
ERIKA Enterprise API Tutorial

for the Altera Nios II Platform

version: 1.0.6
December 11, 2012

About Evidence S.r.l.
Evidence is a spin-off company of the ReTiS Lab of the Scuola Superiore S. Anna, Pisa,
Italy. We are experts in the domain of embedded and real-time systems with a deep
knowledge of the design and specification of embedded SW. We keep providing signifi-
cant advances in the state of the art of real-time analysis and multiprocessor scheduling.
Our methodologies and tools aim at bringing innovative solutions for next-generation
embedded systems architectures and designs, such as multiprocessor-on-a-chip, recon-
figurable hardware, dynamic scheduling and much more!

Contact Info
Address:
Evidence Srl,
Via Carducci 56
Località Ghezzano
56010 S.Giuliano Terme
Pisa - Italy
Tel: +39 050 991 1122, +39 050 991 1224
Fax: +39 050 991 0812, +39 050 991 0855

For more information on Evidence Products, please send an e-mail to the following
address: info@evidence.eu.com. Other informations about the Evidence product line
can be found at the Evidence web site at: http://www.evidence.eu.com.

This document is Copyright 2005-2012 Evidence S.r.l.

Information and images contained within this document are copyright and the property of Evidence

S.r.l. All trademarks are hereby acknowledged to be the properties of their respective owners. The

information, text and graphics contained in this document are provided for information purposes only by

Evidence S.r.l. Evidence S.r.l. does not warrant the accuracy, or completeness of the information, text,

and other items contained in this document. Matlab, Simulink, Mathworks are registered trademarks

of Matworks Inc. Microsoft, Windows are registered trademarks of Microsoft Inc. Java is a registered

trademark of Sun Microsystems. The OSEK trademark is registered by Continental Automotive GmbH,

Vahrenwalderstraße 9, 30165 Hannover, Germany. The Microchip Name and Logo, and Microchip In

Control are registered trademarks or trademarks of Microchip Technology Inc. in the USA. and other

countries, and are used under license. All other trademarks used are properties of their respective

owners. This document has been written using LaTeX and LyX.

2

http://www.evidence.eu.com

Contents

1 Introduction 4

1.1 How to compile the demos . 4

2 Task API Example 8

2.1 Demo structure . 8
2.2 Configuration 1: Full preemptive . 8

2.2.1 Running configuration 1 . 9
2.3 Configuration 2: Non preemptive . 10

2.3.1 Running configuration 2 . 10
2.4 Configuration 3: Preemption points. 10

2.4.1 Running configuration 3 . 11
2.5 Configuration 4: Multiple Activations. 11

2.5.1 Running configuration 4 . 11
2.6 Configuration 5: Minimal configuration. 11

2.6.1 Running configuration 5 . 11

3 Resource and Application Mode API Example 12

3.1 Demo structure . 12
3.2 Running the example . 13

4 Event and Alarm API Example 14

4.1 Demo structure . 14
4.2 Running the example . 16
4.3 Lauterbach Trace32 support . 17

4.3.1 Acknowledgements . 22

5 History 23

3

1 Introduction

This short tutorial consists of a set of small application targeted to show the peculiarities
of the main Erika Enterprise API primitives.
The three applications described in this tutorial are the following:

Task API Example. The example shows the main primitives about task management,
including the options of preemptive and non-preemptive scheduling.

Resource and Application Mode API Example. The example shows the usage of the
resource primitives and their interaction with the scheduling policies, as well as
the usage of the Application Modes.

Event and Alarm API Example. The example shows how to use the primitives imple-
menting event handling. It also shows the usage of Erika Enterprise alarms, and
the configuration of separate stacks for the application tasks.

The demos have been reported working with the following evaluation board:

• Altera Stratix 1s40 evaluation Board

• Altera Stratix 2s60 RoHS evaluation Board

Other evaluation boards should work as well, because these examples only use the
following set of peripherals (which are normally included in the examples provided by
Altera):

• an Interval timer (the System Clock) for periodic alarms;

• a button;

• an Avalon PIO with eight LEDs;

• a JTAG UART.

Please report any problem, comment, and suggestion to the Evidence technical sup-
port, by writing a mail to support@evidence.eu.com.

