATE_NEW_PROCESS _GROUP).

The creating process can debug the new process only (DEBUG_ONLY _THI S _PROCESS), or the new process
and any of it’s descendants (DEBUG_PROCESS).

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

The new process can initially be started suspended (CREATE_SUSPENDED) so that it will not run until it is resumed
by another thread by calling ResuneThr ead() .

The process priority class can be specified
(IDLE_PRIORITY_CLASSNORMAL_PRIORITY_CLASSHIOH_PRIORITY CLASS, or
REALTIME_PRIORITY_CLASS), which determines the range of priorities at which all threads within the new
process will execute.

If no priority classis specified, and the creating process has class real time ‘high’ or ‘normal’, the priority class
of the new processis normal. If no priority classis specified and the creating process has idle class then the
priority class of the new processisidle.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Process Appearance

*» STARTUPINFO parameter of CreateProcess()
» Mostly display characteristics of applications

E RELNOTES. RTF - W
File [dt VMiew insed

- soreen pixel window size
- goreen pixel window position
- initial window state

& 151 g] %1 fﬁ% - feedback cursor)
Atial g
= A e indow os
E R T - screen pixel window position I
- character cell screen buffer size |

_The Next and Pravious buttons and me - character cell display attributes |

ForH sF - window title
ek M s - standard input handles

= feadback cursor

—— e e

A creating process can specify display characteristics associated with anew process. Cr eat ePr ocess()
accepts a ‘startup information’ pointer parameter which references a STARTUPINFO structure, whose members
define these characteristics. The creating process can specify values for any subset of the characteristics; default
values are used for those not specified. One useful application of the STARTUPINFO isto force a feedback
cursor to be displayed during the initialization of the new process. Another is to facilitate standard handle
redirection, which is discussed | ater.

Once started, a process can use Get St ar t upi nf o() toretrieve the STARTUPINFO structure that was
specified when it was created.

For Win32 GUI processes, the nCmdshow parameter is always set to SW_SHOWDEFAULT. This forces Win32
to use afield in the STARTUPINFO structure specified at process creation time, in order to decide how to show
the application main window for the first time, e.g. hidden, minimized or maximized. If the Cr eat eW ndow()
that created the main application window uses UW_USEDEFAULT parameters for initial size and position,
fields in the same STARTUPINFO structure are used to decide the pixel width and height of the window, and
the screen pixel location of the window.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Processes and Thread Handles

* |dentify current thread - GetCurrentThread()
*» Identify current process - GetCurrentProcess()

What is my thread

Who is the Current |
handle 77 1

process 77

When a process obtains an open handle to a Windows 95 object through aWin32 API call, the reference count
on the object isincremented. A handle so obtained is private to the process that obtained it, and references an
entry in the handle table maintained for that process. It is meaningless to another process. The open handleis
closed with acall to CloseHandle() which decrements the object-usage count and deletes the object from the
system if the usage count goes to zero.

On successful process creation, CreateProcess() causes both a process and a thread object to be created with a
reference count of |. However, it also fillsin a‘processinformation’ pointer parameter that references a
PROCESS_INFORMATION structure supplied by the calling process. This contains the new process and
primary thread details; the handle and ID of each. Both processes and threads are objects, accessed like any other
by handle. The two new handles in the process information structure cause the usage count on the new process
and thread objects to rise to 2. These new handles are private to the creating process, and are its reference to the
new process and thread. If the creating process decides to close these handles, it will not cause the new process
and thread objects to be unloaded from the system. The process ID and the thread 1D, however, are globally
unique identifiers that reference the new process and thread. These I Ds are reused when threads and processes
terminate, and are freed, so be careful about hanging onto them once they’re past their sell-by date. All the time
you have an outstanding open handle to a process or thread you should be safe. Process and thread IDs are
obtained by using Get Cur r ent Processl| d() and Get Current Thread() .

Calling Get Cur r ent Thr ead() obtainsahandle to the calling thread and

GetCurrentProcess() obtains a handle to the calling threads process. These are often used for self identification.
Be careful; these are pseudo handles, and obtaining them does not increment the usage count for the current
process or thread object. They are ambiguously defined; they equate to system-defined values of - and -2, which
mean ‘the current process’ and ‘the current thread’. Their useis restricted. For instance, you could not pass a
handle returned from Get Cur r ent Thr ead() inone processto athread in another process to duplicate and
use, because it would reference the receiving thread. To obtain an unambiguous current process or thread handle,
the pseudo handle would need to be duplicated.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Sharing Objects Between Processes

» Handles are process specific
Process 1

Mnamed objects"/

CreateX¥X{..., lpName)}
shared Process 2
MHandle duplication®/ name
CreateXXX(): > OpenkXX{..., lpName); J
GatCurrentPFrocessId(): Y |PC §
: = £1 pid nProcess ()
Minheritance*/ & P! [~ Ope :
|~ | handle | MuplicateHandle ()’ et

CreateXXX();:
CreateProcess() s r.

o /| Command-line |
G —— 1 4

i R T Ed

et

CetCommandLine() ; h}

So, object handles are process specific. How do we share objects?

