
ERIKA Enterprise Manual

Real-time made easy

version: 1.4.4
July 23, 2012

About Evidence S.r.l.
Evidence is a spin-off company of the ReTiS Lab of the Scuola Superiore S. Anna, Pisa,
Italy. We are experts in the domain of embedded and real-time systems with a deep
knowledge of the design and specification of embedded SW. We keep providing signifi-
cant advances in the state of the art of real-time analysis and multiprocessor scheduling.
Our methodologies and tools aim at bringing innovative solutions for next-generation
embedded systems architectures and designs, such as multiprocessor-on-a-chip, recon-
figurable hardware, dynamic scheduling and much more!

Contact Info
Address:
Evidence Srl,
Via Carducci 56
Località Ghezzano
56010 S.Giuliano Terme
Pisa - Italy
Tel: +39 050 991 1122, +39 050 991 1224
Fax: +39 050 991 0812, +39 050 991 0855

For more information on Evidence Products, please send an e-mail to the following
address: info@evidence.eu.com. Other informations about the Evidence product line
can be found at the Evidence web site at: http://www.evidence.eu.com.

This document is Copyright 2005-2012 Evidence S.r.l.

Information and images contained within this document are copyright and the property of Evidence

S.r.l. All trademarks are hereby acknowledged to be the properties of their respective owners. The

information, text and graphics contained in this document are provided for information purposes only by

Evidence S.r.l. Evidence S.r.l. does not warrant the accuracy, or completeness of the information, text,

and other items contained in this document. Matlab, Simulink, Mathworks are registered trademarks

of Matworks Inc. Microsoft, Windows are registered trademarks of Microsoft Inc. Java is a registered

trademark of Sun Microsystems. OSEK is a registered trademark of Siemens AG. The Microchip Name

and Logo, and Microchip In Control are registered trademarks or trademarks of Microchip Technology

Inc. in the USA. and other countries, and are used under license. All other trademarks used are

properties of their respective owners. This document has been written using LaTeX and LyX.

2

http://www.evidence.eu.com

Contents

1 Introduction 7

1.1 Erika Enterprise and RT-Druid . 7

2 API reference 8

2.1 Introduction . 8
2.1.1 Conformance Classes . 8
2.1.2 Available primitives . 9

2.2 Constants . 12
2.2.1 Error List . 12
2.2.2 INVALID TASK . 12
2.2.3 OSService IDs . 12
2.2.4 RES SCHEDULER . 13
2.2.5 Task States . 13
2.2.6 Counters Constants . 14
2.2.7 OSDEFAULTAPPMODE . 14

2.3 Types . 15
2.3.1 AlarmBaseType . 15
2.3.2 AlarmBaseRefType . 15
2.3.3 AlarmType . 15
2.3.4 AppModeType . 15
2.3.5 CounterType . 15
2.3.6 EventMaskType . 16
2.3.7 EventMaskRefType . 16
2.3.8 OSServiceIdType . 16
2.3.9 ResourceType . 16
2.3.10 SemType . 16
2.3.11 SemRefType . 16
2.3.12 StatusType . 16
2.3.13 TaskType . 16
2.3.14 TaskRefType . 17
2.3.15 TaskStateType . 17
2.3.16 TaskStateRefType . 17
2.3.17 TickType . 17
2.3.18 TickRefType . 17

2.4 Object Declarations . 18
2.4.1 DeclareAlarm . 18
2.4.2 DeclareEvent . 18

3

Contents

2.4.3 DeclareResource . 18
2.4.4 DeclareTask . 19

2.5 Object Definitions . 20
2.5.1 ALARMCALLBACK . 20
2.5.2 ISR . 20
2.5.3 TASK . 20

2.6 Task Primitives . 22
2.6.1 ActivateTask . 24
2.6.2 TerminateTask . 25
2.6.3 ChainTask . 26
2.6.4 Schedule . 27
2.6.5 ForceSchedule . 28
2.6.6 GetTaskID . 29
2.6.7 GetTaskState . 30

2.7 Interrupt primitives . 31
2.7.1 DisableAllInterrupts . 32
2.7.2 EnableAllInterrupts . 33
2.7.3 SuspendAllInterrupts . 34
2.7.4 ResumeAllInterrupts . 35
2.7.5 SuspendOSInterrupts . 36
2.7.6 ResumeOSInterrupts . 37

2.8 Resource primitives . 38
2.8.1 GetResource . 39
2.8.2 ReleaseResource . 40

2.9 Event related primitives . 41
2.9.1 SetEvent . 42
2.9.2 ClearEvent . 43
2.9.3 GetEvent . 44
2.9.4 WaitEvent . 45

2.10 Counter and Alarms primitives . 46
2.10.1 IncrementCounter . 47
2.10.2 GetCounterValue . 48
2.10.3 GetElapsedValue . 49
2.10.4 GetAlarmBase . 50
2.10.5 GetAlarm . 51
2.10.6 SetRelAlarm . 52
2.10.7 SetAbsAlarm . 53
2.10.8 CancelAlarm . 54

2.11 Internal Messages . 55
2.12 Counting Semaphores . 55

2.12.1 STATICSEM . 56
2.12.2 InitSem . 57
2.12.3 WaitSem . 58
2.12.4 TryWaitSem . 59

4

Contents

2.12.5 PostSem . 60
2.12.6 GetValueSem . 61

2.13 Application modes, Startup and Shutdown primitives 62
2.13.1 GetActiveApplicationMode . 63
2.13.2 StartOS . 64
2.13.3 ShutdownOS . 65

2.14 Hooks and Error handling primitives . 66
2.14.1 Placement of the application startup code 66
2.14.2 ErrorHook . 67
2.14.3 PreTaskHook . 68
2.14.4 PostTaskHook . 69
2.14.5 StartupHook . 70
2.14.6 ShutdownHook . 71

2.15 ErrorHook Macros . 72
2.15.1 OSErrorGetServiceId . 72
2.15.2 OSError ActivateTask TaskID . 72
2.15.3 OSError ChainTask TaskID . 73
2.15.4 OSError GetTaskState TaskID 73
2.15.5 OSError GetTaskState State . 73
2.15.6 OSError GetResource ResID . 74
2.15.7 OSError ReleaseResource ResID 74
2.15.8 OSError SetEvent TaskID . 75
2.15.9 OSError SetEvent Mask . 75
2.15.10OSError ClearEvent Mask . 76
2.15.11OSError GetEvent TaskID . 76
2.15.12OSError GetEvent Event . 76
2.15.13OSError WaitEvent Mask . 77
2.15.14OSError GetAlarmBase AlarmID 77
2.15.15OSError GetAlarmBase Info . 78
2.15.16OSError GetAlarm AlarmID . 78
2.15.17OSError GetAlarm Tick . 79
2.15.18OSError SetRelAlarm AlarmID 79
2.15.19OSError SetRelAlarm increment 79
2.15.20OSError SetRelAlarm cycle . 80
2.15.21OSError SetAbsAlarm AlarmID 80
2.15.22OSError SetAbsAlarm start . 81
2.15.23OSError SetAbsAlarm cycle . 81
2.15.24OSError CancelAlarm AlarmID 82
2.15.25OSError IncrementCounter AlarmID 82
2.15.26OSError IncrementCounter TaskID 82
2.15.27OSError IncrementCounter Mask 83
2.15.28OSError IncrementCounter action 83
2.15.29OSError StartOS Model . 84

2.16 Interrupt service routines . 84

5

Contents

3 ORTI and Lauterbach Trace32 support 85

3.1 ORTI and Erika Enterprise footprint . 85
3.2 ORTI and stack usage statistics . 85

3.2.1 EE trace32 stack init . 86

4 History 87

6

1 Introduction

1.1 Erika Enterprise and RT-Druid

Erika Enterprise is a free of charge, open-source RTOS implementation of the OSEK/VDX
API, available for various microcontrollers on the web page http://erika.tuxfamily.org.
Erika Enterprise offers the availability of a real-time scheduler and resource managers

allowing the full exploitation of the power of new generation micro-controllers and mul-
ticore platforms while guaranteeing predictable real-time performance and retaining the
programming model of conventional single processor architectures.
The advanced features provided by Erika Enterprise are:

• Support for four conformance classes to match different application requirements;

• Support for preemptive and non-preemptive multitasking;

• Support for fixed priority scheduling;

• Support for stack sharing techniques, and one-shot task model to reduce the overall
stack usage;

• Support for shared resources;

• Support for periodic activations using Alarms;

• Support for centralized Error Handling;

• Support for hook functions before and after each context switch;

The Erika Enterprise kernel is a complete OSEK/VDX environment, which can be used
to implement multithreading applications. The Erika Enterprise API providing support
for thread activation, mutual exclusion, alarms, events and counting semaphores.
The OSEK/VDX consortium provides the OIL language (OSEK Implementation Lan-

guage) as a standard configuration language, which is used for the static definition of
the RTOS objects which are instantiated and used by the application. Erika Enterprise

fully supports the OIL language for the configuration of real-time applications.
Erika Enterprise is natively supported by RT-Druid, a tool suite for the automatic

configuration and deployment of embedded applications which enables to easily exploit
multi-processor architectures and achieve the desired performance without modifying
the application source code. More details about RT-Druid are available in a dedicated
reference manual.
The purpose of this document is to describe in detail the Erika Enterprise API. Details

about specific architecture can be found in dedicated manuals, available for download
on the Erika web site.

7

http://erika.tuxfamily.org

2 API reference

2.1 Introduction

The Erika Enterprise Operating System provides a interface according to OSEK/VDX
specification, version 2.2.3. In addition, extended that specification allowing the devel-
opment of multicore applications.
The interface proposed is suited for small 8 to 32 bit architectures, and proposes

an environment where tasks can execute concurrently exchanging data with a shared
memory paradigm. Support for limited synchronization primitives is also provided.
Tasks in Erika Enterprise are scheduled according to fixed priorities, and share resources

using the Immediate Priority Ceiling protocol.
On top of task execution there are interrupts, that always preempt the running task

to execute urgent operations required by peripherals, or, in case of a multicore system,
by other CPUs.
Erika Enterprise can be configured to allow a normal (named Standard Status) or

extended (named Extended Status) error recognition.
Extended status is mainly used to check as many errors as possible during the Debug

phase. Once the application has been debugged, some error checking can be disabled,
saving execution time and code footprint. Standard and Extended status are enabled in
the OIL configuration file. When describing Erika Enterprise primitive return values, an
“(Extended)” token near the error description means that the error is raised only when
the system runs with extended status.

