
Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

1

ScicosLab/Scicos for dummies like us

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

2

Digital control systems design and simulation:
the Bermuda Triangle for engineers

Control systems

Computer science

Physics

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

3

What ScicosLab is?
 An interpreted language (“Scilab Language”, very similar _but_not_equal_ to Matlab)
 Full support for matrix computation (BLAS, LAPACK, single and multi cores support
 using ACML now, GPU support in the near future using OpenCL).

 Basic programming (just like Matlab)
 GUI development (using TCL/TK and UICONTROL)
 Linear algebra
 Polynomial calculation
 Control systems modelling and design (continuous, discrete and hybrid systems)
 Robust control toolbox
 Optimization and simulation (build-in solvers)
 Signal processing (filters design, etc.)
 ARMA modelling and simulation
 Basic statistics
 Basic identification
 PVM support
 TCL/TK and Java support
 Max-plus algebra toolbox

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

4

What you can do with ScicosLab?
• Interact with the command line

• Write a program, one line at time, using the internal
 or with an external editor

• Run the program in an user friendly interpreted
 environment (easy debug)

• Use the rich embedded library.

• You can develop your ScicosLab functions using
 C, Fortran, Java, etc.

• Produce nice graphics diagrams.

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

5

What Scicos is?
Scicos is a graphical dynamical system modeller and simulator
developed inside the METALAU project at INRIA, Paris
Rocquencourt centre.

Scicos is a graphics, object oriented tool where the user create
block diagrams to model and simulate the dynamics (time domain)
of hybrid dynamical systems and compile models into executable
code (code generation for simulation and embedded applications).

Scicos is used for signal processing, systems control, queuing
systems, and to study physical and biological systems.

New extensions allow generation of component based modelling of
electrical and hydraulic circuits using the Modelica language.

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

6

What you can do with Scicos?
 Graphically model, compile, and simulate dynamical systems
 Combine continuous and discrete-time behaviours in the same model
 Select model elements from “Palettes” of standard blocks
 Program new blocks in C, Fortran, or Scilab Language
 Run simulations in batch mode from ScicosLab command line
 Generate C code from Scicos model using the built in Code Generator
 Generate C/C++ libraries ready to be integrated in Kepler using FC2K
 Run simulations in real time with and real devices using Scicos-HIL
 Generate hard real-time control executables with Scicos-RTAI,
 Scicos-FLEX and Scicos-ITM code generators.

 Use implicit blocks developed in the Modelica language.
 Discover new Scicos capability using additional toolboxes like RTSS,
 Scicos-HDL, Coselica, etc.

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

7

ScicosLab

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

8

Modelling of complex dynamical systems

ScicosLab and Scicos are designed to handle explicit (ODE,
Ordinary Differential Equation) or implicit (IDA, Implicit Differential
Algebraic equation) differential equation problem (in the
continuous domain) and difference equation (in the discrete
domain).

ScicosLab and Scicos can handle also partial differential
equation (PDE) and finite element problem, but the user must
develop some code to implement features like meshing (not
built in ScicosLab).

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

9

Continuous systems

Linear controller for a floating apple.

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

10

Discrete systems

Same diagram, but realized with (time) discrete blocks.

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

11

Hybrid systems

Welcome to the Real World: continuous system, discrete controller.

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

12

Implicit model: an easy example.

Consider the basic LR circuits show below.
You would like to control the current “i(t)” that flows inside the
inductance using “vu(t)” (the voltage source that drive the coil).

“lr_cc_modelica_r1.cos”

Consider the basic LR circuits show below.
You would like to control the current “i(t)” that flows inside the
inductance using “vu(t)” (the voltage source that drive the coil).

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

13

Basic modelling
The equations are:

vu t =R⋅i t 
d
dt

 t 

=L⋅i

vu t =R⋅i t L
d
dt
i t i t  d

dt
Lt  vu t =R⋅i t L

d
dt
i t 

L=⋅K⋅N
2 A
l

K= f Nagaoka
d
l
=<material>

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

14

Root locus and Bode plots with ScicosLab

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

15

Root locus and Bode plots with ScicosLab
PLANT PLANT + CONTROLLER

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

16

Why do you need control systems?

Control technology was born in order to improve the performances of the
“PLANT”, e.g. the system that makes the work.

