ERIKA Enterprise Manual for the Microchip
PIC24, dsPIC30 (R) DSC and dsPIC33 (R)
DSC targets

the RTOS for PIC devices

version: 1.1.8
January 18, 2011

MP

EVIDENCE’

About Evidence S.r.l.

Evidence is a spin-off company of the ReTiS Lab of the Scuola Superiore S. Anna, Pisa,
Italy. We are experts in the domain of embedded and real-time systems with a deep
knowledge of the design and specification of embedded SW. We keep providing signifi-
cant advances in the state of the art of real-time analysis and multiprocessor scheduling.
Our methodologies and tools aim at bringing innovative solutions for next-generation
embedded systems architectures and designs, such as multiprocessor-on-a-chip, recon-
figurable hardware, dynamic scheduling and much more!

Contact Info

Address:

Evidence Srl,

Via Carducci 64/A

Localita Ghezzano

56010 S.Giuliano Terme

Pisa - Italy

Tel: +39 050 991 1122, +39 050 991 1224
Fax: +39 050 991 0812, +39 050 991 0855

For more information on Evidence Products, please send an e-mail to the following
address: info@evidence.eu.com. Other informations about the Evidence product line
can be found at the Evidence web site at: http://www.evidence.eu.com.

' '
EVIDENCE’

This document is Copyright 2005-2010 Evidence S.r.1.

Information and images contained within this document are copyright and the property of Evidence
S.r.l. All trademarks are hereby acknowledged to be the properties of their respective owners. The
information, text and graphics contained in this document are provided for information purposes only by
Evidence S.r.l. Evidence S.r.l. does not warrant the accuracy, or completeness of the information, text,
and other items contained in this document. Matlab, Simulink, Mathworks are registered trademarks
of Matworks Inc. Microsoft, Windows are registered trademarks of Microsoft Inc. Java is a registered
trademark of Sun Microsystems. OSEK is a registered trademark of Siemens AG. The Microchip Name
and Logo, and Microchip In Control are registered trademarks or trademarks of Microchip Technology
Inc. in the USA. and other countries, and are used under license. All other trademarks used are

properties of their respective owners. This document has been written using LaTeX and LyX.

http://www.evidence.eu.com

Contents

1

Introduction

1.1 Erika Enterprise and RT-Druid for dsPIC (R)DSC
1.2 Integration with Microchip Inc. products
1.3 Content of this document

Erika Enterprise for PIC devices

2.1 The RT-Druid and Erika Enterprise design flow
2.1.1 Building an application from command line

2.2 Setting up the compiling environment for dsPIC (R) DSC

2.3 Writing software for dsPIC (R) DSC using Erika Enterprise
2.3.1 Avoid the generation of dependency files
2.3.2 Avoid the generation of .src files from C files
2.3.3 Printing the commands executed (verbose mode)
2.3.4 Source files composing an application
2.3.5 Stack handling o
2.3.6 Runtime stack checking exceptions
2.3.7 Interrupt handling L.
2.3.8 Configuring the usage of Microchip ICD2
2.3.9 Configuring a particular dsPIC (R) DSC microcontroller

2.4 Configuring the EDF scheduler
2.4.1 Primary oscillator without PLL
2.4.2 Primary oscillator with PLL
243 EEtimednito

Flex Board

3.1 Introduction e

3.2 System LEDo
3.2.1 EEleds_init
322 EEledsyson e
323 EEledsysoff o
324 EE.ledoon
3.25 EE.ledoff

Flex Demo Daughter Board

4.1 Introduction

4.2 LEDS . . .
4.2.1 EE_demoboard_leds_init

4.3

4.4

4.5

Contents

422 EE.leds 30
423 EE.ledson. 31
424 EE.ledsooff 31
425 EE.ledOon 31
4.2.6 EEledO-off 31
427 EEIled_loon 31
428 EE.led.1off 32
429 EE.led2o0on 32
4210 EE_led20ff 32
4211 EEled3on 32
4.2.12 EEled3off 33
4213 EEled4doon 33
4214 EE leddooff 33
4215 EE ledboon 33
4.2.16 EE_led5off 33
4217 EEled 6on 34
4.2.18 EE_led6off 34
4219 EE led_Toon 34
4220 EE led.7Toff 34
Buttons 35
4.3.1 EE_buttonsinit 35
4.3.2 EE_button_get_S1 o 35
4.3.3 EE_button_get S2 oo 36
4.3.4 EE_button_get.S3 o 36
4.3.5 EE_button_get.S4 L 36
LCD . . . 37
441 EE.ledinit 37
442 EE.lcd_.command 37
443 EEledpute o 38
444 EEledputs 38
445 EEled-busy 38
44.6 EE.led_clear 39
4.4.7 EE.led_home 39
448 EE.lcdline2 39
449 EE.led.cursright 0.0 39
4.4.10 EE_led_cursleft 39
4.4.11 EEledshifto 40
4412 EEled_goto 40
Analog sensors L 40
4.5.1 EE_analoginit oo 41
4.5.2 EE_analogcloseo 41
4.5.3 EE_adcin_init 41
454 EE_adcin.getvolt Lo 42
4.5.5 EE_trimmer_init 42

Contents

4.5.6 EE_trimmer_get_volt oo 42
4.5.7 EE_analogsensors_init L0 42
4.5.8 EE_analog_get_temperature 43
4.5.9 EE_analog getlight 43
4.5.10 EE_accelerometer_inito oL 43
4.5.11 EE_accelerometer_getglevel 44
4.5.12 EE_accelerometer_setglevelo 44
4.5.13 EE_accelerometer_sleep 44
4.5.14 EE_accelerometer_wakeup 44
4.5.15 EE_accelerometer_gety 45
4.5.16 EE_accelerometer_getz 0oL 45
4.6 Buzzer 45
4.6.1 EE_buzzeriinit oL 46
4.6.2 EE_buzzersetfreq Lo 46
4.6.3 EE_buzzer_get_freq 46
4.6.4 EE_buzzermute 47
4.6.5 EE_buzzer_unmute 47
4.6.6 EE_buzzerclose Lo 47
4.7 PWM Output 47
4.7.1 EE_pwm.nit 48
4.72 EEpwmsetduty oL 48
473 EEpwmclose 48
4.8 DAC Output 48
4.8.1 EE_dacgeneralcall 000 49
4.8.2 EE_dac_fast_write 49
4.8.3 EE_dac_write 50
4.84 EE_dacdinito 50
Explorer16 Board 51
5.1 Imtroduction o1
5.2 Buttons 52
5.2.1 EE_buttons.init 0o 52
5.2.2 EE_button_get.S3 52
5.2.3 EE_button_get-S4 53
5.24 EE_button_get S5 53
5.2.5 EE_button.get S6 53
5.3 LEDs. 54
5.3.1 EE_leds_init 54
532 EE.lleds.on. 54
5.3.3 EEledsoff 54
534 EEledon 55
535 EEledoff 55
53.6 EEled3on 25
537 EEled3ooff 55

Contents

538 EE.led4don 56
539 EEledd4doff 56
5310 EE led 5on 56
5311 EEled 50ffo 56
5.3.12 EE led6on 56
53.13 EEled 6off 57
5314 EE led_7on o7
5315 EE led 7off o7
5316 EEled8on o7
53.17 EEled 8off 58
5.3.18 EE led 9on 58
5.3.19 EEled 9off 58
5.3.20 EE led_10ono 58
5.3.21 EE led_10off 58
5.4 LCD e 59
54.1 EEleddinito 59
5.4.2 EE_lcd_command o 59
54.3 EE.ledoputc 60
544 EEled_getc 60
54.5 EE.ledputs 60
54.6 EE.led-busy 61
5.4.7 EE.led.clear 61
54.8 EE.ledhomeo 61
549 EEledline2 61
5.4.10 EE_led_cursrighto 62
54.11 EEled_cursleft 62
54.12 EE ledshift o 62
54.13 EE.led_goto 62
5.5 Analogsensors 63
5.5.1 EE_analoginito 63
5.5.2 EE_analog.getvolt 63
5.5.3 EE_analog.gettemp 64
5.5.4 EE_analogstart oo 64
5.5.5 EE_analogstop 64
dsPICDEM 1.1 Plus Board 65
6.1 Introduction 65
6.2 Buttons 65
6.2.1 EE_buttons_init 65
6.2.2 EE_button_get_S1 66
6.2.3 EE_button_get S2 Lo 67
6.2.4 EE_button_get.S3 L 67
6.2.5 EE_button.get.S4 Lo 67
6.3 LEDs. 68

6.4

6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.7
6.3.8
6.3.9
6.3.10
6.3.11
6.3.12
6.3.13
LCD
6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.4.6
6.4.7
6.4.8
6.4.9
6.4.10
6.4.11
6.4.12
6.4.13
6.4.14
6.4.15
6.4.16
6.4.17
6.4.18
6.4.19
6.4.20
6.4.21
6.4.22
6.4.23
6.4.24
6.4.25
6.4.26
6.4.27
6.4.28
6.4.29

Contents

EE_ledsinit 68
EE ledscon. 68
EE ledsoff 68
EE led_on 69
EE led_off 69
EE_led_1.on 69
EE led_1off 69
EE led 2. 0on 69
EE led2off 70
EE_led3.on 70
EE led3.off 70
EE led4on 70
EE led4off 71
...................................... 71
EE_led_init 71
EE_led_.command 71
EE_led_Reset 72
EE_led_Home 72
EE_led_HomeClear 72
EE_led_Scroll 72
EE_led_ChrPos 73
EE_led_ChrPosInc 73
EE led_-WrtChr 73
EE_led_WrtChrlne 74
EE_led_WrtChrNext 74
EE_led_ChrClearRow 74
EE_led_ChrClearEOL 75
EE_led_ChrCursorOff 75
EE_led_ChrCursorOn 75
EE_led_ChrCursorBlink 75
EE_led_PixPos 76
EE lcd_PixOn 76
EE led PixOff 77
EE_led_PixLine 7
EE_led_ColPos 7
EE led_-WrtColNext 78
EE_lcd_WrtColNextOR 78
EE_led_WrtColNextAND 78
EE_led_WrtColNextXOR 79
EE ledpute 0. o 79
EE_led_home 79
EE led_goto 79
EE_led_clear 80

7 History

Contents

81

1 Introduction

Embedded microcontroller units are spreading in thousands of applications, ranging
from single to distributed systems, control applications, multimedia, communication,
medical applications and many others. Modern microcontrollers, which are growing in
computational power, speed and interfacing capabilities, are more and more feeling the
need of tools to make the development of complex scalable applications easier.

The dsPIC (R) DSC family represents one of the latest products of Microchip Technol-
ogy Inc., the world leading company in the field of microcontroller units. With a speed
of up to 40 MHz, the dsPIC (R) DSC family seamlessly integrates a DSP core for high
performance computation with a full range of interfaces to several buses like CAN, 12C,
SPI, serial lines, and so on.

1.1 Erika Enterprise and RT-Druid for dsPIC (R) DSC

Embedded applications often require tight control on the temporal behavior of each
single activity in the system. The research in the field of real-time systems brought the
team of Evidence Srl to design a small, efficient, modular real-time kernel that can be
used to easily guarantee real-time constraints in every embedded applications.

Erika Enterprise and RT-Druid represent the answer of Evidence Srl for the development
of scalable real-time applications for the dsPIC (R) DSC family.

Erika Enterprise provides dsPIC (R) DSC developers the following features:

Traditional RTOS features

e Support for four conformance classes to match different application require-
ments;

e Support for preemptive and non-preemptive multitasking;
e Support for fixed priority scheduling;

e Support for stack sharing techniques, and one-shot task model to reduce the
overall stack usage;

e Support for shared resources;
e Support for periodic activations using Alarms;
e Support for centralized Error Handling;

e Support for hook functions before and after each context switch.