2.1.1 Conformance Classes

To further reduce the overall footprint of the kernel, Erika Enterprise provides subsets of
the OS API. These subsets are called Conformance Classes. There are four Conformance
Classes, named BCC1, BCC2, ECC1, ECC2.
Conformance classes starting with the letterB (that is, BCC1 and BCC2) only support

Basic Tasks. Conformance classes starting with the letter E (that is, ECC1 and ECC2)
support both Basic Tasks and Extended Tasks.
BCC1 and BCC2 conformance classes are designed to be as small as possible, and in

particular these conformance classes are the most suited to implement small concurrent
systems with little RAM footprint, thanks to the stack sharing that can be obtained
between basic tasks.
ECC1 and ECC2 conformance classes are designed to be higher end conformance

classes supporting synchronization primitives that implies the usage of separate stacks,
and of course higher OS overheads due to the stack change mechanisms.

8

2 API reference

Conformance classes ending with the number 1 (that is, BCC1 and ECC1) does not
store pending activations. The ready queue implementation is done using a linear queue
with O(n) access time where n is the number of tasks in the ready queue (using a linear
queue allow the minimization of the overall OS RAM footprint). Priorities are stored
as bit fields, implying that the number of different priorities in the system is limited by
the register width (for example, a 32 bit CPU can have up to 32 different priorities).
Conformance classes ending with the number 2 (that is, BCC2 and ECC2) allow a task

to store one or more pending activations (the maximum number of pending activation
is specified in the ACTIVATION attribute of a Task in the OIL Specification). The ready
queue implementation is done using a bit field that exposes an O(1) complexity that is
independent on the number of tasks in the system. The BCC2 Conformance class have
only up to 8 different task priorities, whereas ECC2 has up to 16 different task priorities.
More than one task with the same priority can coexist at the same time for all the

four conformance classes.
Resources, Alarms, and Application modes are codified as integers, so there can be

up to 2n − 1 different entities, where n is the number of bits of the CPU register width
(e.g., 32 for a 32 bit CPU).
Figure 2.1 shows the current limits with respect to the number of OS objects allowed

in the system.

2.1.2 Available primitives

Erika Enterprise provides a set of primitives that can be called in different situations.
The complete list of primitives is listed in Table 2.2, together with the locations where
it is legal to call these functions.
The Background Task is the context where the application main() function is executed,

after the call to StartOS. Please note that by default the current implementation of the
StartOS primitive never returns. To make it return, tou need to add the following option
to the OIL file:

EE_OPT = __OO_STARTOS_OLD__

9

2 API reference

Feature BCC1 BCC2 ECC1 ECC2
Multiple requesting of

task activation
no yes no BT:

yes;
ET: no

Number of tasks
which are not in the
suspended state

at least 255 at least 255
(any

combination of
BT/ET)

More than one task
per priority

yes yes yes yes

Number of events per
task

- nbits

Number of task
priorities

nbits 16 nbits 16

Resources 2nbits − 1 (including
RES SCHEDULER)

Internal Resources no limit (they are
automatically computed by

the OIL Compiler)
Alarms 2nbits − 1

Application modes 2nbits − 1

Table 2.1: This table lists the current limits with respect to the number of OS objects
allowed in the system. nbits means the number of bits stored in a micro-
controller register (16 on a 16 bit machine, 32 on a 32 bit machine, with a
minimum value of 16).

10

2 API reference

Service B
ac
k
gr
ou

n
d
T
as
k

T
as
k

IS
R
1

IS
R
2

E
rr
or
H
o
ok

P
re
T
as
k
H
o
ok

P
os
tT

as
k
H
o
ok

S
ta
rt
u
p
H
o
ok

S
h
u
td
ow

n
H
o
ok

A
la
rm

C
al
lb
ac
k

ActivateTask
√

∗
√ √

TerminateTask
√

ChainTask
√

Schedule
√

ForceSchedule
√

∗
√

∗

GetTaskID
√ √ √ √ √

GetTaskState
√ √ √ √ √

DisableAllInterrupts
√

∗
√ √ √

EnableAllInterrupts
√

∗
√ √ √

SuspendAllInterrupts
√

∗
√ √ √ √ √ √ √

ResumeAllInterrupts
√

∗
√ √ √ √ √ √ √

SuspendOSInterrupts
√

∗
√ √ √

ResumeOSInterrupts
√

∗
√ √ √

GetResource
√ √

ReleaseResource
√ √

SetEvent
√

∗
√ √

ClearEvent
√

GetEvent
√ √ √ √ √

WaitEvent
√

IncrementCounter
√

∗
√

∗
√

∗

GetAlarmBase
√ √ √ √ √

GetAlarm
√ √ √ √ √

SetRelAlarm
√ √

SetAbsAlarm
√ √

CancelAlarm
√ √

GetActiveApplicationMode
√ √ √ √ √ √ √

StartOS
√ √

ShutdownOS
√ √ √ √

Table 2.2: This table lists the environments where primitives can be called.
√

∗means
that the feature is an additional feature of Erika Enterprise that is not part of
the OSEK Standard.

11

2 API reference

2.2 Constants

This is a list of the Erika Enterprise constants that can be used by the developer for
writing applications.

2.2.1 Error List

Description

This is the list of the error values returned by the kernel primitives:

#define E_OK 0

#define E_OS_ACCESS 1

#define E_OS_CALLEVEL 2

#define E_OS_ID 3

#define E_OS_LIMIT 4

#define E_OS_NOFUNC 5

#define E_OS_RESOURCE 6

#define E_OS_STATE 7

#define E_OS_VALUE 8

#define E_OS_SYS_INIT 9

2.2.2 INVALID TASK

Description

This constant represent an invalid task ID, and is returned by GetTaskID when the
function is called and no task is running.

2.2.3 OSService IDs

Description

This is the list of Service IDs values that can be returned by OSErrorGetServiceId:

#define OSServiceId_ActivateTask 1U

#define OSServiceId_TerminateTask 2U

#define OSServiceId_ChainTask 3U

#define OSServiceId_Schedule 4U

#define OSServiceId_GetTaskID 5U

#define OSServiceId_GetTaskState 6U

#define OSServiceId_GetResource 7U

#define OSServiceId_ReleaseResource 8U

#define OSServiceId_SetEvent 9U

#define OSServiceId_ClearEvent 10U

#define OSServiceId_GetEvent 11U

#define OSServiceId_WaitEvent 12U

#define OSServiceId_GetAlarmBase 13U

12

2 API reference

#define OSServiceId_GetAlarm 14U

#define OSServiceId_SetRelAlarm 15U

#define OSServiceId_SetAbsAlarm 16U

#define OSServiceId_CancelAlarm 17U

#define OSServiceId_IncrementCounter 18U

#define OSServiceId_GetCounterValue 19U

#define OSServiceId_GetElapsedValue 20U

#define OSServiceId_StartOS 21U

#define OSServiceId_ForceSchedule 22U

Please note that the primitives:

• DisableAllInterrupts

• EnableAllInterrupts

• SuspendAllInterrupts

• ResumeAllInterrupts

• SuspendOSInterrupts

• ResumeOSInterrupts

• GetActiveApplicationMode

• ShutdownOS

never return an error, and for that reason they are not listed here.

2.2.4 RES SCHEDULER

Description

This is the ID of the RES_SCHEDULER resource.
That resource exists only when USERESSCHEDULER is set to TRUE within the OIL config-

uration file. The RES_SCHEDULER ceiling depends on the tasks that exists in the system,
and it is computed when RT-Druid generates the Erika Enterprise configuration code.

2.2.5 Task States

Description

This is the list of the task states a task can have during its life:

#define RUNNING 0

#define WAITING 1

#define READY 2

#define SUSPENDED 3

Please note that the WAITING state is only available in the conformance classes ECC1
and ECC2.

13

2 API reference

2.2.6 Counters Constants

Description

For all configurated counters RT-Druid generate the return values of GetAlarmBase as
constants:

OSMAXALLOWEDVALUE x Maximum possible allowed value of counter x in ticks

OSTICKSPERBASE x Number of ticks required to reach a specific unit of counter x

OSMINCYCLE x Minimum allowed number of ticks for a cyclic alarm of counter x

Thus, if the counter name is known, it is not necessary to call GetAlarmBase. When
system counter is configured, the constants of this counter are additionally accessible
via the following constants:

OSMAXALLOWEDVALUE Maximum possible allowed value of the system counter in
ticks.

OSTICKSPERBASE Number of ticks required to reach a specific unit of the system
counter.

OSMINCYCLE Minimum allowed number of ticks for a cyclic alarm of the system
counter.

Additionally the following constant is supplied:

OSTICKDURATION Duration of a tick of the system counter in nanoseconds.

2.2.7 OSDEFAULTAPPMODE

Description

This is the default Application Mode. This value is always a valid Application Mode
that can be passed to StartOS.

14

2 API reference

2.3 Types

This Section contains a description of the data types used by the OS interface of Erika
Enterprise. When the size of a type is specified to be of the size of a machine register, it
is intended that the type has the same size of the CPU general purpose register.

2.3.1 AlarmBaseType

Description

This structure is used to store the basic information about Counters. It has the following
fields:

TickType maxallowedvalue Is the maximum allowed count value in ticks for a counter.

TickType ticksperbase It is the number of ticks required to reach a counter-specific
significant unit.

TickType mincycle It is the smallest allowed value for the cycle parameter of the
primitives SetRelAlarm/SetAbsAlarm. This field is only present when Extended
status is selected.

2.3.2 AlarmBaseRefType

Description

This is a pointer to AlarmBaseType.

2.3.3 AlarmType

Description

This (signed) type is used to store Alarm IDs, and it has the size of a register.

2.3.4 AppModeType

Description

This (unsigned) type is used to store Application Mode IDs, and it has the size of a
register.

2.3.5 CounterType

Description

This (signed) type is used to store Counter IDs, and it has the size of a register.

15

2 API reference

2.3.6 EventMaskType

Description

This (unsigned) type is used to store Event masks as bit fields, and it has the size of a
register.

2.3.7 EventMaskRefType

Description

This is a pointer to EventMaskType.

2.3.8 OSServiceIdType

Description

This unsigned 8-bit integer type is used to store Service IDs, and it is used within the
OSErrorGetServiceId.

2.3.9 ResourceType

Description

This (unsigned) type is used to store Resource ID values, and it has the size of a register.

2.3.10 SemType

Description

This type is a structure storing the information related to a counting semaphore.

2.3.11 SemRefType

Description

This is a pointer to SemType.

2.3.12 StatusType

Description

This type is an unsigned char used to store function error return values.

2.3.13 TaskType

Description

This (signed) type is used to store Task ID, and it has the size of a register.

16

2 API reference

2.3.14 TaskRefType

Description

This is a pointer to TaskType.

2.3.15 TaskStateType

Description

This (unsigned) type is used to store Task Status values, and it has the size of a register.

2.3.16 TaskStateRefType

Description

This is a pointer to TaskStateType.

2.3.17 TickType

Description

This (unsigned) type is used to store Counter Ticks, and it has the size of a register.

2.3.18 TickRefType

Description

This is a pointer to TickType.

17

2 API reference

2.4 Object Declarations

The following declarations have to be used to declare Tasks, Resources, Alarms, and
Events within the application code.