One way isto share objects by name; one process creates the object by name and obtains a process-specific
handle, and another opens it using the same name to obtain its process-specific handle. Beware; the names of
event objects, semaphore objects, mutex objects, and file-mapping objects share the same name space. If a
specified name matches the name of an existing object of a different type, an error occurs. Names cannot contain
the null character. A NULL name specifies an unnamed object, which is then normally used privately within the
processin which it is created.

Whenever an open handleis requested from aWin32 API, there will be an ‘inherit handles parameter that
specifies whether the resulting handle is to be inherited by new processes created by the calling process. Any
open handles so marked as inheritable can be inherited by a new process, if the ‘inherit handles' parameter of
CreateProcess() is TRUE. Such inherited handles are newly opened handles, even though they have the same
value in the newly created inheriting process, and the same access rights. Thus, the reference count on an object
referenced by an inherited handle does increase and the handle has its own separate state, so the creating
processes and the newly created inheriting process can independently reference the same object.

The last mechanism relies on one process to pass one of its process-specific handles and its process ID to some
other process viaan |PC mechanism, to enable the handle to be duplicated to a new process-specific handle for
the receiving process, using Dupl i cat eHandl e() Handles are more commonly duplicated in one process
than across processes. We will see thislater with standard handle redirection.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

More Inheritance

* A process can inherit from its creator:
= Environment variables, current directory
— Console
= Open handles
- e.g. files, pipes, etc.

* A process cannot inherit from its creator:
— Private memory handles
— GDI handles
— Priority class

If the ‘environment’ memory block parameter to CreateProcess() is NULL, a process inherits the environment of its
creating process. If the creating process passes a pointer to an environment memory block, which isanull-
terminated block of null-terminated strings, then it can pass a brand new environment. Any process can obtain its
environment variables by calling Get Envi r onnment St ri ngs() , or more specifically

Cet Envi ronment Vari abl e() .

If the ‘current directory’ string parameter to Cr eat ePr ocess() isNULL, aprocessinheritsthe current
directory of its creating process. Otherwise, the creating process can set the current directory of the new process
with afully qualified path name, including drive | etter.

Asdiscussed earlier, acreating process can also alow the new process to inherit any of itsinheritable open
handles by setting the ‘inherit handles’ parameter of Cr eat ePr ocess() to TRUE.

If aprocess has an inheritable handle it doesn’t want to be inherited, or vice versa, then it can create a duplicate
with Dupl i cat eHandl e() and closethe original with Cl oseHandl e() That new process does not inherit
any inheritable open handles obtained by a creating process after a new processiis started.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Hereis an example of starting a process with acommand line, a new environment and a new current directory:
STARTUPI NFO si ={sizeof (si) } ; /*set this up with defaults*/
PROCESS_TNECORVATI ON p1; /*systemfills this in*/

char *env = “paths c:\Q include=\inc\Aibs\lib\O O ;
BOOL bl nheri t Handl es TRUE;

BOOL bSuccess = CreateProcess(NULL, “newprocess -a -d” nuL, nuL, FALSE,
NORMAL_PRI ORI TY_CLASS, any, “c:\", &si, &pi);

Processes cannot inherit scheduler priorities, private memory handles or GDI object handles.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Process Termination

* A Win32 process dies naturally when
the last thread terminates, however...

* It may commit suicide with ExitProcess(uiCode)
= This happens implicitly by default when the last thread ends or on
unhandled exceptions
* It may be murdered from within or without using
TerminateProcess(hProcess,uiCode)

* Process termination code available with
GetExitCodeProcess()

* All process resources are cleaned up when process
terminates
— E.q. open handles are closed

A Win32 process will not terminate until the last thread terminates; the process remainsin the system until all
threads in the process are terminated, and all handles to the process and its threads have been closed by calling
Cl oseHandl e() .So natural processtermination is by the last thread terminating naturally. In this case the
process return code is the return code of the last thread.

However, athread will also terminate under two other conditions:

Suicide. Any thread in a process can make an explicit call to Exi t Process() .The processreturn valueisthe
parameter supplied to Exi t Process() .Exi t Process() will never return, and will terminate all running
threads in the process abruptly.

The primary thread is normally responsible for ending the process. The C run-time clean-up code ensures that
Exi t Process() iscalled on termination of the primary thread of execution (the end of the mai n() or

W nMai n() function) by ar et urn,orexit () or hitting the ending }. The process return valueis the return
value from the primary thread.

However, i f the primary thread calls Exi t Thr ead() the processwill not terminate until the last thread dies
or unless another thread calls Exi t Pr ocess() .

A critical-error abort or an unintercepted execution fault, such as a general protection violation or a page fault,
will also cause Exi t Process() tobecalled.

Thereturn value is the value of any exception code. Of course, you can choose to handle exceptions yourself and
decide whether terminating the processis the correct course of action, or whether the process can recover and
carry on.

Remember to check the system-defined exception codes to ensure that your process return codes do not conflict.
Seethe documentation on Get Except i onl nf or mati on() for more details.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Murder. One process may terminate another if it has the correct security access, by calling
Ter m nat ePr ocess|() .Thereturn value is the parameter supplied to Ter m nat ePr ocess() .
This should only be used under extreme circumstances. The reasons are discussed later.