Examples:

- furnace (temperature control)
- audio amplifier (distortion, bandwidth)
- motion control (precision, speed)
- AAA (Anti Aircraft Artillery)
- Flight control (efficiency, comfort, performances)
- Combustion engine (efficiency, emission's reduction)

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

17

Continuous systems

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

18

Linear, continuous and time invariant systems

Continuous: all the internal and external signals are “proper” time
functions. They are unequivocally defined for all values of “t”.

Linear: if u1, u2 are two inputs and y1 and y2 are the two corresponding
outputs, the input u = u1 + u2, produces the output y = y1+ y2

Time invariant: the response of the systems does not vary in time (system
parameters are time invariant, no “ageing effect”).

LTI continuous systems: the Paradise

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

19

Control system means feedback

NO FEEDBACK : open loop system

PLANT
Input Output

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

20

Control system means feedback: standard config.

PLANT
Input Output

Controller

PLANT
Input

Output
Controller

Error

Controller in the
“feedback” path

Controller in the
“direct” path

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

21

Example of feedback system: the floating apple

 I have an apple at y(0)=y0=1.0m.

 At t=0 I drop the apple, and the apple falls down.

 I'm not satisfied: I'd like to see the apple floating at a reference height (ref=0.5m).

 I need a controller to implement a closed loop feedback system.

To design a controller you need:

- a theory : Newton's gravity law

- a model of the “PLANT”

Example of feedback system: the floating apple

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

22

Open Loop “PLANT” model

The “PLANT” : a free falling apple

F=G
mamT

r2

F=ma a=Fm
aa=G

mT
r2 ; g=−9.81m/ s2

v t =v0∫ a t dt y t = y0∫ v t dt

y t = y0
1
2
g t 2

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

23

Open loop PLANT model:
Scicos simulation

Open loop simulation of the free falling
apple.

v t =v0∫ a t dt
y t = y0∫ v t dt

“apple_ff_01.cos”

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

24

Example: the floating apple
First “instinctive” trial-and-error controller (P only)

This controller does not work.
“apple_c_01.cos”

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

25

Example: the floating apple
Hint: you need to introduce an additional term producing “artificial friction”.

It works !
“apple_c_02.cos”

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

26

Example: the floating apple

Conclusions and observations:

“intuitive” design (no theory) may produce catastrophic results

The ubiquitous PID controller may be able to solve most of the
common situations.

Not every PLANT can be stabilized using a simple PID

In order to design a suitable controller we need a specific theory

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

27

Basic tool for continuous system:
the Laplace transform

Solving with “paper and pencil” differential equations is too difficult: we need a
better tool.

Laplace transform a differential equation problem in a polynomial problem

 F(s) is a complex function of complex variable

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

28

Laplace transform for dummies

Write a differential equation

Substitute “d/dt” (derivative) with “s”

Substitute “” (integral) with (1/s)

Compute the transfer function H(s) = N(s) / D(s)

Examples:
 Electrical circuit (simple RC)
 Mechanical system (mass + friction)

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

29

Laplace transform for dummies

Compute poles “p_i” (D(s) = 0) and zeros “z_i” N(s)=0 and factorize

Forget the zeros for a moment and focus your attention on the poles.

Why are the poles so important?

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

30

Poles on “s” plane

The position of the poles is strictly linked with the system response

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

31

Poles on “s” plane: the root locus method
Feedback “K” moves the poles on the “s” plane. If you understand the relation
between “K” and the position of the poles, you can change the response of the
closed loop system.

In our initial example “K” moves the poles, but the poles remain on the (vertical)
imaginary axis.

Adding a “zero” (the derivative factor) moves the asymptotic axe of the poles on
the stable region.

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

32

Fourier transform and frequency response
Fourier transform is a simplified but very useful form of Laplace transform. If you
already have the Laplace transfer function H(s), the Fourier transfer function is
the same but with

Fourier transfer function is used when the input of the system is a single
sinusoid because, in this case, the output is another sinusoid with different
amplitude and phase, easily calculated from the

Fourier transform is used also for control system design using Bode, Nyquist
and Nichols (Black) diagrams (charts).

Fourier transfer function is very useful because you can consider any periodic
input signals as superposition of sinusoids with harmonic frequencies (0, 1,
2 ...n) and with different amplitudes and phases (Fourier transform, FFT,
FFTW).