RT-Druid development environment

1 Introduction

e Development environment based on the Eclipse IDE;
e Support for the OIL language for the specification of the RTOS configuration;

e Graphical configuration plugin to easily generate the OIL configuration file
and to easily configure the RTOS parameters;

e Full integration with the Cygwin development environment to provide a Unix-
style scripting environment;

e Apache ANT scripting support for code generation;

dsPIC (R) DSC integration features

e Installation setup which integrates Microchip software together with fully
configured Evidence Erika Enterprise + RT-Druid;

e Full support for the Microchip devices libraries;

e Full support for the Microchip C30 compiler;

e Full support of the MPLAB IDE debugging environment;

e Full support for the Microchip ICD2 debugger;

e Full support for dsPIC (R) DSC series 30 and 33, and for P1IC24;

e Support for the 802.15.4 (ZigBee) wireless communication protocol (coming
soon);

e Support for I/O to Multimedia Card (MMC) / Secure Digital with FAT
filesystem (coming soon);

e Development of many specific hardware drivers for dsPIC (R) DSC, like multi-
ple servomotor driving, bus EIB support (domotic), and many other (coming
soon);

e Support for the FLEX development board and for some other dsPIC (R) DSC
evaluation boards;

1.2 Integration with Microchip Inc. products

Erika Enterprise and RT-Druid aims to the best integration with the existing tools for
development available from Microchip Inc.

RT-Druid will be used to quickly configure the application, setting temporal parame-
ters of real-time tasks, memory requirements, stack allocation and many other parame-
ters. RT-Druid generates the application template, and leaves the developer the task to
implement the logic of each single task.

While programming the application, the developer can exploit the power and flexibility
offered by the primitives of the Erika Enterprise real-time kernel.

The application can be imported into MPLAB IDE to be written into the dsPIC (R)
DSC EPROM flash memory. Moreover, the application can be debugged from within
the MPLAB IDE.

10

1 Introduction

1.3 Content of this document

The purpose of this document is to describe all the information needed to create, develop
and modify an Erika Enterprise application under the Microchip dsPIC (R) DSC family
of microcontrollers. In particular, the document describes:

e The design flow which should be used to generate an Erika Enterprise application;
e The configuration of the development environment;

e The options which are available to configure the system.

Note: If you are looking for a step-by-step / quick guide tutorial on how to use
Erika Enterprise and RT-Druid with dsPIC (R) DSC, please read the “Erika Enterprise
Tutorial for the microchip dsPIC (R) DSC Platform”, available for download on the

Evidence Web site.

11

2 Erika Enterprise for PIC devices

2.1 The RT-Druid and Erika Enterprise design flow

The typical design flow of a Microchip application based on Microchip tools is done inside
the MPLAB IDE, a development environment for Microsoft Windows which integrates
a source code editor, an instruction set simulator and a debugger.

In addition to the traditional development flow based on MPLAB IDE, Evidence Srl
provides a design and configuration environment named RT-Druid, based on Eclipse [1].
Eclipse is an open framework initially developed by IBM, which allows the possibility of
integrating various development tools in a common environment.

For that reason, when developing an application for Erika Enterprise, the user is sup-
posed to write the source code inside the RT-Druid IDE (see Figure 2.1).

Application compilation is also done inside the Eclipse Framework. In fact, the RT-
Druid code generator is able to generate the Erika Enterprise configuration files together
with a set of configuration files (typically, a makefile plus a set of .c files) which are
then used to compile the source code.

After that, compilation is started automatically by pressing on the “Build Project”
menu item inside the “Project” menu, which automatically calls the underlying make
application provided by the Cygwin environment. As an alternative, the “Build Project”
command is also available by right clicking on the project name.

The choice of the Cygwin environment has been done to simplify the building process
of an application: in fact, Cygwin provides a set of traditional Unix tools like make,
awk, sed, which are really useful to implement a command line application building
framework. Moreover, these tools are typically available for free on Linux platform,
easing in this way the porting of the application to a free development environment such
as Linux.

2.1.1 Building an application from command line

The RT-Druid plugins provide three ways to develop an application:

1. A graphical interface to simplify the development of an application, based on
Eclipse.

2. A scripting interface based on Apache ANT [2], which is the default scripting
environment used in the Eclipse Framework.

3. A standalone code generator, that does not use Eclipse.

12

2 Erika Enterprise for PIC devices

==

| a3 taskdemo

] ee_pic3regsine
15 loc_gnuld

2 * ERIKA Enterprise - a tiny RTOS for small microcontrollers|]

= C/C++ - taskdernarcanf.oil - Eclipse Platfarm = EoE =
File Edit Refoctor Mavigate Search Run Project Window Help
1 | & d@rE-Er@- BT i B 0 (BB A i ([@ C/Cre
[Project Explorer 53 = O|[[9 confoil & = O[5 outi 82 @ Mak | = 8
‘ o =l 1% =

An outline is not available

3 =
4 (= Debug

5 4 % Copyright (C] 2002-2008 Evidence Srl

& frommchp s

& obj & * This file is part of ERIKA Enterprise.

[B] ee_picI0regs.h Y s

4 EI eecfg.c & + ERIKL Enterprise is free software; you cen redistribute i1

8] eecfo.h 9 * and/or modify it under the terms of the GNU General Publi

O libee.a 10 + version Zz as published by the Free Software Foundation,

L5/ deps 11 7 (with @ special exception described helow).

= depspre 12

13 * Linking this code statically or dynsmically with other moc_

el .

ee_startos.c

b

i makefile = z 3

1) picdicof [Problems [Tasks [Console 53 I Properties S|t B-5-7=0

B picitomap [CoBuild taskdemo] - :]
[ieanobjdurp T
o [§ codec ee_rq_inser.c
[0 confoil ee_shrdown.c

ee_chaintas.c
== lockres.o
ee_ulockres.c
== alcancel.c
ee_algethase.c
ee alget.c
ee_alsetabs.c
ee_alsstrel.c
| ee altick.c
AR libee.a
LD (
|

|OBJIDUMP
A A R R TR AR AR AT RE AR ARA

|Compilation terminated successfully!

o | taskdemo/Debug/pic30.cof

@ P AW

Figure 2.1: The Eclipse workspace and the RT-Druid plugins for dsPIC (R) DSC.

Using ANT or the standalone version, the developer can automatically generate from
scripts the configuration data and the makefiles which are then used to compile the
application. This removes the need of opening the graphical environment to compile an
application, providing a way to implement automatic compilation scripts and regression
tests.

Please refer to the RT-Druid reference manual for information about ANT scripting.

2.2 Setting up the compiling environment for dsPIC (R)
DSC

Erika Enterprise has been designed to be compiled using the GNU gcc toolchain. The
dsPIC (R) DSC porting of Erika Enterprise in particular can be compiled using the GNU
tools for dsPIC (R) DSC provided by Microchip. The porting provides both the binutils
package and the gcc package, plus a set of proprietary libraries from Microchip which
can be used to control the various peripherals provided by the dsPIC (R) DSC microcon-
trollers.

The following list describes the various packages which contains the various parts of
the compilation toolchain:

The GNU assembler and binutils. This package is distributed inside the MPLAB IDE

13

2 Erika Enterprise for PIC devices

from Microchip.

The GNU GCC from Microchip. The compiler is packaged in a separate product, called
The Microchip C30 Compiler, which is available as a product under the Microchip
website. A free version is also available for students and universities. The source
code of the compiler is also available under the GPL license on the Microchip web
site.

The GNU GCC recompiled from Microchip sources. In addition to the Microchip C30
Compiler, Evidence also offer a free version of the GCC toolchain for dsPIC (R)
DSC compiled from the sources made available under the GPL license on the Mi-
crochip web site. This version can be used to compile Erika Enterprise without

additional packages other than MPLAB IDE.

Warning: Please note that the free version of the gcc compiler recompiled from the
Microchip sources is not a full replacement for the Microchip C30 compiler. The
Microchip C30 compiler includes many features like include files and libraries to
control the dsPIC (R) DSC peripherals which are not available as open-source.

C Libraries. A set of libraries which can be used to control the peripherals implemented
on the particular Microchip chip in use. These libraries are packaged together with
the Microchip C30 Compiler.

To compile an Erika Enterprise application, the development environment needs to be
configured to correctly recognize the Microchip C30 compiler and the MPLAB ASM30
assembler programs. For doing so, please go to the “Preference” menu, as shown in Fig-
ure 2.2, and find the “RT-Druid/Oil/PIC30 Configurator” form as depicted in Figure
2.3. The first textbox, labeled Gecc path, refers to the installation directory of the Mi-
crochip C30 compiler. The second textbox, labeled Asm path, refers to the installation
directory of the ASM30 assembler provided with the MPLAB IDE.

Moreover, Figure 2.3 contains the following checkboxes:

Use EE gcc to resolve dependencies When checked, the C30 compiler recompiled by
Evidence from the Microchip sources will be used instead of the installed C30
compiler to compute the dependencies of the .C and .S files, and to perform the C
preprocessing of the .S files. This feature is useful to avoid compilation problems
when the system has a Student Edition of the C30 compiler with an expired license.
In that case, the compiler puts a message on the standrd output, corrupting the
dependencies and preprocessing outputs.

Use EE gcc to compile When checked, the C30 compiler recompiled by Evidence from
the Microchip sources will be used instead of the C30 compiler to compile the .C
files. Please note that the original Microchip Libraries will be linked also in this
case.

14

2 Erika Enterprise for PIC devices

Warning: The install directories specified in the two textboxes of Figure 2.3 does
not include the bin directory!

That is, c:\Programmi\Microchip\MPLAB C30 is correct, wheras
c:\Programmi\Microchip\MPLAB C30\bin is not.

Warning: The install directory of the assembler refers to the assembler provided
with MPLAB IDE and not the assembler provided with the C30 compiler. The reason
is that the directory is used to call the assembler and also to copy the crto0.s file,
which has a different position in the two assemblers distributions made by Microchip.

Warning: If you are using a Student Editon of the Microchip C30 compiler which
has an expired license, please check the “Use EE gcc to resolve dependencies”
checkbox in Figure 2.3.

=leEs

aaaaa

nnnnnnnnnnnnnnnnnnnn

Figure 2.2: Go to the “Preference” menu.

2.3 Writing software for dsPIC (R) DSC using Erika
Enterprise

Note: Writing an application for dsPIC (R) DSC using Erika Enterprise is very
simple. Please refer to the Erika EnterpriseTutorial for the dsPIC (R) DSC architecture
for a step-by-step guide with screenshots on how to create, compile and debug a dsPI1C
(R) DSC application written with Erika Enterprise.

15

2 Erika Enterprise for PIC devices

= Preferences o |[@E]
type filter text PIC30
General I
Coer Gec path cAProgram Files\Microchip\MPLAB 30
Help
Fr Asm path CAProgram Files\Microchip\MPLAB ASM30 Suite
Re-Druid Use EE gc to resolve dependecies (1]
il Use EE gec to compile (=]
Erika Enterprise
pIC30
Run/Dsbug
Tasks
Team
Usage Data Collector
Restore Defaults Bpply

Figure 2.3: Select paths for compiler and assembler.

This section describes the details about the various configuration options which are
available to create and compile an Erika Enterprise application for a dsPIC (R) DSC
microcontroller.

Note: For a complete description of all the OIL parameters, please refer to the
RT-Druid reference manual.

2.3.1 Avoid the generation of dependency files

The typical compilation process of an Erika Enterprise application involves the computa-
tion of a dependency file which is used to understand which are the files which needs to
be compiled or updated.

To avoid the computation of these dependencies (useful when you are sure you basically
have to compile everything), you can put the following line in the OIL file:

CPU mySystem {
0S my0s A
EE_OPT = "NODEPS";

};

};

2.3.2 Avoid the generation of .src files from C files

The typical compilation process of an Erika Enterprise application produces various files
which can be used to better analyze the code generated by the C30 compiler. In partic-

16

2 Erika Enterprise for PIC devices

ular, from each .C file, a .SRC file is produced containing the corresponding assembler
listing, which is then compiled by the MPLAB ASM30 compiler to produce the .o.

It is possible to avoid the intermediate step which leads to the production of the .SRC
file. In that case, the compiler will be responsible of producing the .O file directly from
the .C file. This in general also speeds up the compilation process a little bit.