1.1 How to compile the demos

This tutorial assumes the reader’s familiarity with the Nios II IDE, and the ability to
create, compile and run an application using Erika Enterprise. However, in this section we
provide a brief step-by-step guide to the setup and usage of the main tools for running
this tutorial. You can find more information on these topics in the Erika Enterprise

tutorial available in the ERIKA Enterprise Reference Manual.
To compile and run the examples described in this document, follow the next steps:

4

1 Introduction

Installation of the development environment

1. If you want to use the Lauterbach Trace32 Debugger and Tracer [1] to flash and
run the tutorial, copy the content of the files\demo\kernel\orti directory of the
CDROM into C:\t32\demo\kernel\orti.

2. Download the Quartus II Web edition environment from the Altera web site and
install the software on your computer.

3. Download the Nios II IDE Web edition environment from the Altera web site and
install the software on your computer.

4. Download the Erika Enterprise and RT-Druid Demo Version for Altera Nios II
from the Evidence website, and install the software on your computer.

Creation of the Jam images

1. Start the Quartus II environment.

2. Click on File → Open Project.

3. Open the C:\altera\80\nios2eds\examples\...\full_featured\full_featured.qpf
project.

4. Click on Tools → Programmer.

5. Check the Prog/conf checkbox.

6. Click on File → Create/Update → Create JAM.

7. Rename the file as fpga.jam1.

8. Save the project.

9. Click on File → Open Project.

10. Open the C:\altera\80\nios2eds\examples\...\standard\standard.qpf project.

11. Click on Tools → Programmer.

12. Check the Prog/conf checkbox.

13. Click on File → Create/Update → Create JAM.

14. Rename the file as fpga.jam2.

15. Save the project.

1The file will be created in C:\altera\80\nios2eds\examples\...\full_featured.
2The file will be created in C:\altera\80\nios2eds\examples\...\standard.

5

1 Introduction

Compiling the examples

To run the examples, you need to create two system libraries, one called standard_syslib

(linked to the standard example provided by Altera), the other called full_featured_syslib

(linked to the full_featured example provided by Altera).
Compile the examples in the following way:

1. Start the Nios2 IDE environment.

2. Click on Windows → Preferences → RT-Druid → Oil → OS Configurator and
choose Source distribution.

3. Click on New → Project → Altera Nios II → System Library.

4. As project name, specify standard_syslib.

5. Build the project.

6. Click on New → Project → Altera Nios II → System Library.

7. As project name, specify full_featured_syslib.

8. Build the project.

9. Click on New → Project → Evidence → RTDruid Oil and c/c++ project.

10. Select one of the templates, as in Figure 1.1

11. As project name, specify nios2_task3.

12. Reference the two libraries already created (i.e. standard_syslib and full_featured_

syslib).

13. Build the project4.

14. If you want to use the Lauterbach Trace32 Debugger and Tracer [1] to flash and run
the tutorial, run the Debug.bat script and click on go once the T32 environment
has finished initialization.

Warning: To run the examples as provided in this package without modifications,
you need to create the system libraries with the same name and location as speci-
fied in the SYSTEM_LIBRARY_NAME and SYSTEM_LIBRARY_PATH attributes in the OIL file
provided with each demo!

3For the resource and the events examples, just repeat these steps by creating a different project

and importing the related files.
4The ELF binary will be created in the directory C:\altera\80\nios2eds\bin\eclipse\workspace\
nios2_task\Debug\default_cpu.

6

1 Introduction

Figure 1.1: Creating a new project from a template.

7

2 Task API Example

The Task API Example, also called the Christmas Tree example, is a simple demo that
shows the usage of the following primitives:

• DeclareTask;

• ActivateTask;

• TerminateTask;

• Schedule.

2.1 Demo structure

The demo consists of two tasks, Task1 and Task2. Task1 repeatedly puts on and off a
sequence of LEDs, like a Christmas Tree. Task2 simply turns on and off a LED, and is
activated by the press of a button. Task2 is de facto a disturbing task that, depending
on the configuration parameters, may preempt Task1.
The demo can be compiled in four different configurations, showing in each case a

different scheduling behavior. To select a configuration, please look at the end of the OIL
file containing the configuration of the example, and uncomment only one configuration
at a time.