2.4.1 DeclareAlarm

Synopsis

DeclareAlarm (AlarmIdentifier)

Description

Declares an alarm.
This declaration is currently not mandatory because alarm identifiers are all declared

within the code generated by RT-Druid.

Conformance

BCC1, BCC2, ECC1, ECC2

2.4.2 DeclareEvent

Synopsis

DeclareEvent(EventID)

Description

DeclareEvent serves as an external declaration of an event. The function and use of this
service are similar to that of the external declaration of variables.
This declaration is currently not mandatory because event identifiers are all declared

within the code generated by RT-Druid.

Conformance

ECC1, ECC2

2.4.3 DeclareResource

Synopsis

DeclareResource(ResourceID)

18

2 API reference

Description

DeclareResource serves as an external declaration of a resource. The function and use
of this service are similar to that of the external declaration of variables.
This declaration is currently not mandatory because Resource identifiers are all de-

clared within the code generated by RT-Druid.

Parameters

• ResourceID Resource Identifier

Conformance

BCC1, BCC2, ECC1, ECC2

2.4.4 DeclareTask

Synopsis

DeclareTask(TaskType TaskID);

Description

DeclareTask serves as an external declaration of a task. The function and use of this
service are similar to that of the external declaration of variables.
This declaration is currently not mandatory because task identifiers are all declared

within the code generated by RT-Druid.

Parameters

• TaskID Task reference.

Conformance

BCC1, BCC2, ECC1, ECC2

19

2 API reference

2.5 Object Definitions

The following macro have to be used when defining Tasks, ISRs and Alarm Callbacks.

2.5.1 ALARMCALLBACK

Synopsis

ALARMCALLBACK(t)

Description

This macro is used to declare and to define an alarm callback.

Parameters

• t Name of the alarm callback.

Conformance

BCC1, BCC2, ECC1, ECC2

2.5.2 ISR

Synopsis

ISR(Funcname) {...}

Description

The ISR keyword must be used when declaring an ISR function, to distinguish it from
other function types and from tasks.

Conformance

BCC1, BCC2, ECC1, ECC2

2.5.3 TASK

Synopsis

TASK(Funcname) {...}

Description

The TASK keyword must be used when declaring a TASK function.

20

2 API reference

Conformance

BCC1, BCC2, ECC1, ECC2

21

2 API reference

2.6 Task Primitives

Erika Enterprise supports two flavors of tasks:

Basic Tasks A basic task is the simplest task in Erika Enterprise, providing concurrency
together with a one-shot task model. Basic Tasks can share their stack to reduce
the overall RAM usage.

Extended Tasks An extended task is a task that can block on the synchronization
primitive WaitEvent.

Basic Tasks are typically implemented as normal C functions, that executes their code
and then ends. One of these executions is called also Task Instance. After the end of
a basic task, its stack is freed. Basic Tasks never block, and they are the ideal kind of
tasks for implementing stack sharing techniques.
Extended Tasks, on the converse, are typically implemented as a never ending task

in which each instance ends with a synchronization implemented with a call to the
WaitEvent primitive. Extended tasks always have a private stack.
RT-Druididentifies a task as Extended when its OIL definition contains the specifica-

tion of Events. A task without any Event assigned is a Basic Task.
The scheduling policy of Erika Enterprise is a Fixed Priority Scheduling with Immediate

Priority Ceiling. As a result, the following case of tasks may be implemented:

Full Preemptive Task A Full Preemptive task is a task that can be preempted in each
instant by higher priority tasks.

Non Preemptive Task A Non Preemptive task is like a Full Preemptive task that exe-
cutes all the time locking a resource with its ceiling equal to the maximum priority
in the system. As a result, a non preemptive task cannot be preempted by other
tasks: only interrupts can preempt it.

Mixed Preemptive Task A Mixed Preemptive task is like a task that executes all the
time locking a pseudo-resource (also called Internal Resource. As a result, only
tasks with higher priority than the ceiling of the Internal Resource, and interrupts,
can preempt it.

Independently of the task type all kernel primitives that may cause rescheduling may
be called in any Tasks’ sub-functions.
Tasks are activated using the primitives ActivateTask or ChainTask. Activating a

task means that the activated task, may be selected for scheduling, and may execute
one Task Instance. A task activation while a task is already waiting its execution or
while being the running task has an effect that depends on how many pending activations
the particular Conformance Class can store. BCC1 and ECC1 does not store pending
activations, whereas BCC2 and ECC2 can store pending activations if the task has been
properly configured in the OIL Configuration file.
Tasks must end with a call either to TerminateTask or ChainTask. Terminating a

task without one of these two primitives leads to indefinite results.

22

2 API reference

On multiprocessor systems, Tasks are statically assigned to CPUs at compile time.
The CPU a task is assigned to is specified within the OIL configuration file.

23

2 API reference

2.6.1 ActivateTask

Synopsis

StatusType ActivateTask(TaskType TaskID);

Description

This primitive activates a task TaskID, putting it in the READY state, or in the RUNNING

state if the scheduler finds that the activated task should become the running task.
Once activated, the task will run for an instance, starting from its first instruction.

For the BCC2 and ECC2 Conformance classes, pending activations can be stored if the
task has been configured with a number of activations greater than 1 within the OIL
configuration file.
The function can be called from the Background task (typically, the main() function).

Parameters

• TaskID Task reference.

Return Values

• E_OK No error.

• E_OS_LIMIT Too many pending activations of TaskID.

• E_OS_ID (Extended) TaskID is invalid.

Conformance

BCC1, BCC2, ECC1, ECC2

24

2 API reference

2.6.2 TerminateTask

Synopsis

StatusType TerminateTask(void)

Description

This primitive terminates the calling task. The function can be called from any function
nesting: the stack space used by the task is also freed. The calling task should not have
any Resource locked when this primitive is called (apart an Internal Resource that is
automatically released with this call).
After the call, the calling task is set in the SUSPENDED state, and it can be reactivated

again using ActivateTask, ChainTask, or using Alarm notifications.
All the tasks must terminate with a call to TerminateTask or ChainTask. Otherwise,

the behavior after task end is undefined.
With Standard Status, the primitive never returns. With Extended Status, the prim-

itive may return in case of errors.

Return Values

• no return (Standard) – in this case, the function is declared as returning void.

• E_OS_RESOURCE (Extended) The task still occupies resources.

• E_OS_CALLEVEL (Extended) The function was called at interrupt level.

Conformance

BCC1, BCC2, ECC1, ECC2

25

2 API reference

2.6.3 ChainTask

Synopsis

StatusType ChainTask(TaskType TaskID);

Description

This primitive is similar to TerminateTask, with the differences listed below.
After the calling task is terminated, TaskID is activated again.
If TaskID is the calling task ID, then the calling task is terminated, the Internal

Resource is unlocked, and then the calling task is put again in the ready queue to be
scheduled. The Internal Resource will be locked again when the task will be again
selected for scheduling.
When called successfully, ChainTask does not return to the caller. In case of error the

primitive returns, and the returned error value can be evaluated by the application.
When an extended task is transferred from suspended state into ready state all its

events are cleared.

Parameters

• TaskID Task reference

Return Values

• No return If the call is successful.

• E_OS_LIMIT Too many task activations of TaskID. The Task activation in this case
is ignored.

• E_OS_ID (Extended) Task TaskID is invalid.

• E_OS_RESOURCE (Extended) Calling task still occupies resources.

• E_OS_CALLEVEL (Extended) Call at interrupt level.

Conformance

BCC1, BCC2, ECC1, ECC2

26

2 API reference

2.6.4 Schedule

Synopsis

StatusType Schedule(void)

Description

This primitive can be used as a rescheduling point for tasks that have Internal Resources
and for non preemptive tasks1.
When this primitive is called, the task releases its Internal Resource, and checks if

there are higher priority tasks that have to preempt (In that case, a preemption is
implemented). When the primitive returns, the task will reacquire its internal resource.
The primitive does nothing if the calling task has no internal resource assigned.

Return Values

• void The function is redefined as returning void when Standard Error is used.

• E_OK No error.

• E_OS_CALLEVEL (Extended) The primitive was called at interrupt level.

• E_OS_RESOURCE (Extended) The calling task occupies resources.

Conformance

BCC1, BCC2, ECC1, ECC2

1Non preemptive tasks are tasks with an Internal Resource with the highest priority ceiling available

assigned.

27

2 API reference

2.6.5 ForceSchedule

Synopsis

StatusType ForceSchedule(void)

Description

This function implements a preemption check. If a higher-priority task is ready, the
current task is put into the ready state, its context is saved and the higher-priority task
is executed. Otherwise the calling task is continued.
The difference of this primitive with respect to Schedule is that Internal Resources

are not released.

Return Values

• void The function is redefined as returning void when Standard Error is used.

• E_OK No error.

• E_OS_CALLEVEL (Extended) Call at interrupt level.

Conformance

BCC1, BCC2, ECC1, ECC2

28

2 API reference

2.6.6 GetTaskID

Synopsis

void GetTaskID (TaskRefType TaskID)

Description

GetTaskID returns the TaskID of the running task.
If no task is running, INVALID_TASK is returned.

Conformance

BCC1, BCC2, ECC1, ECC2

29

2 API reference

2.6.7 GetTaskState

Synopsis

StatusType GetTaskState(TaskType TaskID, TaskStateRefType State)

Description

This primitive returns the state of a given task. possible states are listed in Section
2.2.5.
If the task TaskID supports pending activation, and the task has been activated more

than once, the results refer to the state of its oldest activation.

Parameters

• TaskID (in) Task reference.

• State (out) Reference to the state of task TaskID.

Return Values

• void (Standard) The function returns void if Standard Mode is used.

• E_OK (Extended) No error.

• E_OS_ID (Extended) Task TaskID is invalid.

Conformance

BCC1, BCC2, ECC1, ECC2

30

2 API reference

2.7 Interrupt primitives

Erika Enterprise gives support for interrupts. Interrupts are modeled considering typical
microcontroller designs featuring interrupt controllers with a prioritized view of the
interrupt sources.
To map the requirements of fast OS-independent requests, Erika Enterprise supports

the definition of fast interrupts handlers, called ISR Type 1, that on one side can handle
interrupts in the fastest way possible, but on the other side lack the possibility to call
OS services.
On the other end, lower priority interrupts, called ISR Type 2 and used (for example)

for hardware timers, can call selected OS primitives but are slower than ISR Type 1 due
to the OS bookkeeping needed to implement preemption.
Erika Enterprise also offers a set of primitives to directly control interrupt disabling

and enabling, with also a nested version of these primitives.

31

2 API reference

2.7.1 DisableAllInterrupts

Synopsis

void DisableAllInterrupts(void)

Description

DisableAllInterrupts and EnableAllInterrupts are used to implement critical sections
with interrupt disabled.
This primitive disables all the interrupts sources in the system, and saves the interrupt

state that will be restored by a call to EnableAllInterrupts.
The primitive may be called from an ISR category 1 and category 2 and from the task

level, but not from hook routines. No primitives can be called within critical sections
surrounded by DisableAllInterrupts and EnableAllInterrupts.
Critical sections using DisableAllInterrupts EnableAllInterrupts cannot be nested.

