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1 Introduction

This tutorial explains in detail how to use the Lightweight IP (from now on, LWIP)
TCP/IP software stack [1] together with RT-Druid and Erika Enterprise for the Altera
Nios II platform.
The tutorial is based on the Nios II Standalone LWIP Port available for download

in the Nios Community Forum, and it covers LWIP version 0.7.1. Support for newer
versions of LWIP will be added in the next revision of this document.
At the end of the tutorial, the developer will be able to run a modified version of the

LWIP web server demo on top of an Altera evaluation board.
The demo fully supports the LWIP RAW API. The rationale behind the choice is that

the RAW API is an event based interface to the TCP/IP stack that perfectly integrates
with the non-blocking task model provided by Erika Enterprise. In particular, the LWIP
timers and service routines are mapped to a set of tasks; LWIP and Application tasks
can share a common stack reducing the overall RAM usage.
The socket interface is currently not supported because of bigger memory require-

ments, and because of the need of blocking primitives (e.g., select) that would not take
advantage of the stack sharing mechanisms of Erika Enterprise.
If compared to the single task LWIP standalone version for the Altera HAL1, this

porting of the LWIP stack fully supports the multithread environment of Erika Enterprise,
meaning that application task can run together with LWIP tasks.
For more information about the LWIP example and on the LWIP internals, please

refer to the original readme.txt included in the distribution.
The structure of this tutorial is the following: Chapter 2 contains the requirements

for installing the LWIP port for Erika Enterprise; Chapter 3 is a step-by-step guide for
the installation, configuration and run of the demo; finally, Chapter 4 contains advanced
configuration issues.

1The LWIP standalone version for the Altera HAL is available for free in the Nios II Community

Forum Download area.
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2 Requirements

The LWIP demo presented in this tutorial requires the following software to be installed
on the host machine:

• Altera Quartus II version 5.0;

• Altera Nios II version 5.0;

• RT-Druid and Erika Enterprise for Nios II version 1.2.5. The evaluation version
of the tools will not work straightforward because they require a 2-CPU demo,
whereas this tutorial is based on the standard Altera examples.

• Standalone Lightweight IP version 1.1 (available on the Nios II Community Fo-
rum).

• This example requires an Ethernet cable connected to the development board’s
RJ-45 jack, and a JTAG connection with the development board. If the host com-
munication settings are changed from JTAG UART (default) to use a conventional
UART, a serial cable between board DB-9 connector and the host is required.

The demo will work on the standard and full featured demos available for the Altera
Evaluation boards.
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3 Running the LWIP Demo

The following basic steps will guide you in running a small web server using the LWIP
TCP/IP stack:

1. Open the standard example for your evaluation board from Altera Quartus II.

2. Open SOPCBuilder, by double clicking on the SOPCBuilder Block. Then, open
the Nios II IDE.

3. Create a new Altera System Library Project. Call it standard_syslib. See Figure
3.1 for a screenshot.

4. Then, select “New Project...” from the File menu. Choose “RT-Druid Nios
Project” from the Evidence tab of the New Project Dialog box. A dialog box
appears. Name the project evidence_lwip and press the Finish button.

5. Select “Import...” from the File menu of the Nios II IDE. Select “File System”
from the dialog box. In the “From directory” textbox, type the name of the src

directory included the example you downloaded from the Evidence website (you
can also select it using the “Browse” button). Choose the directory name in the
tree view on the left, selecting all the files on the right side. The “Into Folder”
text box should point to the evidence_lwip demo. Finally, select the checkbox
“Overwrite existing resources without warning” and press Finish. See Figure ??

for a screenshot of the Import window.

6. Among the files that have been imported in the RT-Druid Project, find the file
named altera_avalon_lan91c111.c. You have to copy it into the System Library
Project standard_syslib. To copy it, right click on the file name, and choose
“Copy”; then, right click on the project name, and select “Paste”. The file you just
copied will replace the file provided by default by the Standalone LWIP package.
The new file is equal to the previous one apart for a callback that has been added
to the IRQ handler function.