When a process terminates, any open handles are closed automatically. When the process terminates, its
termination status changes from STILL_ACTIVE to the termination code of the process, and the process object
is set to asignaled state to satisfy any threads waiting on it to end. The process return value is available to
another process by using Get Exi t CodePr ocess() ; areturn of STILL_ACTIVE meansit hasn’t terminated
yet.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Process Termination Issues

+ ExitProcess() kills all threads and won’t return

— Will notify DLL of process detachment
— Will not notify DLL of any thread detachment
— Will not perform any thread termination handling if called explicitly

+ TerminateProcess() kills all threads
= Will not notify DLL of process detachment
= Will not notify DLL of any thread detachment
— Will not perform any thread termination handling

« Any thread can end the process if it is responsible for
ensuring the controlled termination of other threads
- Still won't work if terminated from another process

Care should be taken in multi-threaded processes concerning the way in which the processis closed. If the
primary thread, or any other thread, explicitly calls Exi t Pr ocess() or causesit to beimplicitly called by the
C run time, then al other threads will terminate abruptly. There are two problems here.

Processes use DLL s that execute in the context of the process. DLLs provide an entry/exit function, which
notifies the DLL when a processis attaching to/detaching from the DLL. The entry point process attach’
notification occurs when the process starts up. The entry point ‘ process detach’ notification occurs when
ExitProcess() is called. The entry point ‘thread attach’ notification occurs when a subsequent thread within the
process starts up. The entry point ‘thread detach’ notification occurs when Exi t Thr ead() iscaled.

Exi t Thread() isdiscussed later.

The calling of this DLL function will normally perform DLL initialization and clean up functionality, soitis
quite important that it is called when it expectsto be! For instance, the DLL may be writing DLL state changes
to disk on detach notification.

Cdling Exi t Process() will trigger the DLL process detach notification, but not any thread detach
notifications. Calling Ter mi nat ePr ocess() will not trigger the DLL process detach notification, or any
thread detach notifications.

Any thread may chooseto install a ‘termination handler’ to perform clean-up operations when athread function
terminates. Because Exi t Pr ocess() never returns, and no more code is executed for the processin any of its
threads, explicitly calling Exi t Process() will not cause any thread-termination handlers to be called. Also,
because Exi t Thr ead() never returns and no more code is executed for that thread, explicitly calling

Exi t Thr ead() will not cause the termination handler for that thread to be called. However, ending a thread
with return, exi t () or by hitting the thread function will work.

Care must be taken with process termination. One approach isto ensure that one thread is responsible for causing

the termination of all other threads, waiting for them all to terminate in a controlled fashion before it terminates.
Even this won’'t work if another process calls Ter mi nat ePr ocess() onyou!

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Waiting on a Process to Terminate

« CreateProcess() returns immediately
— With process details

» WaitForSingleObject() waits for process to terminate
» GetExitCodeProcess() returns termination status

Waiting Process

CreateProcess();
WaitForsingleObject();

Process being
Twalted on

-

Getzxitcadgpruceﬂa{};é?

When designing an application solution it is very often desirable to adopt atools approach, and split the solution
up into many cooperating processes. The pros and cons of using processes versus threads is addressed later. It
maybe necessary to synchronize the operation of cooperating processes, especialy to know when they have
terminated. Remember there is no process structure in Win32, and the termination of a process does not affect
the process that started it.

Traditionally, in Windows 3.x, the only way to start another application and be notified of its termination was to
use W nExec() and then install ahook to watch for tell-tale closing down messages. Waiting for a process to
terminate in Win32 is much easier. A processis a‘synchronization’ object; unsignalled during its lifetime and
signaled when its last thread terminates. Here is an example of waiting on a detached process:

STARTUPI NFO Si {si zeof (si) }; / *set t hi supwi t hdef aul t s*/
PROCESS | NFORVATI ON pi; [*system fills this in*/
BOOL bSuccess = CreateProcess(NULL,/*noi magenane*/
“newpr ocess”, /*conmand | i ne*/
NULL, /*no process security*/
NULL, /* no thread security*/
FALSE, /*don’ t inherit handl es*/
| DLE_PRI ORI TY_CLASSI DETACHED_PROCESS,/ *i dl e priority background task */
NULL, /*inherit environnment*/
NULL, [*inherit current directory*/
&si , /*initial appearance*/
&i) ; / *processi nf ormati on*/

if (bSuccess)

{

if (WaitForSingleOoject(pi.LProcess, INFINNTE) WAIT OBJECT) {
bSuccess = Get Exit CodeProcess(pi.hProcess, &Jwkxi cCode);
Cl oseHandl e(pi.hThread.);
Ol oseHandl e(pi.hProcess);

}
}

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

When the process terminates, its termination status changes from STILL_ACTIVEt o t he termination code
of the process, and the process object is set to a signalled state to satisfy any threads waitingonitt o end. The

process return value is avail able to another process by using Get Exi t CodePr ocess() ;areturn of
STILL_ACTIVE meansit hasn't terminated yet.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Waiting on a ‘Windowed’ Process