If you need nested critical sections, please use SuspendOSInterrupts / ResumeOSInterrupts
or SuspendAllInterrupts / ResumeAllInterrupts.

Conformance

BCC1, BCC2, ECC1, ECC2

32

2 API reference

2.7.2 EnableAllInterrupts

Synopsis

void EnableAllInterrupts(void)

Description

DisableAllInterrupts and EnableAllInterrupts are used to implement critical sections
with interrupt disabled.
This primitive restores the state saved by DisableAllInterrupts, enabling the recog-

nition of interrupts.
The primitive may be called from an ISR category 1 and category 2 and from the task

level, but not from hook routines. No primitives can be called inside critical sections
surrounded by DisableAllInterrupts and EnableAllInterrupts.

Conformance

BCC1, BCC2, ECC1, ECC2

33

2 API reference

2.7.3 SuspendAllInterrupts

Synopsis

void SuspendAllInterrupts(void)

Description

SuspendAllInterrupts and ResumeAllInterrupts are used to implement critical sections
with interrupt disabled, with nesting support.
This primitive disables all the interrupts sources in the system, and saves the interrupt

state that will be restored by a call to ResumeAllInterrupts.
The service may be called from an ISR category 1 and category 2, from alarm-callbacks

and from the task level, but not from all hook routines.
No primitive calls beside SuspendAllInterrupts / ResumeAllInterrupts pairs and

SuspendOSInterrupts / ResumeOSInterrupts pairs are allowed within this critical sec-
tion.

Conformance

BCC1, BCC2, ECC1, ECC2

34

2 API reference

2.7.4 ResumeAllInterrupts

Synopsis

void ResumeAllInterrupts(void)

Description

SuspendAllInterrupts and ResumeAllInterrupts are used to implement critical sections
with interrupt disabled, with nesting support.
This primitive restores the state saved by SuspendAllInterrupts, enabling the recog-

nition of interrupts if it is the last call in a series of nested calls of SuspendAllInterrupts
/ ResumeAllInterrupts and SuspendOSInterrupts / ResumeOSInterrupts pairs.
This primitive may be called from an ISR category 1 and category 2, from alarm-

callbacks and from the task level, but not from all hook routines.

Conformance

BCC1, BCC2, ECC1, ECC2

35

2 API reference

2.7.5 SuspendOSInterrupts

Synopsis

void SuspendOSInterrupts(void)

Description

SuspendOSInterrupts and ResumeOSInterrupts are used to implement critical sections
with interrupt category 2 disabled, with nesting support.
This primitive disables all the interrupts sources of category 2 in the system, and saves

the interrupt state that will be restored by a call to ResumeOSInterrupts.
The service may be called from an ISR category 1 and category 2, and from the task

level.
No primitive calls beside SuspendAllInterrupts / ResumeAllInterrupts pairs and

SuspendOSInterrupts / ResumeOSInterrupts pairs are allowed within this critical sec-
tion.

Conformance

BCC1, BCC2, ECC1, ECC2

36

2 API reference

2.7.6 ResumeOSInterrupts

Synopsis

void ResumeOSInterrupts(void)

Description

SuspendOSInterrupts and ResumeOSInterrupts are used to implement critical sections
with interrupt category 2 disabled, with nesting support.
This primitive restores the state saved by SuspendOSInterrupts, enabling the recogni-

tion of interrupts if it is the last call in a series of nested calls of SuspendAllInterrupts
/ ResumeAllInterrupts and SuspendOSInterrupts / ResumeOSInterrupts pairs.
The primitive may be called from an ISR category 1 and category 2 and from the task

level, but not from hook routines.

Conformance

BCC1, BCC2, ECC1, ECC2

37

2 API reference

2.8 Resource primitives

Resources are the term used by Erika Enterprise to refer to binary semaphores used to
implement shared critical sections.
Resources are implemented using the Immediate Priority Ceiling protocol. A resource

is locked using the primitive GetResource, and unlocked using ReleaseResource.
A special resource named RES_SCHEDULER is also supported. the RES_SCHEDULER re-

source has a ceiling equal to the highest priority in the system. As a result, a task
locking RES_SCHEDULER becomes non-preemptive. If needed, the RES_SCHEDULER resource
have to be configured in the OIL configuration file.
On multiprocessor systems, Resources are divided in:

Local resources A Resource is local when all the tasks that uses it are assigned to the
same processor.

Global resources A Resource is global when the tasks that uses it are assigned to dif-
ferent processors.

A special kind of resources, called Internal Resources, are also supported by Erika

Enterprise. Internal Resources are locked when the tasks enter the RUNNING state, and it
is released when the task ends. Internal resources are used by optimization algorithms
to limit the maximum stack space used by application tasks. Please note that Schedule
explicitly release any Internal Resource locked by the running task, thus limiting the
possibility to reduce the overall stack in the system. Also WaitEvent always release
the internal resource of the task; however, this fact does not impact on stack usage
because tasks using WaitEvent must run on a private stack since WaitEvent is a blocking
primitive. Please also note that on Multicore systems, Internal Resources can only be
local. Global Internal Resources are not supported.
The primitives GetResource and ReleaseResource automatically internally uses a spin-

lock mechanism when called on a Global Resource.
Erika Enterprise support resource management at ISR level for a selected number of

architectures. Please check on the Erika Enterprise wiki whether the architecture you are
currently using supports this feature. The implementation of this feature is implemented
extending the OIL configuration to accept ISR priority as extra field in ISR Object
definition. The ISR Priority field contains architecture independent values which are
then mapped by RT-Druid to real interrupt priority register values.

38

2 API reference

2.8.1 GetResource

Synopsis

StatusType GetResource (ResourceType ResID)

Description

This primitive can be used to implement a critical section guarded by Resource ResID.
The critical section will end with the call to ReleaseResource.
Nesting between critical sections guarded by different resources is allowed.
Calls to TerminateTask, ChainTask, Schedule, and WaitEvent are not allowed inside

the critical section.
The service may be called from task level only.

Parameters

• ResID Reference to resource

Return Values

• void The function is redefined as returning void when Standard Error is used.

• E_OK (Extended) No error.

• E_OS_ID (Extended) Resource ResID is invalid.

• E_OS_ACCESS (Extended) Attempt to get a resource which is already occupied by
any task or ISR, or the statically assigned priority of the calling task or interrupt
routine is higher than the calculated ceiling priority.

Conformance

BCC1, BCC2, ECC1, ECC2

39

2 API reference

2.8.2 ReleaseResource

Synopsis

StatusType ReleaseResource (ResourceType ResID)

Description

ReleaseResource is used to release a resource locked using GetResource, closing a critical
section.
For information on nested critical sections, see GetResource.
The service may be called from task level only.

Parameters

• ResID Resource identifier

Return Values

• void The function is redefined as returning void when Standard Error is used.

• E_OK (Extended) No error

• E_OS_ID (Extended) ResID is an invalid identifier

• E_OS_NOFUNC (Extended) Attempt to release a resource which is not occupied by
any task or ISR, or another resource shall be released before.

• E_OS_ACCESS (Extended) Attempt to release a resource which has a lower ceiling
priority than the statically assigned priority of the calling task or interrupt routine.

Conformance

BCC1, BCC2, ECC1, ECC2

40

2 API reference

2.9 Event related primitives

Events represents a technique used by Erika Enterprise to implement synchronization
primitives. Events are assigned to tasks. Tasks with events assigned to are called
Extended tasks. Tasks without events assigned to are called Basic Tasks.
Extended tasks are supported only in the ECC1 and ECC2 conformance classes. To

assign an event to a task, the event have to be listed inside the task declaration in the
OIL configuration file.
Events are implemented as bits in a bit mask. Each task in the system is associated to

a bit mask, which is typically as large as a CPU data register. The bit mask is initialized
to 0 at system startup.
The status of an extended task event mask can be read by tasks and ISRs using

the GetEvent primitive. Events can also be set from tasks or ISRs using the SetEvent

primitive (more than one event can be set with a single call to SetEvent).
An extended task can wait for one ore more events from an event mask to be set using

the WaitEvent primitive. An extended task needs then to explicitly clear an event calling
the ClearEvent primitive.
Calls to WaitEvent may provoke the task to block. For that reason, extended tasks

must have a private stack assigned to them, implying also the fact that the multistack
kernel have to be used.

41

2 API reference

2.9.1 SetEvent

Synopsis

StatusType SetEvent (TaskType TaskID, EventMaskType Mask)

Description

The events of task TaskID are set according to the event mask Mask. The call to SetEvent

may cause TaskID to wakeup from a WaitEvent primitive. Any events not set in the event
mask remain unchanged. The service may be called from an interrupt service routine
and from the task level, but not from hook routines.
The function can be called from the Background task. Typically, it is called within

the main() function.

Parameters

• TaskID Task identifier

• Mask Mask of the events to be set

Return Values

• void The function is redefined as returning void when Standard Error is used.

• E_OK (Extended) No error

• E_OS_ID (Extended) Reference TaskID is invalid.

• E_OS_ACCESS (Extended) Task TaskID is not an extended task.

• E_OS_STATE (Extended) Events can not be set as the referenced task is in the
suspended state.

Conformance

ECC1, ECC2

42

2 API reference

2.9.2 ClearEvent

Synopsis

StatusType ClearEvent (EventMaskType Mask)

Description

ClearEvent clears the events Mask of the calling task.
This system call is restricted to extended tasks which own the event.

Parameters

• Mask Mask of the event to be cleared

Return Values

• void The function is redefined as returning void when Standard Error is used.

• E_OK (Extended) No error

• E_OS_ACCESS (Extended) The service has been invoked by a non-extended task.

• E_OS_CALLEVEL (Extended) The service has been invoked at the interrupt level.

Conformance

ECC1, ECC2

43

2 API reference

2.9.3 GetEvent

Synopsis

StatusType GetEvent(TaskType TaskID, EventMaskRefType Event)

Description

This primitive returns the current state of all event bits of the task TaskID. The service
may be called from interrupt service routines, task level and some hook routines. The
current status of the event mask of task TaskID is copied to Event. The referenced task
shall be an extended task.

Parameters

• TaskID task whose mask is to be returned.

• Event (out) returned mask.

Return Values

• void The function is redefined as returning void when Standard Error is used.

• E_OK (Extended) No error

• E_OS_ID (Extended) TaskID is an invalid reference.

• E_OS_ACCESS (Extended) TaskID is not an extended task.

• E_OS_STATE (Extended) TaskID is in suspended state.

Conformance

ECC1, ECC2

44

2 API reference

2.9.4 WaitEvent

Synopsis

StatusType WaitEvent (EventMaskType Mask)

Description

The calling task blocks if none of the events specified in Mask are set.
If the calling task blocks, the system is reschedule, and the Internal resource of the

task is released. This service shall only be called from the extended task owning the
events.

