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ScicosLab/Scicos for dummies like us
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Digital control systems design and simulation: 
the Bermuda Triangle for engineers

Control systems

Computer science

Physics



Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

3

What ScicosLab is?
 An interpreted language (“Scilab Language”, very similar _but_not_equal_ to Matlab)
 Full support for matrix computation (BLAS, LAPACK, single and multi cores support
 using ACML now, GPU support in the near future using OpenCL).

 Basic programming (just like Matlab)
 GUI development (using TCL/TK and UICONTROL)
 Linear algebra
 Polynomial calculation
 Control systems modelling and design (continuous, discrete and hybrid systems)
 Robust control toolbox
 Optimization and simulation (build-in solvers)
 Signal processing (filters design, etc.)
 ARMA modelling and simulation
 Basic statistics
 Basic identification
 PVM support
 TCL/TK and Java support
 Max-plus algebra toolbox
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What you can do with ScicosLab?
• Interact with the command line 

• Write a program, one line at time, using the internal
 or with an external editor

• Run the program in an user friendly interpreted
 environment (easy debug)

• Use the rich embedded library.

• You can develop your ScicosLab functions using 
 C, Fortran, Java, etc.

• Produce nice graphics diagrams.
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What Scicos is?
Scicos  is a graphical dynamical system modeller and simulator 
developed inside the METALAU project at INRIA, Paris 
Rocquencourt centre.

Scicos is a graphics, object oriented tool where the user create 
block diagrams to model and simulate the dynamics (time domain) 
of hybrid  dynamical systems and compile models into executable 
code (code generation for simulation and embedded applications). 

Scicos is used for signal processing, systems control, queuing 
systems, and to study physical and biological systems.

New extensions allow generation of component based modelling of 
electrical and hydraulic circuits using the Modelica language.
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What you can do with Scicos?
 Graphically model, compile, and simulate dynamical systems
 Combine continuous and discrete-time behaviours in the same model
 Select model elements from “Palettes” of standard blocks
 Program new blocks in C, Fortran, or Scilab Language
 Run simulations in batch mode from ScicosLab command line
 Generate C code from Scicos model using the built in Code Generator
 Generate C/C++ libraries ready to be integrated in Kepler using FC2K
 Run simulations in real time with and  real devices using Scicos-HIL
 Generate hard real-time control executables with Scicos-RTAI,
 Scicos-FLEX and Scicos-ITM code generators.

 Use implicit blocks developed in  the Modelica language.
 Discover new Scicos capability using additional toolboxes like RTSS,
 Scicos-HDL, Coselica, etc.
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ScicosLab
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Modelling of complex dynamical systems

ScicosLab and Scicos are designed to handle explicit (ODE, 
Ordinary Differential Equation) or implicit (IDA, Implicit Differential 
Algebraic equation) differential equation problem (in the 
continuous domain) and difference equation (in the discrete 
domain). 

ScicosLab and Scicos can handle also partial differential 
equation (PDE) and finite element problem, but the user must 
develop some code to implement features like meshing (not 
built in ScicosLab).
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Continuous systems

Linear controller for a floating apple.
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Discrete systems

Same diagram, but realized with (time) discrete blocks.
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Hybrid systems

Welcome to the Real World: continuous system, discrete controller.
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Implicit model: an easy example.

Consider the basic LR circuits show below.
You would like to control the current “i(t)” that flows inside the 
inductance using “vu(t)” (the voltage source that drive the coil). 

“lr_cc_modelica_r1.cos”

Consider the basic LR circuits show below.
You would like to control the current “i(t)” that flows inside the 
inductance using “vu(t)” (the voltage source that drive the coil). 
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Basic modelling
The equations are:

vu t =R⋅i t 
d
dt

 t 

=L⋅i

vu t =R⋅i t L
d
dt
i t i t  d

dt
Lt  vu t =R⋅i t L

d
dt
i t 

L=⋅K⋅N
2 A
l

K= f Nagaoka
d
l
=<material>
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Root locus and Bode plots with ScicosLab
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Root locus and Bode plots with ScicosLab
PLANT PLANT + CONTROLLER
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Why do you need control systems?

Control technology was born in order to improve the performances of the 
“PLANT”, e.g. the system that makes the work.