= To finish initialisation, or processing specific input
- WaitForinputldie() returns when process waiting for user input with no
input pending
- Only good for applications with message loop in main thread, and only
then if they go into an idle state

- CreateProcess()
- WaitForinputidie()

)

-

« At other times, use IPC synchronisation objects
- Events, semaphores

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

A Thread

e A unit of execution within a process

— Asynchronous procedure
- Convenient method of achieving ‘concurrency’ within a process

Thread 3 'g' p
+ Process
Thread 2 ‘3‘ Resources |~

s

* Pre-emptive thread switching performed by scheduler
« Each thread has its own stacks and register state
» Each thread has a priority

A thread is a dispatchable unit of execution in Windows 9x and Windows NT; it is the basic entity to which the
operating system allocates CPU time. Threads provide a mechanism for carrying out several programming tasks
simultaneously within a process. Each thread has a priority, and the operating system scheduler carries out
switching between threads pre-emptively. Each thread runs independently and maintains a set of data structures
for saving its context while waiting to be scheduled for processing time. These structures include its own set of
machine registers, its own kernel stack, a thread environment block, and a user stack in the address space of its
process. A typical Win32 application will consist of many threads.

From a programming language perspective, athread may be considered as an asynchronous function. When a
normal C function is called, the flow of execution transfers from the calling environment to the function, and
then returns when the function ends. But when one thread starts another, the original continues to run while the
new thread executes concurrently and independently. There may thus be many copies of afunction running
within a process as different threads. Threads of the same process can execute any part of the program’s code,
including a part being executed by another thread.

The operating system divides the available CPU time among the threads that need it. This pre-emptive
multitasking means that the system allocates small dlices of CPU time among competing threads. The currently
executing thread is suspended when its ‘time quantum’ elapses, or if it gets pre-empted by a more important
thread, allowing another thread to run. When the system switches from one thread to another it saves the context
of the suspended thread and restores the saved context of the thread to be run. Although it appears that multiple
threads are executing at the sametime, in fact they are not, as there will only be one CPU.

Creating new threadsis ‘ cheap and fast’ in comparison to processes, in terms of system overhead and time to
initialize internal data structures. Threads have access to the virtual address space of the process to which they
belong. Its threads share global resources of the process and so they communicate simply, but they are not
protected from each other. For this reason, and because threads run asynchronously, the programmer often needs
to serialize access to data using synchronization objects such as critical sections, events, mutexes and
semaphores, to coordinate their activities.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Creating Threads

* Thread may be started:

— Ready to run
.gcrante'l'hreaﬂ{ - : — Suspended
ThreadPunc, . « « } # :
= Specify:
W Thrnndrunc{}l — Stack size
- Argumeants
ExitThread (:' Yy 4 ~ Suspend flag
} — Thread function
. * Heturns:
g W) — Handle to thread
* Thread may terminate due to: — Thread ID

— ExitThread(uiCode)
— Thread function terminates
Terminate Thread({ hThread,uiCode)

Every process has a primary thread of execution, started when the processis created. Any thread can create both
processes and threads. Threads are created with fewer overheads than processes, although they have less
protection between them. Applications are more likely to multitask by using multiple threads in the same process
rather than multiple processes, unless threads with protected, private address spaces are required.

Asynchronous tasks can be carried out on behalf of a process by creating new threads of execution, using
CreateThread() ,specifying:
The size of the stack allocated from the process address space when the thread is created, and freed when the
thread terminates; if O is specified, the default application stack size is used, i.e. that size used by the
primary thread.
The address of the thread function code to execute. and optionally:
The arguments passed to the thread function.
If not specified, the thread handle cannot be inherited.

The system passes back athread handle and ID. The size of the stack for a thread depends on whether it isa GUI
or console application, and on program behavior, e.g. reentrancy.

No assumptions about the sequence and timing of the thread starting execution should be made.

Creat eThr ead() returnsasynchronously to inform usthat athread object has been created. Thisthread is
waiting, along with al othersin the system, to be executed by the scheduler, according to its priority; it may or
may not already have been executed by thetime Cr eat eThr ead() returns.

Thisis an important issue when passing pointer arguments to a new thread; if the memory they reference exists
on the stack, will arguments still be valid when the thread executes?

A thread executes until:

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

ItcalsExit Thread() or thethread function returns; the thread-return value is the parameter supplied to
Exi t Thr ead() or thereturn from the thread function. If the process main thread calls Exi t Thr ead() .
the process will not terminate unless another thread calls Exi t Pr ocess()

Another thread terminatesit using Ter m nat eThr ead() the thread-return value is the parameter supplied
to Termi nat eThread() .