Fourier transform could be used for system's identification (parameter
measurement).

s= j

F  j

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

33

Gentle introduction to state space control
Do you remember how we have stabilized the free falling apple?

Hint: instead of deriving the position error, suppose you have a sensor measuring
the apple speed; use this signal to stabilize the loop.

It works. The response does not change!
“apple_c_ss_01.cos”

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

34

Introduction to state space control
State variable: a function of time associated to an energy stored inside the system;
“x” is the “state” (of the system): a vector that includes all the “energy related”
variables.

Typical examples of state variables:
Electrical systems: voltage of capacitors and current in the inductor.
Mechanical systems: speed of mass, position of springs

x(t)
Input Output

u(t) y(t)

ẋ t =A x t Bu t ; internal state equation
y t =C x t Dut ; output equation

ABC Darematrixes

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

35

State space representation: the guts

B

Input Output

ẋ t =A x t Bu t ; internal state equation
y t =C x t Dut ; output equation

+

A

C +
ẋ t  x t 

D

u t  y t 1
s

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

36

State space feedback control

B

Input

Output

+

A

C +
ẋ t  x t 

D

u t 
y t 1

s

F

+
i t 

F is the “magic” matrix
changing the closed
loop response of the
PLANT

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

37

Power and Energy are not Free
(ask ENEL, EDF, etc.)

Consider the previous case and measure the power and energy requirement of the
actuator (the external “magic” force).

“apple_c_03.cos”

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

38

Power and Energy are not Free (ask ENEL)
Observations:

Final energy cost is NEGATIVE: the actuator has
“recovered” some energy from the apple. EDF
should pay you :-).

Instantaneous power requirement is around +/- 20
Watt.

Maximum force is around +/- 6 N.

What happens if my actuator is limited to +/- 4 N ?

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

39

Power and Energy are not Free (ask ENEL)
The same controller but with a force limiter (saturation).

“apple_c_04.cos”

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

40

Power and Energy are not Free (ask EDF)
Final energy cost has not changed.

Instantaneous power requirement is a bit
lower (+/- 15 against +/- 20 Watt) .

Maximum force is limited to +/- 3N

In practice, every actuator has some physical
limits. Powerful actuators are more expensive
and have more energy, space and weight
requirements.

Loosing the “linear” hypothesis – in this case
– is not “catastrophic”: the – linearly –
designed controller keeps on working.

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

41

Introduction to
state space OPTIMAL control

Taking into consideration the previous example, can I design the controller in such a
way that the actuator is never pushed above its limits ?

What should you do if you have no access to the complete internal state of the
PLANT or you can't (in order to limit costs or weight) install a full set of sensors?

Yes: you need to design a state space optimal controller.

You can re-create the full internal state of the PLANT with an OBSERVER if :
(a) you have a “good enough” model of the plant
(b) the PLANT is not “bastard” (the PLANT must be observable and controllable)
(c) you have sufficient computing power.

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

42

Discrete systems

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

43

Linear, discrete and time invariant systems

Discrete: all the internal and external signals are sampled in time. They
are unequivocally defined only for “t = k Ts”.

Linear: if u1, u2 are two inputs and y1 and y2 are the two corresponding
outputs, the input u = u1 + u2, produces the output y = y1+y2

Time invariant: the response of the systems does not vary in time (system
parameters are time invariant, no “ageing effect”).

LTI discrete systems: the Purgatory

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

44

Why do you need discrete (sampled) systems?
The time sampling signal technology was born (1930, Bell) to improve the
communication capability of telephone networks (more conversations on
the same wired or radio connection).

No one suggested – at the time - sampled (discrete) feedback systems.
Sampled systems were considered an “aberration”.

Why sampling a signal when:
 the sensors produce continuous signals
 the actuators need continuous signals
 all the available computing blocks were based on analog
 (mechanical, hydraulical or electrical) continuous time
 technologies.

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

45

Q. Why do you need discrete (sampled) systems?
A. Because there was a war.

If you need to point a cannon to an aicraft you can use a RADAR as sensor
BUT all the RADAR signals (distance, bearing, etc.) are intrinsically “sampled”
(discrete in time).

Q. Why do you need discrete (sampled) systems?
A. Because there is the digital computer

Modern computers use digital technology, in which all the signals are
sampled in time (discrete in time, sampling) and in amplitude (discrete in
value, quantization).