To obtain that feature, you can put the following lines in the OIL file.

CPU mySystem {
0S myOs {
EE_OPT = "NOSRC";

};

};

2.3.3 Printing the commands executed (verbose mode)

The default compilation process typically prints only a compact output for each compi-
lation step. That is in general not useful whenever a file is not compiled properly and the
user wants to know the exact command which is executed in the compilation process.

To obtain a printing of the complete list of commands issued by the Erika Enterprise
makefile, you can add the following line to the OIL file:

CPU mySystem {
0S myOs {
EE_OPT = "VERBOSE";

};

};

2.3.4 Source files composing an application

The source files which can be put in an RT-Druid project are composed by C-language
files (with extension .c) and Assembler files (with extension .S). Assembler files are
always preprocessed by the C preprocessor. All the application files which has to be
included in the final application needs to be listed inside the OIL file, as in the following
OIL example:

CPU_DATA = PIC30 {
APP_SRC
APP_SRC

};

"file_1.c";
"file_2.c";

17

2 Erika Enterprise for PIC devices

2.3.5 Stack handling

Erika Enterprise can be configured as monostack or multistack.

In a monostack configuration, only a single stack exists in the system. No blocking
primitives are supported, and all the tasks and interrupts execute on the same stack. In
this case, the one and only stack starts from the top of the application allocated memory,
growing towards higher addresses. The monostack configuration can not be used if the
application needs to call RTOS primitives such as WaitSem and WaitEvent. Moreover, it
cannot be used when Erika Enterprise conformance classes ECC1 and ECC2 are used.

To configure a monostack kernel in the OIL file, the user has to write the following
lines:

CPU_DATA = PIC30 {

MULTI_STACK = FALSE;
};

In a multistack configuration, the kernel support the existence of different stacks in
the same application. Having different stacks allow the application tasks to use blocking
primitives like WaitSem and WaitEvent, which basically may block the execution of the
running task. In that case, the calling task must have a private stack which is changed
upon blocking. The stack will be selected again when the task will be rescheduled. There
are different stacks available in a multistack configuration:

e A shared stack (used by all the tasks which have a shared stack);
e An IRQ stack (used by all the ISR Type 2 routines);
o A set of private stacks (one for each task which has selected a private stack).

In the dsPIC (R) DSC architecture, the shared stack works as in the monostack config-
uration, that is it is allocated at the end of the application data section, growing towards
higher addresses. The IRQ stack and the private stacks, instead, are allocated in the
application data space as arrays.

The following example shows an OIL configuration which configures a multistack
kernel without a separate IRQ stack (in this case, IRQ handlers execute on the stack of
the interrupted task):

CPU_DATA = PIC30 {

MULTI_STACK
IRQ_STACK

TRUE {
FALSE;

};
};

18

2 Erika Enterprise for PIC devices

The following example shows an OIL configuration which configures a multistack
kernel with a separate IR(Q) stack (in this case, some registers are saved on the stack
of the interrupted task, but the IRQ handler C function is executed on a separate IRQ
stack).

CPU_DATA = PIC30 {

MULTI_STACK

= TRUE {
IRQ_STACK = TRUE {
SYS_SIZE=64;
};

2.3.6 Runtime stack checking exceptions

When multistack configurations are used, it is very useful to be informed when a particu-
lar stack becomes full. For this reason, the dsPIC (R) DSC core allows the user to specify
a stack limit over which an exception should be raised. The stack limit is contained
inside the internal register SPLIM.

Erika Enterprise is able to automatically handle the SPLIM register, setting it at runtime
to the top of the current stack when a multistack configuration.

The SPLIM feature is by default disabled, because it adds some (little) overhead at
each stack change. To enable it, you must include the following lines inside the OIL
configuration file:

CPU_DATA = PIC30 {

ENABLE_SPLIM = TRUE;
};

Please note that Erika Enterprise does not provide a default handler for the stack
overflow exception generated by the SPLIM register. The exception should be specified
by the developer as the behavior to implement is often application dependent.

2.3.7 Interrupt handling

Erika Enterprise for dsPIC (R) DSC provide support for fast Interrupt Service Routines
(ISR) which do not require any RTOS primitive to be called, as well as regular ISRs,
which can call RTOS primitives (e.g., a timer interrupt can call ActivateTask to activate
a periodic task). The first kind of ISRs are called ISR Type 1, and always have hardware
interrupt priority greater than the second kind of ISRs which are called ISR Type 2.

19

2 Erika Enterprise for PIC devices

At the implementation level, Erika Enterprise uses the dsPIC (R) DSC DISI assembler
instruction to implement interrupt disabling. The DISI instruction only disables the first
6 priority levels out of the 7 available in the 16-bit dsPIC (R) DSC core.

For this reason, ISR Type 2 must always have an interrupt priority between 1 and 6.
ISR Type 1 must always have a priority greater or equal than ISR Type 2. As a matter
of fact, interrupt priority 7 is reserved for ISR Type 1 only.

ISR names follow the Microchip convention. Basically the ISR names are listed in-
side the linker script for the particular target which are provided together with the
ASM30 assembler packaged together with Microchip MPLAB IDE under the directory
<MPLAB_install_directory>/MPLAB ASM30 Suite/Support/gld.

To define an ISR Type 1 the developer has to write an interrupt handler as it is written
in typical dsPIC (R) DSC applications which does not use Erika Enterprise. Here is an
example of the definition of an ISR Type 1 for the timer 3 Interrupt of a pic30F2010
device:

void __attribute__((__interrupt__)) _T3Interrupt(void)
{
}

Writing an ISR 1 in this way implies that:

e The C function will be attached to the interrupt of the peripheral (in the example,
timer 3). Every time an interrupt for the peripheral arrives, then the C function
will be executed.

e The compiler will generate a proper function prologue and epilogue which saves
the register used before starting executing the statements inside the function. The
registers will be saved inside the stack of the interrupted task. For that reason,
when using a multistack configuration, the user should reserve a proper space able
to contain all the nested ISR Type 1 for each stack in the system.

To define an ISR Type 2 the developer has to write a C function in the following way:
#include "cpu/pic30/inc/ee_irqgstub.h"

ISR2(_T3Interrupt)
{

}
Writing an ISR 2 in this way implies that:

e An assembler stub will generated for the ISR. The ISR stub will have the name of
the ISR (in the example, _T3Interrupt). The assembler stub will call a C function
named ISR2_functionname which content is specified as the content of the function
(in the example, the function is called ISR2__T3Interrupt). The assembler function
will be attached to the interrupt of the peripheral (in the example, timer 3). Every
time an interrupt for the peripheral arrives, the assembler stub will execute,

20

2 Erika Enterprise for PIC devices

which in turns calls the internal C function whose body has been specified by the
developer.

e The assembler stub saves all the CPU registers on the current stack. After that,
if a multistack configuration with private IRQ stack has been selected, the stack
is changed to a private IRQ stack. Otherwise, the ISR will execute on the stack of
the running task, as in the ISR1 case. At the end of the stub, the Erika Enterprise
end TRQ function will be executed to choose which is the next task to run.

2.3.8 Configuring the usage of Microchip ICD2

dsPIC (R) DSC devices can be debugged using the Microchip product called Microchip
ICD2, which is basically an In-Circuit debugger which directly connects to the microcon-
troller core. When connected, the ICD2 requires the usage of a set of memory locations,
which must be left free by the application.

For this reason, when compiling an application which will be debugged using the
Microchip ICD2, the user has to specify the following line inside the OIL file:

CPU_DATA = PIC30 {

ICD2 = TRUE;
};

2.3.9 Configuring a particular dsPIC (R) DSC microcontroller

Microchip produces various versions of the Microchip microcontrollers, each one with
different peripherals and memory sizes. To support the heterogeneity of these devices,
Microchip offers, through the C30 Compiler toolchain, a set of files which can be used
to configure the compiling process.

In particular, for each device, there are four files:

e A linker script, available under the directory Support/gld of the Microchip ASM30
Assembler, which contains the linking information such as the memory sizes, and
the available interrupt handlers;

e An Assembler include file, available under the directory Support/inc of the Mi-
crochip ASM30 Assembler, which contains the declaration of the device’s register
addresses to be used inside assembler programs;

e A C include file, available under the directory support/h of the Microchip C30
Compiler, which contains the declaration of the device’s addresses to be used
inside C programs;

e A library, available under the directory 1ib of the Microchip C30 compiler, which
contains a set of libraries for the usage of the microcontroller peripherals.

21

2 Erika Enterprise for PIC devices

Every Erika Enterprise application which has to be compiled together with the Mi-
crochip C30 compiler needs the specification of these four files. To set which files have
to be used for the particular device, the user can specify the following lines inside the
OIL file.

If the device number is known, and the files to be used are the default files provided
by Microchip, then the developer can directly specify the device name in the OIL file,
as in the following example:

MCU_DATA = PIC30 {
MODEL = PIC33FJ256GP710;
};

Currently, Erika Enterprise supports the following values for the MODEL attribute:

o PIC24 devices:
PIC24FJ128GA006, PIC24FJ128GA008
PIC24FJ128GA010, PIC24FJ32GA002,
PIC24FJ32GA004, PIC24FJ64GA002,
PIC24FJ64GA004, PIC24FJ64GA006,
PIC24FJ64GA008, PIC24FJ64GA010,
PIC24FJ96GA006, PIC24FJ96GA008,
PIC24FJ96GA010, PIC24HJ128GP206,
PIC24HJ128GP210, PIC24HJ128GP306
PIC24HJ128GP310, PIC24HJ128GP506
PIC24HJ128GP510, PIC24HJ256GP206
PIC24HJ256GP210, PIC24HJ256GP610
PIC24HJ64GP206, PIC24HJ64GP210,
PIC24HJ64GP506, PIC24HJ64GP510

e PIC30 devices:
PIC30F1010, PIC30F2010,
PIC30F2011, PIC30F2012,
PIC30F2020, PIC30F2021,
PIC30F2022, PIC30F2023,
PIC30F3010, PIC30F3011,
PIC30F3012, PIC30F3013,
PIC30F3014, PIC30F4011,
PIC30F4012, PIC30F4013,
PIC30F5011, PIC30F5013,
PIC30F5015, PIC30F5016,
PIC30F6010, PIC30F6010A,
PIC30F6011, PIC30F6011A,
PIC30F6012, PIC30F6012A,
PIC30F6013, PIC30F6013A,

22

2 Erika Enterprise for PIC devices

PIC30F6014, PIC30F6014A,
PIC30F6015.

e PIC33 devices:

PIC33FJ128GP206, PIC33FJ128GP306
PIC33FJ128GP310, PIC33FJ128GP706
PIC33FJ128GP708, PIC33FJ128GP710
PIC33FJ128MC506, PIC33FJ128MC510
PIC33FJ128MC706, PIC33FJ128MC708,
PIC33FJ128MC710, PIC33FJ256GP506
PIC33FJ256GP510, PIC33FJ256GP710
PIC33FJ256MC510, PIC33FJ256MC710
PIC33FJ64GP206, PIC33FJ64GP306,
PIC33FJ64GP310, PIC33FJ64GP706,
PIC33FJ64GP708, PIC33FJ64GP710,
PIC33FJ64MC506, PIC33FJ64MC508,
PIC33FJ64MC510, PIC33FJ64MC706,
PIC33FJ64MC710.

Please note that we did not have the possibility to directly test all the possible devices
produced by Microchip. In general this is not a problem, because the various devices
are directly mapped to appropriate compiler flags. The following is the list of devices
we tested directly: PIC30F2010, PIC30F6014A, PIC33FJ256GP710, PIC24FJ128GA010, which
basically are the devices mounted on the Microchip Evaluation boards supported by
Erika Enterprise.

If the device is not supported by the particular version of RT-Druid or if the developer
needs to use a custom file, then the four files can be specified separately as in the
following example:

MCU_DATA = PIC30
MODEL = CUSTOM
LINKERSCRIPT "p33FJ256GP710.gld";
DEV_LIB = "1ibp33FJ256GP710-elf.a";
INCLUDE_C "p33FJ256GP710.h";
INCLUDE_S "p33FJ256GP710.1inc";
};
};

| e W

As a result of this specification, the correct include files, libraries and linker scripts
will be used when compiling an Erika Enterprise application.