The thread-return code is available to another thread by using Get Exi t CodeThr ead() .Note that a created
thread remains in the system until the thread is terminated and all handles to the threads have been closed by
caling d oseHandl e() Until then, the thread object is set to asignaled state to satisfy all waitson it. No
clean up of resources takes place, except for the thread stack being deallocated.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Controlling Threads

A Erln.l:n'rl:r\ﬂnd

3 THREADS
Cre E-Thznld

. :!uup{nd'ﬂs:ild

Re lgn-'ﬂ::rud 3-

u"i‘ Entercri 31-::. l8ection

Bnt-rﬂ'riF_nnlEuetiblc i
LeavaCritjcalfection 3
wWalcFor gletbject

LeavaeCritcicalSection » g

Exirihrand

One thread can suspend or resume the execution of another by calling SuspendThread() Or ResumeThread().) A
suspended thread is not given CPU time by the scheduler. A thread can suspend itself, but it had better make sure
that another thread is going to resumeit, because it can’'t resume itself! Y ou can never realy be sure where a
suspended thread will suspend execution, so it is hot a good synchronization technique. A thread can be created
suspended, to be resumed later by the creating thread. A thread can use Sleep() to suspend its execution for a
specified interval. Here is an example of creating a suspended thread:

DWORD dwi D;
HANDLE hThread CreateThread(NULL, /*nosecurity*/

p /* default stack*/

finThread,
0!

CREATE_SUSPENDED,

/*thread function*/
[*argunent s*/
/*initially suspended*/

&dw D) / *t hreadl D*/
if (hThr ead)
{
Set ThreadPriority(hThread, THREAD_ PRI CRI TY LOWEST);
ResumeThread(hThread);
}

Some Win32 objects are ‘ synchronization objects . A thread waiting on such an object is blocked if the object is
not signaled. Blocked threads, like suspended threads, are not scheduled, but it is possible to specify the exact
place at which the thread will wait.

A thread is a synchronization object; unsignalled during its lifetime and signalled when it terminates. One thread
can wait for another to terminate.

For threads of asingle process that are all sharing the same resources, it is necessary to control accessto these
resources and to coordinate and synchronize thread actions.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

To do this, threads typically use synchronization objects, like ‘ mutexes’, ‘ semaphores’ and ‘events', to signal
each other in order to synchronize their activities.

These objects can be ‘waited on’, until they attain asignaled state, using APIslike

Wi t For Si ngl eQbj ect (), Wai t For Mul ti pl eCbj ect s() .Threads can also enter ' criticalsections’ of
code, where all other threads in the process are blocked if they attempt to enter the same critical section, until the
critical section isleft.

Athread calsEnt er Criti cal Section() toreguest ownership of the critical section. If another thread
already ownsit, the requesting thread blocks until it is released.

When the critical section is unowned, the calling thread is granted ownership and can accessit. The thread then
usesLeaveCriti cal Section() torelinquish ownership.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Thread Local Storage

« Allows different threads to have different thread-specific
values for the same logical data item

The __declspec(thread) extended attribute syntax in
the MS 32-bit C/C++ compiler is equivalent

Thread 2 Thread M

« API 3’ E
« Thread 1 responsible for:
- TisAlloc()TIsFree() ™ __H . TLS index |
= Any thread: %‘_—‘ TLS index 3
- TisSetValue() .
- TisGetValue() I |] [JTLS index M

Thread local storage (TLS) is a method by which each thread in a processis given alocation(s) in which to store
thread-specific data. An application or DLL can use these to store separate instances of the same logical dataon
aper-thread basis. The TLS functions manipulate TLS indexes, which refer to storage areas for each thread in a
process. A given TLSindex isvalid only within the process that allocated it; it cannot be shared across
processes.

AcaltoTl sAl |l oc() allocatesaglobal TLS index' to represent alogical piece of datathat can have
different values for different threads. Thisone TLSindex isvalid for every thread within the process that
allocated it, and should therefore be saved in aglobal or static variable. When Tl sAl | oc() iscaled, every
thread within the process has its own private DWORD-sized space reserved for it (in its stack space, but thisis
implementation specific). However, only one TIsindex isreturned. Thissingle ILS index may be used by each
and every thread in the process to refer to the unique space that Tl sAl | oc() reserved for it.

For thisreason, Tl sAl | oC() iscalled only once, often by the main thread of a process. Thisis convenient for
DLLs, which can distinguish between the first process's thread connecting to the DLL and subsequent threads of
that process attaching. The thread that calls Tl sAl | oc() might storethe TLSindex in aglobal or static
variable, and every other thread could refer to the global variable to access their local storage space.

Thread 1, and then subsequent threads of the same process, can store different thread-specific valuesin the same
TLSindex, using Tl sSet Val ue() , specifying the index. Win32 guarantees that there are a minimum number,
TLS MINIMUM_AVAILABLE, of TLSindices per process; currently the value is 64. Often, only one TLS
index is sufficient, asit can be used to store a pointer to some dynamic memory. As threads need to obtain their
thread-specific data, they call Tl sSet Val ue() specifying the TLS index; the thread context will dictate
which thread-specific data item gets passed back.