Parameters

• Mask mask of the events waited for

Return Values

• void The function is redefined as returning void when Standard Error is used.

• E_OK (Extended) No error

• E_OS_ACCESS (Extended) The calling task is not extended

• E_OS_RESOURCE (Extended) Calling task occupies resources.

• E_OS_CALLEVEL (Extended) Call at interrupt level.

Conformance

ECC1, ECC2

45

2 API reference

2.10 Counter and Alarms primitives

Erika Enterprise supports a notification mechanism based on Counters and Alarms.
A Counter is basically an integer value that can be incremented by 1 “Tick” using the

primitive IncrementCounter.
An Alarm is a notification that is attached to a specific Counter (the link between a

Counter and an Alarm is specified at compile time in the OIL Configuration file).
An Alarm can be set to fire at a specified tick value using the primitives SetRelAlarm

and SetAbsAlarm. Alarms can be set to be cyclically reactivated. Alarms can be canceled
using the primitive CancelAlarm.
When an Alarm fires, a notification takes place. A notification is set to be one of the

following actions:

Task activation. In this case, a task is activated when the Alarm fires.

Event set. In this case, an event mask is set on a task when the Alarm fires.

Alarm callback. In this case, an alarm callback (defined using ALARMCALLBACK) is called.

The notifications are executed inside the IncrementCounter function. It is up to the
developer placing the counter in meaningful places (e.g., a timer interrupt).
Counters, Alarms, and their notifications are specified inside the OIL configuration

file.
On multiprocessor systems, Counters are statically assigned to CPUs at compile time.

Counters are local to (and only visible in) a CPU. Alarms are local to the CPU that
hosts the counter they are linked to.

Warning: The OSEK/VDX standard provides support for s (e.g., counters that
are automatically linked to hardware timers). Please check on the Erika Enterprise

wiki whether the architecture you are using supports this feature. If the architecture
does not support the feature, then all the counters have to be defined inside the OIL
Configuration file, and the user have to call IncrementCounter to increment them.

46

2 API reference

2.10.1 IncrementCounter

Synopsis

StatusType IncrementCounter(CounterType c)

Description

This function receives a counter identifier as parameter, and it increments it by 1. This
function is typically called inside an ISR type 2 or inside a task to notify that the trigger
the counter is counting has happened.
The function also implements the notification of expired alarms, that is implemented,

depending on the alarm configuration, as:

• an alarm callback function;

• a task activation;

• an event mask set on an extended task.

The function is atomic, and a reschedule will happen at the end if the primitive is
called at task level. If called at ISR level, the reschedule will happen at the end of the
outermost nested IRQ.

Parameters

• c The counter that needs to be incremented.

Return Values

• E_OK No error.

• E_OS_ID (Extended) Reference CounterID is invalid or counter is implemented in
hardware and can not be incremented by software.

Conformance

BCC1, BCC2, ECC1, ECC2

47

2 API reference

2.10.2 GetCounterValue

Synopsis

StatusType GetCounterValue(CounterType CounterID, TickRefType Value)

Description

This service reads the current count value of a counter returning or the software ticks.

Parameters

• CounterID The Counter which tick value should be read.

• Value Will contains the current tick value of the counter.

Return Values

• E_OK No error.

• E_OS_ID (Extended) Reference CounterID is invalid.

Conformance

BCC1, BCC2, ECC1, ECC2

48

2 API reference

2.10.3 GetElapsedValue

Synopsis

StatusType GetElapsedValue(CounterType CounterID, TickRefType Value, TickRefType ElapsedValue

Description

This service gets the number of ticks between the current tick value and a previously
read tick value. If the timer already passed the ¡Value¿ value a second (or multiple)
time, the result returned is wrong. The reason is that the service can not detect such a
relative overflow.

Parameters

• CounterID The Counter which tick value should be read.

• Value Contains the previously read tick value the counter.

• ElapsedValue Will contains the difference to the previous read value.

Return Values

• E_OK No error.

• E_OS_ID (Extended) Reference CounterID is invalid.

• E_OS_VALUE (Extended) The given Value is invalid.

Conformance

BCC1, BCC2, ECC1, ECC2

49

2 API reference

2.10.4 GetAlarmBase

Synopsis

StatusType GetAlarmBase(AlarmType AlarmID, AlarmBaseRefType Info)

Description

Returns the alarm base characteristics. The return value Info is a structure in which
the information of data type AlarmBaseType is stored.
Allowed on task level, ISR, and in several hook routines.

Parameters

• AlarmID Alarm identifier.

• Info Reference to the structure containing the constants that define the alarm
base.

Return Values

• void The function is redefined as returning void when Standard Error is used.

• E_OK (Extended) No error.

• E_OS_ID (Extended) Reference AlarmID is invalid.

Conformance

BCC1, BCC2, ECC1, ECC2

50

2 API reference

2.10.5 GetAlarm

Synopsis

StatusType GetAlarm (AlarmType AlarmID, TickRefType Tick)

Description

The system service GetAlarm returns the relative value in ticks before the alarm AlarmID

expires. If AlarmID is not in use, Tick has an undefined value. Allowed on task level,
ISR, and in several hook routines.

Parameters

• AlarmID Alarm identifier

• Tick (out) Relative value in ticks before the alarm expires

Return Values

• E_OK No error

• E_OS_NOFUNC AlarmID is not used

• E_OS_ID (Extended) reference AlarmID is invalid

Conformance

BCC1, BCC2, ECC1, ECC2

51

2 API reference

2.10.6 SetRelAlarm

Synopsis

StatusType SetRelAlarm (AlarmType AlarmID, TickType increment, TickType cycle)

Description

After increment ticks have elapsed, the AlarmID notification is executed.
If the relative value increment is very small, the alarm may expire, and the notification

can be executed before the system service returns to the user. If cycle is unequal zero,
the alarm element is logged on again immediately after expiry with the relative value
cycle.
The alarm AlarmID must not already be in use. To change values of alarms already in

use the alarm shall be canceled first.
If the alarm is already in use, this call will be ignored and the error E_OS_STATE is

returned. Allowed on task level and in ISR, but not in hook routines.

Parameters

• AlarmID Reference to alarm

• increment Relative value in ticks representing the offset with respect to the current
time of the first alarm expiration.

• cycle Cycle value in case of cyclic alarm. In case of single alarms, this parameter
must be set to 0.

Return Values

• E_OK No error.

• E_OS_STATE Alarm is already in use.

• E_OS_ID (Extended) reference AlarmID is invalid

• E_OS_VALUE (Standard and Extended) Value of increment equal to 0.

• E_OS_VALUE (Extended) Value of increment outside of the admissible limits, or
value of cycle unequal to 0 and outside of the admissible counter limits.

Conformance

BCC1, BCC2, ECC1, ECC2

52

2 API reference

2.10.7 SetAbsAlarm

Synopsis

StatusType SetAbsAlarm (AlarmType AlarmID, TickType start, TickType cycle)

Description

The primitive occupies the alarm AlarmID element. When start ticks are reached, the
AlarmID notification is executed.
If the absolute value start is equal to the actual counter value, the alarm not expire

immediately but will expire the next time the counter will reach the start value..
If cycle is unequal zero, the alarm element is logged on again immediately after expiry

with the relative value cycle.
The alarm AlarmID shall not already be in use. To change values of alarms already

in use the alarm shall be canceled first. If the alarm is already in use, this call will be
ignored and the error E_OS_STATE is returned. Allowed on task level and in ISR, but not
in hook routines.

Parameters

• AlarmID reference to alarm

• start Absolute value in ticks representing the time of the first expiration of the
alarm.

• cycle cycle value in case of cyclic alarm. In case of single alarms, this parameter
must be set to 0.

Return Values

• E_OK No error.

• E_OS_STATE Alarm is already in use.

• E_OS_ID (Extended) reference AlarmID is invalid

• E_OS_VALUE (Extended) Value of start outside of the admissible limits, or value of
cycle unequal to 0 and outside of the admissible counter limits

Conformance

BCC1, BCC2, ECC1, ECC2

53

2 API reference

2.10.8 CancelAlarm

Synopsis

StatusType CancelAlarm (AlarmType AlarmID)

Description

The primitive cancels the alarm AlarmID. Allowed on task level and in ISR, but not in
hook routines.

Parameters

• AlarmID reference to alarm

Return Values

• E_OK No error.

• E_OS_STATE Alarm is already in use.

• E_OS_ID (Extended) reference AlarmID is invalid.

Conformance

BCC1, BCC2, ECC1, ECC2

54

2 API reference

2.11 Internal Messages

Erika Enterprise supports internal messaging following the OSEK COM specifiations,
conformace classes CCCA and CCCB. Please refer to the Erika Enterprise COM Manual
for more information.

2.12 Counting Semaphores

This section describes in detail the primitives provided by Erika Enterprise to support
counting semaphores as a way to implement mutual exclusion and synchronization be-
tween tasks.
Counting semaphores are an RTOS abstractions of an integer counter coupled with a

blocking queue. Basically two main operations are possible on a semaphore, which are
waiting on a semaphore, which results in decrementing the counter if the counter has a
value greater than 0, or blocking the running task if the counter is 0, and posting on a
semaphore, which results in a counter increment if there are no task blocked, or in the
unblock of a blocked task otherwise.
Erika Enterprise counting semaphores exports a simple interface which covers the basic

functionalities of a semaphore, like:

• Initializing a semaphore (InitSem);

• Waiting on a semaphore in a blocking (WaitSem) or non-blocking way (TryWaitSem;

• Posting on a semaphore (PostSem);

• Getting the value of a semaphore (GetValueSem).

Since waiting on a semaphore may result in blocking the running task, the WaitSem

primitive should be called only if the calling task has a separate stack allocated to it. For
this reason, the WaitSem primitive can only be called by extended tasks in conformance
classes ECC1 and ECC2. Semaphores are available as non blocking in conformance
classes BCC1 and BCC2.
Semaphores can be allocated statically as a global variable, which allow to bypass the

call to InitSem.
Semaphores definition are not listed in the OIL file; semaphore primitives receive as

a parameter a pointer to the semaphore descriptor.
The current semaphore implementation does not support multiprocessor systems.

That is, semaphores must be defined and used locally to the same CPU.

Warning: Counting semaphores do not avoid Priority Inversion problems. Please
use Resources instead (see Section 2.8).

55

2 API reference

2.12.1 STATICSEM

Synopsis

SemType s = STATICSEM(value);

Description

This macro can be used to statically initialize a semaphore. It must be used inside the
definition of a global semaphore variable to initialize a semaphore to a given value.

Parameters

• value The counter value for the semaphore being initialized.

Conformance

BCC1, BCC2, ECC1, ECC2

56

2 API reference

2.12.2 InitSem

Synopsis

void InitSem(SemType s, int value);

Description

This macro can be used to initialize a semaphore at runtime. It receives as a parameter
the init value of the semaphore counter.