7. Right click on the System Library name, and choose “Build Project” to build the
System Library.

8. Set up the RT-Druid project build directory. To do that, open the properties of
the project, and inside the “C/C++ Make Project” tab, in the Build directory
textbox, specify \<projectname>\Debug, where <projectname> is the name of the
project. See Figure 3.4 for details.
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3 Running the LWIP Demo

Figure 3.1: This screenshot shows the dialog box for the creation of the standard_syslib
project.

Figure 3.2: This screenshot shows the dialog box for the creation of the RT-Druid Project.
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3 Running the LWIP Demo

Figure 3.3: This screenshot shows the dialog box for the import of the demo inside the
current project.

Figure 3.4: Changing the Project Build Directory. You can insert the value pressing the
Browse button.
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3 Running the LWIP Demo

Figure 3.5: You need to create a Debug/Run configuration to be able to run the appli-
cation on the target.

9. Find and edit the IP address, network mask, and gateway address inside the file
lwip_web_server.c. You will use this address from your web browser to test the
application.

10. After that, right click on the RT-Druid project name, and select “Build Project”.
The demo application will be compiled, and an ELF binary file will be produced.

11. Open the Altera Quartus II Programmer from the “Tools” menu. Select the right
standard.sof file, and program it to the FPGA. The hardware design is now
programmed to the FPGA.

12. In the “Run” menu, click on the “Run...” command.

13. Create a Run configuration as shown in Figure 3.5.

14. Run the application by clicking on the “Run” button in Figure 3.5. As a result,
the application starts printing some text on the console like in Figure 3.6.

15. Obtaining the messages in Figure 3.6 means the web server is up and running.At
that point, you can do the following actions:

• Browse the server using this IP address in the address bar of your browser.

• Use a Telnet client to connect to TCP port 7 to exercise the echo function.

• Use Ping with a length greater than 1500 and less than 5500 bytes to exercise
the IP reassembly and fragmentation capability.
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3 Running the LWIP Demo

Figure 3.6: The messages printed on the JTAG UART console.
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4 Configuration of the RTOS parameters for

the LWIP stack

4.1 Application structure

When using the LWIP TCP/IP stack together with Erika Enterprise, the application
design have to be designed accordingly to a set of common sense rules that help handling
the TCP/IP with the least overhead maintaining the possibility of having concurrent
tasks running in the system. These rules are shortly described below (see Figure ?? for
a graphical reference), and are used in the demo distributed together with this tutorial.

• The main() function is used for Erika Enterprise initialization purposes only. In
general, that function covers the system startup and implements at its end the
background processing. For that reason, it should not call any LWIP timer function
after system initialization (please note that the standalone example distributed in
the Nios II Community forum does all the processing inside the main()). The
rationale for this choice is that the application designer should be able to specify
the precedence the application tasks should have over the TCP/IP processing.

• The initialization phase is carried out by a task named LWIP_startup_task, that
basically contains all the initialization routines of the LWIP stack. The task is
automatically activated by the StartOS() primitive (the AUTOSTART property of the
task is set to TRUE in the OIL file.

• There are other two tasks, named LWIP_service_task and LWIP_timer_task, that
are responsible to the execution of the LWIP timer functions. The rationale be-
hind this choice is that the RAW API exports an event-based API for the han-
dling of TCP/IP. There are two kind of events in the LWIP code: periodic and
asynchronous events, with corresponding periodic and asynchronous LWIP timer
functions. Periodic events are handled every given amount of time to process TCP,
ARP, and reassembly timeouts. Asynchronous events occur in correspondence of
the process of incoming packets from the network interface.