- 1945 -

- 1939 -

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

46

Q. Why do you need discrete (sampled) systems?
A. Because there is a PC with ScicosLab

All the software simulators - running on a PC - model continuous systems
using equivalent discrete systems.

Three questions:

How is it possible to build a discrete equivalent of a continuous system?

It is (the discrete equivalent) just an approximation of the continuous one
or a completely different “thing”?

What are the hypothesis and the limits of this “emulation”?

- 2010 -

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

47

Free falling apple discrete simulation
Many years ago somebody (Euler) has shown how it is possible to transform a
differential equation into a finite difference equation (sampling in time, from
continuous to discrete equivalent).

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

48

Free falling apple discrete Scicos simulation
Open discussion: “How have you built this nice diagram?”

“apple_ffde_02.cos”

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

49

The discrete integrator (according to Euler)

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

50

Free falling apple discrete Scicos simulation
Observations and open discussion:

The same results.

How have you calculated Ts ?

What happens if you change Ts ?

Can you show the discrete nature of the
system?

Does Scicos work using this technique ?

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

51

First “instinctive” P-only controller

Stability is not achieved !

“apple_cde_02.cos”

 “apple_cde_01.cos” is “algrebraic loop”

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

52

P-only controller
Observations and open discussion:

The same results.

What happens if I change Ts ?

Can you show the discrete nature of the
system?

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

53

PD controller

It works !
“apple_cde_03.cos”

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

54

PD controller
Observations and open discussion:

The same results.

What happens if I change Ts ?

Can you show the discrete nature of the
system?

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

55

Basic tool for discrete systems: Z transform

Solving by “pencil and paper” discrete equations is too difficult: you need a
better tool.

Z transforms a difference equation problem in a polynomial problem

 X(z) is a complex function of complex variable

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

56

Z transform for dummies

Z transform produces N(z)/D(z) polynomial transfer functions.

The dynamic of the system is determined by the position of the poles

on the “z” complex plane.

Z transform does not show an explicit dependency by “Ts”, but the poles
position is strongly “Ts” dependent.

Before considering the link between “Z” and “L” transforms and the
considerations about the system stability, you need to ask yourself the
question: “How can I choose Ts?”

D z i=0

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

57

Nyquist-Shannon sampling theorem
I want to realize an apparently trivial application:

I have a continuous signal “x(t)” and I want to sample it, creating a new,
discrete in time, signal “x*(kTs)”. Then, I want to use this sampled signal to
recreate EXACTLY (zero error, no approximations) the original continuous
signal “x(t)”.

C / D converter

Input

x(t)
D / C converter

Output

x*(kTs) x'(t)=x(t)

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

58

Nyquist-Shannon sampling theorem
First step: the input signal “x(t)” must be strictly band limited.
In other words, it does not have any “energy” beyond a specific frequency
B (input signal bandwidth).

C / D converter
x(t)

The input filter (also called “anti aliasing filter”) is optional. In some applications
(e.g. sampling scopes) is not used.

In practice, all the real physical signals have a
limited bandwidth.
In case of doubt, you can add an input filter,
“good enough” to suppress any undesired
input frequency component beyond B.

Input filter
u(t) x*(kTs)

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

59

Nyquist-Shannon sampling theorem
Second step: the input signal “x(t)” must be sampled with a stable, periodic signal
“s” with a frequency Fs = 1/Ts where Fs must be at least 2B. In other words, the
sampling frequency must be – at least – twice the input signal bandwidth.

Good.
Sufficient sampling frequency. No
spectrum overlapping, no
aliasing.

Bad.
Insufficient sampling frequency.
The spectrum of the sampled
data signal is altered (aliasing).

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

60

Nyquist-Shannon sampling theorem
Second step (practical realization): building a good C/D converter - today -
is relatively easy (it is just a very fast switch). The critical issue is the Fs
stability.

Real C/D converters (called A/D Analog to Digital converters) make also a
quantization in amplitude.

C / D converter
x(t) x*(kTs)

Ts = 1/Fs

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

61

Nyquist-Shannon sampling theorem
Third step: the sampled signal “x*(kTs)” must be considered as a sequence of
Dirac impulse of variable amplitude. In practice, this is not a big issue because we
need only to store a sequence of values.