23

2 Erika Enterprise for PIC devices

2.4 Configuring the EDF scheduler

When configuring the EDF kernel for an Erika Enterprise application, the user has the
possibility to specify the tick length in the OIL file to allow the specification of a relative
deadline using a temporal value.

In particular, the user can specify a tick value as follows:

KERNEL_TYPE = EDF {TICK_TIME = "25ns";7};
and then specify a relative deadline using a timing value as follows:

TASK myTaskl {
REL_DEADLINE = "10ms";
3

The RT-Druid code generator will handle the the conversion between the relative
deadline value in the corresponding timing value automatically.

The important thing in this process is to correctly specify the TICK_TIME. In general,
that value depends on the timing reference which is made available by the dsPIC (R)
DSC. The current timing reference implemented in the EDF kernel is based on the value
of a 32 bit timer.

Having a 32 bit timing reference helps implementing a long lifetime for the circular
timer, allowing the support of relatively long relative deadlines.

The 32 bit timer is obtained by concatenating the two 16 bit timers TMR8 and TMR9
available on the dsPIC (R) DSC. The clock used for the timers is the system clock, with a

tick time equal to Fi, where [, = Fose F .. the frequency of the oscillator, depends on
cy

2
its configuration which is typically done in the application by using appropriate macros

shown below.

The following paragraphs describe two typical oscillator values which can be used, and
the correspondent parameters which has to be put in the OIL file. The same settings
are available in two template applications distributed with Erika Enterprise which work
on the FLEX boards featuring a dsPIC (R) DSC model PIC33FJ256MC710.

Finally, always remember that the EE_time_init function has to be called inside the
main function before using any primitive of the EDF kernel.

2.4.1 Primary oscillator without PLL

In this configuration, a primary oscillator at 4 MHz is used without any moltiplication.
In this case, the tick duration is 500 ns, and the dsPIC (R) DSC is running at 2 MIPS.

To configure the system in this way, the C language has to contain the following
compiler directive:

_FOSCSEL (FNOSC_PRI);
The OIL file will contain the following line:
KERNEL_TYPE = EDF {TICK_TIME = "500ns";7};

24

2 Erika Enterprise for PIC devices

The maximum relative deadline which can be expressed in the OIL file is 500ns * 23!,
which is slightly more than 1073 secs.

A template application which initializes an EDF periodic task for this case is available
under the RT-Druid templates.

2.4.2 Primary oscillator with PLL

In this configuration, the dsPIC (R) DSC is configured to provide its maximum compu-
tational power. To do that, the internal PLL is used to push the internal frequency F..
to 80 MHz. As a consequence, Fi, become 40 MHz, which is the nominal maximum
computational power of 40 MIPS declared by Microchip. In this case, the tick duration
is 25 ns.

To configure the system in this way, the C language has to contain the following
compiler directive:

_FOSCSEL (FNOSC_PRIPLL);

Moreover, at the beginning of the main function, the PLL multiplier registers needs
to be set with the following code:

/* Clock setup for 40MIPS x/
CLKDIVbits.DOZEN = 0;

CLKDIVbits.PLLPRE = O0;
CLKDIVbits.PLLPOST = O0;
PLLFBDbits.PLLDIV = 78;

/* Wait for PLL to lock x*/
while (0SCCONbits.LOCK!=1);

Finally, the OIL file will contain the following line:
KERNEL_TYPE = EDF {TICK_TIME = "25ns";7};

The maximum relative deadline which can be expressed in the OIL file is 25ns * 231,
which is slightly more than 53 secs.

2.4.3 EE_time.init
Synopsis

void EE_time_init(void);

Description

The function programs TMR8 and TMR9 as a 32 bit timer which is then used by the EDF
Kernel to take the timing reference.
The function must be called before calling any Erika Enterprise primitive.

25

3 Flex Board

3.1 Introduction

This chapter describes the support done in Erika Enterprise for the Evidence/Embedded
solutions Flex Board.
Flex is an embedded board which can be used by all the developers who want to fully
exploit the potential of the latest Microchip micro-controllers: the dsPIC (R) DSC family.
Flex is born as a development board where to easily develop and test real-time appli-
cations for the dsPIC (R) DSC micro-controller. The main features of Flex are:

e robust electronic design;
e modular architecture;
e availability of a growing number of application notes;

e the full support of Erika Enterprise.

To configure the usage of the Flex Board, the user has to specify an appropriate
BOARD_DATA, as in the following example:

BOARD_DATA = EE_FLEX {

}

The Flex board supports a set of devices which are directly mounted on it, plus a set of
additional devices mounted on specific add-on boards. These devices can be configured
by adding attributes inside the BOARD_DATA section.

The supported devices and the API functions needed to use them are described in the
following sections.

Warning: The current version of the board support for Flex only supports the
dsPIC (R) DSC model 33FJ256GP710.

3.2 System LED

The Flex Board has a system LED attached to a GPIO pin of the microcontroller. To use
the system LED on the Flex Board, the developer should specify the USELEDS attribute
as TRUE, as in the following example:

26

3 Flex Board

BOARD_DATA = EE_FLEX {
USELEDS = TRUE;

The following subsections will describe the functions available to control the Flex
System LED.

3.2.1 EE_leds._init
Synopsis

void EE_leds_init(void);

Description

The function configures the GPIO pin. The LED starts turned off.

3.2.2 EE_led_sys_on
Synopsis

void EE_led_sys_on(void);

Description

The function turns on the LED.

3.2.3 EE led sys off
Synopsis

void EE_led_sys_off(void);

Description

The function turns off the LED.

3.2.4 EE_led_on
Synopsis

void EE_led_on(void);

27

3 Flex Board

Description

The function turns on the LED.

3.2.5 EE_led_off
Synopsis

void EE_led_off(void);

Description

The function turns off the LED.

28

4 Flex Demo Daughter Board

4.1 Introduction

This chapter describes the support done in Erika Enterprise for the Evidence/Embedded
solutions Flex Demo Daughter Board.

The Demo Daughter board is a small board that plugs on the Flex Light / Flex Full
connectors and which provides a set of devices useful to implement small demos and
demonstrators of control algorithms.

The main features of the Flex Demo Daughter board are:

e 8 leds;

4 buttons;

1 accelerometer;

8 Analog Inputs;

1 buzzer;

1 DAC;

e direct availability of the MCU encoder pins

e Infrared receiver;

e 16x2 characters LCD;

e PWM outputs;

e Temperature sensor;

e Light sensor;

e Trimmer;

e Connections to implement the USB communication on the FLEX Full
e Zigbee connector for Microchip or Easybee modules.

To configure the usage of the Flex Demo Daughter Board, the user has to specify an
appropriate BOARD_DATA, as in the following example:

29

4 Flex Demo Daughter Board

BOARD_DATA = EE_FLEX {
TYPE = DEMO {

};

The supported devices and the API functions needed to use them are described in the
following sections.

4.2 LEDS

The Flex Demo Daughter board hosts 8 LEDs which are attached to GPIO pins. To use
the LEDs on the Flex Demo Daughter Board, the developer should include the following
fragment in the application OIL file:

BOARD_DATA = EE_FLEX {
TYPE = DEMO { OPTIONS = LEDS; };

The following subsections will describe the functions available to control the Flex
Demo Daughter Board LEDs.

4.2.1 EE_demoboard_leds_init
Synopsis

void EE_demoboard_leds_init(void);

Description

The function configures the LEDs, which starts turned off.

4.2.2 EE leds
Synopsis

void EE_leds(EE_UINT8 data);

Description

The function sets the led values using the data parameter.

30

4 Flex Demo Daughter Board

4.2.3 EE_leds_on
Synopsis

void EE_leds_on(void);

Description

The function turns all the LEDs on.

4.2.4 EE _leds_off
Synopsis

void EE_leds_off(void);

Description

The function turns all the LEDs off.

4.2.5 EE_led_0_on
Synopsis

void EE_led_O_on(void);

Description

The function turns LED 0 on.

4.2.6 EE_led_0_off
Synopsis

void EE_led_O_off(void);

Description

The function turns LED 0 off.

4.2.7 EE_led_1_on
Synopsis

void EE_led_1_on(void);

31

4 Flex Demo Daughter Board

Description

The function turns LED 1 on.

4.2.8 EE_led_1_off
Synopsis

void EE_led_1_off(void);

Description

The function turns LED 1 off.

4.2.9 EE_led_2_on
Synopsis

void EE_led_2_on(void);

Description

The function turns LED 2 on.

4.2.10 EE_led_2_off
Synopsis

void EE_led_2_off(void);

Description

The function turns LED 2 off.

4.2.11 EE_led_3_on
Synopsis

void EE_led_3_on(void);

Description

The function turns LED 3 on.

32

4 Flex Demo Daughter Board

4.2.12 EE_led_3_off
Synopsis

void EE_led_3_off(void);

Description

The function turns LED 3 off.

4.2.13 EE_led_4_on
Synopsis

void EE_led_4_on(void);

Description

The function turns LED 4 on.

4.2.14 EE_led_4_off
Synopsis

void EE_led_4_off(void);

Description

The function turns LED 4 off.

4.2.15 EE_led_5_on
Synopsis

void EE_led_5_on(void);

Description

The function turns LED 5 on.

4.2.16 EE _led 5 off
Synopsis

void EE_led_5_off(void);

33

4 Flex Demo Daughter Board

Description

The function turns LED 5 off.

4.2.17 EE_led_6_on
Synopsis

void EE_led_6_on(void);

Description

The function turns LED 6 on.

4.2.18 EE_led_6_off
Synopsis

void EE_led_6_off(void);

Description

The function turns LED 6 off.

4.2.19 EE_led_7_on
Synopsis

void EE_led_7_on(void);

Description

The function turns LED 7 on.

4.2.20 EE_led_7 _off
Synopsis

void EE_led_7_off(void);

Description

The function turns LED 7 off.

34

4 Flex Demo Daughter Board

4.3 Buttons

The Flex Demo Daughter Board has a set of four buttons attached to GPIO pins of the
microcontroller. To use the buttons, the developer should include the following fragment
in the application OIL file:

BOARD_DATA = EE_FLEX {
TYPE = DEMO { OPTIONS = BUTTONS; };

The following subsections will describe the functions available to control the Flex
Demo Daughter Board buttons.

4.3.1 EE_buttons_init
Synopsis

void EE_buttons_init(void (*isr_callback) (void), EE_UINT8 mask);

Description

The function configures the GPIO pins used by the buttons. Buttons can be configured
to be controlled only by using polling functions (no isr_callback is specified), or can
be configured to raise an interrupt (if isr_callback is specified).

When the isr_callback is specified, the mask parameter is used to control for which
buttons the interrupt will be generated.

Parameters

e isr_callback The function is called inside an ISR2 upon a button press.

e mask If isr_callback is specified, then this parameter controls which buttons will
generate an interrupt request. In particular, bit 0x01 is used for button S1, bit
0x02 is used for button S2, bit 0x04 is used for button S3, bit 0x08 is used for
button S4.

Return Values

e void The function does not return a value.

4.3.2 EE_button_get_S1
Synopsis

EE_UINT8 EE_button_get_S1(void);

35

4 Flex Demo Daughter Board

Description

The function returns the status of the button number S1.

Return Values

e unsigned char 1 of the button is pressed, 0 otherwise.

4.3.3 EE_button_get _S2
Synopsis

EE_UINT8 EE_button_get_S2(void);

Description

The function returns the status of the button number S2.

Return Values

e unsigned char 1 of the button is pressed, 0 otherwise.

4.3.4 EE _button_get_S3
Synopsis

EE_UINT8 EE_button_get_S3(void);

Description

The function returns the status of the button number S3.

Return Values

e unsigned char 1 of the button is pressed, 0 otherwise.

4.3.5 EE_button_get_S4
Synopsis

EE_UINT8 EE_button_get_S4(void);

Description

The function returns the status of the button number S4.