Examples:

- furnace (temperature control)
- audio amplifier (distortion, bandwidth)
- motion control (precision, speed)
- AAA (Anti Aircraft Artillery)
- Flight control (efficiency, comfort, performances)
- Combustion engine (efficiency, emission's reduction)
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Continuous systems
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Linear, continuous and time invariant systems

Continuous: all the internal and external signals are “proper”  time 
functions. They are unequivocally defined for all values of “t”. 

Linear: if u1, u2 are two inputs and y1 and y2 are the two corresponding 
outputs, the input u = u1 + u2, produces the output y = y1+ y2

Time invariant: the response of the systems does not vary in time (system 
parameters are time invariant, no “ageing effect”). 

LTI continuous systems: the Paradise
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Control system means feedback 

NO FEEDBACK : open loop system

PLANT
Input Output
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Control system means feedback: standard config.

PLANT
Input Output

Controller

PLANT
Input

Output
Controller

Error

Controller in the 
“feedback” path

Controller in the 
“direct” path
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Example of feedback system: the floating apple

 I have an apple at y(0)=y0=1.0m.

 At t=0 I drop the apple, and the apple falls down.

 I'm not satisfied: I'd like to see the apple floating at a reference height (ref=0.5m). 

 I need a controller to implement a closed loop feedback system.

To design a controller you need:

- a theory : Newton's gravity law

- a model of the “PLANT”

Example of feedback system: the floating apple
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Open Loop “PLANT” model

The “PLANT” : a free falling apple

F=G
mamT

r2

F=ma a=Fm
aa=G

mT
r2 ; g=−9.81m/ s2

v t =v0∫ a t dt y t = y0∫ v t dt

y t = y0
1
2
g t 2



Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

23

Open loop PLANT model:
Scicos simulation

Open loop simulation of the free falling 
apple.

v t =v0∫ a t dt
y t = y0∫ v t dt

“apple_ff_01.cos”
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Example: the floating apple
First “instinctive” trial-and-error controller  (P only)

This controller does not work.
“apple_c_01.cos”
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Example: the floating apple
Hint: you need to introduce an additional term producing “artificial friction”. 

It works ! 
“apple_c_02.cos”
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Example: the floating apple

Conclusions and observations:

“intuitive” design (no theory) may produce catastrophic results

The ubiquitous PID controller may be able to solve most of the 
common situations.

Not every PLANT can be stabilized using a simple PID

In order to design a suitable controller we need a specific theory 
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Basic tool for continuous system:
the Laplace transform

Solving with “paper and pencil” differential equations is too difficult: we need a 
better tool.

Laplace transform a differential equation problem in a polynomial problem

 

 F(s) is a complex function of complex variable
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Laplace transform for dummies

Write a differential equation

Substitute “d/dt” (derivative) with “s”

Substitute “” (integral) with (1/s)

Compute the transfer function H(s) = N(s) / D(s)

Examples:
 Electrical circuit (simple RC)
 Mechanical system (mass + friction)
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Laplace transform for dummies

Compute poles “p_i” (D(s) = 0)  and zeros  “z_i” N(s)=0 and factorize

Forget the zeros for a moment and focus your attention on the poles.

Why are the poles so important?
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Poles on “s” plane

The position of the poles is strictly linked with the system response
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Poles on “s” plane: the root locus method
Feedback “K” moves the poles on the “s” plane. If you understand the relation 
between “K” and the position of the poles, you can change the response of the 
closed loop system.

In our initial example “K” moves the poles, but the poles remain on the (vertical) 
imaginary axis.

Adding a “zero” (the derivative factor) moves the asymptotic axe of the poles on 
the stable region.
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Fourier transform and frequency response
Fourier transform is a simplified but very useful form of Laplace transform. If you 
already have the Laplace transfer function H(s), the Fourier transfer function is 
the same but with

Fourier transfer function is used when the input of the system is a single 
sinusoid because, in this case, the output is another sinusoid with different 
amplitude and phase, easily calculated from the   

Fourier transform is used also for control system design using Bode, Nyquist 
and Nichols (Black) diagrams (charts). 

Fourier transfer function is very useful because you can consider any periodic 
input signals as superposition of sinusoids with harmonic frequencies (0, 1, 
2 ...n) and with different amplitudes and phases (Fourier transform, FFT, 
FFTW). 