Parameters

• s The semaphore being initialized.

• value The counter value for the semaphore being initialized.

Return Values

• void The function is a macro and it does not return an error.

Conformance

BCC1, BCC2, ECC1, ECC2

57

2 API reference

2.12.3 WaitSem

Synopsis

StatusType WaitSem(SemRefType s);

Description

If the semaphore counter is greater than 0, then the counter is decremented by one. If
the counter has a value of 0, then the calling (running) task blocks.
This function can only be called by extended tasks in conformance classes ECC1 and

ECC2.

Parameters

• s The semaphore used by the primitive.

Return Values

• void The function is redefined as returning void when Standard Error is used.

• E_OK No error.

• E_OS_CALLEVEL (Extended) The primitive was called at interrupt level.

• E_OS_RESOURCE (Extended) The calling task occupies resources.

• E_OS_ACCESS (Extended) The calling task is not an extended task.

Conformance

ECC1, ECC2

58

2 API reference

2.12.4 TryWaitSem

Synopsis

int TryWaitSem(SemRefType s);

Description

This is a non-blocking version of WaitSem. If the semaphore counter is greater than 0,
then the counter is decremented by one, and the primitive returns 0. If the counter has
a value of 0, then the counter is decremented, and the primitive returns 1.

Parameters

• s The semaphore used by the primitive.

Return Values

• int 0 if the semaphore counter has been decremented, 1 otherwise.

Conformance

BCC1, BCC2, ECC1, ECC2

59

2 API reference

2.12.5 PostSem

Synopsis

StatusType PostSem(SemRefType s);

Description

This primitive unblocks a task eventually blocked on the semaphore. If there are no
tasks blocked on the semaphore, then the semaphore counter is incremented by one.

Parameters

• s The semaphore used by the primitive.

Return Values

• E_OK No error.

• E_OS_VALUEThe semaphore has not been incremented because its counter was equal
to the semaphore maximum value EE_MAX_SEM_COUNTER.

Conformance

BCC1, BCC2, ECC1, ECC2

60

2 API reference

2.12.6 GetValueSem

Synopsis

int GetValueSem(SemRefType s);

Description

This primitive returns the value of the semaphore counter.

Parameters

• s The semaphore used by the primitive.

Return Values

• int The semaphore counter value.

Conformance

BCC1, BCC2, ECC1, ECC2

61

2 API reference

2.13 Application modes, Startup and Shutdown

primitives

Erika Enterprise supports the specification of a set of Application Modes. Application
modes are startup configurations that are used to configure the running application for
a certain mode of operation. Examples of Application Modes are for example “Normal
execution”, “Flash Programming”, “Debug Mode”, and so on.
The main idea is that the CPU startup code somehow discovers the current Applica-

tion mode2. Once done that, the application mode is passed to StartOS, that sets the
application mode for this run. Once the system is started, the application mode value
can be read using a call to GetActiveApplicationMode.
Application modes are listed inside the OIL configuration file. There always exist at

least one application mode called OSDEFAULTAPPMODE. Once set at startup into StartOS,
the Application mode cannot be changed.
Application modes are also useful to autostart tasks and alarms following a call to

StartOS. Tasks and alarms autostart features must be specified inside the OIL configu-
ration file.
Application modes should not be used to map application states that may vary during

the application execution.
The primitive ShutdownOS is used to prepare the system for system shutdown. Cur-

rently the function simply calls ShutdownHook and then it starts a forever loop waiting
for an hardware reset.

2Typical ways to discover Application Modes are for example the usage of dip switches on the device

board.

62

2 API reference

2.13.1 GetActiveApplicationMode

Synopsis

AppModeType GetActiveApplicationMode(void)

Description

The function returns the current Application Mode, that has been set up by StartOS at
system startup.

Return Values

• Application mode The function returns the current Application Mode.

Conformance

BCC1, BCC2, ECC1, ECC2

63

2 API reference

2.13.2 StartOS

Synopsis

StatusType StartOS (AppModeType Mode)

Description

The user can call this system service to start the operating system in a specific Appli-
cation mode. Only allowed outside of the operating system, at startup. The function
calls in order the StartupHook, then it activates the tasks and set the alarms AUTOSTART
set as TRUE inside the OIL configuration file. After that, the system is rescheduled and
the highest priority ready task is executed.
The StartOS primitive by default never returns to the caller.
Please note that old versions of Erika Enterprise implemented the StartOS primitive in

a way that it was returning to the user, to enable the possibility to do some meaningful
background activities. To re-enable this old behavior, please add the following line to
the OIL file:

EE_OPT = "__OO_STARTOS_OLD__"

If the function is configured to return to the caller, then it will return after the first
idle time is reached. It is up to the caller to implement a meaningful background activity.
If unsure of a meaningful background activity, just use the for(;;) construct.

Parameters

• Mode application mode

Return Values

• E_OK (Extended) No error.

• E_OS_SYS_INIT (Extended) Error during initialization.

• void The function returns void when Extended Status is not selected.

Conformance

BCC1, BCC2, ECC1, ECC2

64

2 API reference

2.13.3 ShutdownOS

Synopsis

void ShutdownOS (StatusType Error)

Description

The user can call this system service to abort the overall system (e.g. emergency off).
If a ShutdownHook is configured the hook routine ShutdownHook is always called (with

Error as argument) before shutting down the operating system.
The Operating system shutdown is currently implemented as a forever loop.

Parameters

• Error The identifier of the error that occurred.

Conformance

BCC1, BCC2, ECC1, ECC2

65

2 API reference

2.14 Hooks and Error handling primitives

Erika Enterprisesupports five application callbacks that are called when specific situations
happens during application execution.
On multiprocessor systems, hooks are local callbacks to each processor.
The ErrorHook callback is called every time an error is detected inside an Erika En-

terpriseprimitive. The callback can be used to implement centralized error handling. A
set of macros are also available to better understand the source of the error (see Section
2.15).
The StartupHook callback is called inside the StartOS primitive to implement the

application startup procedure.
The ShutdownHook callback is called inside the ShutdownOS primitive to implement the

Application specific shutdown procedures.
The PreTaskHook and PostTaskHook callbacks are called respectively every time a task

becomes the RUNNING Task, and every time a task stops to be the RUNNING Task.
The application can only call a limited set of primitives inside Hook functions.

2.14.1 Placement of the application startup code

In general, there are three ways where the application startup code can be placed:

1. before the call to StartOS. This case is typically used for non-OS related initial-
izations, because calling Erika Enterprise primitives before StartOS may have in
general unpredictable results.

2. inside StartupHook. This case is used for the initializations that require a call
to Erika Enterprise primitives. Please note that StartupHook is called before the
rescheduling in StartOS takes place.

3. after the call to StartOS. This case can be used also for Erika Enterprise related
initializations: the startup code is called after the end of StartOS, and that means
at the first idle time after the autostart tasks has been activated and executed
Please note that if the autostart tasks never terminate, these initializations are
never called.

66

2 API reference

2.14.2 ErrorHook

Synopsis

void ErrorHook (StatusType Error)

Description

When configured in the OIL File, the system calls this callback every time the return
value of a function is different from E_OK. The application can then get additional
informations using the OSErrorGetServiceId macro, that returns the function that is
generating the Error. Once the function that generated the error is known, the applica-
tion can also access the parameters that generated the error using the OSError_XXX_YYY

macros, where XXX is the name of the function, and YYY is the name of the parameter
passed to the function.

Parameters

• Error the identifier of the error that occurred

Conformance

BCC1, BCC2, ECC1, ECC2

67

2 API reference

2.14.3 PreTaskHook

Synopsis

void PreTaskHook (void)

Description

When configured in the OIL File, this hook function is called every time a task becomes
the RUNNING task due to the call of other functions, or due to the preemption done by
interrupts. The ID of the task which has just become the RUNNING task can be read using
the GetTaskID function.

Conformance

BCC1, BCC2, ECC1, ECC2

68

2 API reference

2.14.4 PostTaskHook

Synopsis

void PreTaskHook (void)

Description

When configured in the OIL File, this hook function is called every time a task is no
more the RUNNING task due to the call of other functions, or due to the preemption done
by interrupts. The ID of the task which has just finished to be the RUNNING task can be
read using the GetTaskID function.

Conformance

BCC1, BCC2, ECC1, ECC2

69

2 API reference

2.14.5 StartupHook

Synopsis

void StartupHook (void)

Description

When configured in the OIL File, this hook function is called inside StartOS. Inside this
callback, the Application can call the Operating System-related functions ActivateTask,
SetRelAlarm, and SetAbsAlarm. Please note that the simplest way to activate a task or
set an alarm at startup is to specify their initial activation/setting inside the OIL File.

Conformance

BCC1, BCC2, ECC1, ECC2

70

2 API reference

2.14.6 ShutdownHook

Synopsis

void ShutdownHook (StatusType Error)

Description

When configured in the OIL File, this hook function is called inside ShutdownOS. Inside
this callback, the Application can implement application dependent shutdown func-
tions.

Parameters

• Error the identifier of the error that occurred, that is the same value that has been
passed to the ShutdownOS primitive.

Conformance

BCC1, BCC2, ECC1, ECC2

71

2 API reference

2.15 ErrorHook Macros

These macros are meaningful inside the ErrorHook Hook function, and are used to bet-
ter understand the source of the error. In particular, ErrorHook receives as parame-
ter the error that is raised by the primitive. Then, a call to OSErrorGetServiceId re-
turns informations about which primitive caused the error. Finally, calls to the macros
OSError_XXX_YYY returns the values of the YYY parameter of the primitive XXX.

2.15.1 OSErrorGetServiceId

Synopsis

OSServiceIdType OSErrorGetServiceId(void)

Description

The function may be used inside ErrorHook to return the Service ID that generated the
error that caused the call to ErrorHook.

Return Values

• Service ID The service ID causing the error.

Conformance

BCC1, BCC2, ECC1, ECC2

2.15.2 OSError ActivateTask TaskID

Synopsis

TaskType OSError_ActivateTask_TaskID(void)

Description

The function returns the TaskID parameter passed to ActivateTask. The function must
be used inside ErrorHook after having discovered using OSErrorGetServiceId that the
error was caused by that function.

Return Values

• Task ID The value of the TaskID parameter.

Conformance

BCC1, BCC2, ECC1, ECC2

72

2 API reference

2.15.3 OSError ChainTask TaskID

Synopsis

TaskType OSError_ChainTask_TaskID(void)

Description

The function returns the TaskID parameter passed to ChainTask. The function must be
used inside ErrorHook after having discovered using OSErrorGetServiceId that the error
was caused by that function.

Return Values

• Task ID The value of the TaskID parameter.

Conformance

BCC1, BCC2, ECC1, ECC2

2.15.4 OSError GetTaskState TaskID

Synopsis

TaskType OSError_GetTaskState_TaskID(void)

Description

The function returns the TaskID parameter passed to GetTaskState. The function must
be used inside ErrorHook after having discovered using OSErrorGetServiceId that the
error was caused by that function.