A process should free TLS indexes with Tl sFr ee() , specifying the TLS index, when it has finished using
them. However, if any threads in the process have stored a pointer to dynamically allocated memory within their
local storage spaces, it isimportant to free the memory or retrieve the pointer to it before freeing the TLS index,
or it will be lost.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

The compiler also has extended attribute syntax. It uses a keyword, declspec, to specify that an instance of a
given type isto be stored with a Microsoft-specific storage class attribute. For example, to declare an integer
variable which is used for storing thread-specific data:

__declspec(thread) int tls_i = 1;

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

The Scheduler

» Time-slice scheduler gives out time quantums of CPU to
competing threads based on thread priority

- Pre-emption occurs if thread becomes blocked, or higher priority thread
becomes available

— Round robin for threads of same priority

Threads are given CPU time by the time-dlice scheduler according to their priority, scheduling higher-priority
threads before those of lower priority. The scheduler gives out ‘time quantums’ of CPU time to competing
threads based on their priorities. The scheduler decides which thread receives the next CPU time quantum, at the
end of each time quantum, or if the currently executing thread becomes blocked, or if a higher-priority thread
becomes runnable. It always gives control to the highest priority runnable thread. If several runnable threads
have the same priority, the one that has been waiting longest gets thetime dlice, i.e ‘round-robin’. A runnable
thread is one that is not waiting, e.g. blocked on input, or waiting for a semaphore to clear. Non-runnable threads
are not considered for CPU time until they become runnable.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

General Priority of Threads

*» Threads have a priority level: 0-31
- Scheduler executes thread with highest priority

* Threads have a base priurit!,r level ‘inherited’ from process
— May vary from base as it executes

N

* Real-time priority clas
- For time-critical tasks
- No dynamic priority adjustments

— Dynamic priority boost, with rapid decay back to base

— May affect system performance F e
* Variable priority classes bL
- E.g. keyboard VO, completed disk /O a

There are 32 priority levels divided into two classes -variable class (1-15) and real-time class (16-31), with 31
being highest priority. Priority O isreserved for system use, used for tasks like garbage collection.

Each process has a default base priority level affecting its threads when it is created. A new thread for the
process inherits this base priority level when it starts executing. The thread’ s priority level may vary from this
base as it executes.

Threads with a priority in the real-time class do not have their priority atered by the kernel. Generally, this class
is used for threads used by time-critical programs that need immediate attention from the processor. They will
aways pre-empt lower-priority threads of all other processes, including system processes. Don’t execute areal-
time priority thread for more than a very brief interval, else the system will become unresponsive.

The priority of threadsin the variable classis atered dynamically by the priority scheduler to optimize system
response time; their priorities can be boosted or decremented depending on the execution profile of the thread.
For instance, the scheduler boosts athread’ s priority after releasing it from await (the size of the boost depends
on what it was waiting for). If the event was keyboard /O it would be given alarge boost, if the event was a disk
1/0 request being satisfied it would be smaller. The dispatcher interrupts a thread after each time quantum to
make a scheduling decision. If it isavariable-class thread, it will decrement the thread’ s priority until it reaches
its base priority level. Thusthe priority of a compute-bound thread will gradually decay. Generally speaking, the
scheduler is responsive to the user, so interactive threads run at a higher priority than I/O-bound threads, which
run at a higher priority than compute-bound threads.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Thread Priorities in Win32

» APl
- SetPriorityClass()

- THREAD PRIDORITY HIGHEST (+2)

— All threads in process B THREAD PRIDATY _ABOVE _NORMAL{+1)
B THREAD PRICAITY MORMAL (0]
- rior
$etThr«EEltI!P lority() o B THREAD FRIDRTY BELOW NGRMAL (-1)
- Sets relative delta from priority B THREAD PRIDRITY LOWEST (-2)

class for one thread

1l
THREAD_PRIORITY _TIME_CRITICAL real- e

tirma class|31)

REALTIME_PRIORITY_CLABE(24]

THREAD_PRIORITY_IDLE real-tima class (18] === _ — THREAD_PRIORITY TIME_CRITICAL idie,
HIGH PRIOAITY _CLASS({13) E nirrnal and high chass(15)
- HORMAL _PRIORITY CLASS{laraground) (9)

MNORMAL PRICRITY _CLASS{background) (7)

IDLE_PRICRAITY _CLASS (4)

THREAD_PRIORITY_IDLE ldia, nomma
and high class (1) .

In Win32, things are alittle more complicated. Each thread has a base priority level which can be combined with
arelative delta (+ or - 2) from this base, to provide athread priority. Each process has a priority class which
affects the base priority level of al threads in the process.

The Win32 variable priority class of threads spans 3 ‘ synthetic’ Win32 priority classes:

IDLE_PRIORITY_CLASS Only run when system isidle. Pre-empted when a process of higher priority
class becomes runnable. This class equates to a base priority level of 4.

NORMAL_PRIORITY_CLASS Normal scheduling needs. Will always pre-empt idle processes. This class
equates to a base priority level of 9 if a process window isin the foreground,
7 if not.

HIGH_PRIORITY_CLASS Specia scheduling needs. Will always pre-empt normal and idle processes.
Don’t execute high priority threads for extended periods as this will starve
lower priority threads of the CPU. Typically used for threads that remain
blocked for most of the time, and respond to atime-critical event with a
flurry of CPU activity. This class equates to a base priority level of 13.