C / D converter
x(t) x*(kTs)

Ts = 1/Fs

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

62

Nyquist-Shannon sampling theorem
Fourth step (the reconstruction): in theory, if we apply the sequence of delta
function to the input of a “brick-wall” filter, the output will be equal to the original
signal. The “brick-wall” filter removes the images (alias).

D / C converter

Ideal “brick-wall” filter H(f)

x*(kTs) x'(t)=x(t)

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

63

Nyquist-Shannon sampling theorem
Fourth step (practical realization): Dirac impulses are impossible to realize
because they have infinite amplitude and bandwidth. Ideal “brick-wall” filters are
impossible to realize, too.
In practice, the Dirac impulses are substituted by a zero-order-hold approximation
(the familiar staircase reconstruction) and the output filter is designed to
approximate the brick-wall and compensate the ZHO distortion.

In some applications (e.g. control system) the output filter is not used.

ZOH

x*(kTs)

y'(t) ~ x(t)

Output Filter

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

64

The sampling theorem for control systems
Regarding “Ts” choice, we can take for granted that we need to sample with a
frequency – at least – twice the input signal bandwidth.

For closed loop control systems, the game should be played in a different way,
because it is up to us decide the bandwidth of the closed loop system in function
of the specifications. We need also to consider the approximations of the practical
realization, otherwise we would risk to produce an unstable or marginally stable
closed loop system.

A good “rule of thumb” is to choose a sampling frequency from 5 to 20 times the
closed loop system bandwidth.

This rule is also known as “at least ten samples during system's closed-loop
transient response”.

Obviously, this design rule makes Shannon and Nyquist happy :-).

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

65

Do not push too hard on Ts !
Beware! You must avoid the temptation to push too much the sampling frequency.

If you double the sampling frequency, you double the required computational
requirement, so the power consumption, so the weight, so the cost....

If you push too much the sampling frequency, you aggravate the problems deriving
from finite mathematical precision. You risk to spend time to accumulate “zero”
quantity or differentiate equal values with very small denominators.

Finally, you become too much sensitive to numerical (finite precision) and signal
(real signal) noises.

When it is enough it is enough.

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

66

L and Z transforms intimate relationship
Think back to our original problem to create a discrete system that “emulates” a
continuous one. Let us suppose that we have already designed our complete
system, so we know where the poles are in the “s” (Laplace) plane.

01

1 2

2

3 4

12
3

3
3

44

47

7

7

7

8

9 90 0

8

8

8

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

67

From L to Z transform
The previous equation is perfect from a theoretical standpoint but does not
resolve our problem: transform an H(s) function in a H'(z) equivalent function.

The Tustin transformation can transform the continuous compensator to the
respective digital compensator. The digital compensator will achieve an output
which approaches the output of its respective analog controller as the sampling
interval is decreased.

Tustin is just one of the many “approximate” transformation. Notice the direct
dependency from Ts.

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

68

Discrete state space control
The state space representation is valid in the discrete as in the continuous

B

Output

xk1=A xkBuk ; internal state update equation

yk=C xkDuk ; output equation

+

A

C +
xk1 xk

D

uk yk
1
z

Input

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

69

Hybrid systems

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

70

Linear, hybrid and time invariant systems

Hybrid: internal and external signals are a mix of sampled and continuous
time signals.

Linear: if u1, u2 are two inputs and y1 and y2 are the two corresponding
outputs, the input u = u1 + u2, produces the output y = y1+y2

Time invariant: the response of the systems does not vary in time (system
parameters are time invariant, no “ageing effect”).

LTI hybrid systems: welcome to Inferno

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

71

Why do you have fallen into hybrid systems?

Because - most of the time - the PLANT is a continuous time system and the
CONTROLLER is realized with digital technology (discrete time system).

Why digital technology? Because 1000 low quality transistors are cheaper
than 1 high quality device. Digital controllers are becoming less expensive
than their analog equivalents. Moreover, digital control offers capability well
beyond the usual analog PID(networking, supervision, diagnostic, etc.).

Digital control is a perfect solution for an Internet connected world.

Where is the weak point?

 Software

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

72

Continuous vs Discrete controller

“apple_hc_02.cos”

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

73

Continuous vs Discrete controller
Observations and open discussion:

It works but the response is a bit different …

Where is the input sampler ?