Fourier transform could be used for system's identification (parameter 
measurement). 

s= j

F  j
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Gentle introduction to state space control
Do you remember how we have stabilized the free falling apple? 

Hint: instead of deriving the position error, suppose you have a sensor measuring 
the apple speed; use this signal to stabilize the loop.

It works. The response does not change!
“apple_c_ss_01.cos”
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Introduction to state space control 
State variable: a function of time associated to an energy stored inside the system; 
“x” is the “state” (of the system): a vector that includes all the “energy related” 
variables.

Typical examples of state variables:
Electrical systems: voltage of capacitors and current in the inductor.
Mechanical systems: speed of mass, position of springs

x(t)
Input Output

u(t) y(t)

ẋ t =A x t Bu t ; internal state equation
y t =C x t Dut ; output equation

ABC Darematrixes
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State space representation: the guts

B

Input Output

ẋ t =A x t Bu t ; internal state equation
y t =C x t Dut ; output equation

+

A

C +
ẋ t  x t 

D

u t  y t 1
s
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State space feedback control

B

Input

Output

+

A

C +
ẋ t  x t 

D

u t 
y t 1

s

F

+
i t 

F is the “magic” matrix 
changing the closed 
loop response of the 
PLANT
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Power and Energy are not Free
(ask ENEL, EDF, etc.)

Consider the previous case and measure the power and energy requirement of the 
actuator (the external “magic” force).  

“apple_c_03.cos”
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Power and Energy are not Free (ask ENEL)
Observations:

Final energy cost is NEGATIVE: the actuator has 
“recovered” some energy from the apple. EDF 
should pay you :-).

Instantaneous power requirement is around +/- 20 
Watt.

Maximum force is around +/- 6 N.

What happens if my actuator is limited to +/- 4 N ?
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Power and Energy are not Free (ask ENEL)
The same controller but with a force limiter (saturation). 

“apple_c_04.cos”
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Power and Energy are not Free (ask EDF)
Final energy cost has not changed.

Instantaneous power requirement is a bit 
lower (+/- 15 against +/- 20 Watt) .

Maximum force is limited to +/- 3N

In practice, every actuator has some physical 
limits. Powerful actuators are more expensive 
and have more energy, space and weight 
requirements.

Loosing the “linear” hypothesis – in this case 
– is not “catastrophic”: the – linearly – 
designed controller keeps on working.
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Introduction to 
state space OPTIMAL control 

Taking into consideration the previous example, can I design the controller in such a 
way that the actuator is never pushed above its limits ?

What should you do if you have no access to the complete internal state of the 
PLANT or you can't (in order to limit costs or weight) install a full set of sensors?

Yes: you need to design a state space optimal controller.

You can re-create the full internal state of the PLANT with an OBSERVER if :
(a) you have a “good enough” model of the plant 
(b) the PLANT is not “bastard” (the PLANT must be observable and controllable)
(c) you have sufficient computing power. 
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Discrete systems
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Linear, discrete and time invariant systems

Discrete: all the internal and external signals are sampled in time. They 
are unequivocally defined only for “t = k Ts”. 

Linear: if u1, u2 are two inputs and y1 and y2 are the two corresponding 
outputs, the input u = u1 + u2, produces the output y = y1+y2

Time invariant: the response of the systems does not vary in time (system 
parameters are time invariant, no “ageing effect”). 

LTI discrete systems: the Purgatory
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Why do you need discrete (sampled)  systems?
The time sampling signal technology was born (1930, Bell ) to improve the 
communication capability of telephone networks (more conversations on 
the same wired or radio connection).

No one suggested – at the time - sampled (discrete) feedback systems. 
Sampled systems were considered an “aberration”.

Why sampling a signal when:
 the sensors produce continuous signals
 the actuators need continuous signals
 all the available computing blocks were based on analog
 (mechanical, hydraulical or electrical) continuous time
  technologies. 



Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

45

Q. Why do you need discrete (sampled)  systems?
A. Because there was a war.

If you need to point a cannon to an aicraft you can use a RADAR as sensor
BUT all the RADAR signals (distance, bearing, etc.) are intrinsically  “sampled” 
(discrete in time).