The Win32 real-time priority class of threads is represented by one priority class:

REALTIME_PRIORITY_CLASS Generaly this classis used for threads used by time-critical programs that
need immediate attention from the processor. They will always pre-empt
lower-priority threads of all other processes, including system processes.
Don’t execute a real-time priority thread for more than a very brief interval,
€l se the system will become unresponsive. This class equates to a base
priority level of 24.

The relative priority deltas combine with the base priority levels dictated by the priority classes to allow thread
priorities spanning the range 1-15 for the variable priority classes and 16,22-26,31 for the real-time class.
Predefined deltas are THREAD_PRIORITY_LOWEST(-2), THREAD_PRIORITY_BELOW_NORMAL(-1),
THREAD_PRIORITY_NORMAL(O), THREAD_PRIORITY_ABOVE NORMAL(l),
THREAD_PRIORITY_HIGHEST (2).

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Other predefined increments are THREAD_PRIORITY _IDLE, which combines with any variable classto give a
thread priority of 1 and with the real-time class to give athread priority of 16, and
THREAD_PRIORITY_TIME_CRITICAL which combines with any variable class to give athread priority of |
5, and with the real-time class to give athread priority of 31.

One process can spawn another with a specific priority class. If not specified, the default priority classis normal,

unless the creating processis of theidle priority class, in which caseit isidle. All threads are started with a
priority delta of normal, but an application can change this.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Scheduling States

Pl

Scheduler decision:
= higher priority thread
becomes ready or

sWaitForSingleObiect () «time slice expires
sEnterfriticalSection() *SetThreadPriority ()
*Slaep()

«ReadFile() Scheduler decision:

sBeadConaale | jete. *higher priority than

running thread or
stime slice due

* Wait condition satisfied

sResgumaThread ()
sLeaveCriticalSection() efc. T
READY
s SuspendThread () !

This diagram represents a simple conceptua view of scheduling stetes; the real implementation is slightly more
complicated.

Each time the CPU time diceis awarded to adifferent thread, there is a ‘context switch’ ; the context of the
currently executing thread is saved, and the processor state is restored to the context of the thread to he executed.
There are two reasons for a context switch:

Voluntary switchwhere athread gives up the CPU by waiting on an object, or terminating, or setting its priority
lower etc.

Preemption a higher priority thread has become available to run and takes over the CPU.
Watch for deadlock. If you have a higher-priority thread waiting for alower priority thread to complete some
task, be sure to block the execution of the waiting thread, using a wait function (discussed in the next chapter),

rather than having it iterate in aloop. Otherwise, the process will deadlock, since the lower-priority thread will
never get scheduled.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Thread Safety

« Standard C run-time library not reentrant

- LIBG.LIB [apploaton |
» Multi-threaded library support |3 Jay

— LIBCMT.LIB for applications LIBCMT.LIB

— CATDLL.DLL for applications and DLLs

« Use special thread creation/deletion

— beginthreadex()

= _endthreadex()
33

| MSVCRT.LIB

w

MSVCRT.LIB

MSVCRT.DLL

Thenormal C run-time library for applicationsisthe statically linked LIEC LIB. Many functions in the standard
C run-time libraries, including print f() and scanf(), share global data and other resources and therefore cannot
be used in multi-threaded programs. They are ‘non-reentrant’. If athread were to be pre-empted in the middle of
using such a function, the data it needed might well have been changed by another thread by the time it was
scheduled to run again. Thisisno good for DLLs which need to be able to service many threads from many
clients, and multi-threaded clients.

There are specia C libraries to support multi-threaded applications. These include reentrant adaptations of non-
reentrant functions that use per-thread data when needed and use critical sectionsto protect shared data
structures from concurrent thread access.

Applications can link to LIBCMT.LIB, whichisa statically linked, re-entrant C-runtime library.

To build amulti-threaded application that uses C-Runtime, compile with the/MT option and link with
LIBCMT. LIB.

Applicationsand DLLs can link to MSVCRT. LIB, animport library for MSVCRT2 0 DLL, whichisa
dynamically linked reentrant C run-time dynamic link library. DLLs which use C run-time and have multi-
threaded client applications must use thislibrary.

To build an application or DLL which uses reentrant C run-time libraries, the code must be compiled with the
IMD compiler flag. This forces C-runtime header files to define their contents differently in order to support the
reentrant versions of the C run-time library.

Note that there isacaveat to using MSVCRT2 C . DLL. If you have an application which uses the services of a
DLL, and you want to link either the .EXE or the .DLL with MSVCRT. LIB touse MSVCRT2 0 .DLL, then you

must link both with MSVCRT. LIB. If you don’t, the .EXE and the .DLL will not get the same initialization of
variables, and thus callsto the C run-time from the .DLL with parameters from the .EXE will fail.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

These reentrant libraries also include begi nt hr eadex() and endt hr eadex() asimpler C run-time
alternative to creating and destroying threads. These must be used instead of CreateThread() and
ExitThread() if the multi-threaded C-runtime functions are used, because they set up the synchronization
environment needed to ensure re-entrancy. They map down onto Cr eat eThr ead() and Exi t Thread() .