36

4 Flex Demo Daughter Board

Return Values

e unsigned char 1 of the button is pressed, 0 otherwise.

4.4 LCD

The Flex Demo Daughter Board has an alpha-numeric 16 x 2 LCD display mounted on
the board attached to the GPIO pins of the microcontroller. To use the LCD on the
board, the developer should include the following fragment in the application OIL file:

BOARD_DATA = EE_FLEX {
TYPE = DEMO { OPTIONS = LCD; };

The functions available can be used to print character and strings to the LCD Display,
and to select the current cursor position (which is the position where the next character
will be printed).

To specify a character position in the LCD, the functions provided uses an integer.
Numbers from 0 to 15 represents the first line, whereas numbers from 15 to 31 represents
the second line.

The following subsections will describe the functions available to control the Explorer

16 LCD.

4.4.1 EE_lcd_init
Synopsis

void EE_lcd_init(void);

Description

The function initializes the LCD display.

4.4.2 EE_lcd_command
Synopsis

void EE_lcd_command(EE_UINTS cmd);

Description

The function sends a command to the LCD. Most of the LCD functions described in
this chapters basically remap to this function. The developer can use this function to
implement features which are currently not supported by the LCD API.

37

4 Flex Demo Daughter Board

Parameters

e cmd The LCD command.

4.4.3 EE_lcd_putc
Synopsis

void EE_lcd_putc(EE_INT8 data);

Description

The function puts a character on the LCD display, at the current cursor position.

4.4.4 EE lcd_puts
Synopsis

void EE_lcd_puts(EE_INT8 *buf);

Description

The function prints a string to the display.

Parameters

e buf The string to display. It must be a valid C-language string.

4.4.5 EE lcd _busy
Synopsis

unsigned char EE_lcd_busy(void);

Description

The function returns 1 if the display is busy, 0 otherwise. This function can be used to
check if the application can send a new command to the LCD, or if the command can
not be sent because the LCD is still busy processing the previous command.

Return Values

e unsigned char 1 if the display is busy, 0 otherwise.

38

4 Flex Demo Daughter Board

4.4.6 EE_lcd_clear
Synopsis

void EE_lcd_clear(void);

Description

The function clears the LCD.

4.4.7 EE_lcd_home
Synopsis

void EE_lcd_home(void);

Description

The function sets the current cursor position to the top left display character.

4.4.8 EE_lcd_line2
Synopsis

void EE_lcd_line2(void);

Description

The function sets the current cursor position to the bottom left display character.

4.4.9 EE_lcd_curs_right
Synopsis

void EE_lcd_curs_right(void);

Description

The function sets the current cursor position on the next character on the right.

4.4.10 EE_lcd_curs_left
Synopsis

void EE_lcd_curs_left(void);

39

4 Flex Demo Daughter Board

Description

The function sets the current cursor position on the next character on the left.

4.4.11 EE_lcd_shift
Synopsis

void EE_lcd_shift(void);

Description

The function can be used to enable the shift mode of the LCD. When in shift mode,
each character sent provoke the shifting of all the characters of the LCD.

4.4.12 EE_lcd_goto
Synopsis

void EE_lcd_goto(EE_UINT8 posx, EE_UINT8 posy);

Description

The function sets the current cursor position to (posx, posy).

Parameters

e posx The LCD column, from 0 to 15.

e posy The LCD row, 0 or 1.

4.5 Analog sensors

The Flex Demo Daughter Board has a set of analog channels available, in particular (in
parenthesis the pin assignments):

e Temperature sensor (AN12/RB12);

Light sensor (AN13/RB13);

Trimmer (AN15/RB15);

Accelerometer X axis (AN16/RC1);

Accelerometer Y axis (AN17/RC2);

Accelerometer Z axis (AN18/RC3);

40

4 Flex Demo Daughter Board

e ADC Aux (AN19/RC4).

To use these inputs, the developer should include the following fragment in the appli-
cation OIL file:

BOARD_DATA = EE_FLEX {
TYPE = DEMO {

OPTIONS = ADC_IN; // for the analog inputs
OPTIONS = ACCELEROMETER; // for the accelerometer
OPTIONS = SENSORS; // for the sensors

OPTIONS = TRIMMER; // for the potentiometer

};

The functions available can be used to start and stop the A/D converter, and to read
the values from the various sensors.

4.5.1 EE_analog_ init
Synopsis

void EE_analog_init(void);

Description

The function initializes the A/D converter. The ADC is initialized in polling mode.

4.5.2 EE_analog_close
Synopsis

void EE_analog_close(void);

Description

The function turns off the A/D converter.

4.5.3 EE_adcin_init
Synopsis

void EE_adcin_init(void);

Description

The function initializes the A /D converter. It has the same functionality as EE_analog_init.

41

4 Flex Demo Daughter Board

4.5.4 EE adcin_get volt
Synopsis

EE_UINT16 EE_adcin_get_volt(void);

Description

The function reads the ADC Aux channel and returns its value. The A/D converter
should have been already initialized using EE_adcin_init.

Return Values

e EE_UINT16 The voltage read from the ADC Aux channel, in millivolt.

4.5.5 EE_trimmer.init
Synopsis

void EE_trimmer_init(void);

Description

The function initializes the A /D converter. It has the same functionality as EE_analog_init.

4.5.6 EE_trimmer_get_volt
Synopsis

EE_UINT16 EE_trimmer_get_volt(void);

Description

The function reads the Trimmer channel and returns its value. The A/D converter
should have been already initialized using EE_adcin_init.

Return Values

e EE_UINT16 The voltage read from the Trimmer channel, in millivolt.

4.5.7 EE_analogsensors_init
Synopsis

void EE_analogsensors_init(void);

42

4 Flex Demo Daughter Board

Description

The function initializes the A /D converter. It has the same functionality as EE_analog_init.

4.5.8 EE_analog get temperature
Synopsis

EE_UINT16 EE_nalog_get_temperature(void);

Description

The function reads the temperature sensor and returns its value. The A/D converter
should have been already initialized using EE_adcin_init.

Return Values

e EE_UINT16 The voltage read from the temperature sensor, in millivolt.

4.5.9 EE_analog get light
Synopsis

EE_UINT16 EE_analog_get_light(void);

Description

The function reads the Light sensor and returns its value. The A/D converter should
have been already initialized using EE_adcin_init.

Return Values

e EE_UINT16 The voltage read from the Light sensor, in millivolt.

4.5.10 EE_accelerometer_init
Synopsis

void EE_accelerometer_init(void);

Description

The function initializes the A /D converter. It has the same functionality as EE_analog_init,
plus some initialization specific for the 3-axis accelerometer..

43

4 Flex Demo Daughter Board

4.5.11 EE _accelerometer_getglevel
Synopsis

EE_UINT8 EE_accelerometer_getglevel(void);

Description

Description to be done.

Return Values

e EE_UINT8

4.5.12 EE _accelerometer_setglevel
Synopsis

void EE_accelerometer_setglevel(EE_UINT8 level);

Description

Description to be done.

Return Values

e EE_UINT8

4.5.13 EE_accelerometer_sleep
Synopsis

void EE_accelerometer_sleep(void);

Description

Description to be done.

Return Values

e EE_UINT8

4.5.14 EE_accelerometer_wakeup
Synopsis

void EE_accelerometer_wakeup(void);

44

4 Flex Demo Daughter Board

Description

Description to be done.

Return Values

e EE_UINT8

4.5.15 EE _accelerometer_gety
Synopsis

float EE_accelerometer_gety(void);

Description

Description to be done.

Return Values

e EE_UINT8

4.5.16 EE _accelerometer_getz
Synopsis

float EE_accelerometer_getz(void);

Description

Description to be done.

Return Values

e EE_UINT8

4.6 Buzzer

The Flex Demo Daughter Board has a buzzer which can be used to produce simple
sounds.

To use the buzzer, the developer should include the following fragment in the appli-
cation OIL file:

BOARD_DATA = EE_FLEX {
TYPE = DEMO {
OPTIONS = BUZZER; // for the analog inputs

45

4 Flex Demo Daughter Board

};

The functions available can be used to setup the buzzer, and to play notes.

Warning: The buzzer driver uses timer T3.

4.6.1 EE_buzzer.init
Synopsis

void EE_buzzer_init(void);

Description

The function initializes the buzzer.

4.6.2 EE_buzzer_set_freq
Synopsis

void EE_buzzer_set_freq(EE_UINT16 new_freq);

Description

The function sets an output frequency for the buzzer. Frequencies should be higher than

10 Hz. No action is taken if the new frequency differs from the previous one by less than
10 Hz.

Parameters

e new_freq The new buzzer frequency, in Hz.

4.6.3 EE_buzzer_get _freq
Synopsis

EE_UINT16 EE_buzzer_get_freq(void);

Description

The function returns the current buzer frequency.

Return Values

e EE_UINT16 The current buzzer frequency.

46

4 Flex Demo Daughter Board

4.6.4 EE_buzzer_mute
Synopsis

void EE_buzzer_mute(void);

Description

The function mutes the buzzer.

4.6.5 EE buzzer_unmute
Synopsis

void EE_buzzer_unmute(void);

Description

The function unmutes the buzzer.

4.6.6 EE_buzzer_close
Synopsis

void EE_buzzer_close(void);

Description

The function resets the buzzer.

4.7 PWM Output

The Flex Demo Daughter Board has a PWM output which is attached to the Output
Compare 3 of the Timer 2.
To use the PWM, the developer should include the following fragment in the applica-

tion OIL file:

BOARD_DATA = EE_FLEX {
TYPE = DEMO {
OPTIONS = PWM_OUT;
};

The functions available can be used to start, stop and set the duty cycle of the PWM.

47

4 Flex Demo Daughter Board

4.7.1 EE_pwm._init
Synopsis

void EE_pwm_init(EE_UINT16 Period);

Description

The function initializes the PWM, setting also its period.

Parameters

e Period The PWM period.

4.7.2 EE_pwm _set_duty
Synopsis

void EE_pwm_set_duty(float duty);

Description

The function sets the duty cycle of the PWM.

Parameters

e duty The PWM duty cycle.

4.7.3 EE_pwm close
Synopsis

void EE_pwm_close(void);

Description

The function shuts down the PWM.

4.8 DAC Output

The Flex Demo Daughter Board has a DAC output connected to the Microcontroller
[2C port which can be used to convert digital signals to analog values.

To use the DAC, the developer should include the following fragment in the application
OIL file:

48

4 Flex Demo Daughter Board

BOARD_DATA = EE_FLEX {
TYPE = DEMO {
OPTIONS = DAC;
};

The functions available can be used to start, stop and set the duty cycle of the PWM.

4.8.1 EE _dac_general call
Synopsis

EE_INT8 EE_dac_general_call(EE_UINT8 second);

Description

Description to be done.

Parameters

® second

Return Values

e EE_INT8

4.8.2 EE_dac_fast_write
Synopsis

EE_INT8 EE_dac_fast_write(EE_UINT16 data, EE_UINT8 port, EE_UINT8 power);

Description

Description to be done.

Parameters

® data
® port

® power

Return Values

e EE_INT8

49

4 Flex Demo Daughter Board

4.8.3 EE_dac_write
Synopsis

EE_INT8 EE_dac_write(EE_UINT16 data, EE_UINT8 port, EE_UINT8 power, EE_UINT8 save);

Description

Description to be done.

Parameters

® data
® port
® power

® save

Return Values

e EE_INT8

4.8.4 EE_dac.init
Synopsis

void EE_dac_init(void);

Description

Description to be done.

50

5 Explorerl6 Board

5.1 Introduction

This chapter describes the support done in Erika Enterprise for the Microchip Explorer16
Board (see Figure 5.1).

The Explorer 16 is a low cost, efficient development board produced by Microchip
hosting an alpha-numeric 16 x 2 LCD display, with interfaces to MPLAB ICD 2, USB,
and RS-232 [1].