2.2 Configuration 1: Full preemptive

This configuration is characterized by the following properties:

• An Altera HAL alarm Task1_alarm_callback is linked to the System Clock (typi-
cally an Altera Interval Timer). The alarm simply activates Task1.

• Each instance of Task1 simply shows a Christmas Tree, that is, Task1 controls a
sequence of LEDs blinking from LED 0 to LED 5.

• each time the first button in the board is pressed, Task2 is activated.

• Task2 always preempts Task1 (it has higher priority). Task2 does the following
actions:

– LED 6 or LED 7 blink alternatively;

– a string is printed to the JTAG UART displaying the number of alarms fired,
the number of button interrupt fired, the number of times Task2 has run.

8

2 Task API Example

2.2.1 Running configuration 1

The behavior of the two tasks in configuration 1 can be evaluated looking at the evalu-
ation board LEDs together with the console output.
When the demo starts, the first string that appears on the console is the banner

Welcome to the ERIKA Enterprise Christmas Tree!

meaning the application has started correctly.
After that, the main() function calls StartOS(). StartOS is an Erika Enterprise primitive

that initializes the Erika Enterprise environment. The call to StartOS() must precede any
call to the Erika Enterprise API functions.

StartOS automatically activates Task2. This can be configured by modifying the
following property of Task2 in the OIL configuration file:

AUTOSTART = TRUE;

As a result, Task2 runs, blinking LED 6 and printing the following string:

Task2 - Timer: 0 Button: 0 Task2: 1

• The first number is the number of times the HAL alarm has run so far. Every
execution of the alarm callback activates Task1, that in turn blinks LED 0 to 5.

• The second number displays the number of executions of the button interrupt.
Every time the button is pressed or released, an interrupt is generated. The
interrupt activates Task2.

• The third number displays the number of times Task2 has run. As we will see
later, the number may differ from the number of button activations.

Now press the first button in the evaluation board for MORE THAN ONE SECOND,
and release it. As a result, two lines are printed on the console. The first line corresponds
to the Task2 activation issued by the interrupt generated when you pressed the button.
The second line correspond to the Task2 activation issued by the interrupt generated
when you released the button.
Moreover, looking at the LEDs on the evaluation board, every time you press or release

the button, LEDs 6 or 7 blink regardless of the current status of the Christmas Tree
(that is, the current code being run by Task1).
The behavior happens because Task2 has an higher priority than Task1: when Task2 is

activated, it has a higher priority than Task1, and as a result Task2 ”preempts” Task11.
Now please press the button rapidly a few times. As a result, a few lines are printed

on the console. As it can be seen looking at the number printed for button presses and
Task2 executions, the number of Task2 Activations are less than the number of Button
IRQs. The behavior happens because the OIL file for configuration 1 contains the line:

KERNEL_TYPE = BCC1;

1Please note that this behavior will change in Configuration 2, 3, and 4.

9

2 Task API Example

that is, Erika Enterprise is configured with a BCC1 conformance class, which forces every
task to maintain only one activation at a time. Task2 activations issued when Task2 is in
the ready queue or is running are lost (in that case the ActivateTask primitive returns
E_OS_LIMIT). We will address this issue in Configuration 4.
You are now ready to proceed to Configuration 2.
To change configuration, go at the end of the OIL file, and leave uncommented only

the Configuration you want to try. After that, please rebuild the application.

2.3 Configuration 2: Non preemptive

This configuration differs from Configuration 1 only for the fact Task1 is configured as
NON preemptive in the OIL file by using

SCHEDULE = NON;

in the task attributes of the OIL file.

2.3.1 Running configuration 2

The effect of Task1 being non-preemptive is that Task2 only runs when Task1 (the Christ-
mas Tree) is not running. The fact can be perceived by looking at the board LEDs: LEDs
6 or 7 only blinks when the Christmas Tree is off, that is when Task1 ended its current
activation.
If compared with configuration 1, the lines printed on the console by Task2 show

the correct number of alarm executions, with the correct number of alarm and button
interrupts, meaning that interrupts are handled also when a non-preemptive task is
running.
On the other side, the number of times Task2 has run could be less than in configura-

tion 1 because some more activations could have been lost due to the fact Task2 cannot
preempt Task1.