Note. Do not assume that an application is single threaded just because it avoids the explicit creation of
additional threads. That is because supporting code for an application may implicitly create additional threads.

For example, the Control-C processing done for console applications creates an additional thread to call the
applications Control-C handler.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Threads, Processes and Applications

* An application may consist of a number of processes

and threads
PROCESSES E
SINGLE MULTIPLE -
s *Slow creation/deletion |
[*Inter-task communication |
g complex :
T | L [+DOS-like application | *Protection between :
H| E processes -
R *More easily distributed |
E =Priority considerations 4
; M |+Fast creation/deletion 1
s E +Inter-task |
T | communication simple _ ;
I *Mix and match!
E *No protection between
E | threads

A process may contain one or more threads, and can create and terminate other processes. A Win32 application
may therefore use multiple processes, each containing multiple threads.

The design considerations for a Win32 application are summarized in the diagram above. Unlike threads,
processes offer a protected environment, but take much longer to create than threads. It is easier and quicker to
share data between threads within a process, rather than to share data between processes by any of the means of
interprocess communication. Processes are therefore best used for magjor, functionally separate, sections of an
application that are not constantly invoked.

The maximum number of threads that can be created simultaneously in a processis only limited by available
memory.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

The Win32 Input Model

« Desynchronised Input Policy

- L B
message loop

BB Queue o
i 1 Jj Queue
8 = 5
msage |001'J e ;
B<B< Queue =

|

The Win32 input model is different from that of Windows 3.x; input ownership is decided at input time, instead
of at thetimeit is read from the system queue. Each Win32 thread hasits own input queue and associated input
status (functions such as mouse capture, input focus and activation).

This means that the input of each thread is desynchronized with respect to all other threads. Of course, now the
Win32 user interface is multi threaded. If one thread takes an inordinate amount of time to process a message, it
will lock out only the windows owned by that thread. Windows in other threads will be unaffected.

Keyboard input goes to the focus window viathe input queue of the thread that owns the focus window. Mouse
input goes to the mouse under the window or the capture window via the input queue of the thread that owns that
window.

NULL isavalid return from Get Focus() and Get Act i veW ndow() if the current thread doesn’t own the
focus window or active window.

Win32 cannot know ahead of time whether an input thread will set the mouse capture. So by default, all mouse
input between a button down and matching button up is captured, and goes to the window in which the button
down occurred -traditionally what Set Capt ur e() was used for in Windows 3.x.

Now, if Set Capt ur e() iscalled while a mouse button is down, the window will have capture until specifically
released with ReleaseCapture() or until the mouse button is released. Thisiswhat you might expect. More
interestingly, If Set Capt ur e() is caled while amouse button is up, the window will have capture only while
it is over awindow owned by the capturing thread.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Threads and Message Queues

* Messages can be posted to a threads message queue
— PostMessage(); window handle
- PostThreadMessage(); thread |D
- replaces PostAppMessage()
« Main thread can continue execution immediately
— Messages posted to worker threads

In Windows 3., the system enforces serialisation of message processing by implementing a shared message
gueue. This causes aproblem if one application decides to perform alengthy task in response to a message,
without cooperatively yielding control to Windows 3.x periodically; al other Windows 3.x applications grind to
ahalt.

In amulti-threaded application, any thread can call the Cr eat eW ndow() API to create awindow. There are
no restrictions on which thread(s) can create windows. Each thread created by a Win32 application hasits own
message queue. When windows are created, they are ‘'owned’ by the thread that created them, and all their
gueued messages will go viathat queue. All queued and non-queued messages for a window will be processed in
the context of the owning thread. This means that if athread failsto service its queue, then only the windows
owned by that thread would suffer; windows belonging to other threads will behave normally. A lengthy
operation in response to a message in a Win32 application will cause the hourglass cursor to appear only over the
windows owned by the offending thread, and the normal selection cursor to appear over all other windows. An
application performing alengthy task should generally spawn a new thread.

Because window handles are unique across the system, simply posting / sending a message to a given window
will locate the correct thread context, based on thread ownership. Posting messages to a thread without any
windowsis also possible. Post Thr eadMessage() replaces Post AppMessage() and worksin an
identical fashion. The message is posted to the queue of the thread specified. When the message isretrieved at a
later date by the receiving thread calling Get Message() , the HWAD field of the MsC structureis set to NULL.

Using MsgWai t For Mul ti pl eObj ect s() ispossible to wait on the calling threads input queue. The calling
threads input event attains a signaled state when suitable input is available for the thread. A mask parameter
determines the suitable types of input. Possibilities for queue events to wait on are:

- Character messages, mouse messages, paint messages, posted messages, messages sent by another thread or
application, timer messages, hot-key messages, any input message or any message.

As mentioned above, windows created on different threads will process messages independently of each other.
They have their own input state (focus, active window, capture window, keystate, queue status etc.), and they are
not synchronized with respect to the input processing of other threads. Just to confuse matters, by using the

Att achThr eadl nput () function, athread can serialize itsinputprocessing to that of other threads. This aso
allows the threads to share input state, so it can actually make Set Focus() callsto windows of different
threads, and get keystate information. Normally these things are impossible.

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