To configure the usage of the Explorer 16 Board, the user has to specify an appropriate
BOARD_DATA, as in the following example:

BOARD_DATA = MICROCHIP_EXPLORER16 {

}

The Explorer 16 board supports a set of devices which are directly mounted on it.
These devices can be configured by adding attributes inside the BOARD_DATA section.

The supported devices and the API functions needed to use them are described in the
following sections.

The current version of the board support for Flex supports both the dsPIC (R) DSC
model 33FJ256GP710 and the PIC24 model 24FJ128GA010.

Figure 5.1: The Microchip Explorer 16 board running Erika Enterprise.

o1

5 Explorerl6 Board

5.2 Buttons

The Explorer 16 Board has a set of four buttons attached to GPIO pins of the micro-
controller. To use the buttons on the Explorer 16 Board, the developer should specify
the USEBUTTONS attribute as TRUE, as in the following example:

BOARD_DATA = MICROCHIP_EXPLORER16 {
USEBUTTONS = TRUE;

The following subsections will describe the functions available to control the Explorer
16 buttons.

5.2.1 EE_buttons_init
Synopsis

void EE_buttons_init(void (*isr_callback) (void), EE_UINT8 mask);

Description

The function configures the GPIO pins used by the buttons. Buttons can be configured
to be controlled only by using polling functions (no isr_callback is specified), or can
be configured to raise an interrupt (if isr_callback is specified).

When the isr_callback is specified, the mask parameter is used to control for which
buttons the interrupt will be generated.

Parameters

e isr_callback The function is called inside an ISR2 upon a button press.

e mask If isr_callback is specified, then this parameter controls which buttons will
generate an interrupt request. In particular, bit 0x01 is used for button S3, bit
0x02 is used for button 5S4, bit 0x04 is used for button S5, bit 0x08 is used for
button S6.

Return Values

e void The function does not return a value.

5.2.2 EE_button_get_S3
Synopsis

EE_UINT8 EE_button_get_S3(void);

52

5 Explorerl6 Board

Description

The function returns the status of the button number S3.

Return Values

e unsigned char 1 of the button is pressed, 0 otherwise.

5.2.3 EE_button _get_S4
Synopsis

EE_UINT8 EE_button_get_S4(void);

Description

The function returns the status of the button number S4.

Return Values

e unsigned char 1 of the button is pressed, 0 otherwise.

5.2.4 EE _button_get S5
Synopsis

EE_UINT8 EE_button_get_S5(void);

Description

The function returns the status of the button number S5.

Return Values

e unsigned char 1 of the button is pressed, 0 otherwise.

5.2.5 EE_button_get_S6
Synopsis

EE_UINT8 EE_button_get_S6(void);

Description

The function returns the status of the button number S6.

93

5 Explorerl6 Board

Return Values

e unsigned char 1 of the button is pressed, 0 otherwise.

5.3 LEDs

The Explorer 16 Board has a set of 8 LEDs attached to the GPIO pins of the micro-
controller. To use the LEDs on the Explorer 16 Board, the developer should specify the
USELEDS attribute as TRUE, as in the following example:

BOARD_DATA = MICROCHIP_EXPLORER16 {
USELEDS = TRUE;

The following subsections will describe the functions available to control the Explorer
16 LEDs.

5.3.1 EE_leds_init
Synopsis

void EE_leds_init(void);

Description

The function configures the GPIO pins. The LEDs start turned off.

5.3.2 EE _leds_on
Synopsis

void EE_leds_on(void);

Description

The function turns on all the LEDs.

5.3.3 EE_leds_off
Synopsis

void EE_leds_off(void);

54

5 Explorerl6 Board

Description

The function turns off all the LEDs.

5.3.4 EE_led_on
Synopsis

void EE_led_on(void);

Description

The function turns on LED 3 (which is the first led on the board).

5.3.5 EE._led_off
Synopsis

void EE_led_off(void);

Description

The function turns off LED 3 (which is the first led on the board).

5.3.6 EE_led_3 on
Synopsis

void EE_led_3_on(void);

Description

The function turns on LED 3.

5.3.7 EE_led_3_off
Synopsis

void EE_led_3_off(void);

Description

The function turns off LED 3.

55

5 Explorerl6 Board

5.3.8 EE_led_4_on
Synopsis

void EE_led_4_on(void);

Description

The function turns on LED 4.

5.3.9 EE _led 4 off
Synopsis

void EE_led_4_off(void);

Description

The function turns off LED 4.

5.3.10 EE_led_5_on
Synopsis

void EE_led_5_on(void);

Description

The function turns on LED 5.

5.3.11 EE_led_5_off
Synopsis

void EE_led_5_off(void);

Description

The function turns off LED 5.

5.3.12 EE_led_6_on
Synopsis

void EE_led_6_on(void);

56

5 Explorerl6 Board

Description

The function turns on LED 6.

5.3.13 EE_led_6_off
Synopsis

void EE_led_6_off(void);

Description

The function turns off LED 6.

5.3.14 EE_led_7_on
Synopsis

void EE_led_7_on(void);

Description

The function turns on LED 7.

5.3.15 EE _led_7 _off
Synopsis

void EE_led_7_off(void);

Description

The function turns off LED 7.

5.3.16 EE_led_8_on
Synopsis

void EE_led_8_on(void);

Description

The function turns on LED 8.

o7

5 Explorerl6 Board

5.3.17 EE_led_8_off
Synopsis

void EE_led_8_off(void);

Description

The function turns off LED 8.

5.3.18 EE_led 9 on
Synopsis

void EE_led_9_on(void);

Description

The function turns on LED 9.

5.3.19 EE_led_9_off
Synopsis

void EE_led_9_off(void);

Description

The function turns off LED 9.

5.3.20 EE_led_10_on
Synopsis

void EE_led_10_on(void);

Description

The function turns on LED 10.

5.3.21 EE_led_10_off
Synopsis

void EE_led_10_off(void);

o8

5 Explorerl6 Board

Description

The function turns off LED 10.

5.4 LCD

The Explorer 16 Board has an alpha-numeric 16 x 2 LCD display mounted on the board
attached to the GPIO pins of the microcontroller. To use the LCD on the Explorer 16
Board, the developer should specify the USELCD attribute as TRUE, as in the following
example:

BOARD_DATA = MICROCHIP_EXPLORER16 {
USELCD = TRUE;

The functions available can be used to print character and strings to the LCD Display,
and to select the current cursor position (which is the position where the next character
will be printed).

To specify a character position in the LCD, the functions provided uses an integer.
Numbers from 0 to 15 represents the first line, whereas numbers from 15 to 31 represents
the second line.

The following subsections will describe the functions available to control the Explorer
16 LCD.

5.4.1 EE_lcd_init
Synopsis

void EE_lcd_init(void);

Description

The function initializes the LCD display.

5.4.2 EE_Ilcd_command
Synopsis

void EE_lcd_command(EE_UINTS cmd);

59

5 Explorerl6 Board

Description

The function sends a command to the LCD. Most of the LCD functions described in
this chapters basically remap to this function. The developer can use this function to
implement features which are currently not supported by the LCD API.

Parameters

e cmd The LCD command.

5.4.3 EE_lcd_putc
Synopsis

void EE_lcd_putc(EE_INT8 data);

Description

The function puts a character on the LCD display, at the current cursor position.

5.4.4 EE _lcd_getc
Synopsis

EE_INT8 EE_lcd_getc(void);

Description

The function returns the character which is present at the current cursor position.

Return Values

e char The character which is displayed at the current cursor position.

5.4.5 EE_lcd_puts
Synopsis

void EE_lcd_puts(EE_INT8 *buf);

Description

The function prints a string to the display.

Parameters

e buf The string to display. It must be a valid C-language string.

60

5 Explorerl6 Board

5.4.6 EE _lcd_busy
Synopsis

unsigned char EE_lcd_busy(void);

Description

The function returns 1 if the display is busy, 0 otherwise. This function can be used to
check if the application can send a new command to the LCD, or if the command can
not be sent because the LCD is still busy processing the previous command.

Return Values

e unsigned char 1 if the display is busy, 0 otherwise.

5.4.7 EE_lcd_clear
Synopsis

void EE_lcd_clear(void);

Description

The function clears the LCD.

5.4.8 EE_lcd_home
Synopsis

void EE_lcd_home(void);

Description

The function sets the current cursor position to the top left display character.

5.4.9 EE_lcd_line2
Synopsis

void EE_lcd_line2(void);

Description

The function sets the current cursor position to the bottom left display character.

61

5 Explorerl6 Board

5.4.10 EE _lcd_curs_right
Synopsis

void EE_lcd_curs_right(void);

Description

The function sets the current cursor position on the next character on the right.

5.4.11 EE _lcd_curs_left
Synopsis

void EE_lcd_curs_left(void);

Description

The function sets the current cursor position on the next character on the left.

5.4.12 EE_lcd_shift
Synopsis

void EE_lcd_shift(void);

Description

The function can be used to enable the shift mode of the LCD. When in shift mode,
each character sent provoke the shifting of all the characters of the LCD.

5.4.13 EE_lcd_goto
Synopsis

void EE_lcd_goto(EE_UINT8 posx, EE_UINT8 posy);

Description

The function sets the current cursor position to (posx, posy).

Parameters

e posx The LCD column, from 0 to 15.

e posy The LCD row, 0 or 1.

62

5 Explorerl6 Board

5.5 Analog sensors

The Explorer 16 Board has two analog inputs which are connected to the board. The
first is a temperature sensor, whereas the second is a potentiometer.

To use these two analog inputs on the Explorer 16 Board, the developer should specify
the USEANALQG attribute as TRUE, as in the following example:

BOARD_DATA = MICROCHIP_EXPLORER16 {
USEANALOG = TRUE;

The functions available can be used to start and stop the A/D converter, and to read
the values from the two sensors.

The following subsections will describe the functions available to control the Explorer
16 on-board sensors.

5.5.1 EE_analog_ init
Synopsis

void EE_analog_init(void);

Description

The function initializes the A/D converter. As a result, a periodic interrupt is raised.
An interrupt handler is also internally provided by the A/D handler to read the sensor
values and make them available to the user using the functions EE_analog_get_volt and
EE_analog_get_temp.

5.5.2 EE _analog_get volt
Synopsis

EE_UINT16 EE_analog_get_volt(void);

Description

The function returns the last voltage read from the potentiometer installed on the
Explorer 16 board. The A/D converter should have been already initialized using
EE_analog_init.

Return Values

e EE_UINT16 The voltage read from the potentiometer installed on the Explorer 16
board, in millivolt.

63

5 Explorerl6 Board

5.5.3 EE_analog_get_temp
Synopsis

EE_UINT16 EE_analog_get_temp(void);

Description

The function returns the last temperature read from the temperature sensor installed on
the Explorer 16 board. The A/D converter should have been already initialized using
EE_analog_init.
Return Values

e EE_UINT16 The temperature read from the sensor, in Celsius degrees.

5.5.4 EE_analog start
Synopsis

void EE_analog_start(void);

Description

The function turns on A/D conversion. Please note that the A/D conversion is auto-
matically started when EE_analog_init is called.

5.5.5 EE_analog_stop
Synopsis

void EE_analog_stop(void);

Description

The function turns off A/D conversion. To turn on again the A/D conversion, the
developer can call EE_analog_start.

64

6 dsPICDEM 1.1 Plus Board

6.1 Introduction

This chapter describes the support done in Erika Enterprise for the Microchip dsPICDEM
1.1 Plus Board (see Figure 6.1).
The dsPICDEM 1.1 Plus is a low cost, efficient development board produced by Mi-
crochip hosting a graphic display, with interfaces to MPLAB ICD 2, and RS-232 [3].
To configure the usage of the dsPICDEM 1.1 Plus Board, the user has to specify an
appropriate BOARD_DATA, as in the following example:

BOARD_DATA = MICROCHIP_DSPICDEM11PLUS {

}

The dsPICDEM 1.1 Plus board supports a set of devices which are directly mounted on
it. These devices can be configured by adding attributes inside the BOARD_DATA section.

The supported devices and the API functions needed to use them are described in the
following sections.