Q. Why do you need discrete (sampled)  systems?
A. Because there is the digital computer

Modern computers use digital technology, in which all the signals are 
sampled in time (discrete in time, sampling) and in amplitude (discrete in 
value, quantization).

- 1945 -

- 1939 -
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Q. Why do you need discrete (sampled) systems?
A. Because there is a PC with ScicosLab

All the software simulators - running on a PC - model continuous systems 
using equivalent discrete systems.

Three questions:

How is it  possible to build a discrete equivalent of a continuous system?

It is (the discrete equivalent) just an approximation of the continuous one 
or a completely different “thing”? 

What are the hypothesis and the limits of this “emulation”? 

- 2010 -
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Free falling apple discrete simulation 
Many years ago somebody (Euler) has shown how it is possible to transform a 
differential equation into a finite difference equation (sampling in time, from 
continuous to discrete equivalent). 
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Free falling apple discrete Scicos simulation 
Open discussion: “How have you built this nice diagram?”

“apple_ffde_02.cos”
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The discrete integrator (according to Euler) 
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Free falling apple discrete Scicos simulation 
Observations and open discussion:

The same results.

How have you calculated Ts ?

What happens if you change Ts ?

Can you show the discrete nature of the 
system? 

Does Scicos work using this technique ? 
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First “instinctive” P-only controller

Stability is not achieved ! 

“apple_cde_02.cos”

 “apple_cde_01.cos” is “algrebraic loop”
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P-only controller 
Observations and open discussion:

The same results.

What happens if I change Ts ?

Can you show the discrete nature of the 
system? 
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PD controller

It works !
“apple_cde_03.cos”
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PD controller 
Observations and open discussion:

The same results.

What happens if I change Ts ?

Can you show the discrete nature of the 
system? 
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Basic tool for discrete systems: Z transform

Solving by “pencil and paper” discrete equations is too difficult: you need a 
better tool.

Z transforms a difference equation problem in a polynomial problem

  X(z) is a complex function of complex variable 
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Z transform for dummies

Z transform produces N(z)/D(z) polynomial transfer functions.

The dynamic of the system is determined by the position of the poles

on the “z” complex plane.

Z transform does not show an explicit dependency by “Ts”, but the poles 
position is strongly “Ts” dependent.

Before considering the link between “Z” and “L” transforms and the 
considerations about the system stability, you need to ask yourself the 
question: “How can I choose Ts?” 

D z i=0
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Nyquist-Shannon sampling theorem
I want to realize an apparently trivial application:

I have a continuous signal “x(t)” and I want to sample it, creating a new, 
discrete in time, signal “x*(kTs)”. Then, I want to use this sampled signal to 
recreate EXACTLY (zero error, no approximations) the original continuous 
signal “x(t)”.

C / D converter

Input

x(t)
D / C converter

Output

x*(kTs) x'(t)=x(t)
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Nyquist-Shannon sampling theorem
First step: the input signal “x(t)” must be strictly band limited.
In other words, it does not have any “energy” beyond a specific frequency 
B (input signal bandwidth). 

C / D converter
x(t)

The input filter (also called “anti aliasing filter”) is optional. In some applications 
(e.g. sampling scopes) is not used. 

In practice, all the real physical signals have a 
limited bandwidth.
In case of doubt, you can add an input filter, 
“good enough” to suppress any undesired 
input frequency component beyond B.

Input filter
u(t) x*(kTs)
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Nyquist-Shannon sampling theorem
Second step: the input signal “x(t)” must be sampled with a stable, periodic signal 
“s” with a frequency Fs = 1/Ts where Fs must be at least 2B. In other words, the 
sampling frequency must be – at least – twice the input signal bandwidth.

Good.
Sufficient sampling frequency. No 
spectrum overlapping, no 
aliasing.

Bad.
Insufficient sampling frequency. 
The spectrum of the sampled 
data signal is altered (aliasing).
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Nyquist-Shannon sampling theorem
Second step (practical realization): building a good C/D converter - today - 
is relatively easy (it is just a very fast switch). The critical issue is the Fs 
stability. 

Real C/D converters (called A/D Analog to Digital converters) make also a 
quantization in amplitude. 

