ERIKA Enterprise Basic Manual

...multithreading on a thumb!

version: 1.1.2
July 18, 2008

N\

£\ 3RNCE

15 time for
real-time solutions.

\\\\lf

About Evidence S.r.l.

Evidence is a spin-off company of the ReTiS Lab of the Scuola Superiore S. Anna, Pisa,
Italy. We are experts in the domain of embedded and real-time systems with a deep
knowledge of the design and specification of embedded SW. We keep providing signifi-
cant advances in the state of the art of real-time analysis and multiprocessor scheduling.
Our methodologies and tools aim at bringing innovative solutions for next-generation
embedded systems architectures and designs, such as multiprocessor-on-a-chip, recon-
figurable hardware, dynamic scheduling and much more!

Contact Info
Address:

Evidence Srl,

c/o Incubatore Pont-Tech
Viale Rinaldo Piaggio, 32
56025 Pontedera (PI), Italy
Tel: 439 0587 274 823

Fax: 439 0587 291 904

For more information on Evidence Products, please send an e-mail to the following
address: info@evidence.eu.com. Other informations about the Evidence product line
can be found at the Evidence web site at: http://www.evidence.eu.com.

Ey\0enCe

Its time for

7 real-time solutions.
/i

This document is Copyright 2005-2008 Evidence S.r.1.

Information and images contained within this document are copyright and the property of Evidence
S.r.l. All trademarks are hereby acknowledged to be the properties of their respective owners. The
information, text and graphics contained in this document are provided for information purposes only by
Evidence S.r.l. Evidence S.r.l. does not warrant the accuracy, or completeness of the information, text,
and other items contained in this document. Matlab, Simulink, Mathworks are registered trademarks
of Matworks Inc. Microsoft, Windows are registered trademarks of Microsoft Inc. Java is a registered
trademark of Sun Microsystems. OSEK is a registered trademark of Siemens AG. The Microchip Name
and Logo, and Microchip In Control are registered trademarks or trademarks of Microchip Technology
Inc. in the USA. and other countries, and are used under license. All other trademarks used are

properties of their respective owners. This document has been written using LaTeX and LyX.

http://www.evidence.eu.com

Contents

1

Introduction 5
1.1 Erika Enterprise)
API reference 7
2.1 Imtroduction 7
2.1.1 Conformance Classes 7
2.1.2 Available primitives 7
2.2 Constants 9
2.2.1 INVALID_TASK 9
222 EEMAXNACT 9
2.2.3 RESSCHEDULER 9
2.2.4 Task States 9
2.3 Types . .o 11
2.3.1 AlarmType 11
232 CounterType 11
2.3.3 ResourceType 11
234 SemType 11
2.3.5 SemRefType 12
2.3.6 TaskType 12
2.3.7 TickType o o 12
2.3.8 TickRefType 12
2.3.9 TimeAbsType 12
2.3.10 TimeRelType 13
2.4 Object Definitions 14
24.1 TASK . . . 14
2.5 Task Primitives 15
2.5.1 ActivateTask 17
2.5.2 Schedule 18
2.6 Resource primitiveso 19
2.6.1 GetResource 20
2.6.2 ReleaseResource Lo 21
2.7 Interrupt primitives 22
2.8 Counter and Alarms primitives 22
2.8.1 CounterTick 23
2.8.2 GetAlarm 24
2.83 SetRelAlarm 25
2.8.4 SetAbsAlarm 26

Contents

2.8.5 CancelAlarm 27

2.9 Counting Semaphoreso 28
2.9.1 STATICSEM 29
2.9.2 InitSem 30
2.93 WaitSem 31
2.9.4 TryWaitSem 32
2.9.5 PostSem 33
2.9.6 GetValueSem 34
2.10 Time handling 35
2.10.1 GetTime o 36
2.11 System Startup 37
3 History 38

1 Introduction

1.1 Erika Enterprise

Evidence presents the Erika Enterprise RTOS, a minimal RTOS for single chip microcon-
trollers, which provides a simple and tiny multithreading environment with support for
advanced real-time scheduling algorithms and which supports stack sharing.