6.2 Buttons

The dsPICDEM 1.1 Plus Board has a set of four buttons attached to GPIO pins of
the microcontroller. To use the buttons on the board, the developer should specify the
USEBUTTONS attribute as TRUE, as in the following example:

BOARD_DATA = MICROCHIP_DSPICDEM11PLUS {
USEBUTTONS = TRUE;

The following subsections will describe the functions available to control the buttons.

6.2.1 EE _buttons_init
Synopsis

void EE_buttons_init(void (*isr_callback) (void), EE_UINTS8 mask);

65

6 dsPICDEM 1.1 Plus Board

Figure 6.1: The Microchip dsPICDEM 1.1 Plus board running Erika Enterprise.

Description

The function configures the GPIO pins used by the buttons. Buttons can be configured
to be controlled only by using polling functions (no isr_callback is specified), or can
be configured to raise an interrupt (if isr_callback is specified).

When the isr_callback is specified, the mask parameter is used to control for which
buttons the interrupt will be generated.

Parameters

e isr_callback The function is called inside an ISR2 upon a button press.

e mask If isr_callback is specified, then this parameter controls which buttons will
generate an interrupt request. In particular, bit 0x01 is used for button S1, bit
0x02 is used for button S2, bit 0x04 is used for button S3, bit 0x08 is used for
button S4.

Return Values

e void The function does not return a value.

6.2.2 EE_button_get_S1
Synopsis

EE_UINT8 EE_button_get_S1(void);

66

6 dsPICDEM 1.1 Plus Board

Description

The function returns the status of the button number S1.

Return Values

e unsigned char 1 of the button is pressed, 0 otherwise.

6.2.3 EE button get S2
Synopsis

EE_UINT8 EE_button_get_S2(void);

Description

The function returns the status of the button number S2.

Return Values

e unsigned char 1 of the button is pressed, 0 otherwise.

6.2.4 EE_button_get_S3
Synopsis

EE_UINT8 EE_button_get_S3(void);

Description

The function returns the status of the button number S3.

Return Values

e unsigned char 1 of the button is pressed, 0 otherwise.

6.2.5 EE_button_get_S4
Synopsis

EE_UINT8 EE_button_get_S4(void);

Description

The function returns the status of the button number S4.

67

6 dsPICDEM 1.1 Plus Board

Return Values

e unsigned char 1 of the button is pressed, 0 otherwise.

6.3 LEDs

The dsPICDEM 1.1 Plus Board has a set of 4 LEDs attached to the GPIO pins of the
microcontroller. To use the LEDs on the board, the developer should specify the USELEDS
attribute as TRUE, as in the following example:

BOARD_DATA = MICROCHIP_DSPICDEM11PLUS {
USELEDS = TRUE;

The following subsections will describe the functions available to control the LEDs.

6.3.1 EE_leds_init
Synopsis

void EE_leds_init(void);

Description

The function configures the GPIO pins. The LEDs start turned off.

6.3.2 EE_leds_on
Synopsis

void EE_leds_on(void);

Description

The function turns on all the LEDs.

6.3.3 EE_leds_off
Synopsis

void EE_leds_off(void);

Description

The function turns off all the LEDs.

68

6.3.4 EE_led_on
Synopsis

void EE_led_on(void);

Description

6 dsPICDEM 1.1 Plus Board

The function turns on LED 1.

6.3.5 EE_led off
Synopsis

void EE_led_off(void);

Description

The function turns off LED 1.

6.3.6 EE_led_1_on
Synopsis

void EE_led_1_on(void);

Description

The function turns on LED 1.

6.3.7 EE_led_1_off
Synopsis

void EE_led_1_off(void);

Description

The function turns off LED 1.

6.3.8 EE_led 2 on
Synopsis

void EE_led_2_on(void);

69

6 dsPICDEM 1.1 Plus Board

Description

The function turns on LED 2.

6.3.9 EE_led_2_off
Synopsis

void EE_led_2_off(void);

Description

The function turns off LED 2.

6.3.10 EE_led_3_on
Synopsis

void EE_led_3_on(void);

Description

The function turns on LED 3.

6.3.11 EE _led_3 off
Synopsis

void EE_led_3_off(void);

Description

The function turns off LED 3.

6.3.12 EE_led_4_on
Synopsis

void EE_led_4_on(void);

Description

The function turns on LED 4.

70

6 dsPICDEM 1.1 Plus Board

6.3.13 EE_led_4_off
Synopsis

void EE_led_4_off(void);

Description

The function turns off LED 4.

6.4 LCD

The dsPICDEM 1.1 Plus Board has a 132x32 graphical LCD display mounted on the
board attached to the GPIO pins of the microcontroller. To use the LCD, the developer
should specify the USELCD attribute as TRUE, as in the following example:

BOARD_DATA = MICROCHIP_DSPICDEM11PLUS {
USELCD = TRUE;

The functions available in Erika Enterprise are a direct implementation of the LCD
commands described in the “LCD Controller specification” of the “dsPICDEM 1.1 de-
velopment Board User’s Guide”. Please refer to that document to have a complete
description of the LCD hardware.

The LCD has three data types, each based on its own independent coordinate systems.
The data types are characters, pixels and columns. Associated with each coordinate
system is a current position of which each is independent of the other.

The following subsections will describe the functions available to control the LCD.

6.4.1 EE_lcd_init
Synopsis

void EE_lcd_init(void);

Description

The function initializes the LCD display.

6.4.2 EE_lcd_command
Synopsis

void EE_lcd_command(EE_UINT8 cmd);

71

6 dsPICDEM 1.1 Plus Board

Description

The function sends a command to the LCD. Most of the LCD functions described in this
chapter are similar to this function. The developer can use this function to implement
features which are currently not supported by the LCD API.

Parameters

e cnd The LCD command.

6.4.3 EE_lcd_Reset
Synopsis

void EE_lcd_Reset(void);

Description

The function resets the LCD to its initial power-up state.

6.4.4 EE_Ilcd_Home
Synopsis

void EE_lcd_Home(void);

Description

The function sets all coordinate variables to their home values and leaves the display
unchanged.

6.4.5 EE_Icd_HomeClear
Synopsis

void EE_lcd_HomeClear(void);

Description

The function clears the entire display and then sets all coordinate variables to their home
values.

6.4.6 EE_lcd_Scroll
Synopsis

void EE_lcd_Scroll(EE_UINT8 lines);

72

6 dsPICDEM 1.1 Plus Board

Description

The function rolls the display in the vertical axis by the amount 1ines. The LCD data
array consists of 32 lines of 122 pixels each. If scrolling, value lines is set to zero and
the top row of the data array is displayed on the top row of the display.

Parameters

e lines The number of display lines to scroll.

6.4.7 EE_lcd_ChrPos
Synopsis

void EE_lcd_ChrPos(EE_UINT8 col, EE_UINT8 row);

Description

The function sets the character position to col, row. This command has no effect on the
display except for moving character cursor if it is turned on.

Parameters

e col The new column position of the cursor.

e row The new row position of the cursor.

6.4.8 EE_lcd_ChrPoslnc
Synopsis

void EE_lcd_ChrPosInc(void);

Description

The function increments the character position. This command has no effect on the
display except for moving the character cursor if it is turned on.

6.4.9 EE_lcd_ WrtChr
Synopsis

void EE_lcd_WrtChr(EE_UINT8 chr, EE_UINT8 col, EE_UINT8 row);

Description

The function sets the character position to (col,row), then writes the ASCII character
chr.

73

6 dsPICDEM 1.1 Plus Board

Parameters

e chr The character to bet printed on the display.
e col The new column position of the cursor.

e row The new row position of the cursor.

6.4.10 EE_lcd_WrtChrinc
Synopsis

void EE_lcd_WrtChrInc(EE_UINT8 chr, EE_UINT8 col, EE_UINT8 row);

Description

The function sets the character position to (col,row), writes the ASCII character chr,
and then increments the character position.

Parameters

e chr The character to be printed on the display.
e col The column position of the cursor.

e row The row position of the cursor.

6.4.11 EE_lcd_WrtChrNext
Synopsis

void EE_lcd_WrtChrNext(EE_UINT8 chr);

Description

The function command writes the ASCII character chr to the current character position,
then increments it.

Parameters

e chr The character to be printed on the display.

6.4.12 EE _lcd_ChrClearRow
Synopsis

void EE_lcd_ChrClearRow(EE_UINT8 row);

74

6 dsPICDEM 1.1 Plus Board

Description

The function clears the entire row and leaves the current character column position =
0.

Parameters

e row The row to be cleared.

6.4.13 EE_lcd_ChrClearEOL
Synopsis

void EE_lcd_ChrClearEOL(void);

Description

The function clears the current row from the current location to the end of the line and
leaves the character position unchanged.

6.4.14 EE_lcd_ChrCursorOff
Synopsis

void EE_lcd_ChrCursor0ff(void);

Description

The function command turns off the character cursor.

6.4.15 EE_lcd_ChrCursorOn
Synopsis

void EE_lcd_ChrCursorOn(void);

Description

The function turns on the character cursor at the current character position.

6.4.16 EE_lcd_ChrCursorBlink
Synopsis

void EE_lcd_ChrCursorBlink(EE_UINTS8 tick);

1)

6 dsPICDEM 1.1 Plus Board

Description

The function controls cursor blinking. If the time is set to zero, the cursor will not blink,
else the cursor blinks with equal on and off times, with the on time being given by the
blink time.

Parameters

e tick From 0 to 7, controls the blinking time which is equal to tick % 0.125sec.

6.4.17 EE_lcd_PixPos
Synopsis

void EE_lcd_PixPos(EE_UINT8 posx, EE_UINT8 posy);

Description

The function sets the current pixel position to (posx,posy) and leaves the display un-
changed. This command is intended to be used in conjunction with the function
EE_lcd_PixLine.

Parameters

e posx The x pixel position.

e posy The y pixel position.

6.4.18 EE_lcd_PixOn
Synopsis

void EE_lcd_PixOn(EE_UINT8 posx, EE_UINT8 posy);

Description

The function sets the pixel position to (posx,posy) and turns on the pixel at that location.
This command does not increment the pixel position.

Parameters

e posx The x pixel position.

e posy The y pixel position.

76

6 dsPICDEM 1.1 Plus Board

6.4.19 EE_lcd_PixOff
Synopsis

void EE_lcd_PixQ0ff(EE_UINT8 posx, EE_UINT8 posy);

Description

The function sets the pixel position to (posx,posy) and turns off the pixel at that location.
This command does not increment the current pixel position.

Parameters
e posx The x position of the pixel to be turned off.

e posy The y position of the pixel to be turned off.

6.4.20 EE_lcd_PixLine
Synopsis

void EE_lcd_PixLine(EE_UINT8 posx, EE_UINT8 posy);

Description

The function draws a straight line from the current pixel position to the specified location
and leaves the pixel position set to the new location.

Parameters
e posx The x position of the end of the line.

e posy The y position of the end of the line.

6.4.21 EE _lcd_ColPos
Synopsis

void EE_lcd_ColPos(EE_UINT8 col, EE_UINT8 row);

Description

The function sets the column position to (col,row).

Parameters
e col The column position of the column.

e row The row position of the column.

77

6 dsPICDEM 1.1 Plus Board

6.4.22 EE_lcd_WrtColNext
Synopsis

void EE_lcd_WrtColNext(EE_UINT8 data);

Description

The function writes column data to the current column position and then increments
the column position.

Parameters

e data The data to be displayed.

6.4.23 EE_lcd_WrtColNextOR
Synopsis

void EE_lcd_WrtColNextOR(EE_UINT8 data);

Description

The function ORs column data with existing data and writes the result to the current
column position, then increments it.

Parameters

e data The data to be displayed.

6.4.24 EE_lcd_WrtColNextAND
Synopsis

void EE_lcd_WrtColNextAND(EE_UINT8 data);

Description

The function ANDs column data with existing data and writes the result to the current
column position, then increments it.

Parameters

e data The data to be displayed.