C / D converter
x(t) x*(kTs)

Ts = 1/Fs
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Nyquist-Shannon sampling theorem
Third step: the sampled signal “x*(kTs)” must be considered as a sequence of 
Dirac impulse of variable amplitude. In practice, this is not a big issue because we 
need only to store a sequence of values. 

C / D converter
x(t) x*(kTs)

Ts = 1/Fs
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Nyquist-Shannon sampling theorem
Fourth step (the reconstruction): in theory, if we apply the sequence of delta 
function to the input of a “brick-wall” filter, the output will be equal to the original 
signal. The “brick-wall” filter removes the images (alias).

D / C converter

Ideal “brick-wall” filter H(f) 

x*(kTs) x'(t)=x(t)
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Nyquist-Shannon sampling theorem
Fourth step (practical realization): Dirac impulses are impossible to realize 
because they have infinite amplitude and bandwidth. Ideal “brick-wall” filters are 
impossible to realize, too.
In practice, the Dirac impulses are substituted by a zero-order-hold approximation 
(the familiar staircase reconstruction) and the output filter is designed to 
approximate the brick-wall and compensate the ZHO distortion.

In some applications (e.g. control system) the output filter is not used.

ZOH

 

x*(kTs)

y'(t) ~ x(t)

Output Filter



Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

64

The sampling theorem for control systems
Regarding “Ts” choice, we can take for granted that we need to sample with a 
frequency – at least – twice the input signal bandwidth.

For closed loop control systems, the game should be played in a different way, 
because it is up to us decide the bandwidth of the closed loop system in function 
of the specifications. We need also to consider the approximations of the practical 
realization, otherwise we would risk to produce an unstable or marginally stable 
closed loop system.

A good “rule of thumb” is to choose a sampling frequency from 5 to 20 times the 
closed loop system bandwidth.

This rule is also known as “at least ten samples during system's closed-loop 
transient response”.

Obviously, this design rule makes Shannon and Nyquist happy :-).  
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Do not push too hard on Ts ! 
Beware! You must avoid the temptation to push too much the sampling frequency.

If you double the sampling frequency, you double the required computational 
requirement, so the power consumption, so the weight, so the cost....

If you push too much the sampling frequency, you aggravate the problems deriving 
from finite mathematical precision. You risk to spend time to accumulate “zero” 
quantity or differentiate equal values with very small denominators. 

Finally, you become too much sensitive to numerical (finite precision) and signal 
(real signal) noises.

When it is enough it is enough.
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L and Z transforms intimate relationship
Think back to our original problem to create a discrete system that “emulates” a 
continuous one. Let us suppose that we have already designed our complete 
system, so we know where the poles are in the “s” (Laplace) plane. 
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From L to Z transform
The previous equation is perfect from a theoretical standpoint but does not 
resolve our problem: transform an H(s) function in a H'(z) equivalent function.

The Tustin transformation can transform the continuous compensator to the 
respective digital compensator. The digital compensator will achieve an output 
which approaches the output of its respective analog controller as the sampling 
interval is decreased.

Tustin is just one of the many “approximate” transformation. Notice the direct 
dependency from Ts. 
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Discrete state space control
The state space representation is valid in the discrete as in the continuous

B

Output

xk1=A xkBuk ; internal state update equation

yk=C xkDuk ; output equation

+

A

C +
xk1 xk

D

uk yk
1
z

Input
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Hybrid systems
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Linear, hybrid and time invariant systems

Hybrid: internal and external signals are a mix of sampled and continuous 
time signals.

Linear: if u1, u2 are two inputs and y1 and y2 are the two corresponding 
outputs, the input u = u1 + u2, produces the output y = y1+y2

Time invariant: the response of the systems does not vary in time (system 
parameters are time invariant, no “ageing effect”). 

LTI hybrid systems: welcome to Inferno
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Why do you have fallen into hybrid systems?

Because - most of the time - the PLANT is a continuous time system and the 
CONTROLLER is realized with digital technology (discrete time system).

Why digital technology? Because 1000 low quality transistors are cheaper 
than 1 high quality device. Digital controllers are becoming less expensive 
than their analog equivalents. Moreover, digital control offers capability well 
beyond the usual analog PID(networking, supervision, diagnostic, etc.).

Digital control is a perfect solution for an Internet connected world.

Where is the weak point?