The Erika Enterprise kernel has been developed with the idea of providing the minimal
set of primitives which can be used to implement a multithreading environment. The
Erika Enterprise API is available as a reduced OSEK/VDX API, providing support for
thread activation, mutual exclusion, alarms, and counting semaphores.

Moreover, the Erika Enterprise kernel offers support for both Fixed Priority (FP) and
Earliest Deadline First (EDF') scheduling algorithms, to offer a choice between the tra-
diction and innovative efficient ways of scheduling concurrent threads.

The OSEK/VDX consortium provides the OIL language (OSEK Implementation Lan-
guage) as a standard configuration language, which is used for the static definition of
the RTOS objects which are instantiated and used by the application. Erika Enterprise
fully supports the OIL language for the configuration of real-time applications.

To face the complexity of dealing with the OIL language and configuration files, Evi-
dence ships the RT-Druid configuration and profiling environment, which allows to con-
figure all the application parameters through a easy-to-use visual interface that auto-
matically generates the application configuration file using the OIL language.

The typical application design flow include the definition of an OIL configuration file
which defines the RTOS objects used by the application; after that, RT-Druid is run
for generating appropriate makefiles and source code to configure the Erika Enterprise.
Finally, the application is compiled to produce an executable file which can be run on
the target.

The features provided by Erika Enterprise to developers are the following:

e Traditional RTOS features:

Support for preemptive and non-preemptive multitasking;

Support for fixed priority scheduling;

Support for shared resources;

Support for periodic activations using Alarms;
e Innovative features

e Support for stack sharing techniques, and one-shot task model to reduce the overall
stack usage;

1 Introduction

e Support for EDF scheduling by using a circular timer approach [1].

The purpose of this document is to describe in detail the minimal API implemented
by Erika Enterprise. Please check the Evidence web site for other documents describing
the details of Erika Enterprise portings for the different supported embedded targets.

2 API reference

2.1 Introduction

The Erika Enterprise Operating System provides a basic interface for the execution of
concurrent applications on a single processor systems.

The interface proposed is suited for small 8 to 32 bit microcontrollers, and proposes
an architecture where tasks can execute concurrently exchanging data with a shared
memory paradigm. Support for synchronization primitives is also provided.

Tasks in Erika Enterprise are scheduled according to fixed priorities, and share resources
using the Immediate Priority Ceiling protocol (in case of the FP kernel) or the SRP
protocol (in case of the EDF kernel).

On top of task execution there are interrupts, that always preempt the running task
to execute urgent operations required by peripherals. Interrupts can be of two kind,
names ISR Type 1 and ISR Type 2 (see Section 2.7).

2.1.1 Conformance Classes

Erika Enterprise implements the minimal API using two conformance classes:

FP The Fixed priority (FP) conformance class includes a set of functionalities similar to
the Erika Enterprise conformance classes BCC2 or ECC2 (depending if the kernel
is configured as monostack or multistack).

The FP conformance class basically supports fixed priority multithreading, with
more than one task for each priority, with more than one pending activation for
each task.

EDF The Earliest Deadline First (EDF) conformance class includes the support for
an EDF scheduler. Each task has a relative deadline which is computed when
the task activation is processed (which is at the time of the previous instance if
the task has pending activations). The deadline is coded using the circular timer
implementation (see Section 2.10.

2.1.2 Available primitives

Erika Enterpriseprovides a set of primitives that can be called in different situations. The
complete list of primitives is listed in Table 2.1, together with the locations where it is
legal to call these functions.

2 API reference

Alarm Callback

ISR1

U] S S S| |& | ISR2

Service

ActivateTask
Schedule
GetResource

<|| Background Task]

ReleaseResource

CounterTick
GetAlarm
SetRelAlarm
SetAbsAlarm
CancelAlarm

InitSem
WaitSem
TryWaitSem
PostSem
GetValueSem
GetTime

S S S S S S S S S & | Task

U S &=

Table 2.1: This table lists the environments where primitives can be called.