78

6 dsPICDEM 1.1 Plus Board

6.4.25 EE_lcd_WrtColNextXOR
Synopsis

void EE_lcd_WrtColNextXOR(EE_UINTS data);

Description

The function XORs column data with existing data and writes the result to the current
column position, then increments it.

Parameters

e data The data to be displayed.

6.4.26 EE_lcd_putc
Synopsis

void EE_lcd_putc(EE_INT8 data);

Description

The function puts a character on the LCD display, at the current cursor position. The
function remaps to EE_lcd_WrtChrNext.

6.4.27 EE_lcd_home
Synopsis

void EE_lcd_home(void);

Description

The function sets the current cursor position to the top left display character. The
function remaps to EE_lcd_Home.

6.4.28 EE _lcd_goto
Synopsis

void EE_lcd_goto(EE_UINT8 posx, EE_UINT8 posy);

Description

The function sets the current cursor position to (posz,posy). The function remaps to
EE_lcd_ChrPos.

79

6 dsPICDEM 1.1 Plus Board

Parameters

e posx The LCD column, from 0 to 15.

e posy The LCD row, 0 or 1.

6.4.29 EE_lcd_clear
Synopsis

void EE_lcd_clear(void);

Description

The function clears the LCD. The function remaps to EE_lcd_HomeClear.

80

7 History

‘ Version ‘ Comment

1.0.0 Initial revision of this document.

1.1.2 New dsPIC (R) DSC macro; updated several typos;
automatic php generation added; new versioning sys-
tem.

1.1.3 Updated device list, added new boards.

1.1.4 Added screenshot of the configuration parameters,
added the OIL compilation parameters for SRC,
VERBOSE e NODEPS.

1.1.5 Added description of the EDF implementation,
timers and PLL configuration.

1.1.6 Typos.

1.1.7 Added demo board functions.

1.1.8 Updated screenshots to Erika Enterprise 1.4.3. Erika
Enterprise Basic renamed to Erika Enterprise.

81

Bibliography

[1] Eclipse Consortium. The eclipse platform. http://www.eclipse.org, 2005.

[2] The Apache Software Foundation. The apache ant project. http://ant.apache.org,
2005.

[3] Arizona Microchip Inc. The dsPICDEM 1.1 Plus Development Board.
http://www.microchip.com, 2006.

[4] Arizona Microchip Inc. The Explorer 16 Development Board.
http://www.microchip.com, 2006.

82

http://www.eclipse.org
http://ant.apache.org
http://www.microchip.com
http://www.microchip.com

Index

EE_accelerometer_getglevel, 44
EE_accelerometer_gety, 45
EFE_accelerometer_getz, 45
EE_accelerometer_init, 43
EE_accelerometer_setglevel, 44
EE_accelerometer_sleep, 44
EE_accelerometer_wakeup, 44
EE_adcin_get_volt, 42
EE_adcin_init, 41
EE_analog_close, 41
EE_analog_get_light, 43
EE_analog_get_temp, 64
EFE_analog_get_temperature, 43
EFE_analog_get_volt, 63
EE_analog_init, 41, 63
EE_analog_start, 64
EE_analog_stop, 64
EE_analogsensors_init, 42
EE_button_get_S1, 35, 66
EE_button_get_S2, 36, 67
EE_button_get_S3, 36, 52, 67
EE_button_get_S4, 36, 53, 67
EE_button_get_S5, 53
EE_button_get_S6, 53
EE_buttons_init, 35, 52, 65
EE_buzzer_close, 47
EE_buzzer_get_freq, 46
EE_buzzer_init, 46
EE_buzzer_mute, 47
EE_buzzer_set_freq, 46
EE_buzzer_unmute, 47
EE_dac_fast_write, 49
EE_dac_general_call, 49
EE_dac_init, 50
EE_dac_write, 50
EE_demoboard_leds_init, 30

83

EE_lcd_busy, 38, 61
EE_lcd_ChrClearEOL, 75
EE_lcd_ChrClearRow, 74
EE_led_ChrCursorBlink, 75
EE_led_ChrCursorOff, 75
EE_lcd_ChrCursorOn, 75
EE_led_ChrPos, 73
EE_led_ChrPoslnc, 73
EE_led_clear, 39, 61, 80
EE_lcd_ColPos, 77
EE_led_command, 37, 59, 71
EE lcd_curs_left, 39, 62
EE_led_curs_right, 39, 62
EE_led_gete, 60
EE_lcd_goto, 40, 62, 79
EE_lcd_Home, 72
EE_lcd_home, 39, 61, 79
EE_lcd_HomeClear, 72
EE_led_init, 37, 59, 71
EE_lcd_line2, 39, 61

EE lcd_PixLine, 77

EE lcd_PixOff, 77

EE_ lcd_PixOn, 76
EE_lcd_PixPos, 76
EE_lcd_pute, 38, 60, 79
EFE_led_puts, 38, 60
EE_led_Reset, 72
EE_led_Scroll, 72

EE _lcd_shift, 40, 62
EE_led_WrtChr, 73
EE_lcd_WrtChrlnc, 74

EE_ led_WrtChrNext, 74
EE_ led_WrtColNext, 78
EE_lcd_WrtColNextAND, 78
EE_led_WrtColNextOR, 78
EE_led_WrtColNextXOR, 79

Index

EE_led_0_off, 31
EE_led_0_on, 31
EE_led_10_off, 58
EE_led_10_on, 58
EE_led_1_off, 32, 69
EE_led_1_on, 31, 69
EE_led 2_off, 32, 70
EE_led 2_on, 32, 69
EE_led_3_off, 33, 55, 70
EE_led_3_on, 32, 55, 70
EE_led_4_off, 33, 56, 71
EE_led_4_on, 33, 56, 70
EE_led_5_off, 33, 56
EE_led_5_on, 33, 56
EE_led_6_off, 34, 57
EE_led_6_on, 34, 56
EE_led_7_off, 34, 57
EE_led_7_on, 34, 57
EE_led _8_off, 58
EE_led_8_on, 57
EE_led_9_off, 58
EE_led_9_on, 58
EE_led_off, 28, 55, 69
EE_led_on, 27, 55, 69
EE_led_sys_off, 27
EE_led_sys_on, 27
EE_leds, 30
EE_leds_init, 27, 54, 68
EE_leds_off, 31, 54, 68
EE_leds_on, 31, 54, 68
EE_pwm_close, 48
EE_pwm_init, 48
EE_pwm_set_duty, 48
EE_time_init, 25
EE_trimmer_get_volt, 42
EE_trimmer_init, 42

84

	Introduction
	Erika Enterprise and RT-Druid for dsPIC (R) DSC
	Integration with Microchip Inc. products
	Content of this document

	Erika Enterprise for PIC devices
	The RT-Druid and Erika Enterprise design flow
	Building an application from command line

	Setting up the compiling environment for dsPIC (R) DSC
	Writing software for dsPIC (R) DSC using Erika Enterprise
	Avoid the generation of dependency files
	Avoid the generation of .src files from C files
	Printing the commands executed (verbose mode)
	Source files composing an application
	Stack handling
	Runtime stack checking exceptions
	Interrupt handling
	Configuring the usage of Microchip ICD2
	Configuring a particular dsPIC (R) DSC microcontroller

	Configuring the EDF scheduler
	Primary oscillator without PLL
	Primary oscillator with PLL
	EE_time_init

	Flex Board
	Introduction
	System LED
	EE_leds_init
	EE_led_sys_on
	EE_led_sys_off
	EE_led_on
	EE_led_off

	Flex Demo Daughter Board
	Introduction
	LEDS
	EE_demoboard_leds_init
	EE_leds
	EE_leds_on
	EE_leds_off
	EE_led_0_on
	EE_led_0_off
	EE_led_1_on
	EE_led_1_off
	EE_led_2_on
	EE_led_2_off
	EE_led_3_on
	EE_led_3_off
	EE_led_4_on
	EE_led_4_off
	EE_led_5_on
	EE_led_5_off
	EE_led_6_on
	EE_led_6_off
	EE_led_7_on
	EE_led_7_off

	Buttons
	EE_buttons_init
	EE_button_get_S1
	EE_button_get_S2
	EE_button_get_S3
	EE_button_get_S4

	LCD
	EE_lcd_init
	EE_lcd_command
	EE_lcd_putc
	EE_lcd_puts
	EE_lcd_busy
	EE_lcd_clear
	EE_lcd_home
	EE_lcd_line2
	EE_lcd_curs_right
	EE_lcd_curs_left
	EE_lcd_shift
	EE_lcd_goto

	Analog sensors
	EE_analog_init
	EE_analog_close
	EE_adcin_init
	EE_adcin_get_volt
	EE_trimmer_init
	EE_trimmer_get_volt
	EE_analogsensors_init
	EE_analog_get_temperature
	EE_analog_get_light
	EE_accelerometer_init
	EE_accelerometer_getglevel
	EE_accelerometer_setglevel
	EE_accelerometer_sleep
	EE_accelerometer_wakeup
	EE_accelerometer_gety
	EE_accelerometer_getz

	Buzzer
	EE_buzzer_init
	EE_buzzer_set_freq
	EE_buzzer_get_freq
	EE_buzzer_mute
	EE_buzzer_unmute
	EE_buzzer_close

	PWM Output
	EE_pwm_init
	EE_pwm_set_duty
	EE_pwm_close

	DAC Output
	EE_dac_general_call
	EE_dac_fast_write
	EE_dac_write
	EE_dac_init

	Explorer16 Board
	Introduction
	Buttons
	EE_buttons_init
	EE_button_get_S3
	EE_button_get_S4
	EE_button_get_S5
	EE_button_get_S6

	LEDs
	EE_leds_init
	EE_leds_on
	EE_leds_off
	EE_led_on
	EE_led_off
	EE_led_3_on
	EE_led_3_off
	EE_led_4_on
	EE_led_4_off
	EE_led_5_on
	EE_led_5_off
	EE_led_6_on
	EE_led_6_off
	EE_led_7_on
	EE_led_7_off
	EE_led_8_on
	EE_led_8_off
	EE_led_9_on
	EE_led_9_off
	EE_led_10_on
	EE_led_10_off

	LCD
	EE_lcd_init
	EE_lcd_command
	EE_lcd_putc
	EE_lcd_getc
	EE_lcd_puts
	EE_lcd_busy
	EE_lcd_clear
	EE_lcd_home
	EE_lcd_line2
	EE_lcd_curs_right
	EE_lcd_curs_left
	EE_lcd_shift
	EE_lcd_goto

	Analog sensors
	EE_analog_init
	EE_analog_get_volt
	EE_analog_get_temp
	EE_analog_start
	EE_analog_stop

	dsPICDEM 1.1 Plus Board
	Introduction
	Buttons
	EE_buttons_init
	EE_button_get_S1
	EE_button_get_S2
	EE_button_get_S3
	EE_button_get_S4

	LEDs
	EE_leds_init
	EE_leds_on
	EE_leds_off
	EE_led_on
	EE_led_off
	EE_led_1_on
	EE_led_1_off
	EE_led_2_on
	EE_led_2_off
	EE_led_3_on
	EE_led_3_off
	EE_led_4_on
	EE_led_4_off

	LCD
	EE_lcd_init
	EE_lcd_command
	EE_lcd_Reset
	EE_lcd_Home
	EE_lcd_HomeClear
	EE_lcd_Scroll
	EE_lcd_ChrPos
	EE_lcd_ChrPosInc
	EE_lcd_WrtChr
	EE_lcd_WrtChrInc
	EE_lcd_WrtChrNext
	EE_lcd_ChrClearRow
	EE_lcd_ChrClearEOL
	EE_lcd_ChrCursorOff
	EE_lcd_ChrCursorOn
	EE_lcd_ChrCursorBlink
	EE_lcd_PixPos
	EE_lcd_PixOn
	EE_lcd_PixOff
	EE_lcd_PixLine
	EE_lcd_ColPos
	EE_lcd_WrtColNext
	EE_lcd_WrtColNextOR
	EE_lcd_WrtColNextAND
	EE_lcd_WrtColNextXOR
	EE_lcd_putc
	EE_lcd_home
	EE_lcd_goto
	EE_lcd_clear

	History