2.4 Configuration 3: Preemption points.

This configuration differs from configuration 2 for the fact Task1 calls Schedule() in the
middle of the display of the Christmas Tree. To implement that, the OIL file specifies a
global

EE_OPT = "MYSCHEDULE";

option, that translates in a

#define MYSCHEDULE

statement in the generated files when compiling the application source code (see the
automatically generated file Debug/default_cpu/eecfg.h inside your project directory).
Then, Task1 source code includes a conditional compiler directive to add the call to
Schedule().

10

2 Task API Example

2.4.1 Running configuration 3

This configuration shows the usage of the Schedule() primitive, which can be used to
implement a preemption point inside a non-preemptive task.
In particular, Task2 can now preempt Task1 in the middle of the Christmas tree

(between the blinking of LED 2 and LED 3). The fact is visible looking at the board
LEDs: if the button is pressed while LED 0, 1, or 2 are on, then in any case LED 6 (or
7) will blink between the blink of LED 2 and 3.

2.5 Configuration 4: Multiple Activations.

This configuration differs from configuration 3 because Task2 has now the possibility of
storing a few pending activations. To do that, the number of pending activations for
Task2 is set to 6 by having the line

ACTIVATION = 6;

to control the pending activations of Task2 and the line

KERNEL_TYPE = BCC2;

to set the kernel conformance class to BCC2.

2.5.1 Running configuration 4

When running configuration 4, Task2 now stores up to 6 pending activations, which
means that if the task is activated more than once (by pressing and releasing the button
rapidly a few times) while Task1 is running , then Task2 is executed consecutively for
a corresponding number of times up to the maximum number of pending activations
specified in the OIL File.

2.6 Configuration 5: Minimal configuration.

This configuration differs from configuration 1 because the system is running with the
FP conformance class. As a result, pending activations are stored inside an integer, and
for that reason no activations are lost when clicking the button.

2.6.1 Running configuration 5

When running configuration 5, Task2 now stores all your pending activations, which
means that if the task is activated more than once (by pressing and releasing the button
rapidly a few times) while Task1 is running , then Task2 is executed consecutively for a
corresponding number of times. Pleae note that the order of activations of tasks with
the same priority is not maintained as it is with conformance class BCC2 and ECC2.

11

3 Resource and Application Mode API

Example

The Resource and Application Mode API Example is a simple demo that shows the usage
of the following primitives:

• GetActiveApplicationMode;

• GetResource;

• ReleaseResource;

The demo also uses ActivateTask and other task related primitives. Please refer to
Section 2 for a better explanation of these primitives.

3.1 Demo structure

The demo consists of two tasks, LowTask and HighTask that share a resource. LowTask is
a periodic low priority task, activated by a timer, with a long execution time. Almost
all its execution time is spent inside a critical section on the resource (that is, between
a call to GetResource and ReleaseResource). To show this behavious, LED 0 is turned
on when LowTask is inside the critical section.

HighTask is a high priority task that increments (decrements) a counter depending on
the application mode being ModeIncrement (ModeDecrement). The task is aperiodic, and
is activated by the ISR linked to the button. Most of the execution time of HighTask is
spent inside a critical section on the shared resource. To show this behaviour, LED 1 is
turned on when HighTask is inside the critical section.
The application uses Application Modes to implement a task behavior dependent

on the Application Mode. When the application starts, it checks the first pin of the
Button PIO to select one out of the two different application modes (ModeIncrement or
ModeDecrement).
An Application Mode is basically a system configuration that is selected when the ap-

plication starts. Application modes are set at application startup, and are not changed
after the call to StartOS(). Application modes can be used to model particular applica-
tion configurations such as ”Debug Mode”, ”Normal Mode”, and so on. The application
tasks can read the application mode using GetActiveApplicationMode, and adjust their
behavior depending on the particular mode. Please also note that the AUTOSTART prop-
erty in the OIL file for tasks and alarms may have different values for each application
mode.

12

3 Resource and Application Mode API Example

After the call to StartOS(), all the calls to printf are always done in mutual exclusion
inside the mutex critical section, to ensure that there is no concurrency issues between
the various printf calls.