2 API reference

2.2 Constants

This is a list of the Erika Enterprise constants that can be used by the developer for
writing applications.

2.2.1 INVALID_TASK

Description

This constant represent an invalid task ID.

2.2.2 EE.MAX_NACT

Description

This constant represent the maximum number of pending activations which can be stored
for a given task. Its typical value is the maximum value for an unsigned integer on the
particular architecture.

2.2.3 RES_SCHEDULER

Description

This is the ID of the RES_SCHEDULER resource.

That resource exists only when USE_RESSCHEDULER is set to TRUE inside the OIL config-
uration file. The RES_SCHEDULER ceiling depends on the tasks that exists in the system,
and it is computed when RT-Druid generates the Erika Enterprise configuration code.

2.2.4 Task States

Description

This is the list of the task states a task can have during its life:

#define EE_READY 1
#define EE_STACKED 2
#define EE_BLOCKED 4
#define EE_WASSTACKED 8

Task States in Erika Enterprise are typically not visible to the application, because they
are highly dependent on the particular Erika Enterprise configuration. In particular,
when using a monostack configuration, task statuses are removed from the system to
save RAM. The EE_READY status is used when a task is ready to execute but it has not
been allocated in its stack yet. The EE_STACKED status refers to a task which is either the
running task or it has been preempted on the stack. The status EE_BLOCKED considers a
task which has executed and which is currently blocked on a synchronization primitive
(e.g., a WaitSem primitive). An additional flag named EE_WASSTACKED is also defined for

2 API reference

internal reasons to map a ready task which has been woken up from a synchronization
but which is still in the ready queue waiting to execute.

10

2 API reference

2.3 Types

This Section contains a description of the data types used by the OS interface of Erika
Enterprise. When the size of a given type is indicated to be of the size of a machine
register, it is intended that such type has the same size of the CPU general purpose
register.

2.3.1 AlarmType
Description

This (signed) type is used to store Alarm IDs, and it has the size of a register.

Conformance

FP, EDF

2.3.2 CounterType
Description

This (signed) type is used to store Counter IDs, and it has the size of a register.

Conformance

FP, EDF

2.3.3 ResourceType
Description
This (unsigned) type is used to store Resource ID values, and it has the size of a regis-

ter.

Conformance

FP, EDF

2.3.4 SemType

Description

This type is a structure storing the information related to a counting semaphore.

Conformance

FP, EDF

11

2 API reference

2.3.5 SemRefType

Description

This is a pointer to SemType.

Conformance

FP, EDF

2.3.6 TaskType

Description

This (signed) type is used to store Task ID, and it has the size of a register.

Conformance

FP, EDF

2.3.7 TickType

Description

This (unsigned) type is used to store Counter Ticks, and it has the size of a register.

Conformance

FP, EDF

2.3.8 TickRefType
Description

This is a pointer to TickType.

Conformance

FP, EDF

2.3.9 TimeAbsType
Description

This is an absolute timer reference, coded using the circular timer method (see Section
2.10.

12

2 API reference

Conformance

EDF

2.3.10 TimeRelType

Description

This is a relative timer reference, coded using the circular timer method (see Section
2.10.

Conformance

EDF

13

2 API reference

2.4 Object Definitions

The following macro have to be used when defining a Task.

2.4.1 TASK
Synopsis

TASK (Funcname) {...}

Description

The TASK keyword must be used when declaring a TASK function.

Conformance

FP, EDF

14

2 API reference

2.5 Task Primitives

Erika Enterprise minimal API supports the definition of tasks which are similar to the
Basic Tasks of the OSEK/VDX Standard.

Erika Enterprise Tasks are typically implemented as normal C functions, that executes
their code and then ends. One of these executions is called also Task Instance. After the
end of a task, its stack is freed. Erika Enterprise tasks typically never block, allowing the
developer to implement stack sharing between different tasks. Sharing the stack helps
the developer to reduce the overall RAM used for the stack.

