
Win32 Programming for Microsoft Windows NT

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

Services are programs. They are programs, which provide functionality to other executable code. Many
processes in the Windows NT system are running as services. For example the logon process is run as a service.
Services are different from ordinary programs in that they can be run (started) when the operating system is first
booted.

Or they may be run on demand when another process requests their services. For example the Remote Access
Service is not started until the user starts up the Remote Access dialer program. A service can be run in a specific
security context, that of a user on the workstation or domain. Alternatively a service can be run under what is
known as the Local System account. This is a low privilege account and most services are run in this security
context.

There are two types of service on Windows NT. The first, device driver services such as disk drivers, file system
drivers and display drivers, are beyond the scope of this course. The second, Win32 services are the subject of
the rest of this chapter.

You can see which Win32 services are installed on your system, and whether they are started, stopped or paused
by using the Services applet in the Control Panel. You can see which device driver services are installed by using
the Devices-applet in the Control Panel

A process called the Service Control Manager manages both types of service. Control Panel is providing a user-
interface for some of Service Control Manager’s functionality.

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

The Service Control Manager is responsible for managing all services on a Windows NT system, whether those
services are device driver services or Win32 services. It starts services at system start time if required and on
demand. It also maintains status information on services that are currently running. You can see this information
by using the Services or Devices applets in Control Panel.

Lastly, Service Control Manager sends requests to a service, asking it to pause, continue or stop in response to
user request or the request of another process in the system.

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

A straightforward service executable has a very simple main() function which calls
StartServiceCtrlDispatcher(), passing the address of a SERVICE_TABLE_ENTRY as the
parameter.
This structure contains the address of a ServiceMain() function.
Calling StartServiceCtrlDispatcher() calls the Service Control Manager which calls
ServiceMain(): ServiceMain() must then install a CtrlHandler() function which is responsible for
handling future requests from the Service Control Manger.

ServiceMain() then initializes the service and starts of the thread which will provide the service
functionality. It is important to note that ServiceMain() must then wait for the service thread to end as when
ServiceMain() exits the service is considered to be stopped.

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

The main() function for a simple service is very straightforward.
We fill in a single entry in a SERVICE_TABLE_ENTRY array, ensure the array is terminated with a NULL
entry and call StartServiceCtrlDispatcher() .

The SERVICE_TABLE_ENTRY structure contains the name of the service and the address of the
ServiceMain() function, RemoteDebugMain in this case.

An executable that is only supporting a single service, like the example above would be installed as a
SERVICE_W1N32_OWN_PROCESS.

This tells Service Control Manager that the executable supports only a single service.
For a more complicated executable, one that supported several services from a single process, more entries
would be made in the SERVICE_TABLE_ENTRY. For this type of service the installation program must
specify that the service is SERVICE_W1N32_SHARE_PROCESS.

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

The ServiceMain() function is responsible for performing any initialization the service requires.
The first part of this initialization process is to register a CtrlHandler() with the Service Control Manager
by calling RegisterServiceCtrlHandler().
After registering the control handler ServiceMain() does any further initialization the service requires.
While it does this it must periodically call SetServiceStatus() to let the Service Control Manager know
how initialization is proceeding. SetServiceStatus() takes a SERVICE_STATUS_HANDLE which is
returned by RegisterServiceCtrlHandler() and the address of a SERVICE_STATUS structure.

The SERVICE_STATUS structure tells the Service Control Manager several things; what the type of the service
is, what the current state of the service is, which control requests will be accepted, exit codes for failure
reporting, a check point and a wait hint.
The dwCheckPoint field should be incremented during service initialization after each operation.
This allows the user interface program (usually Control Panel) to give feedback to the user about how the
service initialization is progressing.
This field is similarly used during a pending pause, continue or stop operation. When there is no pending
operation this field should be zero.
The dwWaitHint field is used to give some idea of how long a pending operation will take to complete in
milliseconds. If you have trouble starting your service, try increasing this value.
Again, while there is no pending operation, this field should be zero.

