
Porting applications over the various
conformance classes of Erika Enterprise

Quick guide

version: 1.0.1
December 11, 2012

About Evidence S.r.l.
Evidence is a spin-off company of the ReTiS Lab of the Scuola Superiore S. Anna, Pisa,
Italy. We are experts in the domain of embedded and real-time systems with a deep
knowledge of the design and specification of embedded SW. We keep providing signifi-
cant advances in the state of the art of real-time analysis and multiprocessor scheduling.
Our methodologies and tools aim at bringing innovative solutions for next-generation
embedded systems architectures and designs, such as multiprocessor-on-a-chip, recon-
figurable hardware, dynamic scheduling and much more!

Contact Info
Address:
Evidence Srl,
Via Carducci 56
Località Ghezzano
56010 S.Giuliano Terme
Pisa - Italy
Tel: +39 050 991 1122, +39 050 991 1224
Fax: +39 050 991 0812, +39 050 991 0855

For more information on Evidence Products, please send an e-mail to the following
address: info@evidence.eu.com. Other informations about the Evidence product line
can be found at the Evidence web site at: http://www.evidence.eu.com.

This document is Copyright 2005-2012 Evidence S.r.l.

Information and images contained within this document are copyright and the property of Evidence

S.r.l. All trademarks are hereby acknowledged to be the properties of their respective owners. The

information, text and graphics contained in this document are provided for information purposes only by

Evidence S.r.l. Evidence S.r.l. does not warrant the accuracy, or completeness of the information, text,

and other items contained in this document. Matlab, Simulink, Mathworks are registered trademarks

of Matworks Inc. Microsoft, Windows are registered trademarks of Microsoft Inc. Java is a registered

trademark of Sun Microsystems. The OSEK trademark is registered by Continental Automotive GmbH,

Vahrenwalderstraße 9, 30165 Hannover, Germany. The Microchip Name and Logo, and Microchip In

Control are registered trademarks or trademarks of Microchip Technology Inc. in the USA. and other

countries, and are used under license. All other trademarks used are properties of their respective

owners. This document has been written using LaTeX and LyX.

2

http://www.evidence.eu.com

Contents

1 Introduction 4

2 Comparison between the various APIs 5

2.1 System differences . 5
2.1.1 Conformance classes . 5
2.1.2 Error Handling . 5
2.1.3 PreTaskHook and PostTaskHook 5
2.1.4 System startup . 5
2.1.5 System Shutdown . 6

2.2 Tasks . 6
2.2.1 Task termination . 6
2.2.2 Informations on tasks . 6
2.2.3 Basic tasks and extended tasks 7
2.2.4 Number of pending activations 7

2.3 Interrupt handling . 7
2.4 Event handling . 7
2.5 Support for non-blocking semaphores . 7
2.6 ORTI support . 8

3 History 9

3

1 Introduction

The ERIKA Enterprise kernel provides various operating system APIs:

• a minimal multithreading API which offers multithreading and resource usage
support for tiny microcontrollers, and

• a superset of the minimal API which follows more closely the OSEK/VDX OS
specification.

Both APIs allow similar programming capabilities, being able to support multithread-
ing applications for small microcontrollers.
However, there are a few differences which have to be taken into account when porting

an application from the minimal API to the OSEK API and viceversa. The purpose of
this document is to compare in detail the two APIs, for letting the user to choose the
development platform more suitable to its needs.

4

2 Comparison between the various APIs

2.1 System differences

2.1.1 Conformance classes

Erika Enterprise supports four conformance classes named BCC1, BCC2, ECC1, and
ECC2. The main idea is that these conformance classes contain a subset of the OS-
EK/VDX API features, allowing a fine tuning of performance vs code and memory
footprint.
The minimal API supports a conformance class named FP, which is similar to the

BCC2 conformance class of Erika Enterprise (or ECC2 if multistack is selected).

2.1.2 Error Handling

Erika Enterprise primitives typically return error values to inform the correct execution
of the primitive. There are various error codes returned, which may be tuned to reduce
the code footprint. In particular, there is support for an extended status, where the
primitives return all the kind of errors which can be detected, and a standard status,
where only part of the errors are raised.
To reduce the code footprint, the minilal API primitives typically do not return any

error code. The system always assumes the correctness of parameter values, and acts
in a default way upon particular conditions (e.g., task activations are dropped over a
given number of pending activations). For this reason, moreover, there is no distinction
between extended status and standard status.
Erika Enterprise supports the ErrorHook hook function and its macro, allowing the ac-

cess to primitive parameters to cause the error. When defined in the OIL file, ErrorHook
is called everytime an error different from E_OK is returned by a primitive. The minimal
API does not support neither ErrorHook nor its macros.