Support for blocking primitives like counting semaphores is also available if the kernel
is configured as multistack, for those tasks which has assigned a private stack. Tasks
using blocking primitives are typically implemented as a never ending task in which each
instance ends with a synchronization implemented for example as a semaphore wait.

In the conformance class FP, the scheduling policy is a Fixed Priority Scheduling with
Immediate Priority Ceiling and Preemption Thresholds. As a result, the following case
of tasks may be implemented:

Full Preemptive Task A Full Preemptive task is a task that can be preempted in each
instant by higher priority tasks.

Non Preemptive Task A Non Preemptive task is like a Full Preemptive task that exe-
cutes all the time locking a resource with its ceiling equal to the maximum priority
in the system. As a result, a non preemptive task cannot be preempted by other
tasks: only interrupts can preempt it.

Mixed Preemptive Task A Mixed Preemptive task is a task which executes at a higher
priority than the priority used to queue it in the ready queue (This technique is
called Preemption Thresholds). As a result, preemption between tasks is reduced
allowing consistent savings in the RAM space used for stacks.

In the conformance class EDF, the scheduling policy is an Earliest Deadline First
implementation with Stack Resource Policy (SRP), and Preemption Thresholds. Task
parameters include the specification of a relative deadline (specified in the RELDLINE OIL
attribute) as well as a preemption level (specified in the PRIORITY atrribute. As a result,
the following case of tasks may be implemented:

Full Preemptive Task A Full Preemptive task is a task that can be preempted in each
instant by higher priority tasks.

Non Preemptive Task A Non Preemptive task is like a Full Preemptive task that exe-
cutes all the time locking a resource with its ceiling equal to the maximum preemp-
tion level in the system. As a result, a non preemptive task cannot be preempted
by other tasks: only interrupts can preempt it.

Mixed Preemptive Task A Mixed Preemptive task is a task which executes at a higher
priority than the priority used to queue it in the ready queue (This technique is

15

2 API reference

called Preemption Thresholds). As a result, preemption between tasks is reduced
allowing consistent savings in the RAM space used for stacks.

Tasks are activated using the primitive ActivateTask. Activating a task means that
the activated task may be selected for scheduling and may execute one Task Instance. A
task activation while a task is already waiting its execution or while being the running
task is saved as a pending activation (up to a maximum number which is implementation
defined). Note that EDF deadlines for a pending activation are computed when the
previous instance ends.

Tasks scheduled with the minimal API are slightly different if compared with tasks
scheduled with the OSEK conformance classes. These are the main differences:

e The minimal API does not support the primitives TerminateTask or ChainTask.

e The number of pending activations does not need to be specified inside the OIL
file (as it happens in the BCC2 and ECC2 conformance classes of Erika Enterprise).

16

2 API reference

2.5.1 ActivateTask
Synopsis

void ActivateTask(TaskType TaskID);

Description

This primitive activates a task TaskID. Upon activation, the task may become the
running task if it is the highest priority ready task (if using the FP kernel) or if it is
the task with the earliest deadline and with preemption level greater than the system
ceiling (using the EDF kernel)..

Once activated, the task will run for an instance, starting from its first instruction.
If the task is activated while being the running task, or being ready to execute, the
activation is stored as a pending activation, which will be handled afterwards. There
is a maximum number of pending activations. If the maximum number of pending
activations is exceeded, the activation is ignored. Note that EDF deadlines for a pending
activation are computed when the previous instance ends.

The function can be called from the Background task (typically, the main() function).

Parameters

e TaskID Task reference.

Return Values

e void The function never returns an error.

Conformance

FP, EDF

17

2 API reference

2.5.2 Schedule
Synopsis

void Schedule(void)

Description

This primitive can be used as a rescheduling point for tasks that uses Preemption Thresh-
olds and for non preemptive tasks.

When this primitive is called, a task using preemption thresholds sets its priority
to the (lower) one used when queuing on the ready queue. Then, the system checks
if there are higher priority tasks that have to preempt (in that case, a preemption
is implemented). When the primitive returns, tasks using preemption thresholds will
reacquire its threshold priority.