HighTask and LowTask are configured to share the same stack by setting the following
line inside the OIL task properties:

STACK = SHARED;

As a result, only a single stack will be used, with a dimension that (in this case) is
the sum of the stack space required by both tasks. In general, by appropriately using
priorities and preemption thresholds the stack space can be reduced significantly.
Access to shared resources is managed by using the implementation of the Immediate

Priority Ceiling protocol in Erika Enterprise. In practice, whenever LowTask locks the
resources with primitive GetResource(), its priority is raised to the one of HighTask.
This fact prevents HighTask from preempting LowTask while in the critical section, en-
suring data consistency. Of course, LowTask will return to its priority when calling
ReleaseResource() and the scheduler will be called to check whether a preemption is
necessary.

3.2 Running the example

Compile and run the application as usual. When the application starts, the Button PIO
is read, and the appropriate mode is passed to StartOS. let’s suppose that the Button is
not pressed: the application will start with the application mode set to ModeIncrement.
Each click of the first button in the evaluation board activates HighTask: if LowTask is

already executing in critical section, HighTask will have to wait for LowTask to complete
its critical section before being able to execute.
Pressing the button too fast will activate HighTask too fast. In that case, it is likely

that some activation will be lost (as it happened in the Task API Example).
Starting the application with the first Button pressed, causes StartOS to be called with

the ModeDecrement application mode. In this example, the application mode simply
influences the increment or decrement of a counter, as it can be seen looking at the
console outputs.

13

4 Event and Alarm API Example

The Event and Alarm API Example is a simple demo that shows the usage of the
following primitives:

• WaitEvent;

• GetEvent;

• ClearEvent;

• SetEvent;

• ErrorHook;

• StartupHook;

• SetRelAlarm;

• CounterTick.

4.1 Demo structure

The demo consists of two tasks, Task1 and Task2.
Task1 is an extended task. Extended tasks are tasks that:

• can call blocking primitives (in our case, wait for events using the WaitEvent prim-
itive;

• must have a separate stack (because they may suspend upon a call to a blocking
primitive).

A task is considered an Extended Task when the OIL file includes events inside the task
properties. In this example, Task1 is an extended task because its properties contain the
following lines:

TASK Task1 {

...

EVENT = "TimerEvent";

EVENT = "ButtonEvent";

};

Task1 waits for two events:

14

4 Event and Alarm API Example

• A TimerEvent. The action related to this event is the blinking of LED 1. The
event is set by a periodic alarm notification AlarmTask1 defined in the OIL file.

• A ButtonEvent. The action related to this event is the blinking of LED 2. The but-
ton event is set explicitly using the SetEvent primitive inside the button interrupt
handler.

The buttons available on the evaluation board are attached to an interrupt handler.
This interrupt handler sets a relative one-shot alarm AlarmTask2. The alarm notification
of AlarmTask2 activates Task2. Task2 simply turns LED 3 on.
The demo also includes an ErrorHook. To understand the usage of ErrorHook, please

place a breakpoint in the ErrorHook function. Every time an error appears in the exe-
cution of a Erika Enterprise primitive, then ErrorHook will be called. In the demo, such a
condition appears when the button is pressed rapidly twice. In that case, a few button
interrupts will be generated, and each execution of the interrupt handler will call the
SetRelAlarm primitive. When SetRelAlarm will try to activate an alarm already armed,
then ErrorHook will be called with a parameter E_OS_STATE.
The alarm support in Erika Enterprise is basically a wakeup mechanism that can be

attached to application or external events (such as timer interrupts) to implement an
asynchronous notification. In this example, the Erika Enterprise alarm support is used to
implement a replacement of the Altera HAL alarm feature. To obtain this feature, the
demo programs the HIGH_RES_TIMER timer to periodically raise an interrupt.

Warning: To run this demo, the Altera System Library project should specify
none as Timestamp timer. In this way, we are sure that the High Res Timer will not
be registered by the Altera HAL.

The timer interrupt calls the CounterTick function. The CounterTick function simply
increments the counter passed as parameter, checking if any pending Alarm notification
has to be executed.
Please note that CounterTick can be attached to any source of interrupt, and can be

called from any point of your application to implement user-defined wakeup mechanisms.
The demo contains a StartupHook, which contains the registration of the timer and

button interrupts.
Finally, please note that Task1 uses a blocking primitive like WaitEvent. This implies

that Task1 needs a separate stack for its execution. Therefore, Task1 properties in the
OIL file include the following lines:

TASK Task1 {

...