2.1.3 PreTaskHook and PostTaskHook

Erika Enterprise supports the PreTaskHook and the PostTaskHook hook functions. These
hooks are called by the kernel whenever a context change occurs. The minimal API does
not support PreTaskHook and PostTaskHook.

2.1.4 System startup

Erika Enterprise supports system startup using StartOS. The application developer has
to put a call to StartOS within the main function to start the system. In this way, the

5

2 Comparison between the various APIs

main function becomes the Background Task. A call to StartOS provoke the execution
of the StartupHook hook function, the autostart of tasks and alarms if specified inside
the OIL file. The StartOS primitive is also used to set the application mode.
The minimal API does not support StartOS, StartupHook, application modes and the

autostart of tasks and alarms. With the minimal API, the kernel is already started at
the first instruction of main. Even in this case, the main function is the Background
Task. Task activations and Alarm arming at syystem startup must be done explicitly
by the developer.

Warning: When porting an application from the minimal API to the OSEK/VDX
API, a call to StartOS must be added in the system startup routine (typically main).

Warning: When using the minimal API, remember that activating a task within
the main always causes a preemption to the activated task. This must be taken into
account when more than one task has to be activated at startup. A possible solution
is to activate the tasks starting from the highest priority one.

2.1.5 System Shutdown

In Erika Enterprise , the user should call ShutdownOS when the system must end. Calling
ShutdownOS also causes a call to the ShutdownHook hook function.
The minimal API does not support ShutdownOS and ShutdownHook.

2.2 Tasks

2.2.1 Task termination

In Erika Enterprise, a task instance must always terminate with a call to TerminateTask

or to ChainTask. Failing to terminate a task with one of these primitives brings to
an undefined result; typically, it provokes an application crash. TerminateTask and
ChainTask provide a simple way to clean and throw away the task stack.
The minimal API does not support TerminateTask and ChainTask. A task terminates

at the last } of the task function. No explicit stack cleanup functions are supported.

Warning: When porting an application from the minimal API to the OSEK/VDX
API, the developer must add a call to TerminateTask at the end of every task body.

2.2.2 Informations on tasks

Erika Enterprise supports the GetTaskID and GetTaskState primitives to get information
about the running task ID and the task statuses.

6

2 Comparison between the various APIs

The minimal API does not support neither GetTaskID nor GetTaskState.

2.2.3 Basic tasks and extended tasks

Erika Enterprise distinguishes between Basic Tasks and Extended Tasks. Basic tasks
typically run on a shared stack, whereas extended tasks must run on a private stack.
Extended tasks are tasks which use events and counting semaphores.
The minimal API does not have an explicit dinstinction between basic and extended

tasks. The designer must take care to call counting semaphores and blocking primitives
only within tasks with a private stack.

2.2.4 Number of pending activations

Considering the conformance classes BCC1 and ECC1 of Erika Enterprise, tasks can have
only one pending activation. In conformance classes BCC2 and ECC2, tasks can have
more than one pending activation. The maximum number of pending activations is
specified inside the OIL file and can not be changed at runtime. Pending activations of
tasks with the same priority are processed in a FIFO order, meaning that the ready queue
enqueues activations and not tasks, consuming RAM space for each pending activation
which have to be stored.
When using the minimal API, tasks store the number of pending activations as an

integer value. Therefore, the maximum value is implementation dependent. The devel-
oper can not rely on a particular order in the processing of pending activations of tasks
with the same priority.

2.3 Interrupt handling

There is always a distinction between ISR type 1 and type 2.
While Erika Enterprise supports the primitives for disabling interrupts, the minimal

API does not (please refer to the architecture manual for functions to disable interrupts).

2.4 Event handling

Erika Enterprise supports events for the two conformance classes: ECC1 and ECC2.
Events are not supported by the minimal API.

2.5 Support for non-blocking semaphores

Erika Enterprise supports the non-blocking counting semaphores primitives in the BCC1
and BCC2 conformance classes. BCC1 and BCC2 can also run on a monostack config-
uration.

7

2 Comparison between the various APIs

Semaphore primitives are supported by the minimal API only in the multistack con-
figuration.

2.6 ORTI support

If configured, Erika Enterprise maintains information to support ORTI debugger aware-
ness. The RT-Druid code generator is able to generate appropriate ORTI files which
can be interpreted by debuggers such as Lauterbach Trace32.
The minimal API does not support ORTI kernel awareness.

8

3 History

Version Comment

1.0.0 Initial version of this document.
1.0.1 Added new versioning mechanism.

9

	Introduction
	Comparison between the various APIs
	System differences
	Conformance classes
	Error Handling
	PreTaskHook and PostTaskHook
	System startup
	System Shutdown

	Tasks
	Task termination
	Informations on tasks
	Basic tasks and extended tasks
	Number of pending activations

	Interrupt handling
	Event handling
	Support for non-blocking semaphores
	ORTI support

	History