The primitive has no effect if the calling task is neither a non-preemptive task, neither
a task using preemption thresholds.

Return Values

e void The function never returns an error.

Conformance

FP, EDF

18

2 API reference

2.6 Resource primitives

Resources refer to binary semaphores used to implement shared critical sections.

Resources are implemented using the Immediate Priority Ceiling protocol (FP kernel),
or using the Stack Resource Policy (EDF kernel). A resource is locked using the primitive
GetResource, and unlocked using ReleaseResource.

A special resource named RES_SCHEDULER is also supported. The RES_SCHEDULER re-
source has a ceiling equal to the highest priority (FP or highest preemption level in the
case of EDF) in the system. As a result, a task locking RES_SCHEDULER becomes non-
preemptive. If needed, the RES_SCHEDULER resource have to be configured in the OIL
configuration file.

19

2 API reference

2.6.1 GetResource
Synopsis

void GetResource (ResourceType ResID)

Description

This primitive can be used to implement a critical section guarded by Resource ResID.
The critical section will end with the call to ReleaseResource.

Nesting between critical sections guarded by different resources is allowed.

Calls to Schedule are not allowed inside the critical section.

The service may be called from task level only.

Parameters

e ResID Reference to resource

Return Values

e void The function does not return an error.

Conformance

FP, EDF

20

2 API reference

2.6.2 ReleaseResource
Synopsis

void ReleaseResource (ResourceType ResID)

Description

ReleaseResource is used to release a resource locked using GetResource, closing a critical
section.

For information on nested critical sections, see GetResource.

The service may be called from task level only.

Parameters

e ResID Resource identifier

Return Values

e void The function does not return an error.

Conformance

FP, EDF

21

2 API reference

2.7 Interrupt primitives

The minimal API gives support for interrupts. Interrupts are modeled considering typ-
ical microcontroller designs featuring interrupt controllers with a prioritized view of the
interrupt sources.

To map the requirements of fast OS-independent requests, Erika Enterprise supports
the definition of fast interrupts handlers, called ISR Type 1, that on one side can handle
interrupts in the fastest possible way, but on the other side lack the possibility to call
OS services.

On the other hand, lower priority interrupts, called ISR Type 2 and used (for example)
for hardware timers, can call selected OS primitives but are slower than ISR Type 1 due
to the OS bookkeeping needed to implement preemption.

Most of implementation details related to IRQ handling highly depends on the par-
ticular microcontroller on which Erika Enterprise is used. Please refer to the documents
related to the porting of Erika Enterprise to the specific architecture for further details.

2.8 Counter and Alarms primitives

Erika Enterprise supports a notification mechanism based on Counters and Alarms.

A Counter is basically an integer value that can be incremented by 1 “Tick” using the
primitive CounterTick.

An Alarm is a notification that is attached to a specific Counter. The link between a
Counter and an Alarm is specified at compile time in the OIL Configuration file.

An Alarm can be set to fire at a specified tick value using the primitives SetRelAlarm
and SetAbsAlarm. Alarms can be set to be cyclically reactivated. Alarms can be canceled
using the primitive CancelAlarm.

When an Alarm fires, a notification takes place. A notification is set to be one of the
following actions:

Task activation. In this case, a task is activated when the Alarm fires.
Alarm callback. In this case, an alarm callback (defined as void f(void)) is called.

The notifications are executed inside the CounterTick function. It is up to the devel-
oper placing the counter in meaningful places (e.g., a timer interrupt).

Counters, Alarms, and their notifications are specified inside the OIL configuration
file.

Warning: Currently there is no support for automatically generated system coun-
ters (e.g., counters that are automatically linked to hardware timers). All the coun-
ters have to be defined within the OIL Configuration file, and the programmer have
to call CounterTick to increment them.