Return Values

• Task ID The value of the TaskID parameter.

Conformance

BCC1, BCC2, ECC1, ECC2

2.15.5 OSError GetTaskState State

Synopsis

TaskStateRefType OSError_GetTaskState_State(void)

73

2 API reference

Description

The function returns the State parameter passed to GetTaskState. The function must
be used inside ErrorHook after having discovered using OSErrorGetServiceId that the
error was caused by that function.

Return Values

• StateRef The value of the State parameter.

Conformance

BCC1, BCC2, ECC1, ECC2

2.15.6 OSError GetResource ResID

Synopsis

ResourceType OSError_GetResource_ResID(void)

Description

The function returns the ResID parameter passed to GetResource. The function must be
used inside ErrorHook after having discovered using OSErrorGetServiceId that the error
was caused by that function.

Return Values

• Resource ID The value of the ResID parameter.

Conformance

BCC1, BCC2, ECC1, ECC2

2.15.7 OSError ReleaseResource ResID

Synopsis

ResourceType OSError_ReleaseResource_ResID(void)

Description

The function returns the ResID parameter passed to ReleaseResource. The function
must be used inside ErrorHook after having discovered using OSErrorGetServiceId that
the error was caused by that function.

74

2 API reference

Return Values

• Resource ID The value of the ResID parameter.

Conformance

BCC1, BCC2, ECC1, ECC2

2.15.8 OSError SetEvent TaskID

Synopsis

TaskType OSError_SetEvent_TaskID(void)

Description

The function returns the TaskID parameter passed to SetEvent. The function must be
used inside ErrorHook after having discovered using OSErrorGetServiceId that the error
was caused by that function.

Return Values

• Task ID The value of the TaskID parameter.

Conformance

ECC1, ECC2

2.15.9 OSError SetEvent Mask

Synopsis

EventMaskType OSError_SetEvent_Mask(void)

Description

The function returns the Mask parameter passed to SetEvent. The function must be
used inside ErrorHook after having discovered using OSErrorGetServiceId that the error
was caused by that function.

Return Values

• Mask The value of the Mask parameter.

Conformance

ECC1, ECC2

75

2 API reference

2.15.10 OSError ClearEvent Mask

Synopsis

EventMaskType OSError_ClearEvent_Mask(void)

Description

The function returns the Mask parameter passed to ClearEvent. The function must be
used inside ErrorHook after having discovered using OSErrorGetServiceId that the error
was caused by that function.

Return Values

• Mask The value of the Mask parameter.

Conformance

ECC1, ECC2

2.15.11 OSError GetEvent TaskID

Synopsis

TaskType OSError_GetEvent_TaskID(void)

Description

The function returns the TaskID parameter passed to GetEvent. The function must be
used inside ErrorHook after having discovered using OSErrorGetServiceId that the error
was caused by that function.

Return Values

• Task ID The value of the TaskID parameter.

Conformance

ECC1, ECC2

2.15.12 OSError GetEvent Event

Synopsis

EventMaskRefType OSError_GetEvent_Event(void)

76

2 API reference

Description

The function returns the TaskID parameter passed to GetEvent. The function must be
used inside ErrorHook after having discovered using OSErrorGetServiceId that the error
was caused by that function.

Return Values

• Event The value of the Event parameter.

Conformance

ECC1, ECC2

2.15.13 OSError WaitEvent Mask

Synopsis

EventMaskType OSError_WaitEvent_Mask(void)

Description

The function returns the Mask parameter passed to WaitEvent. The function must be
used inside ErrorHook after having discovered using OSErrorGetServiceId that the error
was caused by that function.

Return Values

• Mask The value of the Mask parameter.

Conformance

ECC1, ECC2

2.15.14 OSError GetAlarmBase AlarmID

Synopsis

AlarmType OSError_GetAlarmBase_AlarmID(void)

Description

The function returns the AlarmID parameter passed to GetAlarmBase. The function must
be used inside ErrorHook after having discovered using OSErrorGetServiceId that the
error was caused by that function.

77

2 API reference

Return Values

• Alarm ID The value of the AlarmID parameter.

Conformance

BCC1, BCC2, ECC1, ECC2

2.15.15 OSError GetAlarmBase Info

Synopsis

AlarmBaseRefType OSError_GetAlarmBase_Info(void)

Description

The function returns the Info parameter passed to GetAlarmBase. The function must be
used inside ErrorHook after having discovered using OSErrorGetServiceId that the error
was caused by that function.

Return Values

• Info The value of the Info parameter.

Conformance

BCC1, BCC2, ECC1, ECC2

2.15.16 OSError GetAlarm AlarmID

Synopsis

AlarmType OSError_GetAlarm_AlarmID(void)

Description

The function returns the AlarmID parameter passed to GetAlarm. The function must be
used inside ErrorHook after having discovered using OSErrorGetServiceId that the error
was caused by that function.

Return Values

• Alarm ID The value of the AlarmID parameter.

Conformance

BCC1, BCC2, ECC1, ECC2

78

2 API reference

2.15.17 OSError GetAlarm Tick

Synopsis

TickRefType OSError_GetAlarm_Tick(void)

Description

The function returns the Tick parameter passed to GetAlarm. The function must be
used inside ErrorHook after having discovered using OSErrorGetServiceId that the error
was caused by that function.

Return Values

• Tick The value of the Tick parameter.

Conformance

BCC1, BCC2, ECC1, ECC2

2.15.18 OSError SetRelAlarm AlarmID

Synopsis

AlarmType OSError_SetRelAlarm_AlarmID(void)

Description

The function returns the AlarmID parameter passed to SetRelAlarm. The function must
be used inside ErrorHook after having discovered using OSErrorGetServiceId that the
error was caused by that function.

Return Values

• Alarm ID The value of the AlarmID parameter.

Conformance

BCC1, BCC2, ECC1, ECC2

2.15.19 OSError SetRelAlarm increment

Synopsis

TickType OSError_SetRelAlarm_increment(void)

79

2 API reference

Description

The function returns the increment parameter passed to SetRelAlarm. The function
must be used inside ErrorHook after having discovered using OSErrorGetServiceId that
the error was caused by that function.

Return Values

• increment The value of the increment parameter.

Conformance

BCC1, BCC2, ECC1, ECC2

2.15.20 OSError SetRelAlarm cycle

Synopsis

TickType OSError_SetRelAlarm_cycle(void)

Description

The function returns the cycle parameter passed to SetRelAlarm. The function must be
used inside ErrorHook after having discovered using OSErrorGetServiceId that the error
was caused by that function.

Return Values

• cycle The value of the cycle parameter.

Conformance

BCC1, BCC2, ECC1, ECC2

2.15.21 OSError SetAbsAlarm AlarmID

Synopsis

AlarmType OSError_SetAbsAlarm_AlarmID(void)

Description

The function returns the AlarmID parameter passed to SetAbsAlarm. The function must
be used inside ErrorHook after having discovered using OSErrorGetServiceId that the
error was caused by that function.

80

2 API reference

Return Values

• Alarm ID The value of the AlarmID parameter.

Conformance

BCC1, BCC2, ECC1, ECC2

2.15.22 OSError SetAbsAlarm start

Synopsis

TickType OSError_SetAbsAlarm_start(void)

Description

The function returns the start parameter passed to SetAbsAlarm. The function must be
used inside ErrorHook after having discovered using OSErrorGetServiceId that the error
was caused by that function.

Return Values

• start The value of the start parameter.

Conformance

BCC1, BCC2, ECC1, ECC2

2.15.23 OSError SetAbsAlarm cycle

Synopsis

TickType OSError_SetAbsAlarm_cycle(void)

Description

The function returns the cycle parameter passed to SetAbsAlarm. The function must be
used inside ErrorHook after having discovered using OSErrorGetServiceId that the error
was caused by that function.

Return Values

• cycle The value of the cycle parameter.

Conformance

BCC1, BCC2, ECC1, ECC2

81

2 API reference

2.15.24 OSError CancelAlarm AlarmID

Synopsis

AlarmType OSError_CancelAlarm_AlarmID(void)

Description

The function returns the AlarmID parameter passed to CancelAlarm. The function must
be used inside ErrorHook after having discovered using OSErrorGetServiceId that the
error was caused by that function.

Return Values

• Alarm ID The value of the AlarmID parameter.

Conformance

BCC1, BCC2, ECC1, ECC2

2.15.25 OSError IncrementCounter AlarmID

Synopsis

AlarmType OSError_IncrementCounter_AlarmID(void)

Description

The function returns the AlarmID of the Alarm notification triggered by IncrementCounter

that raised the error. The function must be used inside ErrorHook after having discovered
using OSErrorGetServiceId that the error was caused by that function.

Return Values

• Alarm ID The value of the AlarmID of the Alarm notification that triggered the
error.

Conformance

BCC1, BCC2, ECC1, ECC2

2.15.26 OSError IncrementCounter TaskID

Synopsis

TaskType OSError_IncrementCounter_TaskID(void)

82

2 API reference

Description

The function returns the TaskID related to the Alarm notification triggered by IncrementCounter

that raised the error. The function must be used inside ErrorHook after having discovered
using OSErrorGetServiceId that the error was caused by that function.

Return Values

• Task ID The value of the TaskID of the Alarm notification that triggered the error.

Conformance

BCC1, BCC2, ECC1, ECC2

2.15.27 OSError IncrementCounter Mask

Synopsis

EventMaskType OSError_IncrementCounter_Mask(void)

Description

The function returns the Event Mask related to the Alarm notification triggered by
IncrementCounter that raised the error. The function must be used inside ErrorHook

after having discovered using OSErrorGetServiceId that the error was caused by that
function.

Return Values

• Mask The value of the Event Mask of the Alarm notification that triggered the
error.

Conformance

ECC1, ECC2

2.15.28 OSError IncrementCounter action

Synopsis

EE_TYPENOTIFY OSError_IncrementCounter_action(void)

Description

The function returns the action related to the Alarm notification triggered by IncrementCounter

that raised the error. The function must be used inside ErrorHook after having discovered
using OSErrorGetServiceId that the error was caused by that function.

83

2 API reference

Return Values

• action The value of the action of the Alarm notification that triggered the er-
ror. Possible values of this parameter are: EE_ALARM_ACTION_TASK for task noti-
fications, EE_ALARM_ACTION_CALLBACK if the notification is an alarm callback, and
EE_ALARM_ACTION_EVENT (only available with ECC1 and ECC2), if the notification
is an event set.

Conformance

BCC1, BCC2, ECC1, ECC2

2.15.29 OSError StartOS Model

Synopsis

AppModeType OSError_StartOS_Mode(void)

Description

The function returns the Model related to the StartOS Call. The function must be used
inside ErrorHook after having discovered using OSErrorGetServiceId that the error was
caused by that function.