ServiceMain() then either provides the service itself or starts another thread to perform the service function.
If ServiceMain() starts another thread it must block until that thread ends as when ServiceMain() exits
the Service Control Manager considers the service to be stopped.

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

The CtrlHandler() function is responsible for responding to requests from the Service Control Manager.
These requests may be SERVICE_CONTROL_PAUSE, SERVICE_CONTROL_CONTINUE,
SERVICE_CONTROL_STOP or SERVICE_CONTROL_INTERROGATE. The CtrlHandler() must
perform the requested action. After processing the request the CtrlHandler() must report the new status of
the service by calling SetServiceStatus()
A service can specify in a call to SetServiceStatus() which control requests it will respond to. For
example a service may choose not to respond to SERVICE_CONTROL_PAUSE (and hence
SERVICE_CONTROL_CONTINUE).
A service MUST respond to SERVICE_CONTROL_INTERROGATE and this cannot be disabled.

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

Unfortunately Windows NT does not ship with any utility to allow you to install your own services.
You have to write the install program too!
This install program must call OpenSCManager() which returns a handle to the Service Control Manager.
To install a new service GENERIC_WRITE access must be requested in the call the OpenSCManager() .

The returned handle is passed to a call to CreateService() which takes a large number of parameters
including the path of the service executable, the name of the service that is displayed by user interface programs
(such as Control Panel), whether the service starts at boot time or on demand, whether the service is a Win32
service or a device driver, which user account the service is going to run under...and many more. If
CreateService() fails it returns NULL and GetLastError() will give the reason for the failure.

Otherwise CreateService() returns a handle to the service which can be used in calls to APIs like
QueryServiceConfig(), ChangeServiceConfig (), QueryServiceObjectSecurity()
etc..

Both the service handle returned by CreateService() and the Service Control Manager handle returned by
OpenSCManager() should not be closed using the CloseHandle() API, rather
CloseServiceHandle() should be used instead.

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

Usually a service will not have a user interface and by default services run on a separate virtual desktop that is
invisible to the user. This means that while a service may create windows, dialogs etc, the user will never see
them. Also any processes created by a service run on the same virtual desktop with the same results. Services
that run in the security context of the system can intereact with the user desktop if the ‘Allow service to interact
with desktop’ check box is selected in the Services applet in Control Panel. Note that this is not an option for
services running in a user security context.

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

Event logging provides a consistent way of reporting error conditions, warnings and information to a system user
or administrator. The operating system and applications can log events in the same way.

The operating system writes its event information into the System event log. Events that may appear in this log
include low disk space warnings, information about network events, error reports on services that fail to start etc.

Security events are written into the security event log, these take the form of success or failure reports on certain
events that are subject to security. Which events are logged can be specified using the User Manager application
under the Policies, Audit... menu.

Applications write their event information into the application event log. An application can register its own
message file (a resource DLL) by specifying a registry key under

HKEY_LOCAL_MACHINE

\SYSTEM\CurrentControlSet\Services\EventLog\Application

that specifies the message file path under the value EventMessageFile and the type of events supported (errors,
warnings, information) under the TypesSupported value.

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

There are two ways of getting a handle to an event log. One is to call OpenEventLog() which returns a
handle that can be used in calls the ReadEventLog() , ClearEventLog()
GetNumberOfEventLogRecord(),GetOldestEventLogRecord() and CloseEventLog().

This is the method used by the Event Viewer application when it displays the contents of an event log.
The second way is to call RegisterEventSource().

This can be used to open an application specific event log (in terms of the message file used) or the default
application event log.

The returned handle can be used in calls to ReportEvent() which writes event information to the event log.
When an application has finished reporting events it should close the handle using
DeregisterEventSource()

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

Events are written to an event log using the ReportEvent() API. Parameters that must be specified include
the type of event, the category (which is application specific) and the event ID that is used to retrieve a message
string from the application message file.

It is also possible to specify the current users security ID, descriptive strings and binary data, though all these are
optional.

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

Win32 Programming for Microsoft Windows NT

Johannes Plachy IT Services & Solutions © 1998,1999 jplachy@jps.at

mailto:jplachy@jps.at