22

2 API reference

2.8.1 CounterTick
Synopsis

void CounterTick(CounterType c)

Description

This function receives a counter identifier as parameter, and it increments it by 1. This
function is typically called inside an ISR type 2 or inside a task to notify that the event
monitored by a counter has happened.

The function also implements the notification of expired alarms, that is implemented,
depending on the alarm configuration, as:

e an alarm callback function;
e a task activation.

The function is atomic, and no rescheduling will take place after the execution of this
function. When called from the task level, to implement the rescheduling the application
should call Schedule after the call to this function. When called from the ISR type 2
level, the rescheduling will automatically take place at the end of the interrupt routines.

Parameters

e ¢ The counter that needs to be incremented.

Return Values

e void The function does not return an error.

Conformance

FP, EDF

23

2 API reference

2.8.2 GetAlarm
Synopsis

void GetAlarm (AlarmType AlarmID, TickRefType Tick)

Description

The system service GetAlarm returns the relative value in ticks before the alarm AlarmID
expires. AlarmID must be in use. Allowed on task level, ISR, and in several hook
routines.

Parameters

e AlarmID Alarm identifier

e Tick (out) Relative value in ticks before the alarm expires

Return Values

e void The function does not return an error.

Conformance

FP, EDF

24

2 API reference

2.8.3 SetRelAlarm
Synopsis

void SetRelAlarm (AlarmType AlarmID, TickType increment, TickType cycle)

Description

After increment ticks have elapsed, the AlarmID notification is executed.

If the relative value increment is very small, the alarm may expire, and the notification
can be executed before the system service returns to the user. If cycle is unequal zero,
the alarm element is logged on again immediately after expiry with the relative value
cycle.

The alarm AlarmID must not already be in use: before changing the value of an alarm
already in use, the alarm must be canceled. Allowed on task level and in ISR.

Parameters

e AlarmID Reference to alarm

e increment Relative value in ticks representing the offset with respect to the current
time of the first alarm expiration.

e cycle Cycle value in case of cyclic alarm. In case of single alarms, this parameter
must be set to 0.

Return Values

e void The function does not return an error.

Conformance

FP, EDF

25

2 API reference

2.8.4 SetAbsAlarm
Synopsis

void SetAbsAlarm (AlarmType AlarmID, TickType start, TickType cycle)

Description

The primitive occupies the alarm AlarmID element. When start ticks are reached, the
AlarmID notification is executed.

If the absolute value start is very close to the current counter value, the alarm may
expire, and the task may become ready or the alarm-callback may be called before the
system service returns to the user.

If the absolute value start was already reached before the system call, the alarm shall
only expire when the absolute value start is reached again, i.e. after the next overrun
of the counter.

If cycle is unequal zero, the alarm element is logged on again immediately after expiry
with the relative value cycle.

The alarm AlarmID shall not already be in use: before changing the value of an alarm
already in use, the alarm must be canceled. Allowed on task level and in ISR.

Parameters

e AlarmID reference to alarm.

e start Absolute value in ticks representing the time of the first expiration of the
alarm.

e cycle cycle value in case of cyclic alarm. In case of single alarms, this parameter
must be set to 0.

Return Values

e void The function does not return an error.

Conformance

FP, EDF

26

2 API reference

2.8.5 CancelAlarm
Synopsis

void CancelAlarm (AlarmType AlarmID)

Description

The primitive cancels the alarm AlarmID. Allowed on task level and in ISR.

Parameters

e AlarmID reference to alarm

Return Values

e void the function does not return an error.

Conformance

FP, EDF

27

2 API reference

2.9 Counting Semaphores

This section describes in detail the primitives provided by the minimal API of Erika
Enterprise to support counting semaphores as a way to implement mutual exclusion and
synchronization between tasks.

A counting semaphore is a RTOS abstraction of an integer counter coupled with a
blocking queue. Basically two main operations are possible on a semaphore, which are
waiting on a semaphore, which results in decrementing the counter if the counter has a
value greater than 0, or blocking the running task if the counter is 0, and posting on a
semaphore, which results in a counter increment if there are no task blocked, or in the
unblock of a blocked task otherwise.