Return Values

• Mode The Mode parameter that was passed to the StartOS primitive.

Conformance

BCC1, BCC2, ECC1, ECC2

2.16 Interrupt service routines

Erika Enterprise supports both ISR Category 1 (which are ISR not directly handled by
the operating system) and ISR Category 2 (which are handled by the operating system,
and that can call OS primitives inside their handlers).
The following restriction applies: all interrupts of Category 1 must have a higher

or equal hardware priority compared with interrupts of Category 2. This limitation
has been introduced to avoid various rescheduling problems appearing when a ISR2
interrupts a lower priority ISR1.
This is the only limitation common to all Erika Enterprise porting, so you should

check specific architecture manuals and/or Erika Enterprise wiki pages if more limitations
regarding ISR priority levels has been introduced.

84

3 ORTI and Lauterbach Trace32 support

Erika Enterprise provides direct support for application debugging using the Lauterbach
Trace32 debugger [1].
The provided support includes:

• Automatic generation of Trace32 scripts to simplify the load and debugging of
Erika Enterprise applications.

• Automatic generation of batch scripts for single and multicore Nios II designs. An
instance of Trace32 will be started and configurated for each core in the design.

• Automatic generation of the ORTI files to enable kernel awareness with Lauterbach
Trace32. In this way, all the object declared in the system (Tasks, Resources,
Alarms, Stacks, Context switches, ...) can be evaluated from the Trace32 debugger.

This chapter describes the impact of the ORTI usage in Erika Enterprise applications
with respect to the impact to the code footprint of the ORTI code, and with respect
to the stack usage statistics performed by Lauterbach Trace32. More information on
how to generate the Lauterbach Trace32 scripts, and the ORTI files can be found in the
RT-Druid Reference Manual.

3.1 ORTI and Erika Enterprise footprint

The ORTI support provided by Lauterbach Trace32 is a nice feature that allow devel-
opers to track in a graphical way the kernel objects like tasks, resources, alarms, and
stacks. When using ORTI, Erika Enterprise is configured appropriately by RT-Druid by
adding a set of parameters inside the makefiles. As a result, the kernel records a set of
additional information which are then referred inside the ORTI file. For that reason,
for a maximum reduction of the Erika Enterprise footprint, the ORTI options should be
disabled.

3.2 ORTI and stack usage statistics

Another interesting feature of the ORTI support for Lauterbach Trace32 is the possibility
of tracking the stack usage in the system. To use the feature, the user should remind to
fill up all the stack space with the value 0xa5a5a5a5. That can be usually done by putting
a call to EE_trace32_stack_init as the first instruction into main or into alt_main.

85

3 ORTI and Lauterbach Trace32 support

3.2.1 EE trace32 stack init

Synopsis

void EE_trace32_stack_init(void);

Description

This inline function can be used on the Altera Nios II platform to fill up the memory
space from __alt_stack_limit to the current stack pointer with the pattern 0xa5a5a5a5.
The memory region from __alt_stack_limit to 0xa5a5a5a5 is the memory region that

is typically allocated as stack space by the Altera System Library.
This function should be called among the first functions in the system, before any call

to malloc, because the heap region is typically allocated at the end of the available stack
space. Failing to do that may result in overwriting the data structures allocated with
malloc, with potential unexpected results and application crashes.
This function is only useful to get an estimation of the used stack space, and should be

used in conjunction with the ORTI stack informations produced for Lauterbach Trace32.
If this function is not called, it is likely that Lauterbach Trace32 will return a stack
utilization of 100% for all the stacks defined in the system.

Conformance

BCC1, BCC2, ECC1, ECC2

86

4 History

Version Comment

1.2.x These are versions for Nios II 5.0 and 5.1.
1.3.0 Updated text, corrected typos. Removed Altera Nios

II features and the related multicore informations
which are now in a separate document.

1.3.1 Added counting semaphores. StartOS always re-
turns.

1.4.0 Re-organized and extended content, corrected typos.
1.4.2 Added OIL section; fixed typos; added new version-

ing mechanism.
1.4.3 Fixed Typos.
1.4.4 Fixed Typos. Erika Enterprise Basic renamed to Erika

Enterprise.

87

Bibliography

[1] Lauterbach GMBH. The Lauterbach Trace32 Debugger for Nios II.
http://www.lauterbach.com, 2005.

88

http://www.lauterbach.com

Index

ActivateTask, 24
AlarmBaseRefType, 15
AlarmBaseType, 15
ALARMCALLBACK, 20
AlarmType, 15
AppModeType, 15

CancelAlarm, 54
ChainTask, 26
ClearEvent, 43
Counters Constants, 14
CounterType, 15

DeclareAlarm, 18
DeclareEvent, 18
DeclareResource, 18
DeclareTask, 19
DisableAllInterrupts, 32

EE trace32 stack init, 86
EnableAllInterrupts, 33
Error List, 12
ErrorHook, 67
EventMaskRefType, 16
EventMaskType, 16

ForceSchedule, 28

GetActiveApplicationMode, 63
GetAlarm, 51
GetAlarmBase, 50
GetCounterValue, 48
GetElapsedValue, 49
GetEvent, 44
GetResource, 39
GetTaskID, 29
GetTaskState, 30
GetValueSem, 61

IncrementCounter, 47
InitSem, 57
Internal Resource, 22
INVALID TASK, 12
ISR, 20

OSDEFAULTAPPMODE, 14
OSError ActivateTask TaskID, 72
OSError CancelAlarm AlarmID, 82
OSError ChainTask TaskID, 73
OSError ClearEvent Mask, 76
OSError GetAlarm AlarmID, 78
OSError GetAlarm Tick, 79
OSError GetAlarmBase AlarmID, 77
OSError GetAlarmBase Info, 78
OSError GetEvent Event, 76
OSError GetEvent TaskID, 76
OSError GetResource ResID, 74
OSError GetTaskState State, 73
OSError GetTaskState TaskID, 73
OSError IncrementCounter action, 83
OSError IncrementCounter AlarmID, 82
OSError IncrementCounter Mask, 83
OSError IncrementCounter TaskID, 82
OSError ReleaseResource ResID, 74
OSError SetAbsAlarm AlarmID, 80
OSError SetAbsAlarm cycle, 81
OSError SetAbsAlarm start, 81
OSError SetEvent Mask, 75
OSError SetEvent TaskID, 75
OSError SetRelAlarm AlarmID, 79
OSError SetRelAlarm cycle, 80
OSError SetRelAlarm increment, 79
OSError StartOS Model, 84
OSError WaitEvent Mask, 77
OSErrorGetServiceId, 72
OSService IDs, 12

89

Index

OSServiceIdType, 16

Pending activations, 22
PostSem, 60
PostTaskHook, 69
PreTaskHook, 68

ReleaseResource, 40
RES SCHEDULER, 13
ResourceType, 16
ResumeAllInterrupts, 35
ResumeOSInterrupts, 37

Schedule, 27
SemRefType, 16
SemType, 16
SetAbsAlarm, 53
SetEvent, 42
SetRelAlarm, 52
ShutdownHook, 71
ShutdownOS, 65
StartOS, 64
StartupHook, 70
STATICSEM, 56
StatusType, 16
SuspendAllInterrupts, 34
SuspendOSInterrupts, 36
System Counter, 46

TASK, 20
Task Instance, 22
Task States, 13
TaskRefType, 17
TaskStateRefType, 17
TaskStateType, 17
TaskType, 16
TerminateTask, 25
TickRefType, 17
TickType, 17
TryWaitSem, 59

WaitEvent, 45
WaitSem, 58

90

	Introduction
	Erika Enterprise and RT-Druid

	API reference
	Introduction
	Conformance Classes
	Available primitives

	Constants
	Error List
	INVALID_TASK
	OSService IDs
	RES_SCHEDULER
	Task States
	Counters Constants
	OSDEFAULTAPPMODE

	Types
	AlarmBaseType
	AlarmBaseRefType
	AlarmType
	AppModeType
	CounterType
	EventMaskType
	EventMaskRefType
	OSServiceIdType
	ResourceType
	SemType
	SemRefType
	StatusType
	TaskType
	TaskRefType
	TaskStateType
	TaskStateRefType
	TickType
	TickRefType

	Object Declarations
	DeclareAlarm
	DeclareEvent
	DeclareResource
	DeclareTask

	Object Definitions
	ALARMCALLBACK
	ISR
	TASK

	Task Primitives
	ActivateTask
	TerminateTask
	ChainTask
	Schedule
	ForceSchedule
	GetTaskID
	GetTaskState

	Interrupt primitives
	DisableAllInterrupts
	EnableAllInterrupts
	SuspendAllInterrupts
	ResumeAllInterrupts
	SuspendOSInterrupts
	ResumeOSInterrupts

	Resource primitives
	GetResource
	ReleaseResource

	Event related primitives
	SetEvent
	ClearEvent
	GetEvent
	WaitEvent

	Counter and Alarms primitives
	IncrementCounter
	GetCounterValue
	GetElapsedValue
	GetAlarmBase
	GetAlarm
	SetRelAlarm
	SetAbsAlarm
	CancelAlarm

	Internal Messages
	Counting Semaphores
	STATICSEM
	InitSem
	WaitSem
	TryWaitSem
	PostSem
	GetValueSem

	Application modes, Startup and Shutdown primitives
	GetActiveApplicationMode
	StartOS
	ShutdownOS

	Hooks and Error handling primitives
	Placement of the application startup code
	ErrorHook
	PreTaskHook
	PostTaskHook
	StartupHook
	ShutdownHook

	ErrorHook Macros
	OSErrorGetServiceId
	OSError_ActivateTask_TaskID
	OSError_ChainTask_TaskID
	OSError_GetTaskState_TaskID
	OSError_GetTaskState_State
	OSError_GetResource_ResID
	OSError_ReleaseResource_ResID
	OSError_SetEvent_TaskID
	OSError_SetEvent_Mask
	OSError_ClearEvent_Mask
	OSError_GetEvent_TaskID
	OSError_GetEvent_Event
	OSError_WaitEvent_Mask
	OSError_GetAlarmBase_AlarmID
	OSError_GetAlarmBase_Info
	OSError_GetAlarm_AlarmID
	OSError_GetAlarm_Tick
	OSError_SetRelAlarm_AlarmID
	OSError_SetRelAlarm_increment
	OSError_SetRelAlarm_cycle
	OSError_SetAbsAlarm_AlarmID
	OSError_SetAbsAlarm_start
	OSError_SetAbsAlarm_cycle
	OSError_CancelAlarm_AlarmID
	OSError_IncrementCounter_AlarmID
	OSError_IncrementCounter_TaskID
	OSError_IncrementCounter_Mask
	OSError_IncrementCounter_action
	OSError_StartOS_Model

	Interrupt service routines

	ORTI and Lauterbach Trace32 support
	ORTI and Erika Enterprise footprint
	ORTI and stack usage statistics
	EE_trace32_stack_init

	History