• The LWIP_service_task task simply calls the lan91c111if_service that is used by
the LWIP stack to process an incoming packet. In principle, the LWIP_service_task
task is activated every interrupt from the Ethernet interface1. Please note that the

1That is the reason for the patch to alt_avalon_lan91c111_irq().The actual implementation

slightly differ because there is to consider a race condition between task activation and the service

process of the packet.
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4 Configuration of the RTOS parameters for the LWIP stack
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Figure 4.1: This Figure displays the architecture of the LWIP port, showing the timer
and LAN interrupts, the LWIP tasks, and the main task.

standalone version called lan91c111if_service in the main loop, which typically
resulted in a lot of computation time spent inside the call without any packet
arrived, or, worse, since real application in the standalone version have to be im-
plemented inside the main loop, having a lot of computation inside main simply
decrease the polling frequency of the network, with a result of delays in the packet
handling.

• The LWIP_timer_task task is activated periodically using an HAL alarm. The
alarm mechanism of the Altera HAL is usually attached to the system timer. The
content of he task is basically a call to all the periodic timeouts that handle the
TCP/IP stack.

• The priorities of the three LWIP tasks are all the same, to avoid preemption
between different LWIP tasks.

• Processing into the ISRs is reduced to the minimum possible, to avoid long inter-
val of time executed with interrupt disabled: de facto, they contain only a call to
ActivateTask(). Once activated, the LWIP tasks are scheduled like other appli-
cation tasks, eventually sharing the stack with them to reduce the overall RAM
consumption while maintaining multithread capabilities.

As a result, the application architecture depicted in the previous points allow mul-
titasking support without loosing the efficiency of the RAW API, and enabling stack
sharing between application tasks and LWIP tasks.
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4 Configuration of the RTOS parameters for the LWIP stack

4.2 Handling concurrency between LWIP calls

Application tasks typically need to use the LWIP API only to create, bind, and listen
on connections. All the other processing will be done on packet arrivals and on the
periodic timers, that are handled inside the LWIP_service_task and LWIP_timer_task

LWIP tasks.
The developer have also to take care of a race condition that appears when passing

from the standalone version of the LWIP stack to a multitask system. In particu-
lar, some care have to be taken to avoid that the LWIP tasks LWIP_service_task and
LWIP_timer_task preempts the running task during a LWIP call.
To avoid that situation, one out of the following four strategies can be implemented:

1. The LWIP tasks can be assigned the highest priority in the system. Then, a
Resource is allocated, that is shared among the LWIP tasks and all the application
tasks that needs to call the LWIP API. All the calls to the LWIP API done by
application tasks have to be protected by the usage of the resource.

As a result, the two LWIP tasks have the same priority, and so they are in mutual
exclusion without the need of calling GetResource() and ReleaseResource(). Then,
when a task uses a LWIP API function, the call of GetResource() before the usage
of the API functions has the result of increasing the running task priority to the
ceiling of the resource2, making the task mutually exclusive with the LWIP tasks.
If a packet arrives or a LWIP timeout expires while the running task executes the
API function, then the LWIP task will be activated, and will then wait the release
of the resource done by the running task with a call to ReleaseResource().

Please note that the demo distributed with this tutorial implements this scheme.

2. The LWIP tasks have not the highest priority in the system. In this case all the
calls to the LWIP API, and the code of the LWIP tasks have to be protected using
a shared resource.

3. All the task using the LWIP API can be defined in the OIL file as non preemptive.
In this case, no explicit call to GetResource() and ReleaseResource() is needed.
Note that other tasks with a priority higher than the LWIP tasks may suffer a
blocking time also if they do not use the LWIP stack.

4. All the tasks using the LWIP API can be defined in the OIL file to share an internal
resource. Also in this case, no explicit call to GetResource() and ReleaseResource()

is needed. Other higher priority tasks can preempt the LWIP and the application
tasks using the LWIP API.

2Erika Enterprise uses the Immediate Priority Ceiling Protocol, which says that the ceiling of a resource

is the highest priority of the tasks potentially using the resource. Resource usages are taken from

the OIL file.
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5 History

Version Comment

1.0.0 Initial revision.
1.0.1 Updated text, corrected typos, added history.
1.0.2 Added new versioning mechanism.
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