Erika Enterprise counting semaphores exports a simple interface which covers the basic
functionalities of a semaphore, like:

e Initializing a semaphore (InitSem);

e Waiting on a semaphore in a blocking (WaitSem) or non-blocking way (TryWaitSem;
e Posting on a semaphore (PostSem);

e Getting the value of a semaphore (GetValueSem).

Since waiting on a semaphore may result in blocking the running task, the WaitSem
primitive should be called only if the calling task has a separate stack allocated to it
(which means that Erika Enterprise has been configured as multistack).

Semaphores can also be allocated statically as a global variable, which allow to bypass
the call to InitSem.

Semaphores definition are not listed in the OIL file; semaphore primitives receive as
a parameter a pointer to the semaphore descriptor.

Warning: Counting semaphores do not avoid Priority Inversion problems. Please
use Resources instead (see Section 2.6).

28

2 API reference

2.9.1 STATICSEM
Synopsis

SemType s = STATICSEM(value);

Description

This macro can be used to statically initialize a semaphore. It must be used inside the
definition of a global semaphore variable to initialize a semaphore to a given value.

Parameters

e value The counter value for the semaphore being initialized.

Return Values

e none The function is a macro used at variable definition time.

Conformance

FP, EDF

29

2 API reference

2.9.2 InitSem
Synopsis

void InitSem(SemType s, int value);

Description

This macro can be used to initialize a semaphore at runtime. It receives as a parameter
the init value of the semaphore counter.

Parameters

e s The semaphore being initialized.

e value The counter value for the semaphore being initialized.

Return Values

e void The function is a macro and it does not return an error.

Conformance

FP, EDF

30

2 API reference

2.9.3 WaitSem
Synopsis

void WaitSem(SemRefType s);

Description

If the semaphore counter is greater than 0, then the counter is decremented by one. If
the counter has a value of 0, then the calling (running) task blocks. A separate stack
must be allocated to all the tasks which will call this primitive, because its execution
may block the task.

Parameters

e s The semaphore used by the primitive.

Return Values

e void The function does not return an error.

Conformance

FP, EDF

31

2 API reference

2.9.4 TryWaitSem
Synopsis

int TryWaitSem(SemRefType s);

Description

This is a non-blocking version of SemWait. If the semaphore counter is greater than 0,
then the counter is decremented by one, and the primitive returns 0. If the counter has
a value of 0, then the counter is not decremented, and the primitive returns 1.

Parameters

e s The semaphore used by the primitive.

Return Values

e int 0 if the semaphore counter has been decremented, 1 otherwise.

Conformance

FP, EDF

32

2 API reference

2.9.5 PostSem
Synopsis

void PostSem(SemRefType s);

Description

This primitive unblocks a task eventually blocked on the semaphore. If there are no
tasks blocked on the semaphore, then the semaphore counter is incremented by one.

Parameters

e s The semaphore used by the primitive.

Return Values

e void The function does not return an error.

Conformance

FP, EDF

33

2 API reference

2.9.6 GetValueSem
Synopsis

int GetValueSem(SemRefType s);

Description

If there are tasks blocked on the semaphore, the function returns -1; otherwise, this
primitive returns the value of the semaphore counter.

Parameters

e s The semaphore used by the primitive.

Return Values

e int -1 if there are tasks blocked on the semaphore, or the semaphore counter value
otherwise.

Conformance

FP, EDF

34

2 API reference

2.10 Time handling

The implementation of the EDF scheduler done in the minimal API is based on a timing
reference which is made to be efficiently implemented in small microcontrollers.

The traditional way of implementing a timing representation which can be used to
compute and store timing references used as example for deadlines is based on the
POSIX struct timespec data structure. Unfortunattely, the struct timespec data
structure is not suited to be implemented on small mirocontrollers. The structure in fact
is composed by two 32-bit integer representing seconds and nanoseconds, which require
a substantial code amount to implement the most common operations.