STACK = PRIVATE_NIOSII {

SYS_SIZE = 1024;

};

};

15

4 Event and Alarm API Example

that basically reserve 1024 bytes for the private stack of Task1.
Another interesting feature of Erika Enterprise is the possibility of reserving a separate

stack for the execution of the interrupt handlers. This feature has been used in the OIL
file of this demo, reserving 512 bytes for the IRQ stack with the with the following lines:

CPU test_application {

OS EE {

...

CPU_DATA = NIOSII {

...

MULTI_STACK = TRUE {

IRQ_STACK = TRUE {

SYS_SIZE =512;

};

DUMMY_STACK = SHARED;

};

};

};

};

Having an IRQ stack separated from the rest of the stacks allows a better sizing of
task stacks (that does not have to leave space for IRQ handlers on each separate stack).

4.2 Running the example

Compile and run the application as usual.

Warning: Please remember the Altera System Library project should specify
none as Timestamp timer!!!

The only action done by main is to call StartOS(), which registers the two sources
of IRQ (the button and the timer), automatically activates Task1, and arms a periodic
alarm AlarmTask1.
Every time the timer interrupt fires, the counter Counter1 will be incremented. Every

alarm expiration, Alarm AlarmTask1 will fire, setting the event TimerEvent on Task
Task1: Task1 wakes up, get the event, and blinks LED 1. The visible result is that LED
1 periodically blinks on the board.
Now press the button on the board once. An interrupt is generated that activates an

interrupt handler that performs two actions:

• It arms the alarm AlarmTask2, whose notification will activate Task2. Then Task2

switches LED 3 on and off.

• It sets an event ButtonEvent on Task1. As a result, Task1 wakes up switching LED
2 on and off.

16

4 Event and Alarm API Example

The visible result is that upon a press of the button, LED 2 immediately blinks
(meaning Task1 has been woken up by the event), and after a while (around 1 second)
LED 3 blinks again (meaning the alarm AlarmTask2 fired activating Task2).
If the button is pressed rapidly, an error in SetRelAlarm is raised, executing ErrorHook.

The visible result in this case is that all the LEDs blink signaling the execution of
ErrorHook.

4.3 Lauterbach Trace32 support

This demo also shows the integration of Erika Enterprise with the Lauterbach Trace32
Debugger and Tracer [1].
The integration supported by Erika Enterprise includes the following features:

• Automatic generation of the Trace32 PRACTICE Debug scripts to program the
FPGA, and to load the ELF files produced in the IDE.

• Automatic generation of multicore debug scripts for Multicore designs.

• Kernel awareness support using ORTI files automatically generated by RT-Druid.

To enable all these features, you need to specify a JAM file name1 inside the OS
section of the OIL file, as well as the specification of the ORTI sections that should be
generated, as follows:

CPU test_application {

OS EE {

...

NIOS2_JAM_FILE = "JAM_filename.jam";

ORTI_SECTIONS = ALL;

}

...

}

(ALL means the generation of all the ORTI information).
As a result of the compilation process, a set of files are produced inside the Debug

directory (see Table 4.1 for a detailed list).
To run the Trace32 debugger, just double click on the Debug/debug.bat file generated

during the compilation. The debugger opens up showing a window similar to the one in
Figure 4.1.
Please note that each window has a title with the name of the CPU being under

debug. The menu list include a submenu named “ee cpu 0” containing the specification
of the ORTI related debug features.
By clicking on each menu item, you can get useful debug informations about Erika

Enterprise. In particular:

1JAM is one of the file formats containing the FPGA configuration that is accepted by Lauterbach

Trace32

17

4 Event and Alarm API Example

File name Description

debug.bat This batch script loads the FPGA hardware
and starts a T32 instance for each CPU. You
can double click it on the Nios II IDE to di-
rectly launch the debug session.

debug_nojam.bat This batch script starts a T32 instance for
each CPU. You can double click it on the
Nios II IDE to directly launch the debug ses-
sion. You can use it if the FPGA has been
already programmed with the hardware con-
tents.

t32.cmm Main PRACTICE script, responsible for
loading the JAM file and starting all the T32
instances on every CPU.

testcase_data.cmm Internal file used for automatic testcase gen-
eration.

t32/* Internal PRACTICE scripts. They
are a copy of the files inside
components/evidence_ee/ee/pkg/cpu/nios2

/debug/lauterbach/t32.
cpuname/config.t32 Configuration file for T32. Contains the Mul-

ticore configuration information.
cpuname/orti.men Trace32 menu automatically generated using

the Lauterbach ORTI menu generator.
cpuname/system.orti The ORTI file, for each cpu.
cpuname/t32.cmm The main script file executed by each CPU.