Where are the input and the output filters ?

Why is the D gain different and the P gain the same ?

What happens if you change Ts ?

Is digital control cost effective also for very simple systems?

Is digital control “safe” ?

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

74

How to design discrete controllers
for continuous plant

Old way (design in “s” space):
 You build a model for the PLANT
 You design a controller using continuous time tools (Laplace, root locus, Bode)
 You choose “Ts”
 You transform the continuous controller in a discrete one (Tustin, etc.)

New way (design in “z” space):
 You build a model for the PLANT
 You choose “Ts”
 You transform the continuous plant in a discrete equivalent
 You design a controller using discrete time methods (deadbeat, pole placement, etc.)

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

75

Plus and minus of the two design methods

Old way advantages:
 You can continue to use familiar tools and methods (e.g. Bode plots)
 You can postpone the decision about “Ts” (critical decision)
Disadvantages:
 No better performances compared to the “analog” design.

New way advantages:
 You can use high quality transformations to create a discrete equivalent of the
 PLANT. This improve the design of the controller without additional costs.

 You can use control topology too expensive for analog (c.t.) implementation
Disadvantages:
 You need to choose Ts early (critical decision)
 You need to master discrete design techniques

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

76

Do not push too hard on Ts !
Beware! You must avoid the temptation to push too much the sampling frequency.

If you double the sampling frequency, you double the required computational
requirement, so the power consumption, so the weight, so the cost....

If you push too much the sampling frequency, you aggravate the problems that
derive from the finite mathematical precision. You risk to spend time to accumulate
“zero” quantity or differentiate equal values with very small denominators.

Finally, you become too much sensitive to numerical (finite precision) and signal
(real signal) noises, in other words, avoid “zipping” poles in (1,0)

Small Ts means z → (1,0) not matter the value of “s”.

z=esT s

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

77

L and Z transforms intimate relationship
Think back to our original problem to create a discrete system that “emulates” a
continuous one. Let us suppose that we have already designed our complete
system, so we know where the poles are in the “s” (Laplace) plane.

01

1 2

2

3 4

12
3

3
3

44

47

7

7

7

8

9 90 0

8

8

8

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

78

Hybrid state space control

B

Input

Output

+

A

C +
ẋ t  x t 

D

u t 
y t 1

s

F*

+
i t 

F* is the “magic” matrix
that changes the closed
loop response of the
PLANT

D/C C/D

Ts Ts
Discrete state space controller

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

79

SuperBlocks and Code Generation

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

80

Scicos code generation: PD controller example
Super blocks help a lot
to simplify and
organize complex
diagrams

(apple_hc_03.cos,
apple_hc_05.cos)

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

81

Scicos code generation: PD controller example

Before and after code
generation

(apple_hc_05.cos,
apple_hc_06.cos)

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

82

Scicos architecture

Editor Compiler Simulator

Code Gen.

Scicos Blocks
Library

Scilab Scilab+CAML “C”

Results

Internal

Standalone

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

83

Scicos block : how does it work ?

Interfacing function: the Scicos block “user's interface”.
A Scilab script that is launched when you “double click” over
a Scicos block.

Computational function: the Scicos block simulation function.
The code (typically a C function compiled as shared library) called
during the simulation.

Basic ScicosLab and Scicos

Simone Mannori – ScicosLab/Scicos developer

Florence University, October 2010

84

Scicos block computational function
#include <windows.h> /* Compiler's include files's */
#include "scicos_block4.h" /* Specific for Scicos block development */
#include "machine.h"

void custom_bock(scicos_block *block, int flag)
{
 //** scicos_block is a “C” complex data structure that contains in/out ports parameters and values, block's parameters and states

switch(flag) {

 case Init: //** It is called just ONE TIME before simulation start. Put your initialization code here
 break;

 case StateUpdate: //** It is called EACH CYCLE. Read the input ports and update the internal state of the block
 //** Use this section for OUTPUT blocks (e.g. D/A converter, digital output, etc.)
 break;

 case OutputUpdate://** It is called EACH CYCLE. Read the internal state and update the output
 //** Use this section for INPUT block (e.g. A/D converter, digital input, etc.)
 break;

 case Ending://** It is called just ONE TIME at simulation end. Put your “shut down” code here.
 break;

 } // close the switch

} // close the computational function

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84