    Software 
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Continuous vs Discrete controller

“apple_hc_02.cos”
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Continuous vs Discrete controller
Observations and open discussion:

It works but  the response is a bit different …

Where is the input sampler ?

Where are the input and the output filters ?

Why is the D gain different and the P gain the same ?

What happens if you change Ts ?

Is digital control cost effective also for very simple systems?

Is digital control “safe” ? 
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How to design discrete controllers 
for continuous plant

Old way (design in “s” space):
 You build a model for the PLANT
 You design a controller using continuous time tools (Laplace, root locus, Bode)
 You choose “Ts”
 You transform the continuous controller in a discrete one (Tustin, etc.) 

New way (design in “z” space):
 You build a model for the PLANT
 You choose “Ts”
 You transform the continuous plant in a discrete equivalent
 You design a controller using discrete time methods (deadbeat, pole placement, etc.)
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Plus and minus of the two design methods

Old way advantages:
 You can continue to use familiar tools and methods (e.g. Bode plots)
 You can postpone the decision about “Ts” (critical decision)
Disadvantages:
 No better performances compared to the “analog” design. 

New way advantages:
 You can use high quality transformations to create a discrete equivalent of the 
 PLANT. This improve the design of the controller without additional costs.

 You can use control topology too expensive for analog (c.t.) implementation
Disadvantages:
 You need to choose Ts early (critical decision)
 You need to master discrete design techniques
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Do not push too hard on Ts ! 
Beware! You must avoid the temptation to push too much the sampling frequency.

If you double the sampling frequency, you double the required computational 
requirement, so the power consumption, so the weight, so the cost....

If you push too much the sampling frequency, you aggravate the problems that 
derive from the finite mathematical precision. You risk to spend time to accumulate 
“zero” quantity or differentiate equal values with very small denominators. 

Finally, you become too much sensitive to numerical (finite precision) and signal 
(real signal) noises, in other words, avoid “zipping” poles in (1,0)

Small Ts means  z → (1,0) not matter the value of “s”. 

z=esT s
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L and Z transforms intimate relationship
Think back to our original problem to create a discrete system that “emulates” a 
continuous one. Let us suppose that we have already designed our complete 
system, so we know where the poles are in the “s” (Laplace) plane. 
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Hybrid state space control

B

Input

Output

+

A

C +
ẋ t  x t 

D

u t 
y t 1

s

F*

+
i t 

F* is the “magic” matrix 
that changes the closed 
loop response of the 
PLANT

D/C C/D

Ts Ts
Discrete state space controller
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SuperBlocks and Code Generation
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Scicos code generation: PD controller example
Super blocks help a lot 
to simplify and 
organize complex 
diagrams

(apple_hc_03.cos,
apple_hc_05.cos)
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Scicos code generation: PD controller example

Before and after code 
generation

(apple_hc_05.cos,
apple_hc_06.cos)
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Scicos architecture

Editor Compiler Simulator

Code Gen.

Scicos Blocks
Library

Scilab Scilab+CAML “C”

Results

Internal

Standalone
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Scicos block : how does it work ?

Interfacing function: the Scicos block “user's interface”.
A Scilab script that is launched when you “double click” over 
a Scicos block.

Computational function: the Scicos block simulation function.
The code (typically a C function compiled as shared library) called 
during the simulation. 
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Scicos block computational function
#include <windows.h>          /* Compiler's include files's */
#include "scicos_block4.h"   /* Specific for Scicos block development */
#include "machine.h"

void custom_bock(scicos_block *block, int flag) 
{
  //** scicos_block is a “C” complex data structure that contains in/out ports parameters and values, block's parameters and states        

switch(flag) {  
    
      case Init: //** It is called just ONE TIME before simulation start. Put your initialization code here
      break; 

      case StateUpdate: //** It is called EACH CYCLE. Read the input ports and update the internal state of the block
                                     //** Use this section for OUTPUT blocks (e.g. D/A converter, digital output, etc.)
      break; 

      case OutputUpdate://** It is called EACH CYCLE. Read the internal state and update the output
                                        //** Use this section for INPUT block (e.g. A/D converter, digital input, etc.)
      break;

      case Ending://** It is called just ONE TIME at simulation end. Put your “shut down” code here. 
      break;   
        
  } // close the switch
   
} // close the computational function 
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