For that reason, the EDF implementation proposed by Erika Enterprise uses a relative
notion of time. That is, the system proposes a timing reference which has the same size
of a hardware timer register. All the timings are then considered relative to the current
timing, and the timings are ordered by using the sign of their difference.

The timing reference is often implemented using a hardware timer or using a software
incremented timer (e.g., like a software counter incremented by a periodic interrupt).

Using this method it is possible to represent a set of deadlines which has a maximum
distance of half the wraparound time of the hardware or software timer linked to them
(see Figure 2.1).

The approximation in general is quite good, because it allows to handle the common
cases of periodic tasks with deadline spanning from a few milliseconds to hundreds of
microseconds. with a relatively good precision.

35

2 API reference

dty
e '
1\’ FFFF 0000 - -

27 . < e3=0E3%h

es=EAABh -~ .. TN N\
/ . L. . t . .
/ \
/ \
/ \
/ \

/ \
/ \
) \
I \
| |
| |
\ I
\)
\' e 1

\ /

\ /

\ /
\ /

Figure 2.1: The relative timer representation. In the figure, e; comes before e

2.10.1 GetTime
Synopsis

TimeAbsType GetTime(void);

Description

This function is used to return the current system time. This function is typically called
inside a task, inside the main task or inside a ISR type 2.

Return Values

e TimeAbsType The current timer value.

Conformance

EDF

36

2 API reference

2.11 System Startup

When using the minimal API, there is no need a specific startup procedure. In particular,
the kernel is already active after the first instruction of the main function.

A typical application will be structured with application dependent initialization rou-
tines inside the main function. Then, tasks will be activated with calls to ActivateTask,
and finally the main task will end with a forever loop, implementing in this way the
background task.

37

3 History

‘ Version ‘ Comment
1.0.0 First version of the document.
1.0.1 Added few content; new versioning mechanism.
1.1.0 Added description for the EDF kernel. Typos.
1.1.1 Typos.
1.1.2 Typos.Erika Enterprise Basic renamed to Erika Enter-
prise.

38

Bibliography

[1] Alessio Carlini and Giorgio Buttazzo. An efficient time representation for real-time
embedded systems. In Proceedings of the ACM Symposium on Applied Computing
(SAC 2003), track on Embedded Systems: Applications, Solutions, and Techniques,
Melbourne, Florida, USA, March 2003.

39

Index

ActivateTask, 17 TryWaitSem, 32

AlarmType, 11
WaitSem, 31

CancelAlarm, 27
CounterTick, 23
CounterType, 11

EE_.MAX_NACT, 9

GetAlarm, 24
GetResource, 20
GetTime, 36
GetValueSem, 34

InitSem, 30
INVALID_TASK, 9

PostSem, 33

ReleaseResource, 21
RES_SCHEDULER, 9
ResourceType, 11

Schedule, 18
SemRefType, 12
SemType, 11
SetAbsAlarm, 26
SetRelAlarm, 25
STATICSEM, 29

System counters, 22

TASK, 14

Task Instance, 15
Task States, 9
TaskType, 12
TickRefType, 12
TickType, 12
TimeAbsType, 12
TimeRelType, 13

40

	Introduction
	Erika Enterprise

	API reference
	Introduction
	Conformance Classes
	Available primitives

	Constants
	INVALID_TASK
	EE_MAX_NACT
	RES_SCHEDULER
	Task States

	Types
	AlarmType
	CounterType
	ResourceType
	SemType
	SemRefType
	TaskType
	TickType
	TickRefType
	TimeAbsType
	TimeRelType

	Object Definitions
	TASK

	Task Primitives
	ActivateTask
	Schedule

	Resource primitives
	GetResource
	ReleaseResource

	Interrupt primitives
	Counter and Alarms primitives
	CounterTick
	GetAlarm
	SetRelAlarm
	SetAbsAlarm
	CancelAlarm

	Counting Semaphores
	STATICSEM
	InitSem
	WaitSem
	TryWaitSem
	PostSem
	GetValueSem

	Time handling
	GetTime

	System Startup

	History