Table 4.1: Files generated for the Lauterbach Trace32 support (cpuname is the name
of the CPU as specified in the OIL file).

18

4 Event and Alarm API Example

Figure 4.1: The Lauterbach Trace32 for Altera Nios II.

Figure 4.2: General information about the Erika Enterprise status.

• Figure 4.2 shows the general information about the kernel global variables, such
as the name of the running task, the current priority of the running task, the last
RTOS primitive called, the last error returned by an Erika Enterprise primitive, the
current application mode and the current system ceiling.

• Figure 4.3 shows, for each task, the task name, its current priority (it may be
different from the nominal priority when the task lock a resource), the task state,
the task stack, and the current pending activations.

• Figure 4.4 shows, for each resource, the resource name, the resource status, the

Figure 4.3: Information about the tasks in the system.

19

4 Event and Alarm API Example

Figure 4.4: Information about the resources in the system.

Figure 4.5: Information about the alarms in the system.

task that has locked the resource (if any), and the ceiling priority of the resource.

• Figure 4.5 shows, for each alarm in the system, the alarm name, the time to which
the alarm will fire, the cycle time of the alarm (0x0 means the alarm is not cyclic),
the alarm state, the action linked to the alarm notification, the counter to which
the alarm is attached, and its value.

• Finally, Figure 4.6 and Figure 4.7 show information about the stacks that has been
configured in the application. In particular, the first figure shows the stack name,
size, base address, direction, and fill pattern, while the second figure shows in a
graphical way the current stack usage. Please remind that to obtain the graphical
stack usage estimation the application has to call EE_trace32_stack_init at system
startup. In this example, Stack0 is the shared stack used by the background task
(that is, the main function), and by Task2. Stack1 is used by Task1, and Stack2 is
the interrupt stack.

The Erika Enterprise Trace32 support also includes support for the Nios II tracer mod-
ule. As an example, Figure 4.8 shows the execution of an interrupt handler as recorded
by the tracer module. Figure 4.9 shows an interpretation of the context changes and
task status values using the ORTI information.

Figure 4.6: The application stack list.

20

4 Event and Alarm API Example

Figure 4.7: A graphical view of the application stack usage.

Figure 4.8: The execution of the Button IRQ as recorded by Lauterbach Trace32.

Figure 4.9: The interpretation of a trace recorded with Lauterbach Trace32 showing the
context changes happened in the system.

21

4 Event and Alarm API Example

4.3.1 Acknowledgements

We would like to thank Ing. Maurizio Menegotto from Lauterbach Italy Srl for his
support in the integration of RT-Druid and Erika Enterprise with the Lauterbach Trace32
Debugger and Tracer.

22

5 History

Version Comment

1.0.x Initial revisions for Nios II 5.0 and 5.1.
1.0.3 Updated text, corrected typos.
1.0.4 Completed the introduction with some instructions

about how to install and configure the environment.
Corrected typos.

1.0.5 Corrected typos; added new versioning mechanism.
1.0.6 Updated for Nios II version 8.0.

23

Bibliography

[1] Lauterbach GMBH. The Lauterbach Trace32 Debugger for Nios II.
http://www.lauterbach.com, 2005.

24

http://www.lauterbach.com

	Introduction
	How to compile the demos

	Task API Example
	Demo structure
	Configuration 1: Full preemptive
	Running configuration 1

	Configuration 2: Non preemptive
	Running configuration 2

	Configuration 3: Preemption points.
	Running configuration 3

	Configuration 4: Multiple Activations.
	Running configuration 4

	Configuration 5: Minimal configuration.
	Running configuration 5

	Resource and Application Mode API Example
	Demo structure
	Running the example

	Event and Alarm API Example
	Demo structure
	Running the example
	Lauterbach Trace32 support
	Acknowledgements

	History

